JP2015017508A - EGR cooler - Google Patents

EGR cooler Download PDF

Info

Publication number
JP2015017508A
JP2015017508A JP2013143319A JP2013143319A JP2015017508A JP 2015017508 A JP2015017508 A JP 2015017508A JP 2013143319 A JP2013143319 A JP 2013143319A JP 2013143319 A JP2013143319 A JP 2013143319A JP 2015017508 A JP2015017508 A JP 2015017508A
Authority
JP
Japan
Prior art keywords
egr cooler
header
adjacent
portions
exhaust gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013143319A
Other languages
Japanese (ja)
Other versions
JP6193653B2 (en
Inventor
石森 崇
Takashi Ishimori
崇 石森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hino Motors Ltd
Original Assignee
Hino Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hino Motors Ltd filed Critical Hino Motors Ltd
Priority to JP2013143319A priority Critical patent/JP6193653B2/en
Publication of JP2015017508A publication Critical patent/JP2015017508A/en
Application granted granted Critical
Publication of JP6193653B2 publication Critical patent/JP6193653B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Exhaust-Gas Circulating Devices (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an EGR (Exhaust Gas Recirculation) cooler capable of securing its high brazing quality even when adopting flat tubes.SOLUTION: There is provided the EGR cooler in which: the diameter of the end of each flat tube 12 is enlarged into a rectangular shape to form a header part 12a; a heat exchange core 13 is constituted by arranging a plurality of rows of the flat tube 12 in such a way that the header parts 12a neighbor each other; and clearances formed between body parts 12b which are not diametrically enlarged, of the flat tubes 12 serve as flow paths for cooling water 9 to make a heat exchange between exhaust gas 10 flowing in the flat tubes 12 and the cooling water 9. In the EGR cooler, a level difference part 19 is provided in a joint member 18 (a housing member) embracing an area around the header parts 12a. Under the level difference part 19, adjacent sites of corner portions of the header parts 12a are buried to block the clearances between the adjacent sites.

Description

本発明は、EGRクーラに関するものである。   The present invention relates to an EGR cooler.

従来、自動車等のエンジンの排気ガスの一部をエンジンに再循環してNOx(窒素酸化物)の発生を低減させるEGR装置が知られているが、このようなEGR装置では、エンジンに再循環する排気ガスを冷却すると、該排気ガスの温度が下がり且つその容積が小さくなることによって、エンジンの出力を余り低下させずに燃焼温度を低下して効果的にNOxの発生を低減させることができるため、エンジンに排気ガスを再循環するラインの途中に、排気ガスを冷却するEGRクーラを装備したものがある。   Conventionally, EGR devices that reduce the generation of NOx (nitrogen oxides) by recirculating a part of the exhaust gas of an engine of an automobile or the like to the engine are known. In such an EGR device, recirculation to the engine is known. When the exhaust gas to be cooled is cooled, the temperature of the exhaust gas is lowered and the volume of the exhaust gas is reduced, so that the combustion temperature can be lowered and the generation of NOx can be effectively reduced without significantly reducing the output of the engine. For this reason, some engines are equipped with an EGR cooler for cooling the exhaust gas in the middle of the line for recirculating the exhaust gas to the engine.

図6は前記EGRクーラの一例を示す断面図であって、図中1は円筒状に形成されたシェルを示し、該シェル1の軸心方向両端には、シェル1の端面を閉塞するようプレート2が固着されていて、該各プレート2には、多数のチューブ3の両端が貫通状態で固着されており、これら多数のチューブ3はシェル1の内部を軸心方向に延びている。   FIG. 6 is a cross-sectional view showing an example of the EGR cooler. In FIG. 6, reference numeral 1 denotes a shell formed in a cylindrical shape, and a plate is formed at both ends in the axial center direction of the shell 1 so as to close the end face of the shell 1. 2 are fixed, and both ends of a large number of tubes 3 are fixed to each plate 2 in a penetrating state. The large number of tubes 3 extend in the axial direction inside the shell 1.

そして、シェル1の一方の端部近傍には、外部から冷却水入口管4が取り付けられ、シェル1の他方の端部近傍には、外部から冷却水出口管5が取り付けられており、冷却水9が冷却水入口管4からシェル1の内部に供給されてチューブ3の外側を流れ、冷却水出口管5からシェル1の外部に排出されるようになっている。   A cooling water inlet pipe 4 is attached from the outside near one end of the shell 1, and a cooling water outlet pipe 5 is attached from the outside near the other end of the shell 1. 9 is supplied from the cooling water inlet pipe 4 to the inside of the shell 1, flows outside the tube 3, and is discharged from the cooling water outlet pipe 5 to the outside of the shell 1.

更に、各プレート2の反シェル1側には、椀状に形成されたボンネット6が前記各プレート2の端面を被包するように固着され、一方のボンネット6の中央には排気ガス入口7が、他方のボンネット6の中央には排気ガス出口8が夫々設けられており、エンジンの排気ガス10が排気ガス入口7から一方のボンネット6の内部に入り、多数のチューブ3を通る間に該チューブ3の外側を流れる冷却水9との熱交換により冷却された後に、他方のボンネット6の内部に排出されて排気ガス出口8からエンジンに再循環するようになっている。   Further, a bonnet 6 formed in a bowl shape is fixed to the side of the anti-shell 1 of each plate 2 so as to enclose the end face of each plate 2, and an exhaust gas inlet 7 is provided at the center of one bonnet 6. An exhaust gas outlet 8 is provided in the center of the other bonnet 6, and the exhaust gas 10 of the engine enters the inside of one bonnet 6 from the exhaust gas inlet 7 and passes through the tubes 3. After being cooled by heat exchange with the cooling water 9 flowing outside, the exhaust gas is discharged into the other bonnet 6 and recirculated from the exhaust gas outlet 8 to the engine.

尚、図中11は冷却水入口管4に対しシェル1の直径方向に対峙する位置に設けたバイパス出口管を示し、該バイパス出口管11から冷却水9の一部を抜き出すことにより、冷却水入口管4に対峙する箇所に冷却水9の澱みが生じないようにしてある。   In the figure, reference numeral 11 denotes a bypass outlet pipe provided at a position facing the cooling water inlet pipe 4 in the diameter direction of the shell 1. By extracting a part of the cooling water 9 from the bypass outlet pipe 11, The stagnation of the cooling water 9 is prevented from occurring at a location facing the inlet pipe 4.

このようなEGRクーラによれば、排気側から吸気側へ再循環される排気ガス10をチューブ3を通す間に冷却水9により冷却し、その温度及び容積を低下させて効果的なNOxの低減化を図ることができるが、将来的な排ガス規制の更なる強化に対応するためには、これまで以上に排気ガス10の再循環量を増やしてEGR率を高めることが求められている。   According to such an EGR cooler, the exhaust gas 10 recirculated from the exhaust side to the intake side is cooled by the cooling water 9 while passing through the tube 3, and the temperature and volume thereof are reduced to effectively reduce NOx. However, in order to respond to further strengthening of exhaust gas regulations in the future, it is required to increase the recirculation amount of the exhaust gas 10 and increase the EGR rate more than ever.

ところが、前述の如き複数本のチューブ3を均等に配置してシェル1内に収容する構造では、単位体積当たりの交換熱量が小さいためにEGRクーラ全体が大きくなり過ぎて車両への搭載が難しくなるという問題があったため、図7に示す如き偏平チューブ12が創案され、この偏平チューブ12を複数列並べて熱交換用コア13を構成するようにしてEGRクーラのコンパクト化を図ることが検討されている。   However, in the structure in which a plurality of tubes 3 as described above are uniformly arranged and accommodated in the shell 1, the total amount of heat exchanged per unit volume is small, so that the entire EGR cooler becomes too large and is difficult to mount on the vehicle. Therefore, a flat tube 12 as shown in FIG. 7 has been devised, and it is considered to make the EGR cooler compact by arranging a plurality of flat tubes 12 to form a heat exchange core 13. .

ここで、前記偏平チューブ12の端部は、矩形状に拡管されてヘッダ部12aを成すようになっており、両ヘッダ部12aに挟まれた本体部分12bは、複数本の円管を互いに近接させて平面状に並べ且つその相互間の近接部位を連通部14として接続した如き形状の円管部15により構成されており(図8参照)、前記ヘッダ部12a同士が隣接するように並べた時に、拡管されていない本体部分12bの相互間にできる隙間が、冷却水(図7中には図示なし)の流路16を成すようになっている。   Here, the end portion of the flat tube 12 is expanded in a rectangular shape to form a header portion 12a, and the main body portion 12b sandwiched between the header portions 12a has a plurality of circular tubes close to each other. The circular pipe portions 15 are arranged in a plane and connected in proximity to each other as the communication portion 14 (see FIG. 8), and are arranged so that the header portions 12a are adjacent to each other. Occasionally, a gap formed between the non-expanded main body portions 12b forms a flow path 16 for cooling water (not shown in FIG. 7).

尚、この種の偏平チューブに関連する先行技術文献情報としては、例えば、下記の特許文献1等が既に提案されている。   As prior art document information related to this type of flat tube, for example, the following Patent Document 1 has already been proposed.

特開2013−79779号公報JP 2013-79779 A

しかしながら、前述の如き偏平チューブ12を夫々のヘッダ部12a同士が隣接するように並べた場合、いかにヘッダ部12aの角部の曲率半径を極小としても、図9に図7のA部を拡大して示す通り、略三角形状の隙間Sが、ヘッダ部12a相互の角部の隣接箇所にできてしまうことが避けられず、この隙間Sに対しろう付け時に溶け出したろう材が毛細管現象により吸い込まれ、更には、その吸い込まれたろう材が前記隙間Sの開放端面から流れ出て、接合箇所に必要なろう材を連続的に吸い続けてしまうので、接合箇所におけるろう材量不足を招き易く、これによりろう付け品質が低下してしまう虞れがあった。   However, when the flat tubes 12 as described above are arranged so that the header portions 12a are adjacent to each other, no matter how the radius of curvature of the corner portion of the header portion 12a is minimized, the portion A of FIG. As shown in the drawing, it is inevitable that the substantially triangular gap S is formed at the adjacent corners of the header portion 12a, and the brazing material that has melted during brazing is sucked into the gap S by capillary action. In addition, since the sucked brazing material flows out from the open end face of the gap S and continuously sucks the brazing material necessary for the joint portion, it is easy to cause a shortage of the brazing material at the joint portion. There was a possibility that brazing quality might fall.

本発明は上述の実情に鑑みてなしたもので、偏平チューブを採用しても高いろう付け品質を確保し得るEGRクーラを提供することを目的とする。   The present invention has been made in view of the above circumstances, and an object thereof is to provide an EGR cooler that can ensure high brazing quality even when a flat tube is employed.

本発明は、偏平チューブの端部を矩形状に拡径してヘッダ部を形成し、該ヘッダ部同士が隣接するように前記偏平チューブを複数列並べて熱交換用コアを構成し、前記各偏平チューブの拡管されていない本体部分の相互間に形成される隙間を冷却水の流路として前記各偏平チューブ内を流れる排気ガスと前記冷却水とを熱交換させるようにしたEGRクーラであって、前記各ヘッダ部の周囲を抱持するハウジング部材に段差部を設け、該段差部により前記各ヘッダ部の角部の隣接箇所が埋没して該隣接箇所の隙間が閉塞されるように構成したことを特徴とするものである。   In the present invention, the end of the flat tube is expanded in a rectangular shape to form a header portion, and a plurality of the flat tubes are arranged so that the header portions are adjacent to each other to constitute a heat exchange core. An EGR cooler configured to exchange heat between the exhaust gas flowing in each of the flat tubes and the cooling water using a gap formed between the main body portions of the tube not expanded as a flow path of the cooling water, The housing member that holds the periphery of each header portion is provided with a step portion, and the step portion is configured so that the adjacent portion of the corner portion of each header portion is buried and the gap between the adjacent portions is closed. It is characterized by.

而して、このようにすれば、ヘッダ部相互の角部の隣接箇所がハウジング部材の段差部に埋没して前記隣接箇所の隙間が閉塞されるので、ろう付け時に溶け出したろう材が毛細管現象により前記隣接箇所の隙間に吸い込まれても、該隙間の開放端面は前記ハウジング部材の段差部により閉塞されているので、前記隣接箇所の隙間がろう材で満たされた後は、毛細管現象による更なるろう材の吸い込みが継続しなくなり、接合箇所におけるろう材量不足が未然に回避されることになる。   Thus, since the adjacent portions of the corner portions between the header portions are buried in the step portion of the housing member and the gap between the adjacent portions is closed, the brazing material melted at the time of brazing is capillarity. Even if the gap is sucked into the gap between the adjacent portions by the step, the open end surface of the gap is blocked by the step portion of the housing member. As a result, the suction of the brazing material does not continue, and a shortage of the amount of the brazing material at the joint is avoided.

また、本発明においては、偏平チューブの両ヘッダ部に挟まれた本体部分を、複数本の円管を互いに近接させて平面状に並べ且つその相互間の近接部位を連通部として接続した如き形状の円管部により構成し、該円管部の内周面に該円管部の中心軸と同心の螺旋軌道に沿うように旋回流形成突起を形成し、前記各円管部に個別に排気ガスの旋回流を形成し得るように構成することが好ましい。   Further, in the present invention, the main body portion sandwiched between both header portions of the flat tube is arranged in a planar shape with a plurality of circular tubes in close proximity to each other, and a proximity portion between them is connected as a communication portion. A swirl flow forming projection is formed on the inner peripheral surface of the circular pipe portion along a spiral orbit concentric with the central axis of the circular pipe portion, and the circular pipe portions are individually evacuated. It is preferable to configure so that a swirl flow of gas can be formed.

このようにすれば、排気ガスが偏平チューブの本体部分における各円管部を流れる際に、該各円管部の内周面の旋回流形成突起により螺旋軌道に沿う方向に流れを案内され、これにより各円管部に個別に排気ガスの旋回流が形成される結果、該各円管部における内周面に対する排気ガスの接触頻度や接触距離が増加して熱交換効率が高められることになり、しかも、各円管部の相互間は連通部を介し連通した状態となっていて、排気ガスが流通するための流路断面積が大きく確保されるようになっているので、単位体積当たりの交換熱量が大きくなると共に、圧力損失の低減にもなる。   In this way, when the exhaust gas flows through each circular pipe portion in the main body portion of the flat tube, the flow is guided in the direction along the spiral orbit by the swirl flow forming protrusion on the inner peripheral surface of each circular pipe portion, As a result, the swirling flow of the exhaust gas is individually formed in each circular pipe part. As a result, the contact frequency and the contact distance of the exhaust gas with respect to the inner peripheral surface in each circular pipe part increase, and the heat exchange efficiency is improved. In addition, the circular pipe portions are in communication with each other via a communication portion, and a large cross-sectional area for passage of exhaust gas is ensured. As a result, the amount of exchange heat increases and pressure loss is reduced.

更に、本発明においては、隣り合う円管部の旋回流形成突起の向きが、互いに逆向きの螺旋軌道に沿うように形成されていることが好ましく、このようにすれば、隣り合う円管部の連通部で旋回流同士が同じ向きの流れとなって互いに加速し合い、各円管部の相互間に連通部があっても、より確実に排気ガスを旋回流として形成することが可能となる。   Furthermore, in the present invention, it is preferable that the direction of the swirl flow forming projections of the adjacent circular pipe portions is formed so as to be along the spiral trajectories of the opposite directions. The swirl flows in the same direction flow in the same direction and accelerate each other, and even if there is a communication part between each circular pipe part, it is possible to more reliably form exhaust gas as a swirl flow Become.

上記した本発明のEGRクーラによれば、下記の如き種々の優れた効果を奏し得る。   According to the EGR cooler of the present invention described above, various excellent effects as described below can be obtained.

(I)本発明の請求項1に記載の発明によれば、ヘッダ部相互の角部の隣接箇所にできる隙間の開放端面をハウジング部材の段差部により閉塞することができるので、ろう付け時に前記隣接箇所の隙間がろう材で満たされた後の毛細管現象による更なるろう材の吸い込みを防ぐことができ、これにより接合箇所におけるろう材量不足を未然に回避することができて、偏平チューブを採用しても高いろう付け品質を確保することができる。   (I) According to the invention described in claim 1 of the present invention, since the open end surface of the gap formed at the adjacent portion of the corner portion between the header portions can be closed by the step portion of the housing member, It is possible to prevent further inhalation of the brazing filler metal due to the capillary phenomenon after the gap between the adjacent portions is filled with the brazing filler metal. Even if it is adopted, high brazing quality can be secured.

(II)本発明の請求項2に記載の発明によれば、排気ガスに旋回流を与えて高い熱交換効率を実現しながらも単位体積当たりの熱交換量を従来より大幅に向上することができ、EGRクーラの全体構成をコンパクト化して車両等への搭載性の向上を図ることができる。   (II) According to the invention described in claim 2 of the present invention, the amount of heat exchange per unit volume can be greatly improved as compared with the prior art while providing a swirl flow to the exhaust gas and realizing high heat exchange efficiency. In addition, the overall configuration of the EGR cooler can be made compact to improve the mountability on a vehicle or the like.

(III)本発明の請求項3に記載の発明によれば、隣り合う円管部の連通部で旋回流同士を同じ向きの流れとすることで互いに加速させることができ、各円管部での旋回流の形成をより確実なものとすることができる。   (III) According to the invention described in claim 3 of the present invention, the swirl flows can be accelerated in the same direction at the communicating portions of the adjacent circular pipe portions, and each circular pipe portion can be accelerated. The formation of the swirling flow can be made more reliable.

本発明を実施する形態の一例を示す一部を切り欠いた斜視図である。It is the perspective view which notched a part which shows an example of the form which implements this invention. 図1のEGRクーラの全体図である。It is a general view of the EGR cooler of FIG. 図1の偏平チューブの本体部分の構造を説明する断面図である。It is sectional drawing explaining the structure of the main-body part of the flat tube of FIG. 図1の要部を拡大して示す断面図である。It is sectional drawing which expands and shows the principal part of FIG. 図1の継手部材の一端側の四隅に切欠部を形成した例を示す斜視図である。It is a perspective view which shows the example which formed the notch part in the four corners of the one end side of the coupling member of FIG. 従来のEGRクーラの一例を示す断面図である。It is sectional drawing which shows an example of the conventional EGR cooler. 偏平チューブを採用した熱交換用コアの一例を示す斜視図である。It is a perspective view which shows an example of the core for heat exchange which employ | adopted the flat tube. 図7の本体部分の構造を一部を切り欠いて示す斜視図である。FIG. 8 is a perspective view showing the structure of the main body portion of FIG. 図7のA部を拡大して示す正面図である。It is a front view which expands and shows the A section of FIG.

以下本発明の実施の形態を図面を参照しつつ説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1〜図5は本発明を実施する形態の一例を示すもので、図6〜図9と同一の符号を付した部分は同一物を表わしている。   1 to 5 show an example of an embodiment for carrying out the present invention, and the portions denoted by the same reference numerals as those in FIGS. 6 to 9 represent the same items.

図1及び図2に示す如く、本形態例のEGRクーラにおいては、偏平チューブ12の端部を矩形状に拡径してヘッダ部12aを形成し、該ヘッダ部12a同士が隣接するように前記偏平チューブ12を縦に複数列並べて熱交換用コア13を構成するようにしており、前記各偏平チューブ12の拡管されていない本体部分12bの相互間に形成される隙間を冷却水9の流路16(図7参照)としている。   As shown in FIGS. 1 and 2, in the EGR cooler of this embodiment, the end of the flat tube 12 is expanded in a rectangular shape to form a header portion 12a, and the header portions 12a are adjacent to each other. A plurality of rows of flat tubes 12 are arranged vertically to form the heat exchange core 13, and a gap formed between the non-expanded main body portions 12 b of the flat tubes 12 is used as a flow path for the cooling water 9. 16 (see FIG. 7).

即ち、前記熱交換用コア13は矩形筒状のシェル1により全体を抱持されており、該シェル1の入側下面に設けられた冷却水入口管4から前記シェル1内に導入された冷却水9が、前記本体部分12bの相互間の流路16を通り、前記シェル1の出側上面に設けられた冷却水入口管4から抜き出されるようになっている。   That is, the heat exchanging core 13 is held in its entirety by a rectangular cylindrical shell 1, and the cooling introduced into the shell 1 from the cooling water inlet pipe 4 provided on the lower surface on the entrance side of the shell 1. The water 9 passes through the flow path 16 between the main body portions 12b and is extracted from the cooling water inlet pipe 4 provided on the outlet side upper surface of the shell 1.

ここで、図3に示す如く、前記偏平チューブ12の両ヘッダ部12aに挟まれた本体部分12bは、複数本の円管を互いに近接させて平面状に並べ且つその相互間の近接部位を連通部14として接続した如き形状の円管部15により構成されており、該円管部15の内周面に該円管部15の中心軸Oと同心の螺旋軌道に沿うように旋回流形成突起17が形成され、前記各円管部15に個別に排気ガス10の旋回流が形成されるようになっている。尚、特に本形態例においては、隣り合う円管部15の旋回流形成突起17の向きが、互いに逆向きの螺旋軌道に沿うように形成されている。   Here, as shown in FIG. 3, the main body portion 12b sandwiched between the header portions 12a of the flat tube 12 has a plurality of circular tubes placed close to each other and arranged in a plane, and the adjacent portions between them communicate with each other. The circular tube portion 15 is connected as the portion 14, and the swirl flow forming protrusion is formed on the inner peripheral surface of the circular tube portion 15 along a spiral orbit concentric with the central axis O of the circular tube portion 15. 17 is formed, and a swirling flow of the exhaust gas 10 is individually formed in each of the circular pipe portions 15. In particular, in this embodiment, the direction of the swirl flow forming projections 17 of the adjacent circular pipe portions 15 is formed so as to be along mutually opposite spiral trajectories.

そして、図1及び図4に示す如く、前記シェル1の両端部には、従来同様に椀状に形成されたボンネット6が前記シェル1の端面を被包するように設けられているが、このボンネット6とシェル1との間には、一端側でボンネット6を内嵌し且つ他端側ではシェル1を外嵌し得るようにした継手部材18が介装されており、この継手部材18が前記各ヘッダ部12aの周囲を抱持するハウジング部材となっている。   As shown in FIGS. 1 and 4, bonnets 6 formed in a bowl shape like the conventional case are provided at both ends of the shell 1 so as to enclose the end face of the shell 1. Between the bonnet 6 and the shell 1, a joint member 18 is provided so that the bonnet 6 can be fitted inside at one end and the shell 1 can be fitted outside at the other end. It is a housing member that holds the periphery of each header portion 12a.

この継手部材18におけるシェル1を外嵌し得るようにした他端側の内周面には、前記各ヘッダ部12aの角部の隣接箇所を埋没させて該隣接箇所の隙間S(図9参照)を閉塞するように段差部19が形成されており、少なくともヘッダ部12aの板厚以上の段差(図4参照)を設定するようにしている。   On the inner peripheral surface of the other end side of the joint member 18 where the shell 1 can be fitted, the adjacent portion of the corner portion of each header portion 12a is buried and the gap S between the adjacent portions (see FIG. 9). ) Is formed so as to block at least the thickness of the header 12a (see FIG. 4).

尚、この継手部材18における一端側の四隅には、図5に示す如き切欠部20が形成されていても良く、このようにしておけば、ボンネット6を内嵌せしめた後で前記継手部材18の一端側をかしめて隙間を減らすことでき、継手部材18とボンネット6との接合品質の大幅な向上を図ることが可能である。   Note that notches 20 as shown in FIG. 5 may be formed at four corners on one end side of the joint member 18, and in this way, the joint member 18 after the bonnet 6 is fitted inside. It is possible to reduce the gap by caulking one end side of the joint, and it is possible to greatly improve the joint quality between the joint member 18 and the bonnet 6.

而して、このようにすれば、ヘッダ部12a相互の角部の隣接箇所が段差部19に埋没して前記隣接箇所の隙間Sが閉塞されるので、ろう付け時に溶け出したろう材が毛細管現象により前記隣接箇所の隙間Sに吸い込まれても、該隙間Sの開放端面は前記継手部材18の段差部19により閉塞されているので、前記隣接箇所の隙間Sがろう材で満たされた後は、毛細管現象による更なるろう材の吸い込みが継続しなくなり、接合箇所におけるろう材量不足が未然に回避されることになる。   Thus, since the adjacent portions of the corner portions of the header portion 12a are buried in the step portion 19 and the gap S between the adjacent portions is closed, the brazing material melted at the time of brazing is capillarity. Even if the clearance S is sucked into the gap S of the adjacent portion, the open end surface of the gap S is blocked by the step portion 19 of the joint member 18, so that the gap S of the adjacent portion is filled with the brazing material. Further, the suction of the brazing filler metal due to the capillary phenomenon is not continued, and the shortage of the brazing filler metal at the joining portion is avoided in advance.

また、排気ガス10が偏平チューブ12の本体部分12bにおける各円管部15を流れる際に、該各円管部15の内周面の旋回流形成突起17により螺旋軌道に沿う方向に流れを案内され、これにより各円管部15に個別に排気ガス10の旋回流が形成される結果、該各円管部15における内周面に対する排気ガス10の接触頻度や接触距離が増加して熱交換効率が高められることになり、しかも、各円管部15の相互間は連通部14を介し連通した状態となっていて、排気ガス10が流通するための流路断面積が大きく確保されるようになっているので、単位体積当たりの交換熱量が大きくなると共に、圧力損失の低減にもなり、特に本形態例のように、隣り合う円管部15の旋回流形成突起17の向きが、互いに逆向きの螺旋軌道に沿うように形成されていれば、隣り合う円管部15の連通部14で旋回流同士が同じ向きの流れとなって互いに加速し合い、各円管部15の相互間に連通部14があっても、より確実に排気ガス10を旋回流として形成することが可能となる。   Further, when the exhaust gas 10 flows through each circular pipe portion 15 in the main body portion 12 b of the flat tube 12, the flow is guided in a direction along the spiral trajectory by the swirl flow forming projections 17 on the inner peripheral surface of each circular pipe portion 15. As a result, the swirl flow of the exhaust gas 10 is individually formed in each circular pipe portion 15, and as a result, the contact frequency and the contact distance of the exhaust gas 10 with respect to the inner peripheral surface in each circular pipe portion 15 increase, and heat exchange is performed. The efficiency is improved, and the circular pipe parts 15 are in communication with each other via the communication part 14 so that a large cross-sectional area for the passage of the exhaust gas 10 is ensured. Therefore, the amount of exchange heat per unit volume is increased and the pressure loss is reduced. Especially, as in this embodiment, the directions of the swirl flow forming projections 17 of the adjacent circular pipe portions 15 are mutually different. Along the reverse spiral trajectory If they are formed in this way, the swirling flows in the communication portions 14 of the adjacent circular pipe portions 15 become flows in the same direction and accelerate each other, and even if the communication portions 14 exist between the circular pipe portions 15. Thus, the exhaust gas 10 can be more reliably formed as a swirling flow.

従って、上記形態例によれば、ヘッダ部12a相互の角部の隣接箇所にできる隙間Sの開放端面を継手部材18の段差部19により閉塞することができるので、ろう付け時に前記隣接箇所の隙間Sがろう材で満たされた後の毛細管現象による更なるろう材の吸い込みを防ぐことができ、これにより接合箇所におけるろう材量不足を未然に回避することができて、偏平チューブ12を採用しても高いろう付け品質を確保することができる。   Therefore, according to the above embodiment, the open end surface of the gap S formed at the adjacent portion of the corner portion of the header portion 12a can be closed by the step portion 19 of the joint member 18, so that the gap at the adjacent portion at the time of brazing. It is possible to prevent further inhalation of the brazing material due to the capillary phenomenon after S is filled with the brazing material, thereby avoiding an insufficient amount of the brazing material at the joining portion, and adopting the flat tube 12. Even high brazing quality can be ensured.

また、偏平チューブ12の本体部分12bにおける各円管部15を流れる排気ガス10に旋回流を与えて高い熱交換効率を実現しながらも単位体積当たりの熱交換量を従来より大幅に向上することができ、EGRクーラの全体構成をコンパクト化して車両等への搭載性の向上を図ることができる。   In addition, the amount of heat exchange per unit volume can be greatly improved as compared with the prior art while providing a swirl flow to the exhaust gas 10 flowing through each circular pipe portion 15 in the main body portion 12b of the flat tube 12 to achieve high heat exchange efficiency. Thus, the overall configuration of the EGR cooler can be made compact to improve the mountability on a vehicle or the like.

特に本形態例の場合には、隣り合う円管部15の旋回流形成突起17の向きが、互いに逆向きの螺旋軌道に沿うように形成されているので、隣り合う円管部15の連通部14で旋回流同士を同じ向きの流れとすることで互いに加速させることができ、各円管部15での旋回流の形成をより確実なものとすることができる。   In particular, in the case of this embodiment, the direction of the swirl flow forming projections 17 of the adjacent circular pipe portions 15 is formed so as to be along mutually opposite spiral trajectories. In FIG. 14, the swirl flows can be accelerated by making the swirl flows flow in the same direction, and the formation of the swirl flow in each circular pipe portion 15 can be made more reliable.

尚、本発明のEGRクーラは、上述の形態例にのみ限定されるものではなく、各ヘッダ部の周囲を抱持するハウジング部材は、必ずしも図示例における継手部材である必要はなく、シェルやボンネットの端部がハウジング部材を構成する場合も有り得ること、その他、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。   The EGR cooler according to the present invention is not limited to the above-described embodiment. The housing member that holds the periphery of each header portion does not necessarily have to be a joint member in the illustrated example. Of course, it is possible that the end portion of the housing constitutes a housing member, and various modifications can be made without departing from the scope of the present invention.

9 冷却水
10 排気ガス
12 偏平チューブ
12a ヘッダ部
12b 本体部分
13 熱交換用コア
14 連通部
15 円管部
16 流路
17 旋回流形成突起
18 継手部材(ハウジング部材)
19 段差部
O 中心軸
S 隙間
DESCRIPTION OF SYMBOLS 9 Cooling water 10 Exhaust gas 12 Flat tube 12a Header part 12b Main body part 13 Core for heat exchange 14 Communication part 15 Circular pipe part 16 Flow path 17 Swirling flow formation protrusion 18 Joint member (housing member)
19 Stepped portion O Center axis S Clearance

Claims (3)

偏平チューブの端部を矩形状に拡径してヘッダ部を形成し、該ヘッダ部同士が隣接するように前記偏平チューブを複数列並べて熱交換用コアを構成し、前記各偏平チューブの拡管されていない本体部分の相互間に形成される隙間を冷却水の流路として前記各偏平チューブ内を流れる排気ガスと前記冷却水とを熱交換させるようにしたEGRクーラであって、前記各ヘッダ部の周囲を抱持するハウジング部材に段差部を設け、該段差部により前記各ヘッダ部の角部の隣接箇所が埋没して該隣接箇所の隙間が閉塞されるように構成したことを特徴とするEGRクーラ。   The end of the flat tube is expanded in a rectangular shape to form a header portion, and a plurality of the flat tubes are arranged so that the header portions are adjacent to each other to form a heat exchange core, and each flat tube is expanded. The EGR cooler is configured to exchange heat between the exhaust gas flowing in the flat tubes and the cooling water, with a gap formed between the main body portions not being used as a flow path of the cooling water. A step portion is provided in a housing member that holds the periphery of the housing, and the adjacent portion of the corner portion of each header portion is buried by the step portion so that a gap between the adjacent portions is closed. EGR cooler. 偏平チューブの両ヘッダ部に挟まれた本体部分を、複数本の円管を互いに近接させて平面状に並べ且つその相互間の近接部位を連通部として接続した如き形状の円管部により構成し、該円管部の内周面に該円管部の中心軸と同心の螺旋軌道に沿うように旋回流形成突起を形成し、前記各円管部に個別に排気ガスの旋回流を形成し得るように構成したことを特徴とする請求項1に記載のEGRクーラ。   The main body part sandwiched between both header parts of the flat tube is constituted by a circular pipe part having a shape such that a plurality of circular pipes are arranged in a plane in close proximity to each other and their adjacent parts are connected as communication parts. A swirl flow forming projection is formed on the inner peripheral surface of the circular tube portion along a spiral orbit concentric with the central axis of the circular tube portion, and a swirl flow of exhaust gas is individually formed in each circular tube portion. The EGR cooler according to claim 1, wherein the EGR cooler is configured to be obtained. 隣り合う円管部の旋回流形成突起の向きが、互いに逆向きの螺旋軌道に沿うように形成されていることを特徴とする請求項1又は2に記載のEGRクーラ。   The EGR cooler according to claim 1 or 2, wherein the direction of the swirl flow forming projections of adjacent circular pipe portions is formed so as to be along spiral trajectories opposite to each other.
JP2013143319A 2013-07-09 2013-07-09 EGR cooler Active JP6193653B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013143319A JP6193653B2 (en) 2013-07-09 2013-07-09 EGR cooler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013143319A JP6193653B2 (en) 2013-07-09 2013-07-09 EGR cooler

Publications (2)

Publication Number Publication Date
JP2015017508A true JP2015017508A (en) 2015-01-29
JP6193653B2 JP6193653B2 (en) 2017-09-06

Family

ID=52438733

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013143319A Active JP6193653B2 (en) 2013-07-09 2013-07-09 EGR cooler

Country Status (1)

Country Link
JP (1) JP6193653B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016161250A (en) * 2015-03-04 2016-09-05 日野自動車株式会社 Heat exchanger tube
CN113175838A (en) * 2021-05-21 2021-07-27 南通职业大学 Heat exchanger with composite flow-around structure
CN113300529A (en) * 2021-06-29 2021-08-24 智新科技股份有限公司 Water-cooling shell of motor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011038752A (en) * 2009-08-18 2011-02-24 T Rad Co Ltd Heat exchanger without header plate
JP2013079779A (en) * 2011-10-05 2013-05-02 Hino Motors Ltd Heat exchanger tube

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011038752A (en) * 2009-08-18 2011-02-24 T Rad Co Ltd Heat exchanger without header plate
JP2013079779A (en) * 2011-10-05 2013-05-02 Hino Motors Ltd Heat exchanger tube

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016161250A (en) * 2015-03-04 2016-09-05 日野自動車株式会社 Heat exchanger tube
CN113175838A (en) * 2021-05-21 2021-07-27 南通职业大学 Heat exchanger with composite flow-around structure
CN113300529A (en) * 2021-06-29 2021-08-24 智新科技股份有限公司 Water-cooling shell of motor

Also Published As

Publication number Publication date
JP6193653B2 (en) 2017-09-06

Similar Documents

Publication Publication Date Title
JP5850693B2 (en) Tube for heat exchanger
JP2015512502A (en) Heat exchanger
US9938936B2 (en) EGR cooler having body shell integrated with end tank part
US10202880B2 (en) Exhaust heat exchanger
US20160025419A1 (en) Plate heat exchanger and method for constructing multiple passes in the plate heat exchanger
JP2005036739A (en) Egr cooler
JPWO2016190445A1 (en) Heat exchanger tank structure and manufacturing method thereof
JP4634291B2 (en) EGR cooler
JP6193653B2 (en) EGR cooler
JP5510027B2 (en) EGR cooler
JP4221931B2 (en) Exhaust heat exchanger
JP5295737B2 (en) Plate fin heat exchanger
JP2020012621A (en) Heat exchanger
EP2764231B1 (en) Heat exchanger for gases, especially engine exhaust gases
CN104677149B (en) Oil material cooling device
JP6463993B2 (en) Tube for heat exchanger
JP2013213424A (en) Exhaust gas heat exchanger
KR102173379B1 (en) EGR cooler for vehicle
KR102173402B1 (en) EGR cooler for vehicle
JP5707123B2 (en) Heat exchange unit and manufacturing method thereof
US20170343302A1 (en) Heat exchanger
JP2009002300A (en) Egr cooler
JP6699588B2 (en) Heat exchanger
JP5695513B2 (en) Heat exchange unit
KR102173369B1 (en) EGR cooler for vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160614

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170404

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170530

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170801

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170810

R150 Certificate of patent or registration of utility model

Ref document number: 6193653

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250