JP2016161250A - Heat exchanger tube - Google Patents

Heat exchanger tube Download PDF

Info

Publication number
JP2016161250A
JP2016161250A JP2015042144A JP2015042144A JP2016161250A JP 2016161250 A JP2016161250 A JP 2016161250A JP 2015042144 A JP2015042144 A JP 2015042144A JP 2015042144 A JP2015042144 A JP 2015042144A JP 2016161250 A JP2016161250 A JP 2016161250A
Authority
JP
Japan
Prior art keywords
circular
heat exchanger
circular pipe
flat tube
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015042144A
Other languages
Japanese (ja)
Other versions
JP6463993B2 (en
Inventor
石森 崇
Takashi Ishimori
崇 石森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hino Motors Ltd
Original Assignee
Hino Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hino Motors Ltd filed Critical Hino Motors Ltd
Priority to JP2015042144A priority Critical patent/JP6463993B2/en
Publication of JP2016161250A publication Critical patent/JP2016161250A/en
Application granted granted Critical
Publication of JP6463993B2 publication Critical patent/JP6463993B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Exhaust-Gas Circulating Devices (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a heat exchanger tube which can largely improve performance more than before when employed to a heat exchanger such as an EGR cooler.SOLUTION: In a heat exchanger tube, a flat tube main body 14 is employed which has such a shape that a plurality of pieces of circular pipes are made to approximate each other, aligned in a plane shape, and connected to each other with an approximating region between the circular pipes as a communication part 13, swirl flow formation protrusions 16 are formed at internal peripheral faces of circuit pipe parts 15 equivalent to the circular pipes of the flat tube main body 14 so as to progress along spiral trajectories which are coaxial with center axes O of the circular pipe parts 15, and swirl flows of an exhaust gas 10 can be individually formed at the respective circular pipe parts 15. A partitioning wall 17 is formed at least at a part of the communication part 13 at a latter half of the flat tube main body 14.SELECTED DRAWING: Figure 1

Description

本発明は、EGRクーラ等の熱交換器に用いることが可能な熱交換器用チューブに関するものである。   The present invention relates to a heat exchanger tube that can be used in a heat exchanger such as an EGR cooler.

従来、自動車等のエンジンの排気ガスの一部をエンジンに再循環して窒素酸化物の発生を低減させるEGR装置が知られているが、このようなEGR装置では、エンジンに再循環する排気ガスを冷却すると、該排気ガスの温度が下がり且つその容積が小さくなることによって、エンジンの出力を余り低下させずに燃焼温度を低下して効果的に窒素酸化物の発生を低減させることができる為、エンジンに排気ガスを再循環するラインの途中に、排気ガスを冷却するEGRクーラを装備したものがある。   Conventionally, an EGR device that reduces the generation of nitrogen oxides by recirculating a part of exhaust gas of an engine of an automobile or the like to the engine is known. In such an EGR device, the exhaust gas recirculated to the engine is known. When the engine is cooled, the temperature of the exhaust gas is reduced and the volume of the exhaust gas is reduced, so that the combustion temperature can be lowered and the generation of nitrogen oxides can be effectively reduced without significantly reducing the output of the engine. Some engines are equipped with an EGR cooler for cooling the exhaust gas in the middle of the line for recirculating the exhaust gas to the engine.

図3は前記EGRクーラの一例を示す断面図であって、図中1は円筒状に形成されたシェルを示し、該シェル1の軸心方向両端には、シェル1の端面を閉塞するようプレート2,2が固着されていて、該各プレート2,2には、多数のチューブ3の両端が貫通状態で固着されており、これら多数のチューブ3はシェル1の内部を軸心方向に延びている。   FIG. 3 is a cross-sectional view showing an example of the EGR cooler. In FIG. 3, reference numeral 1 denotes a shell formed in a cylindrical shape, and a plate so as to close the end surface of the shell 1 at both ends in the axial center direction of the shell 1. 2 and 2 are fixed, and both ends of a large number of tubes 3 are fixed to the respective plates 2 and 2 in a penetrating state. The large numbers of tubes 3 extend in the axial direction inside the shell 1. Yes.

そして、シェル1の一方の端部近傍には、外部から冷却水入口管4が取り付けられ、シェル1の他方の端部近傍には、外部から冷却水出口管5が取り付けられており、冷却水9が冷却水入口管4からシェル1の内部に供給されてチューブ3の外側を流れ、冷却水出口管5からシェル1の外部に排出されるようになっている。   A cooling water inlet pipe 4 is attached from the outside near one end of the shell 1, and a cooling water outlet pipe 5 is attached from the outside near the other end of the shell 1. 9 is supplied from the cooling water inlet pipe 4 to the inside of the shell 1, flows outside the tube 3, and is discharged from the cooling water outlet pipe 5 to the outside of the shell 1.

更に、各プレート2,2の反シェル1側には、椀状に形成されたボンネット6,6が前記各プレート2,2の端面を被包するように固着され、一方のボンネット6の中央には排気ガス入口7が、他方のボンネット6の中央には排気ガス出口8が夫々設けられており、エンジンの排気ガス10が排気ガス入口7から一方のボンネット6の内部に入り、多数のチューブ3を通る間に該チューブ3の外側を流れる冷却水9との熱交換により冷却された後に、他方のボンネット6の内部に排出されて排気ガス出口8からエンジンに再循環するようになっている。   Further, bonnets 6, 6 formed in a bowl shape are fixed to the opposite shell 1 side of each plate 2, 2 so as to enclose the end faces of the respective plates 2, 2, and in the center of one bonnet 6. Is provided with an exhaust gas inlet 7 and an exhaust gas outlet 8 at the center of the other bonnet 6. The exhaust gas 10 of the engine enters the inside of one bonnet 6 from the exhaust gas inlet 7, and a plurality of tubes 3. After being cooled by heat exchange with the cooling water 9 flowing outside the tube 3, it is discharged into the other bonnet 6 and recirculated from the exhaust gas outlet 8 to the engine.

尚、図中11は冷却水入口管4に対しシェル1の直径方向に対峙する位置に設けたバイパス出口管を示し、該バイパス出口管11から冷却水9の一部を抜き出すことにより、冷却水入口管4に対峙する箇所に冷却水9の澱みが生じないようにしてある。   In the figure, reference numeral 11 denotes a bypass outlet pipe provided at a position facing the cooling water inlet pipe 4 in the diameter direction of the shell 1. By extracting a part of the cooling water 9 from the bypass outlet pipe 11, The stagnation of the cooling water 9 is prevented from occurring at a location facing the inlet pipe 4.

斯かる従来のEGRクーラにおいては、排気ガス10がチューブ3内をストレートに流れ、チューブ3の内周面に対して排気ガス10が十分に接触しないために熱交換効率があまり良くなかったため、図4に示す如く、チューブ3の内周面にスパイラル突起12を形成(チューブ3の外周面側をスパイラル溝として凹ませることで反転形状として内周面側にスパイラル突起12を形成)してチューブ3内を流れる排気ガス10を旋回流とし、これにより排気ガス10のチューブ3の内周面に対する接触頻度や接触距離を増加させてEGRクーラの熱交換効率を向上することが既に提案されている。   In such a conventional EGR cooler, since the exhaust gas 10 flows straight through the tube 3 and the exhaust gas 10 does not sufficiently contact the inner peripheral surface of the tube 3, the heat exchange efficiency is not so good. 4, the spiral protrusion 12 is formed on the inner peripheral surface of the tube 3 (the spiral protrusion 12 is formed on the inner peripheral surface side as an inverted shape by denting the outer peripheral surface side of the tube 3 as a spiral groove). It has already been proposed to improve the heat exchange efficiency of the EGR cooler by using the exhaust gas 10 flowing inside as a swirling flow, thereby increasing the contact frequency and contact distance of the exhaust gas 10 with respect to the inner peripheral surface of the tube 3.

一方、このような複数本のチューブ3を平行に並べてシェル1内に収容する構造では、単位体積当たりの交換熱量が小さいために熱交換器の全体構造が大きくなり、機器類への搭載性が悪くなるという課題があったため、図5に一例を示す如く、複数本の円管を互いに近接させて平面状に並べ且つその相互間の近接部位を連通部13として接続した如き形状の偏平チューブ本体14から成り、該偏平チューブ本体14の前記円管に相当する円管部15の内周面に該円管部15の中心軸Oと同心の螺旋軌道に沿うように旋回流形成突起16を形成(各円管部15の外周面側を溝状に凹ませることで反転形状として旋回流形成突起16を形成)し、前記各円管部15に個別に排気ガス10の旋回流を形成し得るようにして熱交換器用チューブを構成することも検討され始めている(下記の特許文献1等を参照)。   On the other hand, in such a structure in which a plurality of tubes 3 are arranged in parallel and accommodated in the shell 1, the heat exchanger per unit volume is small, so the overall structure of the heat exchanger becomes large, and the mounting property to equipment is improved. As shown in an example in FIG. 5, the flat tube main body has a shape in which a plurality of circular tubes are arranged close to each other and arranged in a planar shape and adjacent portions thereof are connected as communication portions 13, as shown in FIG. 5. The swirl flow forming projection 16 is formed on the inner peripheral surface of the circular tube portion 15 corresponding to the circular tube of the flat tube body 14 so as to follow a spiral orbit concentric with the central axis O of the circular tube portion 15. (The swirl flow forming projections 16 are formed in an inverted shape by recessing the outer peripheral surface side of each circular pipe portion 15 into a groove shape), and the swirl flow of the exhaust gas 10 can be individually formed in each circular pipe portion 15. The heat exchanger tube And it started to be considered that (see Patent Document 1, etc. below).

即ち、このように熱交換器用チューブを構成すれば、排気ガス10が偏平チューブ本体14の各円管部15を流れる際に、該各円管部15の内周面の旋回流形成突起16により螺旋軌道に沿う方向に流れを案内され、これにより各円管部15に個別に排気ガス10の旋回流が形成される結果、該各円管部15における内周面に対する排気ガス10の接触頻度や接触距離が増加して熱交換効率が高められることになり、しかも、各円管部15の相互間は連通部13を介し連通した状態となっていて、排気ガス10が流通するための流路断面積が大きく確保されるようになっているので、単位体積当たりの交換熱量が大きくなり、圧力損失の低減にもなるという優れた作用効果が得られる。   That is, when the heat exchanger tube is configured in this way, when the exhaust gas 10 flows through each circular pipe portion 15 of the flat tube main body 14, the swirl flow forming projections 16 on the inner peripheral surface of each circular pipe portion 15 The flow is guided in the direction along the spiral trajectory, and as a result, the swirling flow of the exhaust gas 10 is individually formed in each circular pipe portion 15. As a result, the contact frequency of the exhaust gas 10 with respect to the inner peripheral surface in each circular pipe portion 15. In addition, the heat exchange efficiency is increased by increasing the contact distance, and the circular pipe parts 15 are in communication with each other via the communication part 13 so that the exhaust gas 10 flows. Since a large road cross-sectional area is ensured, an excellent effect is obtained that the amount of exchange heat per unit volume is increased and the pressure loss is reduced.

特開2013−79779号公報JP 2013-79779 A

しかしながら、地球温暖化対策に向けた排出ガス規制は、将来的に益々強化されていくことが考えられ、図5の如き偏平チューブ本体14から成る熱交換器用チューブをEGRクーラに採用した場合であっても、更なる性能向上に向けた改善努力が求められている状況にある。   However, it is considered that exhaust gas regulations aimed at combating global warming will be strengthened in the future, and this is the case when a heat exchanger tube comprising a flat tube body 14 as shown in FIG. 5 is used in an EGR cooler. However, there is a demand for improvement efforts to further improve performance.

本発明は上述の実情に鑑みてなしたもので、EGRクーラ等の熱交換器に採用した場合に従来よりも大幅な性能向上を実現し得る熱交換器用チューブを提供することを目的としている。   The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a tube for a heat exchanger that can realize a significant performance improvement as compared with the conventional case when employed in a heat exchanger such as an EGR cooler.

本発明は、複数本の円管を互いに近接させて平面状に並べ且つその相互間の近接部位を連通部として接続した如き形状の偏平チューブ本体から成り、該偏平チューブ本体の前記円管に相当する円管部の内周面に該円管部の中心軸と同心の螺旋軌道に沿うように旋回流形成突起を形成し、前記各円管部に個別に熱媒の旋回流を形成し得るように構成した熱交換器用チューブであって、前記偏平チューブ本体の後半部分における少なくとも一部の連通部に区画壁を形成したことを特徴とするものである。   The present invention comprises a flat tube body having a shape such that a plurality of circular tubes are arranged close to each other in a plane and connected to each other as a communicating portion, and corresponds to the circular tube of the flat tube body. The swirl flow forming protrusions can be formed on the inner peripheral surface of the circular tube portion along the spiral orbit concentric with the central axis of the circular tube portion, and the swirl flow of the heat medium can be individually formed in each circular tube portion. In the heat exchanger tube configured as described above, a partition wall is formed in at least a part of the communication portion in the latter half of the flat tube body.

而して、このように熱交換器用チューブを構成すれば、熱媒が偏平チューブ本体の各円管部を、旋回流を形成しつつ流れ、その後半部分で熱交換が進んだ熱媒の温度が低下して偏平チューブ本体外の冷媒との温度差が小さくなっても、偏平チューブ本体の後半部分における伝熱面積が区画壁の形成分だけ増加しているので、本来ならば熱媒と冷媒との温度差の縮小により低下するはずの交換熱量が前記伝熱面積の増加により補われ、EGRクーラ等の熱交換器に採用した場合における大幅な性能向上が実現されることになる。   Thus, if the heat exchanger tube is configured in this way, the heat medium flows through each circular pipe part of the flat tube body while forming a swirl flow, and the temperature of the heat medium in which heat exchange has proceeded in the latter half part. Even if the temperature difference with the refrigerant outside the flat tube body decreases and the heat transfer area in the latter half of the flat tube body increases by the amount of the partition wall, the heat medium and the refrigerant The amount of exchange heat that should decrease due to the reduction in the temperature difference between the two is compensated by the increase in the heat transfer area, and a significant performance improvement is realized when it is adopted in a heat exchanger such as an EGR cooler.

ここで、偏平チューブ本体の後半部分では、熱交換が進んで熱媒の体積が前半部分よりも減少しているので、区画壁の形成により流路断面積が若干小さくなっても大幅な圧力損失の増加を招かなくて済み、寧ろ熱媒の流速が増加することで伝熱面との境界層厚さが減少して伝熱係数が改善し、この伝熱係数の改善によっても偏平チューブ本体の後半部分における交換熱量が増加して性能向上が図られることになる。   Here, in the latter half of the flat tube body, heat exchange proceeds and the volume of the heat medium is smaller than that in the first half. The increase in the flow rate of the heat transfer medium reduces the thickness of the boundary layer with the heat transfer surface and improves the heat transfer coefficient. The amount of heat exchanged in the latter half of this increases, thereby improving the performance.

また、本発明においては、隣り合う円管部の旋回流形成突起の向きが、互いに逆向きの螺旋軌道に沿うように形成されていることが好ましく、このようにすれば、隣り合う円管部の連通部で旋回流同士が同じ向きの流れとなって互いに加速し合い、各円管部の相互間に連通部があっても、より確実に熱媒を旋回流として形成することが可能となる。   Further, in the present invention, it is preferable that the direction of the swirl flow forming projections of adjacent circular pipe portions is formed so as to be along mutually opposite spiral trajectories, and in this way, adjacent circular pipe portions The swirl flows in the same direction flow in the same direction and accelerate each other, and even if there is a communication part between each circular pipe part, it is possible to more reliably form the heat medium as a swirl flow Become.

更に、本発明においては、円管部の並び方向に未加工の連通部を挟み且つ前記円管部の長手方向には断続的に散在するように区画壁が部分形成されていることが好ましく、このようにすれば、過剰な流路断面積の縮小が回避されて大幅な圧力損失の増加をより確実に防ぐことが可能となる。   Furthermore, in the present invention, it is preferable that the partition wall is partially formed so as to sandwich the unprocessed communication portion in the arrangement direction of the circular pipe portions and to be intermittently scattered in the longitudinal direction of the circular pipe portions, In this way, excessive reduction of the cross-sectional area of the flow path is avoided, and a significant increase in pressure loss can be more reliably prevented.

上記した本発明の熱交換器用チューブによれば、下記の如き種々の優れた効果を奏し得る。   According to the above-described heat exchanger tube of the present invention, the following various excellent effects can be obtained.

(I)本発明の請求項1に記載の発明によれば、偏平チューブ本体の後半部分で熱交換が進んで熱媒と冷媒との温度差が小さくなっても、偏平チューブ本体の後半部分における伝熱面積を区画壁の形成により増やすことができ、しかも、熱媒の体積が前半部分よりも減少してくる後半部分に区画壁を形成することで大幅な圧力損失の増加を回避しつつ熱媒の流速を増加して伝熱係数を改善することもできるので、偏平チューブ本体の後半部分における交換熱量を効果的に増やしてEGRクーラ等の熱交換器に採用した場合における大幅な性能向上を実現することができる。   (I) According to the invention described in claim 1 of the present invention, even if heat exchange proceeds in the latter half of the flat tube main body and the temperature difference between the heat medium and the refrigerant becomes small, in the latter half of the flat tube main body. The heat transfer area can be increased by forming the partition wall, and the partition wall is formed in the latter half where the volume of the heat medium is reduced compared to the first half, while avoiding a significant increase in pressure loss. Since the heat transfer coefficient can be improved by increasing the flow rate of the medium, the exchange heat quantity in the latter half of the flat tube body can be effectively increased and used in heat exchangers such as EGR coolers. Can be realized.

(II)本発明の請求項2に記載の発明によれば、隣り合う円管部の連通部で旋回流同士を同じ向きの流れとすることで互いに加速させることができ、各円管部での旋回流の形成をより確実なものとすることができる。   (II) According to the invention described in claim 2 of the present invention, the swirl flows can be accelerated in the same direction at the communicating portions of the adjacent circular pipe portions, and each circular pipe portion can be accelerated. The formation of the swirling flow can be made more reliable.

(III)本発明の請求項3に記載の発明によれば、円管部の並び方向に未加工の連通部を挟み且つ前記円管部の長手方向には断続的に散在するように区画壁を部分形成することにより、過剰な流路断面積の縮小を回避して大幅な圧力損失の増加をより確実に防ぐことができる。   (III) According to the invention described in claim 3 of the present invention, the partition wall is arranged so that the unprocessed communication portion is sandwiched in the arrangement direction of the circular pipe portions and is intermittently scattered in the longitudinal direction of the circular pipe portions. By partially forming the, it is possible to avoid excessive reduction in the cross-sectional area of the flow path and more reliably prevent a significant increase in pressure loss.

本発明を実施する形態の一例を示す断面図である。It is sectional drawing which shows an example of the form which implements this invention. 図1の偏平チューブ本体の平面図である。It is a top view of the flat tube main body of FIG. 一般的なEGRクーラの一例を示す断面図である。It is sectional drawing which shows an example of a common EGR cooler. 従来例を示す斜視図である。It is a perspective view which shows a prior art example. 別の従来例を示す斜視図である。It is a perspective view which shows another prior art example.

以下本発明の実施の形態を図面を参照しつつ説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1及び図2は本発明の熱交換器用チューブを実施する形態の一例を示すもので、前述した従来例の場合と同様にEGRクーラ(熱交換器)に適用した場合を示しており、図3〜図5と同一の符号を付した部分は同一物を表わしている。   1 and 2 show an example of an embodiment for implementing a heat exchanger tube according to the present invention, and show a case where it is applied to an EGR cooler (heat exchanger) as in the case of the conventional example described above. The part which attached | subjected the code | symbol same as FIGS. 3-5 represents the same thing.

図1及び図2に示す如く、本形態例の熱交換器用チューブにおいては、前述した図5の従来例の場合と同様に、複数本の円管を互いに近接させて平面状に並べ且つその相互間の近接部位を連通部13として接続した如き形状の偏平チューブ本体14から成り、該偏平チューブ本体14の前記円管に相当する円管部15の内周面に該円管部15の中心軸Oと同心の螺旋軌道に沿うように旋回流形成突起16を形成(各円管部15の外周面側を溝状に凹ませることで反転形状として旋回流形成突起16を形成:図2では説明の便宜上から一部にのみ図示)し、前記各円管部15に個別に排気ガス10の旋回流を形成し得るように構成されているが、前記偏平チューブ本体14の後半部分(排気ガス10の流れ方向における中間部より下流側の部位)における少なくとも一部の連通部13に区画壁17が形成されているところを特徴としている。   As shown in FIG. 1 and FIG. 2, in the heat exchanger tube of this embodiment, as in the case of the conventional example of FIG. A flat tube body 14 having a shape such that adjacent portions are connected as communication portions 13, and the central axis of the circular tube portion 15 is formed on the inner peripheral surface of the circular tube portion 15 corresponding to the circular tube of the flat tube body 14. A swirl flow forming protrusion 16 is formed along a spiral orbit concentric with O (the swirl flow forming protrusion 16 is formed in an inverted shape by denting the outer peripheral surface side of each circular tube portion 15 in a groove shape: FIG. For the sake of convenience, only a part is shown), and the swirl flow of the exhaust gas 10 can be individually formed in each of the circular pipe portions 15, but the latter half of the flat tube main body 14 (the exhaust gas 10). Downstream of the middle in the flow direction It is characterized in where the partition wall 17 at least a portion of the communicating portion 13 is formed in.

より具体的には、円管部15の並び方向に未加工の連通部13を1列ずつ挟み且つ前記円管部15の長手方向には断続的に散在するように区画壁17が部分形成されており、しかも、隣り合う円管部15の旋回流形成突起16の向きが互いに逆向きの螺旋軌道に沿うように形成してあり(図2における旋回流形成突起16の図示を参照)、隣り合う円管部15の連通部13で旋回流同士が同じ向きの流れとなるようにして相互の流れが打ち消し合わないように工夫してある(図1の矢印で示す排気ガス10の旋回流の向きを参照)。   More specifically, the partition wall 17 is partially formed so as to sandwich the unprocessed communicating portions 13 one by one in the arrangement direction of the circular pipe portions 15 and to be intermittently scattered in the longitudinal direction of the circular pipe portions 15. In addition, the direction of the swirl flow forming protrusions 16 of the adjacent circular pipe portions 15 is formed so as to follow the spiral trajectories opposite to each other (see the illustration of the swirl flow forming protrusions 16 in FIG. 2). It is devised so that the swirl flows are made to flow in the same direction at the communicating part 13 of the matching circular pipe part 15 so that the mutual flows do not cancel each other (the swirl flow of the exhaust gas 10 shown by the arrow in FIG. 1). See orientation).

更に、偏平チューブ本体14の製造にあたっては、例えば、その上部と下部とを二分割した一対の半割り部品をプレス加工により製作し、該各半割り部品を上下に重ね合わせて両側を溶接して製作すれば良いが、そのプレス加工の際に、各円管部15の外周面側を溝状に凹ませて内周面側に反転形状として旋回流形成突起16を隆起させると共に、偏平チューブ本体14の後半部分に当たる範囲に前記区画壁17を上下に二分割した分割壁部を予め前記各半割り部品の夫々に形成しておき、この分割壁部を互いに突き合わせた状態でロウ付けや溶接により接合して区画壁17として完成させるようにすれば良い。   Furthermore, when manufacturing the flat tube body 14, for example, a pair of halved parts that are divided into an upper part and a lower part are manufactured by pressing, and the halved parts are overlapped vertically and welded on both sides. In the press working, the outer peripheral surface side of each circular tube portion 15 is recessed into a groove shape, and the swirl flow forming protrusion 16 is raised as an inverted shape on the inner peripheral surface side, and the flat tube body In the range corresponding to the latter half part 14, a dividing wall part obtained by dividing the partition wall 17 into two parts in the vertical direction is formed in advance in each of the half parts, and brazing or welding is performed in a state where the divided wall parts are in contact with each other. What is necessary is just to complete | finish as the division wall 17 by joining.

尚、斯かる偏平チューブ本体14の製造時に該偏平チューブ本体14の側部を接合のために利用する場合には、その接合作業時における加工性を考慮して前記側部の旋回流形成突起16の加工(外周面側からの溝加工:図2参照)を部分的に省略しても良く、ここに部分的な旋回流形成突起16の省略があっても、旋回流の形成に大きな影響を与えなくて済むことが本願発明者らにより確認されている。   In addition, when utilizing the side part of this flat tube main body 14 for joining at the time of manufacture of such a flat tube main body 14, considering the workability at the time of the joining operation, the swirl flow formation protrusion 16 of the said side part is provided. The processing (groove processing from the outer peripheral surface side: see FIG. 2) may be partially omitted, and even if the partial swirl flow forming protrusion 16 is omitted here, the swirl flow formation is greatly affected. The inventors of the present application have confirmed that it is not necessary to provide this.

而して、このように熱交換器用チューブを構成すれば、排気ガス10が偏平チューブ本体14の各円管部15を、旋回流を形成しつつ流れ、その後半部分で熱交換が進んだ排気ガス10の温度が低下して偏平チューブ本体14外の冷却水9との温度差が小さくなっても、偏平チューブ本体14の後半部分における伝熱面積が区画壁17の形成分だけ増加しているので、本来ならば排気ガス10と冷却水9との温度差の縮小により低下するはずの交換熱量が前記伝熱面積の増加により補われ、EGRクーラに採用した場合における大幅な性能向上が実現されることになる。   Thus, when the heat exchanger tube is configured in this way, the exhaust gas 10 flows through each circular pipe portion 15 of the flat tube main body 14 while forming a swirl flow, and the exhaust gas in which heat exchange has proceeded in the latter half portion. Even if the temperature of the gas 10 decreases and the temperature difference from the cooling water 9 outside the flat tube main body 14 decreases, the heat transfer area in the latter half of the flat tube main body 14 increases by the amount of the partition wall 17 formed. Therefore, the amount of exchange heat that would otherwise be reduced by reducing the temperature difference between the exhaust gas 10 and the cooling water 9 is compensated by the increase in the heat transfer area, and a significant improvement in performance when used in an EGR cooler is realized. Will be.

ここで、偏平チューブ本体14の後半部分では、熱交換が進んで排気ガス10の体積が前半部分よりも減少しているので、区画壁17の形成により流路断面積が若干小さくなっても大幅な圧力損失の増加を招かなくて済み、寧ろ排気ガス10の流速が増加することで伝熱面との境界層厚さが減少して伝熱係数が改善し、この伝熱係数の改善によっても偏平チューブ本体14の後半部分における交換熱量が増加して性能向上が図られることになる。   Here, in the latter half portion of the flat tube main body 14, heat exchange proceeds and the volume of the exhaust gas 10 is smaller than that in the first half portion. The increase in the flow rate of the exhaust gas 10 increases the boundary layer thickness with the heat transfer surface, thereby improving the heat transfer coefficient. However, the amount of heat exchanged in the latter half of the flat tube main body 14 is increased, thereby improving the performance.

従って、上記形態例によれば、偏平チューブ本体14の後半部分で熱交換が進んで排気ガス10と冷却水9との温度差が小さくなっても、偏平チューブ本体14の後半部分における伝熱面積を区画壁17の形成により増やすことができ、しかも、排気ガス10の体積が前半部分よりも減少してくる後半部分に区画壁17を形成することで大幅な圧力損失の増加を回避しつつ排気ガス10の流速を増加して伝熱係数を改善することもできるので、偏平チューブ本体14の後半部分における交換熱量を効果的に増やしてEGRクーラに採用した場合における大幅な性能向上を実現することができる。   Therefore, according to the above embodiment, even if heat exchange proceeds in the latter half of the flat tube main body 14 and the temperature difference between the exhaust gas 10 and the cooling water 9 becomes small, the heat transfer area in the latter half of the flat tube main body 14 is reduced. Can be increased by forming the partition wall 17, and the partition wall 17 is formed in the latter half portion where the volume of the exhaust gas 10 is reduced from the first half portion, thereby avoiding a significant increase in pressure loss. Since the heat transfer coefficient can be improved by increasing the flow rate of the gas 10, it is possible to effectively increase the exchange heat amount in the latter half of the flat tube body 14 and realize a significant performance improvement when it is used in an EGR cooler. Can do.

また、特に本形態例においては、隣り合う円管部15の旋回流形成突起16の向きを、互いに逆向きの螺旋軌道に沿うように形成しているので、隣り合う円管部15の連通部13で旋回流同士を同じ向きの流れとして互いに加速させることができ、各円管部15での旋回流の形成をより確実なものとすることができる。   Further, particularly in the present embodiment, the direction of the swirl flow forming projections 16 of the adjacent circular pipe portions 15 is formed so as to follow the spiral trajectories that are opposite to each other. In FIG. 13, the swirl flows can be accelerated in the same direction as each other, and the formation of the swirl flow in each circular pipe portion 15 can be made more reliable.

更に、円管部15の並び方向に未加工の連通部13を挟み且つ前記円管部15の長手方向には断続的に散在するように区画壁17を形成することにより、過剰な流路断面積の縮小を回避して大幅な圧力損失の増加をより確実に防ぐことができる。   Further, by forming the partition wall 17 so as to sandwich the unprocessed communication portion 13 in the direction in which the circular pipe portions 15 are arranged and to be intermittently scattered in the longitudinal direction of the circular pipe portion 15, excessive flow path disconnection is achieved. A reduction in area can be avoided, and a significant increase in pressure loss can be prevented more reliably.

尚、本発明の熱交換器用チューブは、上述の形態例にのみ限定されるものではなく、EGRクーラ以外の熱交換器に適用しても良いこと、その他、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。   In addition, the tube for heat exchangers of this invention is not limited only to the above-mentioned form example, You may apply to heat exchangers other than an EGR cooler, In addition, in the range which does not deviate from the summary of this invention. Of course, various changes can be made.

9 冷却水(冷媒)
10 排気ガス(熱媒)
13 連通部
14 偏平チューブ本体
15 円管部
16 旋回流形成突起
17 区画壁
O 中心軸
9 Cooling water (refrigerant)
10 Exhaust gas (heat medium)
13 Communication part 14 Flat tube main body 15 Circular pipe part 16 Swirling flow formation protrusion 17 Partition wall O Center axis

Claims (3)

複数本の円管を互いに近接させて平面状に並べ且つその相互間の近接部位を連通部として接続した如き形状の偏平チューブ本体から成り、該偏平チューブ本体の前記円管に相当する円管部の内周面に該円管部の中心軸と同心の螺旋軌道に沿うように旋回流形成突起を形成し、前記各円管部に個別に熱媒の旋回流を形成し得るように構成した熱交換器用チューブであって、前記偏平チューブ本体の後半部分における少なくとも一部の連通部に区画壁を形成したことを特徴とする熱交換器用チューブ。   A circular tube portion corresponding to the circular tube of the flat tube body, which is formed of a flat tube body having a shape in which a plurality of circular tubes are arranged close to each other and arranged in a plane and connected to each other as a communicating portion. A swirl flow forming projection is formed on the inner peripheral surface of the circular pipe portion so as to follow a spiral orbit concentric with the central axis of the circular pipe portion, and a swirl flow of the heat medium can be individually formed in each circular pipe portion. A heat exchanger tube, wherein a partition wall is formed in at least a part of the communication portion in the latter half of the flat tube main body. 隣り合う円管部の旋回流形成突起の向きが、互いに逆向きの螺旋軌道に沿うように形成されていることを特徴とする請求項1に記載の熱交換器用チューブ。   2. The heat exchanger tube according to claim 1, wherein the swirl flow forming projections of adjacent circular pipe portions are formed so as to be along mutually opposite spiral trajectories. 円管部の並び方向に未加工の連通部を挟み且つ前記円管部の長手方向には断続的に散在するように区画壁が部分形成されていることを特徴とする請求項1又は2に記載の熱交換器用チューブ。   The partition wall is partially formed so as to sandwich an unprocessed communication portion in the direction in which the circular pipe portions are arranged and to be intermittently scattered in the longitudinal direction of the circular pipe portions. The tube for a heat exchanger as described.
JP2015042144A 2015-03-04 2015-03-04 Tube for heat exchanger Active JP6463993B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015042144A JP6463993B2 (en) 2015-03-04 2015-03-04 Tube for heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015042144A JP6463993B2 (en) 2015-03-04 2015-03-04 Tube for heat exchanger

Publications (2)

Publication Number Publication Date
JP2016161250A true JP2016161250A (en) 2016-09-05
JP6463993B2 JP6463993B2 (en) 2019-02-06

Family

ID=56846678

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015042144A Active JP6463993B2 (en) 2015-03-04 2015-03-04 Tube for heat exchanger

Country Status (1)

Country Link
JP (1) JP6463993B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018223296A1 (en) * 2017-06-07 2018-12-13 南京工业大学 Pipe-type mixer
JP2019120148A (en) * 2017-12-28 2019-07-22 株式会社クボタ Egr-equipped engine

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005180714A (en) * 2003-12-16 2005-07-07 Calsonic Kansei Corp Heat exchanger and inner fin used by it
JP2013079779A (en) * 2011-10-05 2013-05-02 Hino Motors Ltd Heat exchanger tube
JP2015017508A (en) * 2013-07-09 2015-01-29 日野自動車株式会社 EGR cooler

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005180714A (en) * 2003-12-16 2005-07-07 Calsonic Kansei Corp Heat exchanger and inner fin used by it
JP2013079779A (en) * 2011-10-05 2013-05-02 Hino Motors Ltd Heat exchanger tube
JP2015017508A (en) * 2013-07-09 2015-01-29 日野自動車株式会社 EGR cooler

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018223296A1 (en) * 2017-06-07 2018-12-13 南京工业大学 Pipe-type mixer
JP2019120148A (en) * 2017-12-28 2019-07-22 株式会社クボタ Egr-equipped engine

Also Published As

Publication number Publication date
JP6463993B2 (en) 2019-02-06

Similar Documents

Publication Publication Date Title
JP5850693B2 (en) Tube for heat exchanger
US9909812B2 (en) Heat exchanger
US20070193732A1 (en) Heat exchanger
US20080169093A1 (en) Heat exchanger
US20170335740A1 (en) Heat Exchanger for Heating a Fluid Using Exhaust Gas
JP6397411B2 (en) Improved exhaust gas recirculation device and method for forming the same
US10202880B2 (en) Exhaust heat exchanger
KR100925816B1 (en) Exhaust gas heat exchanger
WO2018180058A1 (en) Heat exchanger
JP2017516975A (en) Heat exchanger having wave fin plate for reducing EGR gas differential pressure
US10697406B2 (en) Heat exchanger utilizing flow path assemblies
CN101603446A (en) The exhaust-heat exchanger that has the tube bank of vibration damping exchanger
WO2018116370A1 (en) Heat exchange device
JP2018105193A (en) Inter cooler
JP6463993B2 (en) Tube for heat exchanger
WO2020017176A1 (en) Heat exchanger
JP6413814B2 (en) Water-cooled cooler
US11788801B2 (en) Heat exchanger and an additive manufacturing method for manufacturing a heat exchanger
JP2013122367A (en) Heat exchanger for vehicle
JP2018105535A (en) Intercooler
CN113383205A (en) Heat exchanger
JP6481275B2 (en) Corrugated fin heat exchanger
JP6193653B2 (en) EGR cooler
KR102173379B1 (en) EGR cooler for vehicle
JP2004077024A (en) Exhaust heat exchanger device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190107

R150 Certificate of patent or registration of utility model

Ref document number: 6463993

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250