JP2009002300A - Egr cooler - Google Patents

Egr cooler Download PDF

Info

Publication number
JP2009002300A
JP2009002300A JP2007166271A JP2007166271A JP2009002300A JP 2009002300 A JP2009002300 A JP 2009002300A JP 2007166271 A JP2007166271 A JP 2007166271A JP 2007166271 A JP2007166271 A JP 2007166271A JP 2009002300 A JP2009002300 A JP 2009002300A
Authority
JP
Japan
Prior art keywords
cooling water
egr gas
shell
egr
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007166271A
Other languages
Japanese (ja)
Inventor
Yushi Naito
雄史 内藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
UD Trucks Corp
Original Assignee
UD Trucks Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by UD Trucks Corp filed Critical UD Trucks Corp
Priority to JP2007166271A priority Critical patent/JP2009002300A/en
Publication of JP2009002300A publication Critical patent/JP2009002300A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

<P>PROBLEM TO BE SOLVED: To provide an EGR cooler capable of suppressing nucleate boiling on an EGR gas inlet side and a consequent secondary problem. <P>SOLUTION: An EGR gas inlet pipe and an EGR gas outlet pipe are connected to both ends of a cylindrical shell via diffusers, and a plurality of tubes opened in the diffusers are inserted and attached between end plates blocking both ends of the shell. Moreover, a cooling water inlet pipe is connected to the peripheral wall of the shell on the EGR gas inlet pipe side, and a cooling water outlet pipe is connected to the peripheral wall of the shell on the EGR gas outlet pipe side. In this EGR cooler, the tubes are provided with means for enhancing heat exchanging efficiency between the cooling water and the EGR gas excluding the EGR gas inlet side. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、ディーゼルエンジンのEGR装置に用いるEGRクーラーに関する。   The present invention relates to an EGR cooler used for an EGR device of a diesel engine.

ディーゼルエンジン(以下、「エンジン」という)の燃焼時に発生する窒素酸化物(NOX )を低減するため、従来、排ガスの一部をエンジンの吸気系に排気還流(以下、「EGR」
という)させるEGR装置が知られている。
In order to reduce nitrogen oxide (NO x ) generated during combustion of a diesel engine (hereinafter referred to as “engine”), conventionally, a part of the exhaust gas is exhausted to the engine intake system (hereinafter referred to as “EGR”).
EGR devices are known.

窒素酸化物は、高温の排ガスのもとで空気中の酸素と窒素が反応して生成されるため、EGR装置は、EGRによって燃焼温度を下げることでO2+N2→2NOの反応を抑制して窒素酸化物の排出を低減させるものである。そして、吸気系にEGRさせるEGRガスの温度を下げるほど、燃焼時のスモークの悪化を抑え、窒素酸化物の発生が減少することが知られている。 Since nitrogen oxides are produced by the reaction of oxygen and nitrogen in the air under high temperature exhaust gas, the EGR device suppresses the reaction of O 2 + N 2 → 2NO by lowering the combustion temperature with EGR. This reduces nitrogen oxide emissions. It is known that as the temperature of the EGR gas to be EGRed into the intake system is lowered, the deterioration of smoke during combustion is suppressed and the generation of nitrogen oxides is reduced.

そこで、昨今では、特許文献1に開示されるように、エンジンの吸気系と排気系との間に接続したEGRパイプに、エンジンの冷却水を冷媒とするEGRクーラーを装着し、EGRパイプを流下するEGRガスをこのEGRクーラーで熱交換させて、EGRガス温度を下げる方法が広く採用されている。   Therefore, recently, as disclosed in Patent Document 1, an EGR cooler using coolant of the engine as a refrigerant is attached to the EGR pipe connected between the intake system and the exhaust system of the engine, and the EGR pipe flows down. The method of lowering the EGR gas temperature by causing the EGR gas to exchange heat with the EGR cooler is widely adopted.

図3はこの種のEGRクーラーを示し、このEGRクーラー1は、筒状に成形されたシェル3内に、その長手方向に沿って複数の均一内径のチューブ5を収容し、シェル3のEGRガス上流側端部とEGRガス下流側端部に取り付くディフューザ7,9に、夫々、図示しないEGRガス導入パイプ(EGRパイプ)とEGRガス導出パイプ(EGRパイプ)をフランジ11を介して接続すると共に、EGRガス導入パイプ側のシェル3の周壁に冷却水導入パイプ13を接続し、EGRガス導出パイプ側のシェル3の周壁に冷却水導出パイプ15を接続したもので、チューブ5は、夫々、シェル3の両端部に取り付くエンドプレート17,19に挿着されて両ディフューザ7,9内に開口している。   FIG. 3 shows an EGR cooler of this type. The EGR cooler 1 accommodates a plurality of tubes 5 having a uniform inner diameter along the longitudinal direction in a shell 3 formed into a cylindrical shape. An EGR gas introduction pipe (EGR pipe) and an EGR gas outlet pipe (EGR pipe) (not shown) are connected to the diffusers 7 and 9 attached to the upstream end and the EGR gas downstream end via the flange 11, respectively. The cooling water introduction pipe 13 is connected to the peripheral wall of the shell 3 on the EGR gas introduction pipe side, and the cooling water extraction pipe 15 is connected to the peripheral wall of the shell 3 on the EGR gas extraction pipe side. Are inserted into end plates 17 and 19 which are attached to both ends of the diffuser and are opened in both diffusers 7 and 9.

而して、斯かる構造によって、シェル3内に導入されたEGRガスGがチューブ5内を流下する際に、シェル3内に導入された冷却水Wで熱交換されてEGRガス温度が下がるようになっている。   Thus, with this structure, when the EGR gas G introduced into the shell 3 flows down through the tube 5, heat is exchanged with the cooling water W introduced into the shell 3 so that the EGR gas temperature is lowered. It has become.

また、冷却水WとEGRガスGとの熱交換効率を高めるため、特許文献2または図3に示すように、EGRガスGが流下するチューブ5の全長に亘って内方に突出する複数の突起21を内周に設けたり、特許文献1に開示されるように、チューブの外周に冷却フィンをチューブの長手方向に複数突設する等の手段が、EGRクーラーのチューブに施されている。
特開2004−346919号公報 特開2004−85090号公報
Further, in order to increase the heat exchange efficiency between the cooling water W and the EGR gas G, as shown in Patent Document 2 or FIG. 3, a plurality of protrusions projecting inward over the entire length of the tube 5 through which the EGR gas G flows down. The EGR cooler tube is provided with means such as 21 provided on the inner periphery or a plurality of cooling fins protruding in the longitudinal direction of the tube on the outer periphery of the tube as disclosed in Patent Document 1.
JP 2004-346919 A JP 2004-85090 A

しかし、冷却水導入パイプ13から流入した冷却水Wはシェル3内を一様に流れず、図3に示すように冷却水導入パイプ13から冷却水導出パイプ15に亘って主冷却水流路W1が形成され、冷却水導入パイプ13から流入した冷却水WがEGRガス入口側のエンドプレート17に沿って流れ難いのが実情であった。   However, the cooling water W flowing in from the cooling water introduction pipe 13 does not flow uniformly in the shell 3, and the main cooling water flow path W1 extends from the cooling water introduction pipe 13 to the cooling water outlet pipe 15 as shown in FIG. The actual situation is that the cooling water W formed and flowing from the cooling water introduction pipe 13 hardly flows along the end plate 17 on the EGR gas inlet side.

このため、図中、Aで示すEGRガス入口側の領域に冷却水Wの澱みが生じ、そして、この領域AはEGRガス温度が非常に高温で、また、チューブ5に突起21を設けて熱交換効率を高めていることも相俟って、単位水当たりの仕事量(熱交換量)が高くなってこの領域Aで核沸騰が発生し、長期に亘る使用でチューブ5とエンドプレート17との接合部に亀裂が発生してしまう虞があった。   Therefore, stagnation of the cooling water W occurs in the region on the EGR gas inlet side indicated by A in the figure, and in this region A, the EGR gas temperature is very high, and the projections 21 are provided on the tube 5 to heat the region. Combined with the improvement of the exchange efficiency, the work amount per unit water (heat exchange amount) becomes high and nucleate boiling occurs in this region A, and the tube 5 and end plate 17 There was a risk of cracks occurring at the joints.

そして、特に、チューブに前記突起21や冷却フィン等の熱交換効率を高める手段が施されたEGRクーラー1は、このようなEGRガス入口側の領域Aでの核沸騰及びこれに起因する2次不具合(チューブ5とエンドプレート17との接合部の亀裂)の危険性が高いことが知られている。   In particular, the EGR cooler 1 in which the tube is provided with means for improving the heat exchange efficiency such as the protrusions 21 and the cooling fins, the nucleate boiling in the region A on the EGR gas inlet side and the secondary caused by this. It is known that there is a high risk of malfunction (cracking at the joint between the tube 5 and the end plate 17).

本発明は斯かる実情に鑑み案出されたもので、上述の如きEGRガス入口側の核沸騰及びこれに起因する2次不具合を抑制したEGRクーラーを提供することを目的とする。   The present invention has been devised in view of such circumstances, and an object of the present invention is to provide an EGR cooler that suppresses nucleate boiling on the EGR gas inlet side as described above and secondary problems resulting therefrom.

斯かる目的を達成するため、請求項1に係る発明は、筒状のシェルの両端部に、ディフューザを介してEGRガス導入パイプとEGRガス導出パイプを接続し、シェルの両端部を閉塞するエンドプレート間に、ディフューザ内に開口する複数のチューブを挿着すると共に、EGRガス導入パイプ側のシェルの周壁に冷却水導入パイプを接続し、EGRガス導出パイプ側のシェルの周壁に冷却水導出パイプを接続したEGRクーラーに於て、EGRガス入口側を除いて前記チューブに、冷却水とEGRガスとの熱交換効率を高める手段を施したことを特徴とする。   In order to achieve such an object, the invention according to claim 1 is an embodiment in which an EGR gas introduction pipe and an EGR gas outlet pipe are connected to both ends of a cylindrical shell via a diffuser, and both ends of the shell are closed. A plurality of tubes opened in the diffuser are inserted between the plates, a cooling water introduction pipe is connected to the peripheral wall of the shell on the EGR gas introduction pipe side, and the cooling water extraction pipe is connected to the peripheral wall of the shell on the EGR gas extraction pipe side In the EGR cooler to which is connected, means for increasing the heat exchange efficiency between the cooling water and the EGR gas is provided on the tube except for the EGR gas inlet side.

また、請求項2に係る発明は、筒状のシェルの両端部に、ディフューザを介してEGRガス導入パイプとEGRガス導出パイプを接続し、シェルの両端部を閉塞するエンドプレート間に、ディフューザ内に開口する複数のチューブを挿着すると共に、EGRガス導入パイプ側のシェルの周壁に冷却水導入パイプを接続し、EGRガス導出パイプ側のシェルの周壁に冷却水導出パイプを接続したEGRクーラーに於て、前記冷却水導入パイプから冷却水導出パイプに亘ってシェル内に形成される冷却水の主冷却水流路中のチューブの部位に、冷却水とEGRガスとの熱交換効率を高める手段を施したことを特徴とする。   In the invention according to claim 2, the EGR gas introduction pipe and the EGR gas outlet pipe are connected to both ends of the cylindrical shell via the diffuser, and the end plate is closed between the end plates closing the both ends of the shell. In the EGR cooler, a plurality of tubes are inserted into the EGR gas inlet pipe, a cooling water introduction pipe is connected to the peripheral wall of the shell on the EGR gas introduction pipe side, and a cooling water extraction pipe is connected to the peripheral wall of the shell on the EGR gas extraction pipe side. And means for increasing the heat exchange efficiency between the cooling water and the EGR gas at a tube portion in the main cooling water flow passage formed in the shell from the cooling water introduction pipe to the cooling water outlet pipe. It is characterized by that.

そして、請求項3に係る発明は、請求項1または請求項2に記載のEGRクーラーに於て、冷却水とEGRガスとの熱交換効率を高める手段は、チューブ内面に突出する複数の突起であることを特徴とし、請求項4に係る発明は、請求項1または請求項2に記載のEGRクーラーに於て、冷却水とEGRガスとの熱交換効率を高める手段は、チューブの外周に設けた冷却フィンであることを特徴とする。   The invention according to claim 3 is the EGR cooler according to claim 1 or 2, wherein the means for increasing the heat exchange efficiency between the cooling water and the EGR gas is a plurality of protrusions protruding on the inner surface of the tube. According to a fourth aspect of the present invention, in the EGR cooler according to the first or second aspect, the means for increasing the heat exchange efficiency between the cooling water and the EGR gas is provided on the outer periphery of the tube. It is characterized by being a cooling fin.

各請求項に係る発明によれば、EGRガス入口側のエンドプレートに沿った冷却水流れの澱みによる核沸騰が抑制でき、核沸騰に起因する2次不具合(チューブとエンドプレートとの接合部の亀裂)の危険性を軽減することが可能となって、EGR装置の耐久信頼性の向上が図れる利点を有する。   According to the invention according to each claim, nucleate boiling due to stagnation of the cooling water flow along the end plate on the EGR gas inlet side can be suppressed, and a secondary failure caused by nucleate boiling (of the junction between the tube and the end plate) can be suppressed. It is possible to reduce the risk of cracks), and there is an advantage that the durability reliability of the EGR device can be improved.

また、冷却水流量増加による核沸騰抑制という手段が従来周知であるが、この手段は、エンジン補機消費馬力の増加による燃費の悪化という問題点が懸念されている。しかし、本発明によれば斯かる問題点も回避可能である。   Further, a means of suppressing nucleate boiling by increasing the coolant flow rate is well known, but this means is concerned with a problem of deterioration of fuel consumption due to an increase in horsepower consumption of engine accessories. However, according to the present invention, such a problem can be avoided.

以下、本発明の実施形態を図面に基づいて詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

図1は請求項1及び請求項3の一実施形態に係るEGRクーラーを示し、図に於て、23は筒状に成形されたシェルで、シェル23内に、その長手方向に沿って複数の均一内径のチューブ25が収容され、シェル23のEGRガス上流側端部とEGRガス下流側端部に取り付くディフューザ27,29に、夫々、フランジ31を介して図示しないEGRガス導入パイプとEGRガス導出パイプが接続されている。   FIG. 1 shows an EGR cooler according to an embodiment of claims 1 and 3. In the figure, reference numeral 23 denotes a shell formed in a cylindrical shape, and a plurality of shells are formed in the shell 23 along the longitudinal direction thereof. A tube 25 having a uniform inner diameter is accommodated, and an EGR gas introduction pipe (not shown) and an EGR gas lead-out are respectively connected to the diffusers 27 and 29 attached to the EGR gas upstream end and the EGR gas downstream end of the shell 23 via the flange 31. The pipe is connected.

また、EGRガス導入パイプ側(EGRガス入口側)のシェル23の周壁に冷却水導入パイプ33が接続され、EGRガス導出パイプ側のシェル23の周壁に冷却水導出パイプ35が接続されている。そして、チューブ25は、夫々、シェル23の両端部に取り付くエンドプレート37,39に挿着されて両ディフューザ27,29内に開口しており、斯かる構造によって、冷却水導入パイプ33から冷却水導出パイプ35に亘って主冷却水流路W1が形成され、EGRガス導入パイプからチューブ25を経てEGRガス導出パイプに至るEGRガス流路が形成されている。   A cooling water introduction pipe 33 is connected to the peripheral wall of the shell 23 on the EGR gas introduction pipe side (EGR gas inlet side), and a cooling water outlet pipe 35 is connected to the peripheral wall of the shell 23 on the EGR gas outlet pipe side. The tubes 25 are respectively inserted into end plates 37 and 39 attached to both ends of the shell 23 and opened in the diffusers 27 and 29. With such a structure, the cooling water is supplied from the cooling water introduction pipe 33 to the cooling water. A main cooling water passage W1 is formed over the outlet pipe 35, and an EGR gas passage is formed from the EGR gas introduction pipe through the tube 25 to the EGR gas outlet pipe.

このため、シェル23内に導入されたEGRガスGがチューブ25内を流下する際に、シェル23内に導入された冷却水Wで熱交換されてEGRガス温度が下がるようになっている。   For this reason, when the EGR gas G introduced into the shell 23 flows down in the tube 25, the EGR gas temperature is lowered by heat exchange with the cooling water W introduced into the shell 23.

このように本実施形態に係るEGRクーラー41も、図3のEGRクーラー1と同様、冷却水導入パイプ33から冷却水導出パイプ35に亘って主冷却水流路W1が形成されるため、冷却水導入パイプ33から流入した冷却水Wが、EGRガス入口側のエンドプレート37に沿って流れ難く、図中、Aで示すEGRガス入口側の領域に冷却水Wの澱みが生じる。   As described above, the EGR cooler 41 according to the present embodiment also has the main cooling water flow path W1 formed from the cooling water introduction pipe 33 to the cooling water outlet pipe 35, similarly to the EGR cooler 1 of FIG. The cooling water W flowing in from the pipe 33 is difficult to flow along the end plate 37 on the EGR gas inlet side, and stagnation of the cooling water W occurs in the region on the EGR gas inlet side indicated by A in the drawing.

そこで、図示するように本実施形態は、従来、冷却水WとEGRガスGとの熱交換効率を高める手段としてチューブの内面に突設する複数の突起43を、EGRガス入口側を除いて前記チューブ25に設け、領域Aに於けるチューブ25内の突起43を廃止したことを特徴とする。   Therefore, as shown in the drawing, this embodiment conventionally has a plurality of protrusions 43 protruding from the inner surface of the tube as means for increasing the heat exchange efficiency between the cooling water W and the EGR gas G, except for the EGR gas inlet side. It is provided in the tube 25, and the projection 43 in the tube 25 in the region A is abolished.

本実施形態はこのように構成されているから、既述したように冷却水導入パイプ33から冷却水導出パイプ35に亘って主冷却水流路W1が形成され、シェル23内に導入されたEGRガスGがチューブ25内を流下する際に、シェル23内に導入された冷却水Wで熱交換される。   Since the present embodiment is configured as described above, as described above, the main cooling water flow path W1 is formed from the cooling water introduction pipe 33 to the cooling water outlet pipe 35, and the EGR gas introduced into the shell 23 is formed. When G flows down in the tube 25, heat is exchanged with the cooling water W introduced into the shell 23.

そして、冷却水導入パイプ33から流入した冷却水Wは、エンドプレート37に沿って流れ難く、領域Aに冷却水Wの澱みが生じるが、本実施形態は、領域Aを含むEGRガス入口側のチューブ25内の突起43を廃止したため、図3の従来例に比し、EGRガス入口側のエンドプレート37に沿った領域Aでのチューブ25の熱交換効率が低下し、この結果、単位水当たりの仕事量(熱交換量)が低下(冷却水流量に対する負荷が低減)することとなる。   And the cooling water W which flowed in from the cooling water introduction pipe 33 does not flow easily along the end plate 37, and the stagnation of the cooling water W occurs in the region A. However, in the present embodiment, the cooling water W on the EGR gas inlet side including the region A Since the protrusions 43 in the tube 25 are eliminated, the heat exchange efficiency of the tube 25 in the region A along the end plate 37 on the EGR gas inlet side is reduced as compared with the conventional example of FIG. The amount of work (heat exchange amount) decreases (the load on the coolant flow rate decreases).

従って、本実施形態によれば、EGRガス入口側のエンドプレート37に沿った領域Aでの冷却水流れの澱みによる核沸騰が抑制でき、この結果、核沸騰に起因する2次不具合(チューブ25とエンドプレート37との接合部の亀裂)の危険性を軽減することが可能となって、EGR装置の耐久信頼性の向上が図れる利点を有する。   Therefore, according to the present embodiment, nucleate boiling due to stagnation of the cooling water flow in the region A along the end plate 37 on the EGR gas inlet side can be suppressed, and as a result, secondary defects (tube 25 caused by nucleate boiling) can be suppressed. It is possible to reduce the risk of cracks in the joint between the end plate 37 and the end plate 37, and there is an advantage that durability reliability of the EGR device can be improved.

また、冷却水流量増加による核沸騰抑制という手段が従来周知であるが、この手段は、エンジン補機消費馬力の増加による燃費の悪化という問題点が懸念されている。しかし、本実施形態によれば斯かる問題点も回避可能である。   Further, a means of suppressing nucleate boiling by increasing the coolant flow rate is well known, but this means is concerned with a problem of deterioration of fuel consumption due to an increase in horsepower consumption of engine accessories. However, according to this embodiment, such a problem can also be avoided.

図2は請求項2及び請求項3の一実施形態に係るEGRクーラーを示し、図示するように本実施形態は、冷却水導入パイプ33から冷却水導出パイプ35に亘ってシェル23内に形成される冷却水Wの主冷却水流路W1中のチューブ25-1の部位の内周に複数の突起43を設けて、主冷却水流路W1から外れ、冷却水流れの澱みが発生する領域Aでのチューブ25-1の突起43を廃止したものである。   FIG. 2 shows an EGR cooler according to an embodiment of claims 2 and 3. As shown in the figure, this embodiment is formed in the shell 23 from the cooling water introduction pipe 33 to the cooling water outlet pipe 35. A plurality of protrusions 43 are provided on the inner periphery of the portion of the tube 25-1 in the main cooling water flow path W1 of the cooling water W to be removed from the main cooling water flow path W1 and the stagnation of the cooling water flow occurs in the region A. The protrusion 43 of the tube 25-1 is abolished.

尚、その他の構成は図1の実施形態と同様であるので、同一のものには同一符号を付してそれらの説明は省略する。   Since other configurations are the same as those of the embodiment of FIG. 1, the same components are denoted by the same reference numerals and description thereof is omitted.

而して、本実施形態に係るEGRクーラー45によっても、却水導入パイプ33から流入した冷却水Wは、エンドプレート37に沿って流れ難く、領域Aに冷却水Wの澱みが生じるが、本実施形態は、主冷却水流路W1中のチューブ25-1の部位に突起43を設けて、主冷却水流路W1から外れて冷却水流れの澱みが発生する領域Aでのチューブ25-1の突起43を廃止したため、図3の従来例に比し領域Aでのチューブ25-1の熱交換効率が低下し、この結果、単位水当たりの仕事量(熱交換量)が低下(冷却水流量に対する負荷が低減)することとなる。   Thus, even with the EGR cooler 45 according to the present embodiment, the cooling water W flowing from the rejection water introduction pipe 33 is difficult to flow along the end plate 37, and the stagnation of the cooling water W occurs in the region A. In the embodiment, a protrusion 43 is provided at a portion of the tube 25-1 in the main cooling water flow path W1, and the protrusion of the tube 25-1 in the region A where the stagnation of the cooling water flow occurs outside the main cooling water flow path W1. 43 has been abolished, the heat exchange efficiency of the tube 25-1 in the region A is lower than that in the conventional example of FIG. 3, and as a result, the work amount (heat exchange amount) per unit water is reduced (with respect to the cooling water flow rate). The load will be reduced).

従って、本実施形態によっても、図1のEGRクーラー41と同様、EGRガス入口側のエンドプレート37に沿った領域Aでの冷却水流れの澱みによる核沸騰が抑制でき、この結果、核沸騰に起因する2次不具合(チューブ25とエンドプレート37との接合部の亀裂)の危険性を軽減することが可能となって、EGR装置の耐久信頼性の向上が図れる利点を有する。   Therefore, also in this embodiment, nucleate boiling due to stagnation of the cooling water flow in the region A along the end plate 37 on the EGR gas inlet side can be suppressed, similarly to the EGR cooler 41 of FIG. It is possible to reduce the risk of secondary defects (cracking at the joint between the tube 25 and the end plate 37) due to the advantage that durability reliability of the EGR device can be improved.

尚、既述した各実施形態は、冷却水WとEGRガスGとの熱交換効率を高める手段として、チューブ25,25-1内面に突出する突起43を用いたが、斯かる突起43に代え、チューブの外周に冷却フィンを設けて、これを熱交換効率を高める手段としてもよい。   In each of the above-described embodiments, the protrusions 43 protruding from the inner surfaces of the tubes 25 and 25-1 are used as means for increasing the heat exchange efficiency between the cooling water W and the EGR gas G. A cooling fin may be provided on the outer periphery of the tube, and this may be used as a means for increasing the heat exchange efficiency.

請求項1及び請求項3の一実施形態に係るEGRクーラーの概略断面図である。It is a schematic sectional drawing of the EGR cooler which concerns on one Embodiment of Claim 1 and Claim 3. 請求項2及び請求項3の一実施形態に係るEGRクーラーの概略断面図である。It is a schematic sectional drawing of the EGR cooler which concerns on one Embodiment of Claim 2 and Claim 3. 従来のEGRクーラーの概略断面図である。It is a schematic sectional drawing of the conventional EGR cooler.

符号の説明Explanation of symbols

23 シェル
25,25-1 チューブ
27,29 ディフューザ
33 冷却水導入パイプ
35 冷却水導出パイプ
37,39 エンドプレート
41,45 EGRクーラー
43 突起
23 Shell 25, 25-1 Tube 27, 29 Diffuser 33 Cooling water introduction pipe 35 Cooling water outlet pipe 37, 39 End plate 41, 45 EGR cooler 43 Projection

Claims (4)

筒状のシェルの両端部に、ディフューザを介してEGRガス導入パイプとEGRガス導出パイプを接続し、
シェルの両端部を閉塞するエンドプレート間に、ディフューザ内に開口する複数のチューブを挿着すると共に、
EGRガス導入パイプ側のシェルの周壁に冷却水導入パイプを接続し、EGRガス導出パイプ側のシェルの周壁に冷却水導出パイプを接続したEGRクーラーに於て、
EGRガス入口側を除いて前記チューブに、冷却水とEGRガスとの熱交換効率を高める手段を施したことを特徴とするEGRクーラー。
An EGR gas introduction pipe and an EGR gas outlet pipe are connected to both ends of the cylindrical shell through a diffuser,
Between the end plates that close both ends of the shell, insert a plurality of tubes that open in the diffuser,
In the EGR cooler in which the cooling water introduction pipe is connected to the peripheral wall of the shell on the EGR gas introduction pipe side, and the cooling water extraction pipe is connected to the peripheral wall of the shell on the EGR gas extraction pipe side.
An EGR cooler characterized in that means other than the EGR gas inlet side is provided with means for increasing heat exchange efficiency between cooling water and EGR gas.
筒状のシェルの両端部に、ディフューザを介してEGRガス導入パイプとEGRガス導出パイプを接続し、
シェルの両端部を閉塞するエンドプレート間に、ディフューザ内に開口する複数のチューブを挿着すると共に、
EGRガス導入パイプ側のシェルの周壁に冷却水導入パイプを接続し、EGRガス導出パイプ側のシェルの周壁に冷却水導出パイプを接続したEGRクーラーに於て、
前記冷却水導入パイプから冷却水導出パイプに亘ってシェル内に形成される冷却水の主冷却水流路中のチューブの部位に、冷却水とEGRガスとの熱交換効率を高める手段を施したことを特徴とするEGRクーラー。
An EGR gas introduction pipe and an EGR gas outlet pipe are connected to both ends of the cylindrical shell through a diffuser,
Between the end plates that close both ends of the shell, insert a plurality of tubes that open in the diffuser,
In the EGR cooler in which the cooling water introduction pipe is connected to the peripheral wall of the shell on the EGR gas introduction pipe side, and the cooling water extraction pipe is connected to the peripheral wall of the shell on the EGR gas extraction pipe side.
A means for increasing the heat exchange efficiency between the cooling water and the EGR gas has been applied to the tube portion in the main cooling water flow path of the cooling water formed in the shell from the cooling water introduction pipe to the cooling water outlet pipe. EGR cooler characterized by
冷却水とEGRガスとの熱交換効率を高める手段は、チューブ内面に突出する複数の突起であることを特徴とする請求項1または請求項2に記載のEGRクーラー。   3. The EGR cooler according to claim 1, wherein the means for increasing the heat exchange efficiency between the cooling water and the EGR gas is a plurality of protrusions protruding on the inner surface of the tube. 4. 冷却水とEGRガスとの熱交換効率を高める手段は、チューブの外周に設けた冷却フィンであることを特徴とする請求項1または請求項2に記載のEGRクーラー。
3. The EGR cooler according to claim 1, wherein the means for increasing the heat exchange efficiency between the cooling water and the EGR gas is a cooling fin provided on an outer periphery of the tube.
JP2007166271A 2007-06-25 2007-06-25 Egr cooler Pending JP2009002300A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007166271A JP2009002300A (en) 2007-06-25 2007-06-25 Egr cooler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007166271A JP2009002300A (en) 2007-06-25 2007-06-25 Egr cooler

Publications (1)

Publication Number Publication Date
JP2009002300A true JP2009002300A (en) 2009-01-08

Family

ID=40318938

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007166271A Pending JP2009002300A (en) 2007-06-25 2007-06-25 Egr cooler

Country Status (1)

Country Link
JP (1) JP2009002300A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014181855A (en) * 2013-03-19 2014-09-29 T Rad Co Ltd Header plate-less heat exchanger
JP5747335B2 (en) * 2011-01-11 2015-07-15 国立大学法人 東京大学 Heat exchanger for heat engine
JP2019120162A (en) * 2017-12-28 2019-07-22 株式会社クボタ Egr-equipped engine

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1113551A (en) * 1997-06-23 1999-01-19 Isuzu Motors Ltd Egr cooler
JP2000130964A (en) * 1998-10-26 2000-05-12 Toyota Motor Corp Double-pipe heat exchanger
JP2004346919A (en) * 2003-05-26 2004-12-09 Nissan Diesel Motor Co Ltd Egr cooler

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1113551A (en) * 1997-06-23 1999-01-19 Isuzu Motors Ltd Egr cooler
JP2000130964A (en) * 1998-10-26 2000-05-12 Toyota Motor Corp Double-pipe heat exchanger
JP2004346919A (en) * 2003-05-26 2004-12-09 Nissan Diesel Motor Co Ltd Egr cooler

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5747335B2 (en) * 2011-01-11 2015-07-15 国立大学法人 東京大学 Heat exchanger for heat engine
JP2014181855A (en) * 2013-03-19 2014-09-29 T Rad Co Ltd Header plate-less heat exchanger
JP2019120162A (en) * 2017-12-28 2019-07-22 株式会社クボタ Egr-equipped engine

Similar Documents

Publication Publication Date Title
US6595274B2 (en) Exhaust gas heat exchanger
WO2004031565A9 (en) Egr cooler
JP4634291B2 (en) EGR cooler
JP2004028535A (en) Exhaust heat exchanger
JP2006118436A (en) Bonnet for egr gas cooling device
JP2009002300A (en) Egr cooler
JP4031393B2 (en) EGR cooler
KR101977894B1 (en) EGR cooler having baffle for suppoting gas tube
JP4248095B2 (en) EGR cooler
JP2006200490A (en) Exhaust gas cooling device for exhaust gas recirculating system
JP2005273512A (en) Egr cooler for engine
US11802527B2 (en) Gasoline EGR cooler with improved thermo-mechanical fatigue life
JP2005180268A (en) Egr cooler for engine
JP2008008568A (en) Heat exchanger
JP2002310007A (en) Egr gas cooling structure
JP4199511B2 (en) EGR cooler
JPH0988730A (en) Egr gas cooling system
JP2002180915A (en) Egr cooler
JP2010127170A (en) Egr cooler
JP2015017508A (en) EGR cooler
KR101793198B1 (en) EGR cooler having precooling zone
JP2004124808A (en) Exhaust gas recirculation cooler
JP4035479B2 (en) EGR cooler
JP4681435B2 (en) Connection structure of heat exchanger
JP4035480B2 (en) EGR cooler

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100330

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110628

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111101