JP2008008568A - Heat exchanger - Google Patents

Heat exchanger Download PDF

Info

Publication number
JP2008008568A
JP2008008568A JP2006180707A JP2006180707A JP2008008568A JP 2008008568 A JP2008008568 A JP 2008008568A JP 2006180707 A JP2006180707 A JP 2006180707A JP 2006180707 A JP2006180707 A JP 2006180707A JP 2008008568 A JP2008008568 A JP 2008008568A
Authority
JP
Japan
Prior art keywords
heat exchanger
heat transfer
tube
gas
cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006180707A
Other languages
Japanese (ja)
Inventor
Susumu Takahashi
進 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP2006180707A priority Critical patent/JP2008008568A/en
Publication of JP2008008568A publication Critical patent/JP2008008568A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat exchanger which avoids formation of a stagnation part in a cooling liquid side of a tube plate on a gas inlet side even when a large thermal load is applied to the heat exchanger, and positively cools a junction by sufficiently supplying a cooling liquid to the junction between a heat transfer tube and the tube plate. <P>SOLUTION: In the heat exchanger 1, a plurality of heat transfer tubes 13 with both ends respectively fixed by tube plates 11, 12 is arranged in a shell 14, gas Ge is sent through heat transfer tube 13 interiors, and the cooling liquid W is sent over heat transfer tube 13 exteriors to cool the gas Ge. A guide passage 11a guiding the cooling liquid W along one part or all of an inner circumference of the shell 14 is provided on a liquid communicating side of the tube plate 11 on an inlet side of the gas. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、熱交換器に関し、より詳細には、気体の入口側で高温になり易い伝熱管と管板との接合部を十分に冷却できる熱交換器に関する。   The present invention relates to a heat exchanger, and more particularly to a heat exchanger that can sufficiently cool a joint portion between a heat transfer tube and a tube sheet that is likely to become high temperature on the gas inlet side.

自動車等で用いられる内燃機関のEGRガスを冷却するために、図6に示すような構造のEGRクーラが使用されている。このEGRクーラは、ケースに収納された複数の伝熱管(コア)である円形パイプにEGRガスを通し、その外周に冷却水を通すことでEGRガスを冷却している。この冷却により、EGRガスの体積を減少して、エンジンのシリンダ内に還流するEGRガス量を増加する効果を発揮し、また、シリンダ内に供給される新気とEGRガスの混合ガスの温度を低下させて、燃焼の悪化を防止している。   In order to cool the EGR gas of an internal combustion engine used in an automobile or the like, an EGR cooler having a structure as shown in FIG. 6 is used. The EGR cooler cools the EGR gas by passing EGR gas through a circular pipe, which is a plurality of heat transfer tubes (cores) housed in a case, and passing cooling water through the outer periphery of the circular pipe. This cooling reduces the volume of the EGR gas and increases the amount of EGR gas that recirculates into the engine cylinder. Also, the temperature of the mixed gas of fresh air and EGR gas supplied into the cylinder is reduced. This reduces the deterioration of combustion.

このEGRクーラとして、例えば、外筒(胴)の内部に複数のチューブ(伝熱管)の両端を固定した仕切板(管板)を配置し、伝熱面の少なくとも一面に非金属を薄膜としてコーティング処理をしたチューブ内にEGRガスを流し、外筒内部でかつ仕切板の間のチューブ外側に冷却水を流して、EGRガスを冷却させる熱交換器が提案されている(例えば、特許文献1参照。)。   As this EGR cooler, for example, a partition plate (tube plate) in which both ends of a plurality of tubes (heat transfer tubes) are fixed is arranged inside an outer cylinder (trunk), and at least one surface of the heat transfer surface is coated with a nonmetal as a thin film There has been proposed a heat exchanger in which EGR gas is allowed to flow through the treated tube, and cooling water is allowed to flow inside the outer cylinder and outside the tube between the partition plates to cool the EGR gas (see, for example, Patent Document 1). .

また、シェル(胴)に熱交換用のチューブ(伝熱管)及びこのチューブの両端を支持するエンドプレート(管板)を内蔵し、炉内にチューブとエンドプレート及びエンドプレートとシェルのそれぞれの間の接合部をろう付けして熱交換器コア部分を一体に形成し、シェルをろう付け後にシェルの両端にヘッダを取り付けてシェルにヘッダを気密に固着するEGRクーラの製造方法が提案されている(例えば、特許文献2参照。)。   In addition, a heat exchanging tube (heat transfer tube) and end plates (tube plates) that support both ends of the tube are built in the shell (trunk), and the tube and end plate, and between the end plate and shell are placed in the furnace. A method of manufacturing an EGR cooler is proposed in which a heat exchanger core part is integrally formed by brazing the joints of the heat exchanger, and the header is attached to both ends of the shell after the shell is brazed, and the header is hermetically secured to the shell. (For example, refer to Patent Document 2).

このクールEGR方式は、近年の排気ガス規制に対応する燃焼制御技術として必須な技術となっており、より大量のEGRガスの導入を行うために、EGRクーラに対する熱負荷が増大してきている。特に北米仕様では、高速高負荷域でも大量のEGRが要求されるため、伝熱管(コア)が高温となり、特にガス入口側(高温側)の溶接やろう付けされた接合部において、大きな熱負荷により亀裂や剥がれ等が発生する可能性が増加し、EGRクーラの耐久性の面から問題となってきている。   This cool EGR system has become an indispensable technology as a combustion control technology corresponding to recent exhaust gas regulations, and in order to introduce a larger amount of EGR gas, the thermal load on the EGR cooler is increasing. Especially in the North American specification, a large amount of EGR is required even in the high-speed and high-load region, so the heat transfer tube (core) becomes high temperature, especially at the gas inlet side (high temperature side) welding or brazed joints, As a result, the possibility of occurrence of cracks, peeling, etc. increases, which has become a problem in terms of durability of the EGR cooler.

従来の構造の熱交換器では、高温ガスが流入して、伝熱管の温度が高くなる気体の入口側に冷却水の入口を設けて、比較的低温の冷却水で接合部の温度を下げている。しかしながら、冷却水が注入される注入口の対向位置の壁面近傍(図6の斜線部)Aに、冷却水が流れにくい澱み部が発生してしまうために、この付近では、高温になっている伝熱管と冷却水との間の熱伝達が低下し、この部位の冷却が悪化する。その結果、この部分の接合部では温度が最も上昇し、冷却水入口近傍の接合部に比べて著しく高くなる。また、大きな熱負荷により、この澱み部で冷却水が沸騰するような状態になると、接合部では亀裂や剥がれ等の不具合を発生し易くなる。そして、一旦、この部位に不具合が発生すると、冷却水がEGRガス中に浸入し、EGRガスと共にエンジンのシリンダ内部に入り込んでしまうため、焼き付けやウォータハンマ等の重大なトラブルを発生する危険性が生じる。
特開2006−90833号公報 特開2006−57475号公報
In a heat exchanger having a conventional structure, an inlet of cooling water is provided on the gas inlet side where the temperature of the heat transfer tube increases due to the flow of high-temperature gas, and the temperature of the joint is lowered with relatively low-temperature cooling water. Yes. However, since a stagnation portion where the cooling water hardly flows is generated near the wall surface (shaded portion in FIG. 6) A at the position opposite to the inlet where the cooling water is injected, the temperature is high in this vicinity. The heat transfer between the heat transfer tube and the cooling water is lowered, and the cooling of this portion is deteriorated. As a result, the temperature rises most at the joint of this part, and becomes significantly higher than the joint near the cooling water inlet. In addition, when the cooling water is boiled in the stagnation portion due to a large heat load, it becomes easy to cause defects such as cracks and peeling at the joint portion. Once a malfunction occurs in this part, the coolant enters the EGR gas and enters the engine cylinder together with the EGR gas, which may cause serious troubles such as seizing and water hammer. Arise.
JP 2006-90833 A JP 2006-57475 A

本発明は、上記の問題を解決するためになされたものであり、その目的は、熱交換器に大きな熱負荷が加わるような場合であっても、気体の入口側の管板の冷却用液体側に澱み部が発生するのを回避でき、伝熱管と管板との接合部に冷却用液体を十分に供給できて接合部を確実に冷却することができる熱交換器を提供することにある。   The present invention has been made to solve the above-described problems, and the purpose thereof is to provide a liquid for cooling the tube plate on the gas inlet side even when a large heat load is applied to the heat exchanger. The present invention provides a heat exchanger that can avoid the occurrence of a stagnation portion on the side, can sufficiently supply a cooling liquid to the joint portion between the heat transfer tube and the tube sheet, and can cool the joint portion reliably. .

上記のような目的を達成するための熱交換器は、管板に両端をそれぞれ固定された複数の伝熱管を胴内に配置し、前記伝熱管内に気体を流し、前記伝熱管外に冷却用液体を流して、気体を冷却する熱交換器において、気体の入口側の管板の液体流通側に、冷却用液体を胴の内周の一部又は全周に沿って導く導入通路を設けて構成される。   A heat exchanger for achieving the above-described object has a plurality of heat transfer tubes each having both ends fixed to a tube plate in a cylinder, allows gas to flow in the heat transfer tubes, and cools the heat transfer tubes outside. In the heat exchanger that flows the liquid for cooling and cools the gas, an introduction passage is provided on the liquid flow side of the tube plate on the gas inlet side to guide the cooling liquid along part or all of the inner periphery of the cylinder. Configured.

この構成によれば、導入通路により、冷却用液体を気体の入口側の管板の液体流通側で、胴(シェル、ケーシング)の内周の一部又は全周に沿って導くので、冷却用液体が澱むのを回避できる。その結果、この伝熱管(チューブ)と、この伝熱管を固定支持するための管板(エンドプレート、ヘッダプレート)との間の溶接やろう付けの接合部を十分に冷却できるようになり、接合部の亀裂や剥がれを防止することができる。   According to this configuration, since the cooling liquid is guided along the part or the entire circumference of the body (shell, casing) on the liquid flow side of the tube plate on the gas inlet side by the introduction passage, It is possible to avoid stagnation of the liquid. As a result, the welded and brazed joint between this heat transfer tube (tube) and the tube plate (end plate, header plate) for fixing and supporting this heat transfer tube can be cooled sufficiently. It is possible to prevent cracking and peeling of the part.

また、この構成によれば、導入通路により、気体の入口側の管板の液体流通側又はその近傍に冷却用液体を導くために、管板に対する冷却効果が大きくなり、接合部に対する冷却効率が良くなる。更に、胴の内周に沿って冷却用液体を導くため、胴内に旋回流を発生させて伝熱管の伝熱効率を高めることもできるようになる。   Further, according to this configuration, since the cooling liquid is guided to or near the liquid flow side of the tube plate on the gas inlet side by the introduction passage, the cooling effect on the tube plate is increased, and the cooling efficiency for the joint portion is increased. Get better. Furthermore, since the cooling liquid is guided along the inner periphery of the cylinder, it is possible to generate a swirling flow in the cylinder and increase the heat transfer efficiency of the heat transfer tube.

また、上記の熱交換器において、前記導入通路を気体の入口側の管板の液体流通側でかつ胴の内周に沿って設けた溝状通路で形成すると、比較的簡単な構成で導入通路を設けることができる。この溝状通路は、管板の外周側に管板と一体的に設けることもでき、管板の流体流通側に溝状通路が形成されるようなリング状体や溝状通路が形成されているリング状体を配置して設けることもできる。また、この溝状通路は、側断面で見たときに、胴の中心部側が開放されている凹状断面をしていても良く、また、胴の中心部側と気体の下流側とが開放されているL字断面をしていてもよい。なお、管板と一体に設ける場合には、管板の液体流通側を溝状に切削して溝状通路を形成してもよい。   In the above heat exchanger, when the introduction passage is formed by a groove-like passage provided on the liquid flow side of the tube plate on the gas inlet side and along the inner periphery of the cylinder, the introduction passage has a relatively simple configuration. Can be provided. The groove-like passage can be provided integrally with the tube plate on the outer peripheral side of the tube plate, and a ring-like body or groove-like passage is formed on the fluid circulation side of the tube plate. It is also possible to arrange and provide a ring-shaped body. Further, the groove-shaped passage may have a concave cross section where the central portion side of the cylinder is opened when viewed in a side cross section, and the central portion side of the cylinder and the downstream side of the gas are opened. It may have an L-shaped cross section. In addition, when providing integrally with a tube sheet, the liquid distribution | circulation side of a tube sheet may be cut into a groove shape, and a groove-shaped channel | path may be formed.

また、溝状通路の導入通路の場合には、冷却用液体を胴の内周の一部又は全周に沿って導き易いように、冷却用液体は胴の内周の接線方向からこの導入通路に供給するのが好ましく、冷却用液体供給管は胴の内周の接線方向に取り付け、導入通路に接続することが好ましい。   Further, in the case of the introduction passage of the groove-like passage, the introduction of the cooling liquid from the tangential direction of the inner periphery of the cylinder is facilitated so that the cooling liquid can be easily guided along a part or all of the inner periphery of the cylinder. The cooling liquid supply pipe is preferably attached in the tangential direction of the inner periphery of the cylinder and connected to the introduction passage.

また、上記の熱交換器において、前記溝状通路における胴の径方向の深さを冷却用液体の注入口から遠ざかるに連れて浅くなるように形成すると、この溝状通路に導入された液体は徐々に胴の中心部側に排出されるので、この中心部側に向かう流速を有するようになり、中心部に向かう流れを意図的に起こすことができる。   Further, in the above heat exchanger, if the depth in the radial direction of the cylinder in the groove-shaped passage is formed so as to become shallower as it moves away from the cooling liquid inlet, the liquid introduced into the groove-shaped passage is Since it is gradually discharged to the center side of the body, it has a flow velocity toward the center side, and a flow toward the center can be intentionally caused.

更に、上記の熱交換器において、前記導入通路を気体の入口側の管板の液体流通側でかつ胴の内周に沿って設けたパイプ状通路で形成すると共に、前記パイプ状通路に冷却用液体の流出口を設けて構成すると、リング状のパイプを冷却用液体の供給口に接続するだけで、容易に導入通路を形成することができる。その上、パイプに流出口を設けることにより、澱み易い部分を狙って冷却用液体を流出させることもできるようになるので、より一層澱みの発生を回避できる。   Further, in the above heat exchanger, the introduction passage is formed by a pipe-like passage provided on the liquid circulation side of the tube plate on the gas inlet side and along the inner periphery of the cylinder, and the pipe-like passage is cooled. When the liquid outlet is provided, the introduction passage can be easily formed simply by connecting the ring-shaped pipe to the cooling liquid supply port. In addition, by providing an outlet in the pipe, the cooling liquid can be allowed to flow out aiming at a portion that is prone to stagnation, so that stagnation can be further avoided.

また、流出口の方向を胴の中心部側に向けると冷却用液体を胴の中心部側に供給し易くなるので、中心部側の接合部をより一層冷却することができるようになる。また、流出方向や流出速度も流出口の開口方向や開口量によって選択できるようになるので、胴内に旋回流を発生させて伝熱管の伝熱効率を高めることもできるようになる。   Further, when the direction of the outlet is directed toward the center of the cylinder, it becomes easier to supply the cooling liquid to the center of the cylinder, so that the joint at the center can be further cooled. Further, since the outflow direction and the outflow speed can be selected depending on the opening direction and the opening amount of the outflow port, it is possible to generate a swirling flow in the trunk and increase the heat transfer efficiency of the heat transfer tube.

あるいは、上記の目的を達成するための本発明の熱交換器は、管板に両端をそれぞれ固定された複数の伝熱管を胴内に配置し、前記伝熱管内に気体を流し、前記伝熱管外に冷却用液体を流して、気体を冷却する熱交換器において、冷却用液体を胴内に供給する供給口を、気体の入口側の管板の液体流通側に沿って複数設けて構成する。   Alternatively, in the heat exchanger of the present invention for achieving the above object, a plurality of heat transfer tubes each having both ends fixed to a tube plate are arranged in a cylinder, gas is allowed to flow in the heat transfer tubes, and the heat transfer tubes In a heat exchanger for cooling a gas by flowing a cooling liquid outside, a plurality of supply ports for supplying the cooling liquid into the body are provided along the liquid circulation side of the tube plate on the gas inlet side. .

この複数の供給口から供給される冷却用液体により、澱みの発生を回避することができるので、伝熱管と管板との間の溶接やろう付けの接合部を十分に冷却でき、接合部の亀裂や剥がれを防止することができる。更に、胴の内周の接線方向の流速成分を持たせて冷却用液体を供給すると、胴内に旋回流を発生させることができるので、伝熱管の伝熱効率を高めることができる。   Since the cooling liquid supplied from the plurality of supply ports can avoid the occurrence of stagnation, the welded or brazed joint between the heat transfer tube and the tube sheet can be sufficiently cooled, and the joint Cracks and peeling can be prevented. Furthermore, when the cooling liquid is supplied with a flow velocity component in the tangential direction of the inner circumference of the cylinder, a swirl flow can be generated in the cylinder, so that the heat transfer efficiency of the heat transfer tube can be increased.

そして、上記の熱交換器において、前記気体が内燃機関のEGRガスであるように、即ち、この熱交換器をEGRクーラとする場合には、エンジンが高負荷運転で大量のEGRを必要とするような運転状態においても、EGRクーラの伝熱管と管板との接合部を十分に冷却できるので、この接合部の亀裂や剥がれを防止して信頼性を確保することができる。その結果、北米の厳しい排ガス規制に対応できる低エミッション燃焼を実現することができるエンジンを提供できるようになる。   And in said heat exchanger, when the said gas is EGR gas of an internal combustion engine, ie, when this heat exchanger is made into an EGR cooler, an engine requires a lot of EGR by high load operation. Even in such an operating state, the joint portion between the heat transfer tube and the tube sheet of the EGR cooler can be sufficiently cooled, so that the joint portion can be prevented from cracking or peeling and reliability can be ensured. As a result, it is possible to provide an engine capable of realizing low emission combustion that can meet the strict exhaust gas regulations in North America.

以上説明したように、本発明に係る熱交換器によれば、熱交換器に大きな熱負荷が加わるような場合であっても、気体の入口側の管板の冷却用液体側に澱み部が発生するのを回避でき、伝熱管と管板との接合部に冷却用液体を供給して接合部を十分に冷却することができる。   As described above, according to the heat exchanger according to the present invention, even if a large heat load is applied to the heat exchanger, the stagnation portion is provided on the cooling liquid side of the tube plate on the gas inlet side. Generation | occurrence | production can be avoided and the liquid for cooling can be supplied to the junction part of a heat exchanger tube and a tube sheet, and a junction part can fully be cooled.

以下、本発明に係る実施の形態の熱交換器について、内燃機関(エンジン)に使用されるEGRクーラを例にして図面を参照しながら説明する。   Hereinafter, a heat exchanger according to an embodiment of the present invention will be described with an EGR cooler used for an internal combustion engine (engine) as an example with reference to the drawings.

図1〜図5に第1の実施の形態の熱交換器1を示す。この熱交換器1は、管板(エンドプレート、ヘッダプレート)11,12に両端をそれぞれ固定された複数の伝熱管(コア、チューブ)13を、胴(シェル、ケーシング)14内に配置して形成される。この胴14の一方には高温のEGRガス(気体)が供給される入口側配管15が設けられ、他方には冷却されたEGRガス(気体)が排出される出口側配管16が設けられる。   1 to 5 show a heat exchanger 1 according to a first embodiment. The heat exchanger 1 includes a plurality of heat transfer tubes (cores and tubes) 13 fixed at both ends to tube plates (end plates and header plates) 11 and 12 in a body (shell and casing) 14. It is formed. One of the cylinders 14 is provided with an inlet-side pipe 15 to which high-temperature EGR gas (gas) is supplied, and the other is provided with an outlet-side pipe 16 through which cooled EGR gas (gas) is discharged.

この伝熱管13は、ステンレス等の金属等で形成され、その一端側を入口側の管板11に溶接又はろう付けで接続され固定される。また、その他端側を出口側の管板12に溶接又はろう付けで接続され固定される。そして、これらの管板11、12はステンレス等の金属等で形成され、ステンレス等の金属等で形成された胴14に溶接やろう付け等により固定される。なお、熱膨張を考慮して一端側を固定せずにしておく場合もある。この胴14に入口側配管15と出口側配管16が溶接やろう付け又はフランジ等で接続される。   The heat transfer tube 13 is formed of a metal such as stainless steel, and one end thereof is connected to the tube plate 11 on the inlet side by welding or brazing and fixed. Further, the other end is connected and fixed to the tube sheet 12 on the outlet side by welding or brazing. These tube plates 11 and 12 are formed of a metal such as stainless steel, and are fixed to a body 14 formed of a metal such as stainless steel by welding or brazing. In some cases, one end side is not fixed in consideration of thermal expansion. An inlet side pipe 15 and an outlet side pipe 16 are connected to the barrel 14 by welding, brazing, a flange, or the like.

EGRクーラでは、伝熱管13内にEGRガス(気体)Geを流すと共に、冷却水(冷却用液体)Wを冷却水供給管17から胴14内に供給し、伝熱管12の外側に流して、EGRガスGeを冷却した後、冷却水排出管18から排出する。   In the EGR cooler, EGR gas (gas) Ge is caused to flow in the heat transfer tube 13, and cooling water (cooling liquid) W is supplied from the cooling water supply tube 17 into the body 14, and then flows outside the heat transfer tube 12. After the EGR gas Ge is cooled, it is discharged from the cooling water discharge pipe 18.

そして、本発明においては、EGRガスGeの入口側の管板11の液体流通側又はその近傍に、冷却水Wを胴14の内周の全周に沿って、溝状通路で形成した導入通路11aを設けて構成する。これにより比較的簡単な構成で導入通路11aを設けることができる。   In the present invention, the introduction passage formed by the groove-like passage along the inner circumference of the barrel 14 on the liquid circulation side of the tube plate 11 on the inlet side of the EGR gas Ge or in the vicinity thereof. 11a is provided and configured. Thereby, the introduction passage 11a can be provided with a relatively simple configuration.

図1〜図5の構成では、この溝状通路の導入通路11aは、管板11と一体に設けられ、側断面で見たときに、胴14の中心部側とEGRガスGeの下流側とが開放されているL字断面となるように、管板11の液体流通側を溝状に切削して形成している。更に導入通路11aにおける胴14の径方向の溝深さdを、冷却水Wの供給口17aから遠ざかるに連れて浅くなるように、言い換えれば、正面視(胴14の軸方向から見た状態)で螺旋状の凹部を持つように形成している。   In the configuration of FIGS. 1 to 5, the introduction passage 11 a of the groove-like passage is provided integrally with the tube plate 11, and when viewed in a side cross section, the center portion side of the body 14 and the downstream side of the EGR gas Ge Is formed by cutting the liquid flow side of the tube plate 11 into a groove shape so as to have an L-shaped cross section. Further, the groove depth d in the radial direction of the trunk 14 in the introduction passage 11a is made shallower as it goes away from the supply port 17a of the cooling water W, in other words, a front view (a state seen from the axial direction of the trunk 14). It is formed to have a spiral recess.

なお、溝状通路の導入通路11aは、この構成に限定されず、胴の中心部側が開放されている凹状断面をしていても良く、また,管板11の流体流通側に溝状通路11aが形成されるようなリング状体や溝状通路11aを形成したリング状体を配置して設けてもよい。更に、導入通路11を胴14の内周の全周に沿って設ける代りに、澱み易い部分のみに冷却水Wを供給するように、胴14の内周の一部に沿って設けることもできる。   The introduction passage 11a of the groove-shaped passage is not limited to this configuration, and may have a concave cross section in which the central portion side of the trunk is open, and the groove-shaped passage 11a is formed on the fluid circulation side of the tube plate 11. Alternatively, a ring-shaped body in which a groove-shaped passage 11a is formed may be provided. Further, instead of providing the introduction passage 11 along the entire inner circumference of the cylinder 14, it can be provided along a part of the inner circumference of the cylinder 14 so as to supply the cooling water W only to the portion that is easily stagnant. .

また、この溝状通路11aの場合では、冷却水Wを胴14の内周に沿って導き易いように、冷却水供給管17は胴14の内周の接線方向に取り付けて、導入通路11aに接続し、冷却水Wを胴14の内周の接線方向からこの導入通路11aに供給する。   Further, in the case of the groove-shaped passage 11a, the cooling water supply pipe 17 is attached in the tangential direction of the inner periphery of the body 14 so that the cooling water W can be easily guided along the inner periphery of the body 14, and is connected to the introduction passage 11a. Then, the cooling water W is supplied to the introduction passage 11a from the tangential direction of the inner periphery of the body 14.

この導入通路11aにより、冷却水Wを入口側の管板11の液体流通側で、胴14の内周の一部又は全周に沿って導くことができるので、冷却水Wが澱むのを回避できる。その結果、この伝熱管13と管板11との間の溶接やろう付けの接合部19を十分に冷却できるようになり、接合部19の亀裂や剥がれを防止することができる。   By this introduction passage 11a, the cooling water W can be guided along a part or all of the inner periphery of the barrel 14 on the liquid flow side of the tube plate 11 on the inlet side, so that the cooling water W is prevented from being stagnation. it can. As a result, the welded or brazed joint 19 between the heat transfer tube 13 and the tube sheet 11 can be sufficiently cooled, and cracking and peeling of the joint 19 can be prevented.

特に、この導入通路11aにより入口側の管板11の液体流通側又はその近傍に冷却水Wを導くために、管板11に対する冷却効果が大きくなり、接合部19に対する冷却効率が良くなる。更に、胴14の内周に沿って冷却水Wを導くため、胴14内に旋回流を発生させて伝熱管13の伝熱効率を高めることもできるようになる。   In particular, since the cooling water W is guided to the liquid flow side of the tube plate 11 on the inlet side or the vicinity thereof by the introduction passage 11a, the cooling effect on the tube plate 11 is increased, and the cooling efficiency for the joint portion 19 is improved. Furthermore, since the cooling water W is guided along the inner periphery of the cylinder 14, a swirl flow can be generated in the cylinder 14 to increase the heat transfer efficiency of the heat transfer tube 13.

更に、導入通路11aにおける胴14の径方向の溝深さdを冷却水Wの供給口17aから遠ざかるに連れて浅くなるように形成しているので、この導入通路11aに導入された冷却水Wは徐々に胴14の中心部側に排出される。その結果、冷却水Wは導入通路11aを通して管板11に沿って流れるために胴14の内周に沿って周り込む方向の周方向速度成分Vaを有すると共に、胴14の中心部側に向かう流速、即ち中心方向速度成分Vb(図5参照)も有するようになり、中心部に向かう流れを意図的に起こすことができる。また、冷却水Wの順次の供給により冷却水Wは冷却水排出口18aに向かうので、胴14の軸に平行な方向の軸方向速度成分Vc(図示しない)を持つようになる。   Further, since the groove depth d in the radial direction of the body 14 in the introduction passage 11a is formed so as to become shallower as it moves away from the supply port 17a of the cooling water W, the cooling water W introduced into the introduction passage 11a. Is gradually discharged toward the center of the body 14. As a result, since the cooling water W flows along the tube plate 11 through the introduction passage 11 a, the cooling water W has a circumferential velocity component Va in a direction that wraps around the inner periphery of the cylinder 14, and a flow velocity toward the center of the cylinder 14. That is, it also has a center direction velocity component Vb (see FIG. 5), and can intentionally cause a flow toward the center. Further, since the cooling water W is directed to the cooling water discharge port 18a by the sequential supply of the cooling water W, it has an axial velocity component Vc (not shown) in a direction parallel to the axis of the body 14.

つまり、冷却水Wは周方向速度成分Vaと中心方向速度成分Vbと軸方向速度成分Vc(図示しない)を持っている。そのため、この周方向速度成分Vaにより、従来構造で問題となる、伝熱管13と管板11との接合部19近傍の冷却水Wの澱み部が無くなり、最も高温となる接続部19を均一に冷却し、高温によるこの接続部19の不具合の発生を防止することができる。それと共に、中心方向速度成分Vbにより、胴14の中心側に配置された接合部を冷却でき、更に、軸方向速度成分Vcにより従来通り伝熱管13内を通るEGRガスGeを冷却することができる。   That is, the cooling water W has a circumferential velocity component Va, a central velocity component Vb, and an axial velocity component Vc (not shown). For this reason, the circumferential velocity component Va eliminates the stagnation portion of the cooling water W in the vicinity of the joint portion 19 between the heat transfer tube 13 and the tube plate 11, which is a problem in the conventional structure, and makes the connection portion 19 having the highest temperature uniform. By cooling, it is possible to prevent the occurrence of a failure of the connection portion 19 due to a high temperature. At the same time, the center portion of the barrel 14 can be cooled by the central velocity component Vb, and the EGR gas Ge passing through the heat transfer tube 13 can be cooled as usual by the axial velocity component Vc. .

以上説明したように、本発明に係る熱交換器によれば、EGRクーラ1の冷却水Wを一箇所から導入し、この導入された冷却水Wが、従来技術では最も高温となり易かった側に周り、この部分の接合部19の冷却を十分に行うことができるので、高温に起因する接続部の亀裂や剥がれ等の不具合の発生を防止することができる。   As described above, according to the heat exchanger according to the present invention, the cooling water W of the EGR cooler 1 is introduced from one place, and the introduced cooling water W is on the side where the highest temperature is likely to be the highest in the prior art. Since the surrounding portion and the joint portion 19 can be sufficiently cooled, it is possible to prevent the occurrence of defects such as cracks and peeling of the connection portion due to the high temperature.

従って、エンジンが高負荷運転状態で大量のEGRを必要とするような運転状態においても、EGRクーラ1の伝熱管13と管板11との接合部の信頼性を確保することができるので、このEGRクーラ1を備えたエンジンは、北米の厳しい排ガス規制にも対応できる低エミッション燃焼を実現できるようになる。   Therefore, the reliability of the joint between the heat transfer tube 13 and the tube plate 11 of the EGR cooler 1 can be ensured even in an operation state in which the engine is in a high load operation state and requires a large amount of EGR. An engine equipped with the EGR cooler 1 can realize low emission combustion that can meet strict exhaust gas regulations in North America.

次に、第2の実施の形態について説明する。図6に示す第2の実施の形態のEGRクーラ(熱交換器)1Aでは、第1の実施の形態のEGRクーラ1における溝状通路で形成された導入通路11aの代りに、導入通路を入口側の管板11の液体流通側でかつ胴14の内周に沿って設けたパイプ状通路20で形成し、このステンレス等の金属等で形成されたパイプ状通路20に冷却水(冷却用液体)Wの流出口20aを一箇所乃至数箇所設ける。その他の構成は第1の実施の形態と同じである。   Next, a second embodiment will be described. In the EGR cooler (heat exchanger) 1A according to the second embodiment shown in FIG. 6, instead of the introduction passage 11a formed by the groove-like passage in the EGR cooler 1 according to the first embodiment, the introduction passage is provided as an inlet. The pipe-shaped passage 20 is formed on the liquid flow side of the tube plate 11 on the side and along the inner periphery of the body 14, and cooling water (cooling liquid) is formed in the pipe-shaped passage 20 formed of a metal such as stainless steel. ) Provide one or several W outlets 20a. Other configurations are the same as those of the first embodiment.

この第2の実施の形態のパイプ状通路20で形成した導入通路11aを有するEGRクーラ1Aでは、リング状のパイプ20を冷却水Wの供給口17aに接続するだけで、容易に導入通路20を形成することができる。その上、パイプ状通路20に流出口20aを設けることにより、冷却水Wが澱み易い部分を狙って冷却水Wを流出させることができるので、澱みの発生を回避できる。   In the EGR cooler 1A having the introduction passage 11a formed by the pipe-like passage 20 of the second embodiment, the introduction passage 20 can be easily formed simply by connecting the ring-like pipe 20 to the supply port 17a of the cooling water W. Can be formed. In addition, by providing the outlet 20a in the pipe-shaped passage 20, the cooling water W can be flowed out aiming at a portion where the cooling water W tends to stagnate, so that the occurrence of stagnation can be avoided.

また、流出口20aの方向を胴14の中心部側に向けると冷却水Wを胴14の中心部側に供給し易くなるので、中心部側の接合部19もより一層冷却することができる。また、流出方向や流出速度も流出口20aの開口方向や開口量(開口の大きさ)によって選択できるようになるので、胴14内に旋回流を発生させて伝熱管13の伝熱効率を高めることもできる。   Further, when the direction of the outlet 20a is directed toward the center of the body 14, the cooling water W can be easily supplied to the center of the body 14, so that the joint 19 on the center can be further cooled. Further, since the outflow direction and outflow speed can be selected depending on the opening direction and the opening amount (opening size) of the outlet 20a, a swirling flow is generated in the body 14 to increase the heat transfer efficiency of the heat transfer tube 13. You can also.

次に、第3の実施の形態について説明する。図7に示す第3の実施の形態のEGRクーラ(熱交換器)1Bでは、第1の実施の形態のEGRクーラ1における溝状通路で形成された導入通路11aの代りに、冷却水(冷却用液体)Wを胴14内に供給する供給口17aを、入口側の管板11の液体流通側に沿って複数設ける。その他の構成は第1の実施の形態と同じである。   Next, a third embodiment will be described. In the EGR cooler (heat exchanger) 1B of the third embodiment shown in FIG. 7, instead of the introduction passage 11a formed by the groove-like passage in the EGR cooler 1 of the first embodiment, cooling water (cooling) A plurality of supply ports 17a for supplying the liquid W to the body 14 are provided along the liquid flow side of the tube plate 11 on the inlet side. Other configurations are the same as those of the first embodiment.

この複数の供給口17aから供給される冷却水Wにより、澱みの発生を回避することができるので、伝熱管13と管板11との間の溶接やろう付けの接合部19を十分に冷却でき、接合部19の亀裂や剥がれを防止することができる。更に、胴14の内周の接線方向の流速成分を持たせて冷却水Wを供給すると、胴14内に旋回流を発生させることができるので、伝熱管13の伝熱効率を高めることができる。   Since the generation of stagnation can be avoided by the cooling water W supplied from the plurality of supply ports 17a, the welded and brazed joint 19 between the heat transfer tube 13 and the tube plate 11 can be sufficiently cooled. Further, it is possible to prevent the joint 19 from being cracked or peeled off. Furthermore, if the cooling water W is supplied with a flow velocity component in the tangential direction of the inner circumference of the cylinder 14, a swirl flow can be generated in the cylinder 14, so that the heat transfer efficiency of the heat transfer tube 13 can be increased.

本発明に係る第1実施の形態の熱交換器(EGRクーラ)の構成を示す図である。It is a figure which shows the structure of the heat exchanger (EGR cooler) of 1st Embodiment which concerns on this invention. 図1のA−A矢視図である。It is an AA arrow line view of FIG. 図1の入口側の管板の構成を示す正面図である。It is a front view which shows the structure of the tube sheet of the inlet_port | entrance side of FIG. 図3の入口側の管板の構成を示す横断面図である。FIG. 4 is a transverse sectional view showing a configuration of a tube sheet on the inlet side in FIG. 3. 冷却水の流れを模式的に示す図である。It is a figure which shows the flow of a cooling water typically. 本発明に係る第2実施の形態の熱交換器(EGRクーラ)の構成を示す図である。It is a figure which shows the structure of the heat exchanger (EGR cooler) of 2nd Embodiment which concerns on this invention. 本発明に係る第3実施の形態の熱交換器(EGRクーラ)の構成を示す図である。It is a figure which shows the structure of the heat exchanger (EGR cooler) of 3rd Embodiment which concerns on this invention. 従来技術の熱交換器(EGRクーラ)の構成を示す図である。It is a figure which shows the structure of the heat exchanger (EGR cooler) of a prior art.

符号の説明Explanation of symbols

1,1A,1B EGRクーラ(熱交換器)
11 入口側の管板
11a 溝状通路(導入通路)
12 出口側の管板
13 伝熱管
14 胴
17 冷却水供給管
17a 冷却水の供給口
18 冷却水排出管
19 伝熱管と管板との接合部
20 パイプ状通路(導入通路)
20a 冷却水の流出口
d 導入通路における胴の径方向の深さ
Ge EGRガス
Vr 中心方向速度成分
Va 周方向速度成分
Vb 軸方向速度成分
W 冷却水
1,1A, 1B EGR cooler (heat exchanger)
11 Inlet side tube sheet 11a Grooved passage (introduction passage)
12 Tube plate on outlet side 13 Heat transfer tube 14 Body 17 Cooling water supply tube 17a Cooling water supply port 18 Cooling water discharge tube 19 Junction between heat transfer tube and tube plate 20 Pipe-shaped passage (introduction passage)
20a Outlet of cooling water d Depth of cylinder in radial direction in introduction passage Ge EGR gas Vr Central velocity component Va Circumferential velocity component Vb Axial velocity component W Cooling water

Claims (6)

管板に両端をそれぞれ固定された複数の伝熱管を胴内に配置し、前記伝熱管内に気体を流し、前記伝熱管外に冷却用液体を流して、気体を冷却する熱交換器において、気体の入口側の管板の液体流通側に、冷却用液体を胴の内周の一部又は全周に沿って導く導入通路を設けたことを特徴とする熱交換器。   In a heat exchanger that cools the gas by arranging a plurality of heat transfer tubes fixed at both ends of the tube plate in the cylinder, flowing a gas into the heat transfer tube, flowing a cooling liquid outside the heat transfer tube, A heat exchanger characterized in that an introduction passage for guiding a cooling liquid along a part or all of the inner periphery of the cylinder is provided on the liquid circulation side of the tube plate on the gas inlet side. 前記導入通路を気体の入口側の管板の液体流通側でかつ胴の内周に沿って設けた溝状通路で形成したことを特徴とする請求項1記載の熱交換器。   The heat exchanger according to claim 1, wherein the introduction passage is formed by a groove-like passage provided on the liquid flow side of the tube plate on the gas inlet side and along the inner periphery of the cylinder. 前記溝状通路における胴の径方向の深さを冷却用液体の注入口から遠ざかるに連れて浅くなるように形成したことを特徴とする請求項2記載の熱交換器。   3. The heat exchanger according to claim 2, wherein a depth of the trunk in the groove-like passage is formed so as to become shallower as the distance from the cooling liquid injection port is increased. 前記導入通路を気体の入口側の管板の液体流通側でかつ胴の内周に沿って設けたパイプ状通路で形成すると共に、前記パイプ状通路に冷却用液体の流出口を設けたことを特徴とする請求項1記載の熱交換器。   The introduction passage is formed by a pipe-like passage provided on the liquid circulation side of the tube plate on the gas inlet side and along the inner periphery of the trunk, and an outlet for cooling liquid is provided in the pipe-like passage. The heat exchanger according to claim 1, wherein 管板に両端をそれぞれ固定された複数の伝熱管を胴内に配置し、前記伝熱管内に気体を流し、前記伝熱管外に冷却用液体を流して、気体を冷却する熱交換器において、冷却用液体を胴内に供給する供給口を、気体の入口側の管板の液体流通側に沿って複数設けたことを特徴とする熱交換器。   In a heat exchanger that cools the gas by arranging a plurality of heat transfer tubes fixed at both ends of the tube plate in the cylinder, flowing a gas into the heat transfer tube, flowing a cooling liquid outside the heat transfer tube, A heat exchanger characterized in that a plurality of supply ports for supplying the cooling liquid into the cylinder are provided along the liquid flow side of the tube plate on the gas inlet side. 前記気体が内燃機関のEGRガスであることを特徴とする請求項1〜5のいずれか1項に記載の熱交換器。
The heat exchanger according to any one of claims 1 to 5, wherein the gas is EGR gas of an internal combustion engine.
JP2006180707A 2006-06-30 2006-06-30 Heat exchanger Pending JP2008008568A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006180707A JP2008008568A (en) 2006-06-30 2006-06-30 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006180707A JP2008008568A (en) 2006-06-30 2006-06-30 Heat exchanger

Publications (1)

Publication Number Publication Date
JP2008008568A true JP2008008568A (en) 2008-01-17

Family

ID=39066940

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006180707A Pending JP2008008568A (en) 2006-06-30 2006-06-30 Heat exchanger

Country Status (1)

Country Link
JP (1) JP2008008568A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015518559A (en) * 2012-05-01 2015-07-02 ベンテラー・アウトモビールテヒニク・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング Heat exchanger with supply channel
JP2015123349A (en) * 2013-12-27 2015-07-06 ホシザキ電機株式会社 Washer
JP2018040531A (en) * 2016-09-07 2018-03-15 株式会社Ihi Heat exchanger
US10264943B2 (en) 2013-12-27 2019-04-23 Hoshizaki Corporation Washer
CN111351064A (en) * 2020-03-13 2020-06-30 江苏峰业科技环保集团股份有限公司 Cooling and dehumidifying flue gas whitening system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015518559A (en) * 2012-05-01 2015-07-02 ベンテラー・アウトモビールテヒニク・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング Heat exchanger with supply channel
JP2015123349A (en) * 2013-12-27 2015-07-06 ホシザキ電機株式会社 Washer
US10264943B2 (en) 2013-12-27 2019-04-23 Hoshizaki Corporation Washer
JP2018040531A (en) * 2016-09-07 2018-03-15 株式会社Ihi Heat exchanger
CN111351064A (en) * 2020-03-13 2020-06-30 江苏峰业科技环保集团股份有限公司 Cooling and dehumidifying flue gas whitening system

Similar Documents

Publication Publication Date Title
US10914527B2 (en) Tube bundle heat exchanger
EP1548267B1 (en) Egr cooler
US6890148B2 (en) Transition duct cooling system
EP1647697A1 (en) Egr cooler
EP2259000A1 (en) Internal bypass exhaust gas cooler
JP4926892B2 (en) Flange connection structure of heat exchanger
KR101793752B1 (en) Heat exchanger for gases, in particular for the exhaust gases of an engine
JP2005036739A (en) Egr cooler
KR101896326B1 (en) Water-cooled egr cooler
JP2008008568A (en) Heat exchanger
EP2936035B1 (en) Heat exchanger
US20040226694A1 (en) Heat exchanger with removable core
JP2006046846A (en) Double pipe heat exchanger
JP2006118436A (en) Bonnet for egr gas cooling device
JP2008215161A (en) Egr cooler
KR101637981B1 (en) Egr cooler
JP2005273512A (en) Egr cooler for engine
JP4248095B2 (en) EGR cooler
JP2004124809A (en) Exhaust gas recirculation cooler
JP2000045883A (en) Egr cooler
JP2002180915A (en) Egr cooler
US11655745B2 (en) Exhaust gas heat exchanger
JPH1113550A (en) Egr cooler
JP2015034530A (en) Egr device
JP2009002300A (en) Egr cooler

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090526

A072 Dismissal of procedure

Free format text: JAPANESE INTERMEDIATE CODE: A073

Effective date: 20101005