JP2016162582A - 光源装置、プロジェクター、および放電灯の冷却方法 - Google Patents

光源装置、プロジェクター、および放電灯の冷却方法 Download PDF

Info

Publication number
JP2016162582A
JP2016162582A JP2015039943A JP2015039943A JP2016162582A JP 2016162582 A JP2016162582 A JP 2016162582A JP 2015039943 A JP2015039943 A JP 2015039943A JP 2015039943 A JP2015039943 A JP 2015039943A JP 2016162582 A JP2016162582 A JP 2016162582A
Authority
JP
Japan
Prior art keywords
discharge lamp
arc tube
temperature
light
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015039943A
Other languages
English (en)
Inventor
鬼頭 聡
Satoshi Kito
聡 鬼頭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2015039943A priority Critical patent/JP2016162582A/ja
Publication of JP2016162582A publication Critical patent/JP2016162582A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Projection Apparatus (AREA)
  • Circuit Arrangements For Discharge Lamps (AREA)

Abstract

【課題】発光管の黒化を抑制しつつ、損傷および失透も抑制することができる光源装置を提供する。【解決手段】本発明の光源装置5は、発光管90を有する放電灯50と、放電灯50を駆動する放電灯駆動部と、放電灯50を冷却する冷却部CU2と、放電灯駆動部および冷却部を制御する制御装置200と、を備える。放電灯駆動部は、放電灯50の点灯開始時点から所定時間までの立上期間と、放電灯50の発光状態が安定する定常期間と、を有するように、放電灯50を駆動する。制御装置200は、立上期間における発光管90の温度が、定常期間における発光管90の温度の1.05倍以上かつ1.15倍以下の範囲となるように、冷却部CU2を制御する。【選択図】図1

Description

本発明は、光源装置、プロジェクター、および放電灯の冷却方法に関する。
プロジェクターの光源として、高圧水銀ランプ、メタルハライドランプ等の放電灯が使用されている。この種の放電灯では、電極物質が蒸発し、発光管の管壁に付着する現象、いわゆる黒化により寿命が劣化することが知られている。発光管の黒化は、内壁温度の上昇を引き起こし、ひいては石英管の結晶化現象である失透を引き起こす。黒化が生じる大きな要因として、温度要因が挙げられる。通常、蒸発した電極物質は、ハロゲンサイクルと呼ばれる化学反応により再び電極に戻される。ところが、この際に発光管内で温度が低い領域が存在する場合には、その部分ではハロゲンサイクルが起こらず、管壁に電極物質が付着する。
特に黒化は放電灯の立上期間で激しく生じることが知られている。その理由は、立上期間は電極物質が蒸発しやすい高電流の供給期間でありながら、管壁が未だ充分に暖まっておらず、電極物質が凝縮しやすいからである。下記の特許文献1に、黒化を回避する方法が記載されている。この方法は、光源用ランプの点灯時にランプ電圧を検出し、点灯開始時点から、検出したランプ電圧が規定値に到達する時点までは、ランプ冷却装置を動作させないというものである。
特開2007−256570号公報
特許文献1の方法を用いることにより、立ち上げ時に発光管内の温度上昇が早くなり、水銀の蒸発が促進されて光源用ランプは早く立ち上がる。しかしながら、ランプ電圧は早く安定する一方、発光管内の温度が安定するにはある程度の時間を要する。そのため、ランプ電圧に基づいて冷却を開始するか否かの判定を行うと、管壁が充分に暖まる前に冷却が開始される場合がある。この場合、発光管内でハロゲンサイクルが充分に機能しないために黒化が発生し、光源用ランプの劣化を引き起こす要因となる。逆に、冷却を開始するタイミングが遅くなり過ぎると、発光管内の温度が上昇しすぎ、発光管の損傷や失透が生じるおそれがある。
本発明の一つの態様は、上記の課題を解決するためになされたものであり、発光管の黒化を抑制しつつ、損傷および失透も抑制することができる光源装置を提供することを目的の一つとする。また、上記の光源装置を備え、信頼性に優れたプロジェクターを提供することを目的の一つとする。また、発光管の黒化を抑制しつつ、損傷および失透も抑制することができる放電灯の冷却方法を提供することを目的の一つとする。
上記の目的を達成するために、本発明の一つの態様の光源装置は、光を射出する発光管を有する放電灯と、前記放電灯を駆動する放電灯駆動部と、前記放電灯を冷却する冷却部と、前記放電灯駆動部および前記冷却部を制御する制御部と、を備え、前記放電灯駆動部は、前記放電灯の点灯開始時点から所定時間までの立上期間と、前記放電灯の発光状態が安定する定常期間と、を有するように、前記放電灯を駆動し、前記制御部は、前記立上期間における前記発光管の温度が、前記定常期間における前記発光管の温度の1.05倍以上かつ1.15倍以下の範囲となるように、前記冷却部を制御することを特徴とする。
本発明の一つの態様の光源装置において、制御部は、立上期間における発光管の温度が定常期間における発光管の温度の1.05倍以上となるように冷却部を制御する。これにより、立上期間における発光管の温度が低くなり過ぎることがなく、発光管の黒化を抑えることができる。また、制御部は、立上期間における発光管の温度が定常期間における発光管の温度の1.15倍以下となるように冷却部を制御する。これにより、立上期間における発光管の温度が高くなり過ぎることがなく、発光管の損傷や失透を抑えることができる。1.05倍および1.15倍の数値の根拠については後述する。
本発明の一つの態様の光源装置において、前記制御部は、前記立上期間における前記発光管の温度が、前記定常期間における前記発光管の温度の1.10倍以上かつ1.15倍以下の範囲となるように、前記冷却部を制御してもよい。
この構成によれば、発光管の黒化をより充分に抑えることができる。
本発明の一つの態様の光源装置において、前記冷却部の駆動条件を記憶する記憶部をさらに備え、前記制御部は、前記記憶部に記憶された前記駆動条件に基づいて前記冷却部を制御してもよい。
この構成によれば、例えば温度検出部などの構成要素を付加することなく、冷却部を制御することができる。
本発明の一つの態様の光源装置において、前記発光管の温度を検出する温度検出部をさらに備え、前記制御部は、前記温度検出部により検出された前記発光管の温度に基づいて前記冷却部を制御してもよい。
この構成によれば、温度検出部により検出された実際の発光管の温度に基づいて冷却部を精度良く制御することができる。
本発明の一つの態様のプロジェクターは、光を射出する光源装置と、前記光源装置から射出された光を映像信号に応じて変調する光変調装置と、前記光変調装置により変調された光による画像を被投射面上に投射する投射光学系と、を備え、前記光源装置は、本発明の一つの態様の光源装置であることを特徴とする。
この構成によれば、発光管の黒化、損傷および失透の問題が生じにくく、信頼性に優れたプロジェクターを実現できる。
本発明の一つの態様の放電灯の冷却方法は、発光管を有し、点灯開始時点から所定時間までの立上期間と、発光状態が安定する定常期間と、を有するように駆動される放電灯の冷却方法であって、前記立上期間における前記発光管の温度が、前記定常期間における前記発光管の温度の1.05倍以上かつ1.15倍以下の範囲となるように、前記冷却部を冷却することを特徴とする。
この構成によれば、立上期間における発光管の温度が低くなり過ぎず、かつ、高くなり過ぎないため、発光管の黒化、損傷および失透の問題を改善することができる。
本発明の一実施形態のプロジェクターの概略構成図である。 放電灯の断面図である。 発光管の温度の時間変化を示すグラフである。
以下、図面を参照しながら、本発明の実施形態に係るプロジェクターについて説明する。
図1は、本実施形態のプロジェクターの概略構成図である。
以下の図面においては、各構成をわかりやすくするために、各種構成要素の縮尺や数等を実際の装置とは異ならせる場合がある。
図1に示すように、本実施形態のプロジェクター1Aは、光源装置5から射出された光束を変調して画像情報に応じた画像光を形成し、画像光をスクリーンなどの被投射面上に拡大投射するものである。プロジェクター1Aは、外装を構成する外装筐体2と、外装筐体2の内部に収納される装置本体3と、を備える。
外装筐体2は、天面(図示せず)と、正面2Bと、背面2Cと、左側面2Dと、右側面2Eと、底面2Fと、を備え、平面視したときに略矩形状に形成された箱状体である。外装筐体2の底面には、複数の脚部(図示せず)が設けられている。プロジェクター1Aは、脚部が設置面に接するように配置されることで正置き姿勢となる。また、正置き姿勢とは上下を逆にして底面を天井等に向けた状態で取り付けられることで天吊り姿勢となる。
装置本体3は、光学ユニット4と、制御装置200と、第1冷却部CU1と、第2冷却部CU2と、を備える。制御装置200は、光学制御部200aと、ファン制御部200bと、を備える。装置本体3は、プロジェクター1Aの各構成部材に駆動電力を供給する電源装置(図示略)などを備える。
本実施形態の制御装置200は、特許請求の範囲の制御部に対応する。本実施形態の第2冷却部CU2は、特許請求の範囲の冷却部に対応する。
光学制御部200aは、光学ユニット4と第1冷却部CU1とを制御する。第1冷却部CU1は、ファンF1およびファンF2により構成されている。第1冷却部CU1は、外装筐体2の外部から冷却流体である冷却空気を導入し、光学ユニット4、光学制御部200aおよび電源装置に冷却空気を送風し、これらの装置を冷却する。ファンF1およびファンF2は、投射光学系45を挟むように配置されている。ファンF1およびファンF2は、例えばシロッコファンで構成されている。ファンF1およびファンF2は、外装筐体2の吸気口(図示せず)から筐体外部の冷却空気を導入し、後述する電気光学装置44に冷却空気を送風する。
光学ユニット4は、光学制御部200aによる制御の下、画像情報に応じた画像光を形成し、画像光をスクリーン等の被投射面に投射する。光学ユニット4は、光源装置5と、照明光学系41と、色分離光学系42と、リレー光学系43と、電気光学装置44と、投射光学系45と、光学部品用筐体46と、を備える。電気光学装置44は、フィールドレンズ441と、光変調装置442と、一対の偏光板443,445と、光学補償板444と、色合成光学系446と、を備える。光学部品用筐体46は、光学ユニット4を構成する各構成要素を照明光軸A上の所定位置に収納するとともに、投射光学系45を支持する。
照明光学系41は、第1レンズアレイ411と第2レンズアレイ412とからなるインテグレータ光学系と、偏光変換素子413と、重畳レンズ414と、を備える。照明光学系41は、光源装置5から射出された光の強度分布を被照明領域において均一化する。照明光学系41から射出された光は、色分離光学系42に入射する。
色分離光学系42は、白色の光を赤色光と緑色光と青色光とに分離する。色分離光学系42は、第1ダイクロイックミラー421および第2ダイクロイックミラー422と、第1反射ミラー423、第2反射ミラー432および第3反射ミラー434と、第1リレーレンズ431および第2リレーレンズ433と、を概略備えている。
第1ダイクロイックミラー421は、光源装置5からの光を青色光とその他の光(赤色光および緑色光)とに分離する。第1ダイクロイックミラー421は、青色光を反射するとともに、その他の光(赤色光および緑色光)を透過する。第2ダイクロイックミラー422は、その他の光を赤色光と緑色光とに分離する。第2ダイクロイックミラー422は、緑色光を反射するとともに、赤色光を透過する。
第1反射ミラー423は、青色光の光路中に配置されて、第1ダイクロイックミラー421で反射した青色光を光変調装置442Bに向けて反射する。一方、第2反射ミラー432および第3反射ミラー434は、赤色光の光路中に配置されて、第2ダイクロイックミラー422を透過した赤色光を光変調装置442Rに向けて反射する。なお、緑色光の光路中には、反射ミラーを配置する必要はなく、緑色光は、第2ダイクロイックミラー422により光変調装置442Gに向けて反射される。
第1リレーレンズ431および第2リレーレンズ433は、赤色光の光路中における第2ダイクロイックミラー422の光射出側に配置されている。第1リレーレンズ431および第2リレーレンズ433は、赤色光の光路長が青色光や緑色光よりも長くなることに起因した赤色光LBの光損失を補償する。
光変調装置442R、光変調装置442G、および光変調装置442Bには、例えば透過型の液晶パネルが用いられている。液晶パネルの入射側および射出側には、一対の偏光板443,445が配置されており、特定の方向の直線偏光光のみを通過させる構成となっている。光学補償板444は、光変調装置442と射出側偏光板445との間に設けられている。光変調装置442Rは、赤色光を画像情報に応じて変調し、赤色光に対応した画像光を形成する。光変調装置442Gは、緑色光を画像情報に応じて変調し、緑色光に対応した画像光を形成する。光変調装置442Bは、青色光を画像情報に応じて変調し、青色光に対応した画像光を形成する。
光変調装置442R、光変調装置442G、および光変調装置442Bの入射側に、それぞれフィールドレンズ441が配置されている。フィールドレンズ441は、光変調装置442Rに入射する赤色光、光変調装置442Gに入射する緑色光、および光変調装置442Bに入射する青色光のそれぞれを平行化する。
色合成光学系446は、光変調装置442R,光変調装置442G,光変調装置442Bからの各画像光が入射することにより、赤色光、緑色光および青色光に対応した画像光を合成し、合成された画像光を投射光学系45に向けて射出する。色合成光学系446には、例えばクロスダイクロイックプリズムが用いられる。
投射光学系45は、複数のレンズを含む投射レンズ群から構成されている。投射光学系45は、色合成光学系446により合成された画像光をスクリーン等の被投射面に向けて拡大投射する。これにより、被投射面上には、拡大されたカラー映像(画像)が表示される。
光源装置5は、放電灯50と、平行化凹レンズ56と、ハウジング57と、第2冷却部CU2と、ファン制御部200bと、を備える。光源装置5は、放電灯50からの光を、平行化凹レンズ56を通して射出する。
第2冷却部CU2は、ファンF3およびファンF4により構成されている。ファンF3およびファンF4は、放電灯50の近傍に配置されている。プロジェクター1Aの背面2C側に位置するファンF3は、シロッコファンで構成されている。ファンF3は、外装筐体2内の冷却空気を吸引して、放電灯50に送風する。プロジェクター1Aの正面2B側に位置するファンF4は、軸流ファンで構成されている。ファンF4は、放電灯50を冷却した空気を吸引して、プロジェクター1Aの正面2Bに向かって排出し、正面2Bの排気口2B1を介して外装筐体2外に空気を排出する。すなわち、ファンF3は空気吸引用のファンである。ファンF4は空気排出用のファンである。ファン制御部200bは、ファンF3およびファンF4を制御する。なお、ファンF3は軸流ファンであってもよく、ファンF4はシロッコファンであってもよい。排気口2B1は、外装筐体2のいずれの面に形成されていてもよい。
図2は、放電灯50の断面図である。
図2に示すように、放電灯50は、主反射鏡55と、発光管90と、副反射鏡52と、放電灯駆動部10と、を備えている。主反射鏡55は、発光管90から放出された光を照射方向Dに向けて反射する。照射方向Dは、発光管90の照明光軸Aと平行である。
発光管90は、照射方向Dに沿って延びる棒状の形状を有する。以下、発光管90の主反射鏡55に固定された側の端部を第1端部90e1と称し、発光管90の主反射鏡55から遠い側の端部を第2端部90e2と称する。発光管90は、例えば石英ガラス等の透光性材料で構成されている。発光管90の中央部は球状に膨らんでおり、内部は放電空間91である。放電空間91には、希ガス、金属ハロゲン化合物等を含む放電媒体であるガスが封入されている。
放電空間91には、第1電極92および第2電極93の先端が突出している。第1電極92は、放電空間91の第1端部90e1側に配置されている。第2電極93は、放電空間91の第2端部90e2側に配置されている。第1電極92および第2電極93は、照明光軸Aに沿って延びる棒状の形状を有する。放電空間91には、第1電極92の先端部と第2電極93の先端部とが所定距離だけ離れて対向するように配置されている。第1電極92および第2電極93は、例えばタングステン等の金属で構成されている。
発光管90の第1端部90e1に、第1端子536が設けられている。第1端子536と第1電極92とは、発光管90の内部を貫通する導電性部材534により電気的に接続されている。同様に、発光管90の第2端部90e2に、第2端子546が設けられている。第2端子546と第2電極93とは、発光管90の内部を貫通する導電性部材544により電気的に接続されている。第1端子536および第2端子546は、例えばタングステン等の金属で構成されている。導電性部材534,544は、例えばモリブデン箔で構成されている。
第1端子536および第2端子546は、放電灯駆動部10に接続されている。放電灯駆動部10は、第1端子536および第2端子546に、放電灯50を駆動するための駆動電流を供給する。言い換えると、放電灯駆動部10は、発光管90の第1電極92と第2電極93との間に駆動電力を印加する。その結果、第1電極92と第2電極93との間でアーク放電が生じる。アーク放電により生じた光(放電光)は、破線の矢印で示すように、放電位置から全方向に向かって放射される。放電灯駆動部10は、光学制御部200aによって制御され、放電灯50を駆動する。放電灯駆動部10は、放電灯50の点灯開始時点から所定時間までの立上期間と、放電灯50の発光状態が安定する定常期間と、を有するように、放電灯50を駆動する。
本発明者は、上記構成の光源装置5について、種々の条件で放電灯50を冷却しつつ点灯させ、発光管90の温度変化を計測した。
発光管90の温度計測には放射温度計を用い、放射温度計により発光管90上部の管壁温度を計測した。冷却条件は、以下の5種類とした。以下で言うファンは、上記のファンF3およびファンF4の双方である。放電灯50の駆動条件は、冷却条件にかかわらず共通とした。
条件1:放電灯の点灯開始時点からファンの回転数を2550rpmで一定に維持した。
条件2:放電灯の点灯開始時点から3分(180秒)間はファンを停止した後、3分経過時点でファンの回転を開始し、以降は回転数を2550rpmで一定に維持した。
条件3:放電灯の点灯開始と同時にファンを回転させ、放電灯の点灯開始時点から3分間はファンの回転数を1650rpmとした後、以降はファンの回転数を2550rpmとした。
条件4:放電灯の点灯開始と同時にファンを回転させ、放電灯の点灯開始時点から3分間はファンの回転数を1200rpmとした後、以降はファンの回転数を2550rpmとした。
条件5:放電灯の点灯開始と同時にファンを回転させ、放電灯の点灯開始時点から5分(300秒)間はファンの回転数を900rpmとした後、以降はファンの回転数を2550rpmとした。
図3は、発光管の上部管壁温度の時間変化を示すグラフである。グラフの横軸は時間(秒)、グラフの縦軸は上部管壁温度(℃)である。
図3に示すように、冷却条件に依らずに、発光管の管壁温度は、一旦急激に上昇した後、点灯開始時点から100秒程度で安定した。温度安定前の初期段階では、管壁温度が定常状態での管壁温度よりも低く、かつ、電極物質が多く蒸発する高電流供給期間が存在する。高電流供給期間では発光管の黒化が発生しやすい。なお、定常状態での管壁温度は、放電灯の放電状態が安定し、ファンの回転数を2550rpmで一定にしたときの温度であり、約910℃であった。
そのため、放電灯の点灯開始時点から定常状態まで同じ冷却の制御を行った条件1の放電灯では、電極物質が管壁に付着し、黒化が発生した。一方、放電灯の点灯開始時点から所定時間、冷却を弱めた条件2〜5の放電灯では、点灯直後に黒化が発生したものの、温度上昇に伴って黒化を消失させることができた。条件2〜5の中で比較すると、管壁温度が高い程、黒化をより充分に消失させることができた。一方、立上期間の管壁温度が最も高い条件2では、発光管が破裂した。これは、管壁温度が高く、発光管への温度負荷が大き過ぎたことが原因と思われる。このことから、発光管の黒化を抑制しつつ、破裂や失透を抑制するためには、発光管の温度制御が重要であることが判った。
そこで、本発明者は、発光管の温度をより細かく変化させた実験を行い、発光管の黒化およびクラックの発生状況と温度との相関関係を調査した。
実験条件として、定格電力が300Wの放電灯を210Wの電力で駆動した。放電灯の点灯開始と同時にファンを回転させ、点灯開始時点から3分間、定常期間に比べて冷却を弱め、その3分間のファンの回転数を種々変化させた。これにより、立上期間の発光管の温度を変化させた。放電灯を2時間点灯させた後に15分消灯するというオン・オフ試験を1000時間繰り返し、1000時間後の黒化とクラックの発生状況を目視により確認した。確認した結果を[表1]に示す。
Figure 2016162582
[表1]に示すように、発光管上部の管壁温度は、910℃〜1070℃の温度範囲内で9種類に変えた。定常温度に対する温度比は、定常期間での発光管上部の管壁温度に対する立上期間での発光管上部の管壁温度の比である。定常期間での発光管上部の管壁温度は910℃であった。クラックの欄は、発光管にクラックが発生したものを「×」で示し、クラックが発生していないものを「○」で示した。黒化の欄は、発光管に大きな黒化が発生したものを「×」で示し、僅かな黒化が発生したものを「△」で示し、黒化が発生していないものを「○」で示した。
[表1]に示すように、定常温度に対する温度比が1.15を上回る条件で放電灯を駆動すると、発光管にクラックが発生した。クラックの発生は、冷却が弱すぎて発光管の管壁温度が高くなり過ぎ、発光管への温度負荷が大き過ぎたことが原因と思われる。一方、定常温度に対する温度比が1.10を下回る条件で放電灯を駆動すると、発光管の黒化が発生した。特に、定常温度に対する温度比が1.05を下回ると、黒化の発生程度が悪化した。黒化の発生は、冷却が強すぎて発光管の管壁温度が低くなり過ぎ、電極物質が管壁に付着しやすくなったことが原因と思われる。
このように、本発明者は、立上期間における発光管の温度は、定常期間における発光管の温度の1.05倍以上、かつ1.15倍以下の範囲であることが望ましいとの知見を得た。さらに、本発明者は、立上期間における発光管の温度は、定常期間における発光管の温度の1.10倍以上、かつ1.15倍以下の範囲であることがより望ましいとの知見を得た。
以上の知見により、本実施形態の光源装置5において、ファン制御部200bは、立上期間における発光管90の温度が、定常期間における発光管90の温度の1.05倍以上、かつ1.15倍以下の範囲に収まるように、第2冷却部CU2を制御する。第2冷却部CU2の具体的な制御手段の一例として、図1に示すように、光源装置5は、第2冷却部CU2の駆動条件を記憶する記憶部200cを備えている。立上期間における発光管90の温度が、定常期間における発光管90の温度の1.05倍以上、かつ1.15倍以下の範囲となるための第2冷却部CU2の駆動条件、具体的にはファンの回転数が予め求められ、回転数のデータが記憶部200cに記憶されている。ファン制御部200bは、記憶部200cに記憶された駆動条件に基づいて第2冷却部CU2を制御する。
本実施形態の光源装置5によれば、立上期間における発光管90の温度が低くなり過ぎることがなく、高くなり過ぎることもない。これにより、発光管90の黒化を抑制しつつ、発光管90の損傷や失透を抑制することができる。これにより、信頼性に優れたプロジェクター1Aを実現できる。また、ファン制御部200bが記憶部200cに記憶された駆動条件に基づいて第2冷却部CU2を制御するため、例えば温度検出部などの構成要素を付加することなく、上記の効果を得ることができる。
なお、本実施形態の光源装置5は、ファン回転数のデータを記憶した記憶部200cを備えていたが、この構成に代えて、発光管90の温度を検出する温度検出部60が設けられていてもよい。この場合、ファン制御部200bは、立上期間に温度検出部60により検出された発光管90の温度が定常期間における発光管90の温度の1.05倍以上、かつ1.15倍以下の範囲に入るように、温度を監視しながら第2冷却部CU2を制御する。この構成によれば、発光管90の実際の温度に基づいて、第2冷却部CU2を精度良く制御することができる。
なお、本発明の技術範囲は上記実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。プロジェクターの具体的な構成について、上記実施形態の例に限らず、適宜変更が可能である。光変調装置としては、例えばデジタルマイクロミラーデバイス(DMD)などを用いてもよい。
また、上述の実施形態において、透過型の光変調装置を備えたプロジェクターに本発明を適用した場合の例について説明したが、本発明は、反射型の光変調装置を備えたプロジェクターに適用することも可能である。ここで、「透過型」とは、液晶パネル等を含む光変調装置が光を透過するタイプであることを意味する。「反射型」とは、光変調装置が光を反射するタイプであることを意味する。
また、上述の実施形態において、3つの光変調装置442R,442G,442Bを用いたプロジェクター1Aの例を挙げたが、本発明は、1つの光変調装置のみを用いたプロジェクター、4つ以上の光変調装置を用いたプロジェクターにも適用可能である。
1A…プロジェクター、5…光源装置、10…放電灯駆動部、45…投射光学系、50…放電灯、60…温度検出部、90…発光管、200…制御装置(制御部)、200c…記憶部、442,442R,442G,442B…光変調装置、CU2…第2冷却部(冷却部)。

Claims (6)

  1. 光を射出する発光管を有する放電灯と、
    前記放電灯を駆動する放電灯駆動部と、
    前記放電灯を冷却する冷却部と、
    前記放電灯駆動部および前記冷却部を制御する制御部と、を備え、
    前記放電灯駆動部は、前記放電灯の点灯開始時点から所定時間までの立上期間と、前記放電灯の発光状態が安定する定常期間と、を有するように、前記放電灯を駆動し、
    前記制御部は、前記立上期間における前記発光管の温度が、前記定常期間における前記発光管の温度の1.05倍以上かつ1.15倍以下の範囲となるように、前記冷却部を制御することを特徴とする光源装置。
  2. 前記制御部は、前記立上期間における前記発光管の温度が、前記定常期間における前記発光管の温度の1.10倍以上かつ1.15倍以下の範囲となるように、前記冷却部を制御することを特徴とする請求項1に記載の光源装置。
  3. 前記冷却部の駆動条件を記憶する記憶部をさらに備え、
    前記制御部は、前記記憶部に記憶された前記駆動条件に基づいて前記冷却部を制御することを特徴とする請求項1または請求項2に記載の光源装置。
  4. 前記発光管の温度を検出する温度検出部をさらに備え、
    前記制御部は、前記温度検出部により検出された前記発光管の温度に基づいて前記冷却部を制御することを特徴とする請求項1または請求項2に記載の光源装置。
  5. 請求項1から請求項4までのいずれか一項に記載の光源装置と、
    前記光源装置から射出された光を映像信号に応じて変調する光変調装置と、
    前記光変調装置により変調された光を投射する投射光学系と、を備えることを特徴とするプロジェクター。
  6. 発光管を有し、点灯開始時点から所定時間までの立上期間と、発光状態が安定する定常期間と、が設けられるように駆動される放電灯の冷却方法であって、
    前記立上期間における前記発光管の温度が、前記定常期間における前記発光管の温度の1.05倍以上かつ1.15倍以下の範囲となるように、前記冷却部を冷却することを特徴とする放電灯の冷却方法。
JP2015039943A 2015-03-02 2015-03-02 光源装置、プロジェクター、および放電灯の冷却方法 Pending JP2016162582A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015039943A JP2016162582A (ja) 2015-03-02 2015-03-02 光源装置、プロジェクター、および放電灯の冷却方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015039943A JP2016162582A (ja) 2015-03-02 2015-03-02 光源装置、プロジェクター、および放電灯の冷却方法

Publications (1)

Publication Number Publication Date
JP2016162582A true JP2016162582A (ja) 2016-09-05

Family

ID=56845286

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015039943A Pending JP2016162582A (ja) 2015-03-02 2015-03-02 光源装置、プロジェクター、および放電灯の冷却方法

Country Status (1)

Country Link
JP (1) JP2016162582A (ja)

Similar Documents

Publication Publication Date Title
JP6828438B2 (ja) 熱輸送装置及びプロジェクター
JP4475296B2 (ja) 点灯制御装置、光源装置、プロジェクタ及び点灯制御方法
JP6524608B2 (ja) 光源装置、プロジェクターおよび放電灯の冷却方法
US9229305B2 (en) Image projection apparatus, control method, and computer-readable storage medium
US9298073B2 (en) Projector and method for controlling projector
JP2008040016A (ja) 液晶表示装置
JP2016162582A (ja) 光源装置、プロジェクター、および放電灯の冷却方法
JP2009104864A (ja) 放電ランプ、光源装置、投射型表示装置
JP2007265741A (ja) 放電灯点灯装置及びプロジェクタ
JP6520238B2 (ja) プロジェクターおよびプロジェクターの制御方法
JP2007206574A (ja) プロジェクタ、光源ランプ制御方法、コンピュータ読み取り可能な光源ランプ制御プログラム、および、記録媒体
JP2008052931A (ja) 光源装置、およびプロジェクタ
JP5062269B2 (ja) 発光管、光源装置及びプロジェクタ
JP6589654B2 (ja) プロジェクター、およびプロジェクターの制御方法
JP2017156660A (ja) 光源装置および画像投射装置
JP5034755B2 (ja) 発光管、光源装置及びプロジェクタ
JP2011082012A (ja) デジタルプロジェクター用光源装置
JP2009231132A (ja) 発光管、光源装置及びプロジェクタ
JP6326908B2 (ja) 光源装置、プロジェクター、及び放電灯の冷却方法
JP4794840B2 (ja) 光源装置及び該光源装置を有する投射型表示装置
JP2016012090A (ja) 光源装置および画像表示装置
JP2016162614A (ja) 光源装置、プロジェクター、および放電灯の冷却方法
JP2008281628A (ja) プロジェクタ
JP2015141309A (ja) 光源装置及び画像投影装置
JP2017187623A (ja) プロジェクター、およびプロジェクターの制御方法