JP4031393B2 - EGR cooler - Google Patents

EGR cooler Download PDF

Info

Publication number
JP4031393B2
JP4031393B2 JP2003148184A JP2003148184A JP4031393B2 JP 4031393 B2 JP4031393 B2 JP 4031393B2 JP 2003148184 A JP2003148184 A JP 2003148184A JP 2003148184 A JP2003148184 A JP 2003148184A JP 4031393 B2 JP4031393 B2 JP 4031393B2
Authority
JP
Japan
Prior art keywords
egr gas
egr
pipe
tube
rectifying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003148184A
Other languages
Japanese (ja)
Other versions
JP2004346919A (en
Inventor
信昭 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
UD Trucks Corp
Original Assignee
UD Trucks Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by UD Trucks Corp filed Critical UD Trucks Corp
Priority to JP2003148184A priority Critical patent/JP4031393B2/en
Publication of JP2004346919A publication Critical patent/JP2004346919A/en
Application granted granted Critical
Publication of JP4031393B2 publication Critical patent/JP4031393B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/16Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/14Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending longitudinally
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/026Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits
    • F28F9/027Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits in the form of distribution pipes
    • F28F9/0275Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits in the form of distribution pipes with multiple branch pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D21/0001Recuperative heat exchangers
    • F28D21/0003Recuperative heat exchangers the heat being recuperated from exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F2009/0285Other particular headers or end plates
    • F28F2009/029Other particular headers or end plates with increasing or decreasing cross-section, e.g. having conical shape

Description

【0001】
【発明の属する技術分野】
本発明は、ディーゼルエンジンのEGR装置に用いるEGRクーラーに関する。
【0002】
【従来の技術】
ディーゼルエンジン(以下、「エンジン」という)の燃焼時に発生する窒素酸化物(NOX )を低減するため、従来、排ガスの一部をエンジンの吸気系に排気還流(以下、「EGR」という)させるEGR装置が知られている。
窒素酸化物は、高温の排ガスのもとで空気中の酸素と窒素が反応して生成されるため、EGR装置は、EGRによって燃焼温度を下げることでO2+N2→2NOの反応を抑制して窒素酸化物の排出を低減させるものである。
【0003】
そして、吸気系にEGRさせるEGRガスの温度を下げるほど、燃焼時のスモークの悪化を抑え、窒素酸化物の発生が減少することが知られている。
そこで、昨今では、エンジンの吸気系と排気系との間に接続したEGRパイプに、エンジン冷却水等を冷媒とするEGRクーラーを装着し、EGRパイプを流下するEGRガスをこのEGRクーラーで熱交換させてEGRガス温度を下げる方法が広く採用されている(例えば、下記の特許文献1,2参照。)。
【0004】
図9乃至図11は特許文献2に開示されたEGRクーラーを示し、このEGRクーラー1は、筒状に成形されたシェル3内に、その長手方向に沿って複数の均一内径のチューブ5を収容し、シェル3のEGRガス上流側端部とEGRガス下流側端部に取り付くディフューザ7,9に、夫々、EGRガス導入パイプ(EGRパイプ)11とEGRガス導出パイプ(EGRパイプ)13を接続すると共に、EGRガス導入パイプ11側のシェル3の周壁に冷却水導入パイプ15を接続し、また、EGRガス導出パイプ13側のシェル3の周壁に冷却水導出パイプ17を接続したもので、チューブ5は、夫々、シェル3の両端部に取り付くエンドプレート19に挿着されて両ディフューザ7,9内に開口している。
【0005】
そして、シェル3の中央には、断面円形形状の冷却水誘導部材21がシェル3の長手方向に沿ってエンドプレート19間に装着されており、図11に示すようにシェル3内に導入された冷却水Wが、この冷却水誘導部材21により渦流や旋回流となってシェル3の中心部から外周方向へ誘導されるようになっている。
而して、斯かる構造によって、シェル3内には、冷却水導入パイプ15から冷却水導出パイプ17に至る冷却水流路が形成されると共に、EGRガス導入パイプ11からチューブ5を経てEGRガス導出パイプ13に至るEGRガス流路が形成されており、EGRクーラー1内に導入されたEGRガスGがチューブ5内を流下する際に、シェル3内に導入された冷却水Wで熱交換されてEGRガス温度が下がるようになっている。
【0006】
【特許文献1】
特開2003−74417号公報(段落番号「0010」〜「0030」、図1)
【特許文献2】
特開2003−83174号公報(段落番号「0018」〜「0022」、図3)
【0007】
【発明が解決しようとする課題】
ところで、EGRされたEGRガスGはある程度の流速を有しているため、EGRクーラー1内に導入されたEGRガスGがディフューザ7内で拡散せずにそのまま直進して、EGRガスGの多くがシェル3の中心部に配置されたチューブ5内を流下しているのが実情であった。
【0008】
しかし、斯様にシェル3の中心部のチューブ5に多くのEGRガスGが集中して流下すると、周辺部に配置されたチューブ5による熱交換がなされないために所期の冷却効率を確保することができず、また、斯様に中心部のチューブ5に多くのEGRガスGが集中して流下すると、これらのチューブ5に早期目詰まりが発生して冷却効率が更に悪化してしまう虞も指摘されていた。
【0009】
本発明は斯かる実情に鑑み案出されたもので、シェル内に収容したチューブ内にEGRガスを均等に流下させることで、冷却効率の向上を図ったEGR装置のEGRクーラーを提供することを目的とする。
【0010】
【課題を解決するための手段】
斯かる目的を達成するため、請求項1に係る発明は、周壁に冷却水導入パイプと冷却水導出パイプが接続された筒状のシェルの両端部に、ディフューザを介してEGRガス導入パイプとEGRガス導出パイプを接続し、シェルの両端部を閉塞するエンドプレート間に、ディフューザ内に開口する複数のチューブを挿着したEGR装置のEGRクーラーに於て、上記各チューブのEGRガス上流側端部と、EGRガス導入パイプが接続されたディフューザのEGRガス導入口との間に複数の整流管を配置し、当該各整流管を介してEGRガスを各チューブに導くと共に、各整流管のEGRガス上流側端部を断面六角形状に成形し、これらをハニカム状に集合,接合させて上記EGRガス導入口の内周に一体的に接合し、上記チューブの外周に冷却フィンを設けたことを特徴とする。
【0011】
そして、請求項2に係る発明は、周壁に冷却水導入パイプと冷却水導出パイプが接続された筒状のシェルの両端部に、ディフューザを介してEGRガス導入パイプとEGRガス導出パイプを接続し、シェルの両端部を閉塞するエンドプレート間に、ディフューザ内に開口する複数のチューブを挿着したEGR装置のEGRクーラーに於て、上記各チューブのEGRガス上流側端部と、EGRガス導入パイプが接続されたディフューザのEGRガス導入口との間に複数の整流管を配置し、当該各整流管を介してEGRガスを各チューブに導くと共に、各整流管の流路面積を、EGRガス上流側端部からEGRガス下流側端部へ順次拡大させて、上記チューブの外周に冷却フィンを設けたことを特徴とする。
【0012】
(作用)
各請求項に係るEGRクーラーによれば、シェル内に収容されたEGRガスがチューブ内を流下する際に、シェル内に導入された冷却水で熱交換されてEGRガス温度が下げられるが、EGRガスは、各整流管を介してEGRガス導入パイプから各チューブに均等に導かれることとなる。
そして、チューブを流下するEGRガスの熱は、冷却フィンを介して冷却水に伝達されて熱交換される。
また、請求項1に係る発明は、断面六角形状に成形した各整流管のEGRガス上流側端部をハニカム状に集合させて、これらをEGRガス導入口の内周に一体的に接合した構造上、各整流管とディフューザのEGRガス導入口との間に無駄な隙間が生じることがなく、また、斯様にハニカム状に集合,接合することで整流管の強度が向上する。
【0013】
そして、請求項2に係る発明は、各整流管の流路面積を、EGRガス上流側端部からEGRガス下流側端部へ順次拡大させたため、整流管内を流下するEGRガスの流速が、ベルヌーイの定理によってEGRガス下流側端部へと次第に遅くなる。
この結果、整流管のない従来構造に比し、チューブ内を流下するEGRガスの流速が遅くなって、冷却水との熱交換時間が長くなる。
【0014】
【発明の実施の形態】
以下、本発明の実施形態を図面に基づいて詳細に説明する。
【0015】
図1乃至図4は請求項1及び請求項2に係るEGRクーラーの一実施形態を示し、図1に於て、23は円筒状に成形されたシェルで、そのEGRガス上流側端部とEGRガス下流側端部に取り付くディフューザ25,27に、夫々、EGRガス導入パイプ(EGRパイプ)29とEGRガス導出パイプ(EGRパイプ)31が接続されている。
【0016】
そして、図2及び図3に示すようにシェル23内には、その長手方向に沿って複数の均一内径の円筒状のチューブ33が収容されており、各チューブ33は、シェル23の両端部に取り付くエンドプレート35,37に挿着されて両ディフューザ25,27内に開口している。
また、各チューブ33のEGRガス上流側外周とEGRガス下流側外周には、夫々、伝熱面積を拡大して冷却水Wとの冷却効率を高めるために複数の側面視矩形状の薄肉で長尺な冷却フィン39が、周方向に夫々45°の間隔を空けてチューブ33の長手方向に突設されている。
【0017】
更にまた、図1乃至図3に示すようにEGRガス導出パイプ31側のシェル23の底部周壁には、冷却水導入パイプ41がシェル23の中心方向に向かって接続されると共に、EGRガス導入パイプ29側のシェル23の上部周壁に、冷却水導出パイプ43がシェル23の中心方向に向かって接続されており、冷却水導入パイプ41と冷却水導出パイプ43は180°の間隔を以って配置されている。
【0018】
而して、上述の如き構成によって、本実施形態に係るEGRクーラー45も、シェル23内に冷却水導入パイプ41から冷却水導出パイプ43に至る冷却水流路が形成されると共に、EGRガス導入パイプ29からチューブ33を経てEGRガス導出パイプ31に至るEGRガス流路が形成されているが、本実施形態は上述の如き従来と同様の構成に加え、図2及び図に示すようにディフューザ25内に開口する各チューブ33のEGRガス上流側端部47と、EGRガス導入パイプ29が接続されたディフューザ25のEGRガス導入口49との間に複数の整流管51を接続したことを特徴とする。
【0019】
即ち、図3に示すように本実施形態では、シェル23の中心部に1本のチューブ33が配置されると共に、当該チューブ33を中心に6本のチューブ33が60°の間隔を空けて放射状に配置されているが、図2に示すように各チューブ33のEGRガス上流側端部47に、整流管51の断面円形形状に成形されたEGRガス下流側端部53が接続されている。
【0020】
一方、図4に示すように整流管51のEGRガス上流側端部55は、既述したチューブ33の配列に対応して配置されているが、断面円形形状に成形されたディフューザ25のEGRガス導入口49との間に無駄な隙間が生じることを避けるために断面六角形状に成形され、これらがハニカム状に集合,接合してEGRガス導入口49の内周に一体的に接合されている。
【0021】
そして、上述の如く整流管51のEGRガス上流側端部55はハニカム状に集合,接合しているが、図2に示すように整流管51のEGRガス下流側端部53側は、互いに徐々に離間し乍ら、夫々、対応するチューブ3に向かって延設されている。そして、各流管51は、EGRガス上流側端部55からEGRガス下流側端部53へ流路面積が順次拡大するように設けられており、各整流管51を介してEGRガスGが各チューブ33に均等に導かれるようになっている。
【0022】
その他、図4中、57は整流管51のEGRガス上流側端部55の外周とディフューザ25のEGRガス導入口49の内周との隙間を閉塞する薄肉な閉塞部材で、当該閉塞部材57は整流管51とディフューザ25との間に溶接されている。
本実施形態はこのように構成されているから、図示しないエンジンの排気系からEGRされてEGRクーラー45内に導入されたEGRガスGは、チューブ33内を流下する際に、シェル23内に導入された冷却水Wで熱交換されてEGRガス温度が下げられるが、EGRガスGは、各整流管51を介してEGRガス導入パイプ29から各チューブ33に均等に導かれ、そして、EGRガスGの熱は、複数の冷却フィン39を介して冷却水Wに伝達されて熱交換されることとなる。
また、各整流管51の流路面積が、EGRガス上流側端部55からEGRガス下流側端部53へ順次拡大しているため、整流管51内を流下するEGRガスGの流速が、ベルヌーイの定理によってEGRガス下流側端部53へと次第に遅くなる。
この結果、整流管51のない従来構造に比し、チューブ33内を流下するEGRガスGの流速が遅くなって、冷却水Wとの熱交換時間が長くなる。
そして、各整流管51のEGRガス上流側端部55を断面六角形状に成形し、これらをハニカム状に集合,接合させてディフューザ25のEGRガス導入口49の内周に一体的に接合したため、各整流管51とEGRガス導入口49との間に無駄な隙間が生じることがなく、また、斯様にハニカム状に集合,接合することで整流管51の強度が向上する。
【0023】
このように本実施形態によれば、EGRガスGがシェル23の中心部に位置するチューブ33のみならず、その周辺部に位置するチューブ33内を均等に流下するため、図9の従来例に比しEGRクーラー45本来の所期の冷却効率を得ることができると共に、中心部に位置するチューブ33の早期目詰まりを防止することができることとなった。
【0024】
而も、上記整流管51は、現行のEGRクーラーにも取付けが容易であるため、既販のエンジンについても対応可能である。
また、既述したように本実施形態は、各整流管51の流路面積をEGRガス上流側端部55からEGRガス下流側端部53へ順次拡大させたため、整流管51内を流下するEGRガスGの流速が、ベルヌーイの定理によってEGRガス下流側端部53へと次第に遅くなり、この結果、整流管51のない従来構造に比し、チューブ33内を流下するEGRガスGの流速が遅くなって冷却水Wとの熱交換時間が長くなる。このようにEGRガスGと冷却水Wとの熱交換時間が長くなることで、本実施形態によれば、熱交換効率が上がって冷却効率が向上することとなった。
更にまた、本実施形態は、各整流管51のEGRガス上流側端部55を断面六角形状に成形し、これらをハニカム状に集合,接合させてディフューザ25のEGRガス導入口49の内周に一体的に接合したため、各整流管51とEGRガス導入口49との間に無駄な隙間が生じることがなくなると共に、斯様にハニカム状に集合,接合することで整流管51の強度が向上する利点を有する。
加えて、本実施形態は、各チューブ33の外周に冷却フィン39を設けて伝熱面積を拡大したため、冷却水Wとの冷却効率が更に向上し、この結果、EGRガス温度が低下することにより、EGRガス下流側の配管やガスケット等の材質についても耐熱性の低い材料が使用可能となり、また、EGRガス温度の低下によって材料各部の耐久性が向上する優れた利点を有する。
【0025】
そして、冷却フィン39の高さを変えて伝熱面積を調節することで、EGRクーラーの様々な仕様に対応することが可能である。
尚、チューブの外周に設ける冷却フィンの形状は、既述した実施形態に限定されるものではなく、例えば図5乃至図8に示すように様々な形態が選択可能である。
【0026】
図5に示す実施形態は、チューブ33の外周に所謂鉢巻き形状の冷却フィン39-1を所定間隔を空けてチューブ33の外周に複数突設したものであり、図6に示す実施形態は、側面視翼形状の冷却フィン39-2を、所定間隔を空けて複数突設したものである。
また、図7に示す実施形態は、チューブ33の外周に冷却フィン39-3を螺旋状に突設したものであり、図8に示す実施形態は、チューブ33の外周にブレード形状の冷却フィン39-4を所定間隔を空けて複数突設したもので、既述した冷却フィン39と同様、EGRクーラーの仕様に応じ各冷却フィン39-1〜39-4の高さを自由に変更すればよい。
【0027】
而して、これらの冷却フィンフィン39-1〜39-4を用いたEGRクーラーによっても、図1のEGRクーラー45と同様、冷却水Wとの冷却効率が向上するため、所期の目的を達成することが可能である。
更に、既述した整流管51は、チューブに応じその本数を適宜変更可能である。
【0028】
【発明の効果】
以上述べたように、各請求項に係る発明によれば、整流管に案内されてEGRガスがシェル内のチューブ内を均等に流下するため、従来に比しEGRクーラー本来の所期の冷却効率を得ることができると共に、シェルの中心部に位置するチューブの早期目詰まりを防止することが可能となった。
【0029】
そして、整流管は現行のEGRクーラーにも取付けが容易であるため、既販のエンジンについても対応可能である。
た、チューブの外周に冷却フィンを設けて伝熱面積を拡大したため、冷却水との冷却効率が更に向上し、この結果、EGRガス温度が低下することにより、EGRガス下流側の配管やガスケット等の材質についても耐熱性の低い材料が使用可能となると共に、EGRガス温度の低下によって材料各部の耐久性が向上する優れた利点を有する。
そして、冷却フィンの高さを変えて伝熱面積を調節することで、EGRクーラーの様々な仕様に対応することが可能である。
更に、請求項1に係る発明は、各整流管のEGRガス上流側端部を断面六角形状に成形し、これらをハニカム状に集合,接合させてディフューザのEGRガス導入口の内周に一体的に接合したため、各整流管とEGRガス導入口との間に無駄な隙間が生じることがなくなると共に、斯様にハニカム状に集合,接合することで整流管の強度が向上する利点を有する。
【0030】
また、請求項2に係る発明は、各整流管の流路面積をEGRガス上流側端部からEGRガス下流側端部へ順次拡大させたため、整流管内を流下するEGRガスの流速が、ベルヌーイの定理によってEGRガス下流側端部へと次第に遅くなり、この結果、整流管のない従来構造に比し、チューブ内を流下するEGRガスの流速が遅くなって冷却水との熱交換時間が長くなる。そして、このようにEGRガスと冷却水との熱交換時間が長くなることで、熱交換効率が上がって冷却効率が向上する利点を有する。
【図面の簡単な説明】
【図1】請求項1及び請求項2の一実施形態に係るEGRクーラーの全体斜視図である。
【図2】図1のII−II線断面図である。
【図3】図2のIII−III線断面図である。
【図4】図2のIV−IV線断面図である。
【図5】冷却フィンの変形例を示すチューブの側面図である。
【図6】冷却フィンの変形例を示すチューブの側面図である。
【図7】冷却フィンの変形例を示すチューブの側面図である。
【図8】冷却フィンの変形例を示すチューブの側面図である。
【図9】従来のEGRクーラーの全体斜視図である。
【図10】図9のX−X線断面図である。
【図11】図9のXI−XI線断面図である。
【符号の説明】
23 シェル
25,27 ディフューザ
29 EGRガス導入パイプ
31 EGRガス導出パイプ
33 チューブ
35,37 エンドプレート
39,39-1,39-2,39-3,39-4 冷却フィン
41 冷却水導入パイプ
43 冷却水導出パイプ
45 EGRクーラー
47 チューブのEGRガス上流側端部
49 ディフューザのEGRガス導入口
51 整流管
53 整流管のEGRガス下流側端部
55 整流管のEGRガス上流側端部
G EGRガス
W 冷却水
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an EGR cooler used for an EGR device of a diesel engine.
[0002]
[Prior art]
In order to reduce nitrogen oxide (NO x ) generated during combustion of a diesel engine (hereinafter referred to as “engine”), conventionally, a part of the exhaust gas is exhausted to the engine intake system (hereinafter referred to as “EGR”). EGR devices are known.
Since nitrogen oxides are produced by the reaction of oxygen and nitrogen in the air under high temperature exhaust gas, the EGR device suppresses the reaction of O 2 + N 2 → 2NO by lowering the combustion temperature with EGR. This reduces nitrogen oxide emissions.
[0003]
It is known that as the temperature of the EGR gas to be EGRed into the intake system is lowered, the deterioration of smoke during combustion is suppressed and the generation of nitrogen oxides is reduced.
Therefore, nowadays, an EGR cooler that uses engine coolant or the like as a refrigerant is attached to the EGR pipe connected between the intake system and the exhaust system of the engine, and the EGR gas flowing down the EGR pipe exchanges heat with this EGR cooler. The method of lowering the EGR gas temperature is widely adopted (see, for example, Patent Documents 1 and 2 below).
[0004]
9 to 11 show an EGR cooler disclosed in Patent Document 2. This EGR cooler 1 accommodates a plurality of tubes 5 having a uniform inner diameter along the longitudinal direction in a cylindrical shell 3. Then, an EGR gas introduction pipe (EGR pipe) 11 and an EGR gas outlet pipe (EGR pipe) 13 are connected to the diffusers 7 and 9 attached to the EGR gas upstream end and the EGR gas downstream end of the shell 3, respectively. At the same time, a cooling water introduction pipe 15 is connected to the peripheral wall of the shell 3 on the EGR gas introduction pipe 11 side, and a cooling water outlet pipe 17 is connected to the peripheral wall of the shell 3 on the EGR gas outlet pipe 13 side. Are inserted into end plates 19 that are attached to both ends of the shell 3, and are opened in the diffusers 7 and 9.
[0005]
A cooling water guiding member 21 having a circular cross section is mounted between the end plates 19 along the longitudinal direction of the shell 3 at the center of the shell 3 and introduced into the shell 3 as shown in FIG. The cooling water W is guided as a vortex or swirl by the cooling water guiding member 21 from the center of the shell 3 toward the outer periphery.
Thus, with this structure, a cooling water flow path from the cooling water introduction pipe 15 to the cooling water extraction pipe 17 is formed in the shell 3, and the EGR gas is extracted from the EGR gas introduction pipe 11 through the tube 5. An EGR gas flow path leading to the pipe 13 is formed, and when the EGR gas G introduced into the EGR cooler 1 flows down through the tube 5, heat is exchanged with the cooling water W introduced into the shell 3. The EGR gas temperature is lowered.
[0006]
[Patent Document 1]
Japanese Unexamined Patent Publication No. 2003-74417 (paragraph numbers “0010” to “0030”, FIG. 1)
[Patent Document 2]
JP 2003-83174 A (paragraph numbers “0018” to “0022”, FIG. 3)
[0007]
[Problems to be solved by the invention]
By the way, since the EGR gas G subjected to EGR has a certain flow velocity, the EGR gas G introduced into the EGR cooler 1 goes straight without being diffused in the diffuser 7, and most of the EGR gas G The actual situation was flowing down through the tube 5 arranged at the center of the shell 3.
[0008]
However, when a large amount of EGR gas G flows down to the tube 5 at the center of the shell 3 in this way, heat exchange is not performed by the tube 5 disposed in the peripheral portion, so that the expected cooling efficiency is ensured. In addition, when a large amount of EGR gas G flows down in the central tube 5 in this way, there is a risk that these tubes 5 will be clogged early and cooling efficiency will be further deteriorated. It was pointed out.
[0009]
The present invention has been made in view of the foregoing circumstances, by uniformly flow down the EGR gas into the tube accommodated in the shell, to provide an EGR cooler EGR apparatus with improved cooling efficiency and purpose.
[0010]
[Means for Solving the Problems]
In order to achieve such an object, the invention according to claim 1 is directed to an EGR gas introduction pipe and an EGR through a diffuser at both ends of a cylindrical shell having a cooling water introduction pipe and a cooling water outlet pipe connected to a peripheral wall. In an EGR cooler of an EGR apparatus in which a plurality of tubes opened in a diffuser are inserted between end plates that connect gas outlet pipes and close both ends of the shell, upstream ends of the EGR gases of the tubes And a plurality of rectifying pipes are arranged between the EGR gas inlets of the diffuser connected to the EGR gas introducing pipes, and the EGR gas is guided to the respective tubes through the rectifying pipes. The upstream end is formed into a hexagonal cross section, these are assembled and joined in a honeycomb shape, and integrally joined to the inner periphery of the EGR gas inlet, and the tube is cooled to the outer periphery of the tube. Characterized in that a fin.
[0011]
In the invention according to claim 2, the EGR gas inlet pipe and the EGR gas outlet pipe are connected via a diffuser to both ends of a cylindrical shell having a cooling wall inlet pipe and a cooling water outlet pipe connected to the peripheral wall. In the EGR cooler of the EGR apparatus in which a plurality of tubes opened in the diffuser are inserted between the end plates that close both ends of the shell, the EGR gas upstream end of each tube and the EGR gas introduction pipe A plurality of rectifying pipes are arranged between the EGR gas inlets of the diffuser connected to the EGR gas, the EGR gas is guided to the respective tubes through the rectifying pipes, and the flow passage area of each rectifying pipe is set to the upstream of the EGR gas A cooling fin is provided on the outer periphery of the tube, which is sequentially enlarged from the side end portion to the EGR gas downstream end portion .
[0012]
(Function)
According to the EGR cooler according to each claim, when the EGR gas accommodated in the shell flows down in the tube, the EGR gas temperature is lowered by the heat exchange with the cooling water introduced into the shell. The gas is evenly guided to each tube from the EGR gas introduction pipe via each rectifying tube.
And the heat | fever of EGR gas which flows down a tube is transmitted to cooling water via a cooling fin, and is heat-exchanged.
The invention according to claim 1 is a structure in which the upstream end portions of the EGR gas upstream of each rectifying pipe formed in a hexagonal cross section are assembled in a honeycomb shape and are integrally joined to the inner periphery of the EGR gas inlet. In addition, there is no useless gap between each rectifier tube and the EGR gas inlet of the diffuser, and the strength of the rectifier tube is improved by gathering and joining in a honeycomb shape.
[0013]
In the invention according to claim 2, since the flow passage area of each rectifying pipe is sequentially expanded from the EGR gas upstream end to the EGR gas downstream end, the flow rate of the EGR gas flowing down the rectifying pipe is Bernoulli. According to the theorem, the EGR gas downstream end is gradually delayed.
As a result, the flow rate of the EGR gas flowing down in the tube is slower and the heat exchange time with the cooling water is longer than in a conventional structure without a rectifying tube.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[0015]
1 to 4 show an embodiment of an EGR cooler according to claims 1 and 2, in which reference numeral 23 denotes a shell formed in a cylindrical shape, its EGR gas upstream end and EGR. An EGR gas introduction pipe (EGR pipe) 29 and an EGR gas outlet pipe (EGR pipe) 31 are connected to the diffusers 25 and 27 attached to the gas downstream side end portions, respectively.
[0016]
As shown in FIGS. 2 and 3, a plurality of cylindrical tubes 33 having a uniform inner diameter are accommodated in the shell 23 along the longitudinal direction, and each tube 33 is disposed at both ends of the shell 23. It is inserted into the end plates 35 and 37 to be attached, and opens in the diffusers 25 and 27.
Also, the EGR gas upstream outer periphery and the EGR gas downstream outer periphery of each tube 33 are long and thin with a plurality of rectangular shapes in side view in order to increase the heat transfer area and increase the cooling efficiency with the cooling water W, respectively. The small cooling fins 39 project in the longitudinal direction of the tube 33 with an interval of 45 ° in the circumferential direction.
[0017]
Furthermore, as shown in FIGS. 1 to 3, a cooling water introduction pipe 41 is connected to the bottom peripheral wall of the shell 23 on the EGR gas outlet pipe 31 side toward the center of the shell 23, and the EGR gas introduction pipe The cooling water outlet pipe 43 is connected to the upper peripheral wall of the shell 23 on the 29th side toward the center of the shell 23, and the cooling water inlet pipe 41 and the cooling water outlet pipe 43 are arranged at an interval of 180 °. Has been.
[0018]
Thus, in the EGR cooler 45 according to this embodiment, the cooling water flow path from the cooling water introduction pipe 41 to the cooling water outlet pipe 43 is formed in the shell 23 and the EGR gas introduction pipe is configured as described above. Although EGR gas passage leading to the EGR gas lead pipe 31 from 29 through tube 33 is formed, the present embodiment in addition to the same manner as described above, such as the conventional configuration, the diffuser 25 as shown in FIGS. 2 and 4 A plurality of rectifying pipes 51 are connected between an EGR gas upstream side end portion 47 of each tube 33 opened inside and an EGR gas introduction port 49 of a diffuser 25 to which an EGR gas introduction pipe 29 is connected. To do.
[0019]
That is, as shown in FIG. 3, in this embodiment, one tube 33 is arranged at the center of the shell 23, and six tubes 33 centering on the tube 33 are spaced radially by 60 °. However, as shown in FIG. 2, the EGR gas downstream end portion 53 formed in a circular cross section of the rectifying pipe 51 is connected to the EGR gas upstream end portion 47 of each tube 33.
[0020]
On the other hand, as shown in FIG. 4, the EGR gas upstream end portion 55 of the rectifying pipe 51 is arranged corresponding to the arrangement of the tubes 33 described above, but the EGR gas of the diffuser 25 formed in a circular cross section. In order to avoid useless gaps between the inlet 49 and the inlet 49, it is formed into a hexagonal cross section, and these are assembled and joined in a honeycomb shape and integrally joined to the inner periphery of the EGR gas inlet 49. .
[0021]
As described above, the EGR gas upstream end portion 55 of the rectifying pipe 51 is gathered and joined in a honeycomb shape, but the EGR gas downstream end portion 53 side of the rectifying pipe 51 is gradually joined to each other as shown in FIG. spaced乍Ra in, respectively, are extended toward the corresponding tube 3 3. And each flow pipe 51 is provided so that a flow path area may be sequentially expanded from the EGR gas upstream side end portion 55 to the EGR gas downstream side end portion 53, and the EGR gas G is passed through each rectifying pipe 51. The tube 33 is guided evenly.
[0022]
In addition, in FIG. 4, 57 is a thin blocking member that closes the gap between the outer periphery of the EGR gas upstream end 55 of the rectifying pipe 51 and the inner periphery of the EGR gas inlet 49 of the diffuser 25. It is welded between the rectifying pipe 51 and the diffuser 25.
Since the present embodiment is configured as described above, the EGR gas G that has been EGRed from an exhaust system of an engine (not shown) and introduced into the EGR cooler 45 is introduced into the shell 23 when flowing down through the tube 33. The EGR gas temperature is lowered by the heat exchange with the cooled cooling water W, but the EGR gas G is evenly guided from the EGR gas introduction pipe 29 to each tube 33 through the respective rectifying pipes 51, and the EGR gas G The heat is transferred to the cooling water W through the plurality of cooling fins 39 and heat exchange is performed.
In addition, since the flow passage area of each rectifying pipe 51 gradually increases from the EGR gas upstream end 55 to the EGR gas downstream end 53, the flow rate of the EGR gas G flowing through the rectifying pipe 51 is Bernoulli. According to the theorem, the EGR gas downstream end portion 53 gradually becomes slower.
As a result, the flow rate of the EGR gas G flowing down in the tube 33 becomes slower and the heat exchange time with the cooling water W becomes longer than in the conventional structure without the rectifying pipe 51.
And since the EGR gas upstream side end portion 55 of each rectifying pipe 51 is formed into a hexagonal cross section, these are assembled and joined in a honeycomb shape and integrally joined to the inner periphery of the EGR gas inlet 49 of the diffuser 25. There is no useless gap between each rectifying pipe 51 and the EGR gas inlet 49, and the strength of the rectifying pipe 51 is improved by gathering and joining in a honeycomb shape.
[0023]
As described above, according to the present embodiment, the EGR gas G flows down uniformly not only in the tube 33 located in the center portion of the shell 23 but also in the tube 33 located in the peripheral portion thereof. In contrast, the original expected cooling efficiency of the EGR cooler 45 can be obtained, and early clogging of the tube 33 located in the center can be prevented.
[0024]
In addition, the rectifying pipe 51 can be easily attached to an existing EGR cooler, and can be applied to an already-sold engine.
In addition, as described above, in the present embodiment, the flow passage area of each rectifying pipe 51 is sequentially expanded from the EGR gas upstream end 55 to the EGR gas downstream end 53, so that EGR flows down in the rectifying pipe 51. The flow rate of the gas G gradually becomes slower toward the EGR gas downstream end 53 by Bernoulli's theorem, and as a result, the flow rate of the EGR gas G flowing down in the tube 33 is slower than in the conventional structure without the rectifying pipe 51. The heat exchange time with the cooling water W becomes longer. As described above, since the heat exchange time between the EGR gas G and the cooling water W is increased, according to the present embodiment, the heat exchange efficiency is increased and the cooling efficiency is improved.
Furthermore, in this embodiment, the EGR gas upstream end portion 55 of each rectifying pipe 51 is formed in a hexagonal cross section, and these are assembled and joined in a honeycomb shape to the inner periphery of the EGR gas inlet 49 of the diffuser 25. Since they are integrally joined, useless gaps are not generated between the respective rectifying pipes 51 and the EGR gas introduction ports 49, and the strength of the rectifying pipes 51 is improved by gathering and joining in a honeycomb shape. Have advantages.
In addition, in the present embodiment, the cooling fin 39 is provided on the outer periphery of each tube 33 to expand the heat transfer area, so that the cooling efficiency with the cooling water W is further improved, and as a result, the EGR gas temperature is lowered. Also, materials having low heat resistance can be used for materials such as piping and gaskets on the downstream side of the EGR gas, and there is an excellent advantage that durability of each part of the material is improved due to a decrease in EGR gas temperature.
[0025]
And it is possible to respond | correspond to the various specifications of an EGR cooler by changing the height of the cooling fin 39 and adjusting a heat-transfer area.
The shape of the cooling fin provided on the outer periphery of the tube is not limited to the above-described embodiment, and various forms can be selected as shown in FIGS. 5 to 8, for example.
[0026]
In the embodiment shown in FIG. 5, a plurality of so-called headband-shaped cooling fins 39-1 are provided on the outer periphery of the tube 33 so as to protrude from the outer periphery of the tube 33 at a predetermined interval. The embodiment shown in FIG. A plurality of cooling fins 39-2 having a sight shape are provided with a predetermined interval.
In the embodiment shown in FIG. 7, cooling fins 39-3 are spirally provided on the outer periphery of the tube 33. In the embodiment shown in FIG. 8, the blade-shaped cooling fins 39 are provided on the outer periphery of the tube 33. -4 is protruded at a predetermined interval, and the height of each of the cooling fins 39-1 to 39-4 may be freely changed in accordance with the specifications of the EGR cooler, similar to the cooling fin 39 described above. .
[0027]
Thus, even with the EGR cooler using these cooling fin fins 39-1 to 39-4, the cooling efficiency with the cooling water W is improved similarly to the EGR cooler 45 of FIG. It is possible to achieve.
Furthermore, the number of the rectifying tubes 51 described above can be changed as appropriate according to the tube .
[0028]
【The invention's effect】
As described above, according to the inventions according to the claims, the EGR gas is guided to the rectifying pipe and flows down evenly in the tube in the shell. As a result, the tube located at the center of the shell can be prevented from being clogged early.
[0029]
And since the rectifier tube can be easily attached to the current EGR cooler, it can be applied to a commercially available engine.
Also, since an enlarged heat transfer area is provided a cooling fin on the outer circumference of the tubing, the cooling efficiency of the cooling water is further improved, as a result, by the EGR gas temperature decreases, Ya EGR gas downstream side of the pipe also it has an advantage of improving the durability of the material each part heat-resistant material having low are available and Do Rutotomoni, by a decrease in the EGR gas temperature on the material of the gasket or the like.
And it is possible to respond | correspond to various specifications of an EGR cooler by changing the height of a cooling fin and adjusting a heat-transfer area.
Furthermore, in the invention according to claim 1, the EGR gas upstream end of each rectifying pipe is formed in a hexagonal cross section, and these are assembled and joined in a honeycomb shape so as to be integrated with the inner periphery of the EGR gas inlet of the diffuser. Therefore, there is no need to create a useless gap between each rectifier tube and the EGR gas introduction port, and there is an advantage that the strength of the rectifier tube is improved by gathering and joining in a honeycomb shape.
[0030]
In the invention according to claim 2, since the flow passage area of each rectifying pipe is sequentially expanded from the EGR gas upstream end to the EGR gas downstream end, the flow rate of the EGR gas flowing down the rectifying pipe is Theorem gradually slows down toward the end of the EGR gas downstream, resulting in a slower flow rate of EGR gas flowing down the tube and a longer time for heat exchange with cooling water than in a conventional structure without a rectifying tube. . And since heat exchange time with EGR gas and cooling water becomes long in this way, it has the advantage that heat exchange efficiency goes up and cooling efficiency improves.
[Brief description of the drawings]
1 is an overall perspective view of an EGR cooler according to an embodiment of claims 1 and 2;
2 is a cross-sectional view taken along line II-II in FIG.
3 is a cross-sectional view taken along line III-III in FIG.
4 is a cross-sectional view taken along line IV-IV in FIG.
FIG. 5 is a side view of a tube showing a modified example of a cooling fin.
FIG. 6 is a side view of a tube showing a modified example of a cooling fin.
FIG. 7 is a side view of a tube showing a modified example of a cooling fin.
FIG. 8 is a side view of a tube showing a modified example of a cooling fin.
FIG. 9 is an overall perspective view of a conventional EGR cooler.
10 is a cross-sectional view taken along line XX of FIG.
11 is a cross-sectional view taken along line XI-XI in FIG.
[Explanation of symbols]
23 Shell 25, 27 Diffuser 29 EGR gas introduction pipe 31 EGR gas outlet pipe 33 Tube 35, 37 End plate 39, 39-1, 39-2, 39-3, 39-4 Cooling fin 41 Cooling water introduction pipe 43 Cooling water Outlet pipe 45 EGR cooler 47 EGR gas upstream end 49 of the tube EGR gas inlet 51 of the diffuser Rectifier pipe 53 EGR gas downstream end 55 of the rectifier pipe EGR gas upstream end G EGR gas W of the rectifier pipe Cooling water

Claims (2)

周壁に冷却水導入パイプと冷却水導出パイプが接続された筒状のシェルの両端部に、ディフューザを介してEGRガス導入パイプとEGRガス導出パイプを接続し、シェルの両端部を閉塞するエンドプレート間に、ディフューザ内に開口する複数のチューブを挿着したEGR装置のEGRクーラーに於て、
上記各チューブのEGRガス上流側端部と、EGRガス導入パイプが接続されたディフューザのEGRガス導入口との間に複数の整流管を配置し、当該各整流管を介してEGRガスを各チューブに導くと共に、
各整流管のEGRガス上流側端部を断面六角形状に成形し、これらをハニカム状に集合,接合させて上記EGRガス導入口の内周に一体的に接合し、
上記チューブの外周に冷却フィンを設けたことを特徴とするEGRクーラー。
An end plate that connects the EGR gas introduction pipe and the EGR gas lead pipe through a diffuser to both ends of a cylindrical shell having a cooling water introduction pipe and a cooling water lead pipe connected to the peripheral wall, and closes both ends of the shell. In the EGR cooler of the EGR device in which a plurality of tubes opened in the diffuser are inserted ,
A plurality of rectifying tubes are arranged between the EGR gas upstream end of each tube and the EGR gas introducing port of the diffuser connected to the EGR gas introducing pipe, and the EGR gas is supplied to each tube through the rectifying tube. And lead to
The EGR gas upstream end of each rectifying tube is formed into a hexagonal cross section, and these are assembled and joined in a honeycomb shape and integrally joined to the inner periphery of the EGR gas inlet,
An EGR cooler characterized in that a cooling fin is provided on the outer periphery of the tube .
周壁に冷却水導入パイプと冷却水導出パイプが接続された筒状のシェルの両端部に、ディフューザを介してEGRガス導入パイプとEGRガス導出パイプを接続し、シェルの両端部を閉塞するエンドプレート間に、ディフューザ内に開口する複数のチューブを挿着したEGR装置のEGRクーラーに於て、An end plate that connects the EGR gas introduction pipe and the EGR gas extraction pipe to both ends of a cylindrical shell having a cooling water introduction pipe and a cooling water extraction pipe connected to the peripheral wall via a diffuser, and closes both ends of the shell. In the EGR cooler of the EGR device in which a plurality of tubes opened in the diffuser are inserted,
上記各チューブのEGRガス上流側端部と、EGRガス導入パイプが接続されたディフューザのEGRガス導入口との間に複数の整流管を配置し、当該各整流管を介してEGRガスを各チューブに導くと共に、A plurality of rectifying pipes are arranged between the EGR gas upstream end of each tube and the EGR gas introducing port of the diffuser to which the EGR gas introducing pipe is connected, and the EGR gas is supplied to each tube through the rectifying pipe. And lead to
各整流管の流路面積を、EGRガス上流側端部からEGRガス下流側端部へ順次拡大させて、The flow passage area of each rectifying pipe is sequentially expanded from the EGR gas upstream end to the EGR gas downstream end,
上記チューブの外周に冷却フィンを設けたことを特徴とするEGRクーラー。An EGR cooler characterized in that a cooling fin is provided on the outer periphery of the tube.
JP2003148184A 2003-05-26 2003-05-26 EGR cooler Expired - Fee Related JP4031393B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003148184A JP4031393B2 (en) 2003-05-26 2003-05-26 EGR cooler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003148184A JP4031393B2 (en) 2003-05-26 2003-05-26 EGR cooler

Publications (2)

Publication Number Publication Date
JP2004346919A JP2004346919A (en) 2004-12-09
JP4031393B2 true JP4031393B2 (en) 2008-01-09

Family

ID=33534499

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003148184A Expired - Fee Related JP4031393B2 (en) 2003-05-26 2003-05-26 EGR cooler

Country Status (1)

Country Link
JP (1) JP4031393B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005014385A1 (en) * 2005-03-24 2006-09-28 Emitec Gesellschaft Für Emissionstechnologie Mbh Exhaust gas heat exchanger, in particular exhaust gas cooler for exhaust gas recirculation in motor vehicles
KR100814071B1 (en) * 2007-02-28 2008-03-14 주식회사 코렌스 Egr cooler
JP2009002300A (en) * 2007-06-25 2009-01-08 Nissan Diesel Motor Co Ltd Egr cooler
SE534011C2 (en) * 2008-09-22 2011-03-29 K A Ekstroem & Son Ab Heat exchanger and carbon black production plant adapted for carbon black production
JP5048695B2 (en) * 2009-02-27 2012-10-17 株式会社小松製作所 EGR cooler
KR100921348B1 (en) * 2009-04-13 2009-10-13 (주)대주기계 Air to refrigerant heat exchanger
JP4997336B2 (en) * 2010-01-29 2012-08-08 エムエーエヌ・ディーゼル・アンド・ターボ・フィリアル・アフ・エムエーエヌ・ディーゼル・アンド・ターボ・エスイー・ティスクランド Large two-cycle diesel engine with exhaust gas recirculation system
CN102840788A (en) * 2012-09-19 2012-12-26 常州大学 Inlet and outlet head of gas plate heat exchanger
CN104197771B (en) * 2014-09-12 2016-01-20 甘肃蓝科石化高新装备股份有限公司 A kind of current equalizing structure for heat exchanger plate bundle gas access
JP6839646B2 (en) * 2017-12-28 2021-03-10 株式会社クボタ Engine with EGR

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5241900B2 (en) * 1972-12-11 1977-10-21
JPS5747582Y2 (en) * 1977-05-24 1982-10-19
JPS61204195U (en) * 1985-06-12 1986-12-23
JP2002054511A (en) * 2000-08-14 2002-02-20 Hino Motors Ltd Egr cooler

Also Published As

Publication number Publication date
JP2004346919A (en) 2004-12-09

Similar Documents

Publication Publication Date Title
US8069905B2 (en) EGR gas cooling device
JP2010133428A (en) Exhaust gas heat exchanger
US7594536B2 (en) EGR cooler
JP2001027157A (en) Strut for egr cooler
US20140373517A1 (en) Exhaust gas cooler
JP4031393B2 (en) EGR cooler
JP4386215B2 (en) EGR gas cooling device
JP2004028535A (en) Exhaust heat exchanger
JP2003279293A (en) Exhaust heat exchanger
JPH1183352A (en) Heat exchanger
JPH1113551A (en) Egr cooler
JP2006118436A (en) Bonnet for egr gas cooling device
WO2016167477A1 (en) Egr cooler
CN211975214U (en) EGR mixer, EGR system and engine
JP2007225137A (en) Multitubular heat exchanger and heat transfer tube for exhaust gas cooling device
JP2005273512A (en) Egr cooler for engine
JPH1113549A (en) Egr cooler
JPH11193992A (en) Multitubular egr gas cooling device
JPH1113550A (en) Egr cooler
JP2009002300A (en) Egr cooler
JP2000038964A (en) Egr coller
JP4035479B2 (en) EGR cooler
JPH10318050A (en) Egr gas cooling device
JPH09310991A (en) Egr gas cooler
JPH1136995A (en) Exhaust gas cooling device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060330

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070508

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070703

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071016

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071018

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101026

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101026

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101026

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees