JP2000130964A - Double-pipe heat exchanger - Google Patents

Double-pipe heat exchanger

Info

Publication number
JP2000130964A
JP2000130964A JP10304227A JP30422798A JP2000130964A JP 2000130964 A JP2000130964 A JP 2000130964A JP 10304227 A JP10304227 A JP 10304227A JP 30422798 A JP30422798 A JP 30422798A JP 2000130964 A JP2000130964 A JP 2000130964A
Authority
JP
Japan
Prior art keywords
pipe
heat
inflow side
cooling water
egr gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10304227A
Other languages
Japanese (ja)
Inventor
Hitoshi Hashioka
仁 橋岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP10304227A priority Critical patent/JP2000130964A/en
Publication of JP2000130964A publication Critical patent/JP2000130964A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/40Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only inside the tubular element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/10Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically
    • F28D7/106Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically consisting of two coaxial conduits or modules of two coaxial conduits

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Exhaust-Gas Circulating Devices (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a double-pipe heat exchanger to prevent the occurrence of a crack due to thermal fatigue of a radiation fin. SOLUTION: An EGR cooler 10 comprises an inner pipe 11 through the inner side of which cooling water flows; an outer pipe 12 surrounding the outer periphery of the inner pipe 11 apart therefrom and partitioning a flow passage 13 between the inner pipe 11 and the outer pipe; a radiation fin 16 securely contained in the inner pipe 11; and an EGR cooler 10 provided with an introduction pipe 14 and a discharge pipe 15. In the EGR cooler 10, the radiation fin 16 is arranged in the inner pipe 11 such that an end part A on the cooling water inflow side is positioned downstream from a central axis 01 of the introduction pipe 14 in the direction of a flow of EGR gas. Therefore, the heat of the end part A on the EGR gas inflow side of the radiation fin 16 is transmitted to cooling water before heating flowing in the flow passage 13 through the introduction pipe 14. Thus, the end part on the EGR gas inflow side of the radiation fin 16 is further efficiently cooled, and a thermal stress generated at the end part A is relaxed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、例えば内燃機関の
排気ガス再循環装置において、排気系から取り出された
高温の排気ガスを冷却するための2重配管式熱交換器に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a double-pipe heat exchanger for cooling high-temperature exhaust gas extracted from an exhaust system, for example, in an exhaust gas recirculation system for an internal combustion engine.

【0002】[0002]

【従来の技術】従来、内燃機関の排気ガス中の窒素酸化
物を低減するために、排気ガスの一部を排気系(エキゾ
ーストマニホールド)から取り出し、吸気系(インテー
クマニホールド)へ再循環させる排気ガス再循環装置
(以下、「EGR装置」という。)が知られている。前
記EGR装置には排気系から取り出した高温の排気ガス
(以下、「EGRガス」という。)を吸気系に再導入す
る前に冷却するための2重配管式熱交換器(以下、「E
GRクーラ」という。)が設けられている。
2. Description of the Related Art Conventionally, in order to reduce nitrogen oxides in exhaust gas of an internal combustion engine, a part of the exhaust gas is taken out from an exhaust system (exhaust manifold) and recirculated to an intake system (intake manifold). A recirculation device (hereinafter, referred to as an “EGR device”) is known. The EGR device has a double-pipe heat exchanger (hereinafter, referred to as "EGR gas") for cooling high-temperature exhaust gas (hereinafter, referred to as "EGR gas") taken out of an exhaust system before re-introducing it into an intake system.
"GR cooler". ) Is provided.

【0003】図4及び図5に示すように、前記EGR装
置における排気環流路(図示略)の途中に配設されるE
GRクーラ50は、内側にEGRガスを流通させる内管
51と、同内管51の外周面を包囲すると共に両端が内
管51の外周面に固定され、内管51との間に断面環状
の流通路52を区画する外管53との2重配管構造とし
て構成されている。前記内管51には熱伝達を促進させ
るための放熱フィン54が収容されており、同放熱フィ
ン54の外周はろう付けにて内管51の内周面に固定さ
れている。
[0003] As shown in FIGS. 4 and 5, an E is disposed in the exhaust passage (not shown) in the EGR device.
The GR cooler 50 has an inner tube 51 through which EGR gas flows, and an outer peripheral surface of the inner tube 51, the ends of which are fixed to the outer peripheral surface of the inner tube 51. It is configured as a double piping structure with an outer pipe 53 that partitions the flow passage 52. A radiation fin 54 for promoting heat transfer is housed in the inner tube 51, and the outer periphery of the radiation fin 54 is fixed to the inner periphery of the inner tube 51 by brazing.

【0004】前記外管53には冷却水を前記流通路52
に導入するための導入管55と、流通路52内の冷却水
を排出するための排出管56とが設けられている。前記
流通路52内には内燃機関冷却用の冷却水が導入管55
を介して供給され、この冷却水は流通路52を流れ、排
出管56を介して内燃機関の冷却水循環回路(図示略)
に戻される。前記高温のEGRガスと冷却水との間では
内管51を介して熱交換が行われる。この結果、EGR
ガスは冷却されて内燃機関の吸気系に再導入される。
[0004] Cooling water is supplied to the outer pipe 53 through the flow passage 52.
And a discharge pipe 56 for discharging the cooling water in the flow passage 52. Cooling water for cooling the internal combustion engine is introduced into the flow passage 52 through an inlet pipe 55.
The cooling water flows through the flow passage 52, and flows through a discharge pipe 56 to a cooling water circulation circuit (not shown) of the internal combustion engine.
Is returned to. Heat exchange is performed between the high-temperature EGR gas and the cooling water via the inner pipe 51. As a result, EGR
The gas is cooled and reintroduced into the intake system of the internal combustion engine.

【0005】[0005]

【発明が解決しようとする課題】ところが、最も高温と
なる放熱フィン54のEGRガス流入側端部Aは導入管
55よりも上流側に配置されている。このため、放熱フ
ィン54のEGRガス流入側端部Aは十分に冷却され
ず、同放熱フィン54のEGRガス流入側端部はEGR
ガスの温度と同程度の高温となる。そして、EGR装置
のON−OFFやエンジンの停止等によって放熱フィン
54のEGRガス流入側端部Aと同端部よりも下流側と
の間には大きな温度差が生じることとなる。従って、前
記放熱フィン54には大きな熱応力が発生し、同放熱フ
ィン54には熱疲労による亀裂Kが発生するおそれがあ
った。
However, the end A of the radiating fin 54 at the highest temperature on the EGR gas inflow side is located upstream of the introduction pipe 55. For this reason, the EGR gas inflow side end A of the radiation fin 54 is not sufficiently cooled, and the EGR gas inflow side end of the radiation fin 54 is EGR gas.
The temperature will be as high as the gas temperature. When the EGR device is turned on or off, the engine is stopped, or the like, a large temperature difference occurs between the end A of the radiation fin 54 on the EGR gas inflow side and the downstream side of the end A. Therefore, a large thermal stress is generated in the heat radiation fins 54, and there is a possibility that cracks K may be generated in the heat radiation fins 54 due to thermal fatigue.

【0006】本発明は上記問題点を解決するためになさ
れたものであって、その目的は、放熱フィンの熱疲労に
よる亀裂発生を防止することができる2重配管式熱交換
器を提供することにある。
SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and an object of the present invention is to provide a double-pipe heat exchanger capable of preventing a heat radiation fin from being cracked due to thermal fatigue. It is in.

【0007】[0007]

【課題を解決するための手段】請求項1に記載の発明
は、内側に被冷却媒体を流通させる第1筒部材と、前記
第1筒部材の外周を離間して包囲し、同第1筒部材との
間に冷却媒体用の流通部を区画する第2筒部材と、前記
第1筒部材内に収容固定される放熱部材と、前記第2筒
部材に設けられ、流通路内に冷却媒体を導入するための
導入管及び流通路内の冷却媒体を排出するための排出管
とを備えた2重配管式熱交換器において、前記放熱部材
は、導入管から噴出した冷却媒体が当たる第1筒部材の
噴流衝突部分よりも被冷却媒体の流れ方向において下流
側に配置したことをその要旨とする。
According to a first aspect of the present invention, a first cylindrical member through which a medium to be cooled is circulated and an outer periphery of the first cylindrical member are separated from each other to surround the first cylindrical member. A second cylindrical member that defines a circulation section for a cooling medium between the first cylindrical member and a radiating member that is accommodated and fixed in the first cylindrical member; and a cooling medium that is provided in the second cylindrical member and that is provided in the flow passage. In a double-pipe heat exchanger provided with an inlet pipe for introducing heat and a discharge pipe for discharging the cooling medium in the flow passage, the heat radiating member is provided with a first cooling medium which is ejected from the introducing pipe. The gist of the present invention resides in that the cylindrical member is disposed on the downstream side in the flow direction of the medium to be cooled with respect to the jet collision portion.

【0008】請求項2に記載の発明は、請求項1に記載
の発明において、前記放熱部材は、導入管の取付部位よ
りも被冷却媒体の流れ方向において下流側に配置したこ
とをその要旨とする。
According to a second aspect of the present invention, in the first aspect of the present invention, the heat radiating member is disposed downstream of the mounting portion of the introduction pipe in the flow direction of the medium to be cooled. I do.

【0009】請求項3に記載の発明は、請求項1又は請
求項2に記載の発明において、前記放熱部材の被冷却媒
体流入側端部は、導入管の取付部位と排出管の取付部位
との間に位置していることをその要旨とする。
According to a third aspect of the present invention, in the first or second aspect of the present invention, the cooling medium inflow side end of the heat radiating member has a mounting portion for an introduction pipe and a mounting portion for a discharge pipe. The point is that it is located between

【0010】請求項4に記載の発明は、請求項1〜請求
項3のうちいずれか一項に記載の発明において、前記第
2筒部材は、導入管が接続された第1胴体部と、冷却媒
体の下流側に設けられ、排出管が接続された第2胴体部
とからなり、第1胴体部の内径をD1、第2胴体部の内
径をD2としたとき、「D1<D2」となるように設定
して設け、前記放熱部材の被冷却媒体流入側端部を第1
胴体部に対応する区間内に位置するように第1筒部材内
に配置したことをその要旨とする。 (作用)従って、請求項1に記載の発明では、放熱部材
のうちで最も高温となる放熱部材の被冷却媒体流入側端
部と、導入管から噴出した冷却媒体が当たる第1筒部材
の噴流衝突部分よりも下流域とは大きな熱勾配となるた
め、放熱部材の被冷却媒体流入側端部は高い効率で冷却
され、同端部の温度は下げられる。この結果、被冷却媒
体流入側端部に生じる熱応力が緩和される。
According to a fourth aspect of the present invention, in the first aspect of the present invention, the second tubular member includes a first body connected to an introduction pipe; When the inside diameter of the first body portion is D1 and the inside diameter of the second body portion is D2, "D1 <D2" is provided, the second body portion being provided on the downstream side of the cooling medium and connected to the discharge pipe. And the end of the heat dissipating member on the cooling medium inflow side is set to the first position.
The gist of the invention is that it is arranged in the first tubular member so as to be located in a section corresponding to the body portion. (Operation) Therefore, according to the first aspect of the present invention, the cooling medium flowing-in end of the heat-radiating member having the highest temperature among the heat-radiating members, and the jet of the first cylindrical member hit by the cooling medium ejected from the introduction pipe. Since the thermal gradient is larger in the downstream area than the collision portion, the cooling medium inflow end of the heat radiating member is cooled with high efficiency, and the temperature of the same end is reduced. As a result, the thermal stress generated at the cooling medium inflow side end is reduced.

【0011】請求項2に記載の発明は、請求項2に記載
の発明において、最も高温となる放熱部材の被冷却媒体
流入側端部と、導入管の取付部位よりも下流域とは大き
な熱勾配となるため、放熱部材の被冷却媒体流入側端部
は高い効率で冷却される。
According to a second aspect of the present invention, in the second aspect of the present invention, a large heat is generated between the end of the heat dissipating member having the highest temperature on the inflow side of the medium to be cooled and the area downstream of the mounting portion of the introduction pipe. Because of the gradient, the cooling medium inflow end of the heat radiation member is cooled with high efficiency.

【0012】請求項3に記載の発明では、請求項1又は
請求項2に記載の発明において、放熱部材の被冷却媒体
流入側端部は、冷却水が導入管から排出管へと流れる過
程において冷却される。このため、放熱部材の被冷却媒
体流入側端部は高い効率で冷却され、被冷却媒体流入側
端部の中心部と外周部との温度がほぼ均一化される。
According to a third aspect of the present invention, in the first or second aspect of the present invention, the cooling medium inflow side end of the heat radiating member is provided in a process in which the cooling water flows from the introduction pipe to the discharge pipe. Cooled. For this reason, the cooling medium inflow side end of the heat radiating member is cooled with high efficiency, and the temperatures of the central portion and the outer peripheral portion of the cooling medium inflow side end are made substantially uniform.

【0013】請求項3に記載の発明では、請求項1〜請
求項3のうちいずれか一項に記載の発明において、流通
路の第1胴体部に対応する区間内の冷却媒体の流速は、
流通路の第2胴体部に対応する別の区間内の冷却媒体の
流速よりも大きくなり、加熱された冷却媒体と加熱され
ていない冷却媒体とが高速で入れ替わる。このため、放
熱部材の被冷却媒体流入側端部はいっそう高い効率で冷
却され、放熱部材に生じる熱応力がいっそう緩和され
る。
According to a third aspect of the present invention, in any one of the first to third aspects of the present invention, the flow velocity of the cooling medium in the section corresponding to the first body portion of the flow passage is:
The flow rate of the cooling medium in another section corresponding to the second body portion of the flow passage is larger than that of the other, and the heated cooling medium and the unheated cooling medium are switched at a high speed. For this reason, the cooling medium inflow end of the heat radiating member is cooled with higher efficiency, and the thermal stress generated in the heat radiating member is further alleviated.

【0014】[0014]

【発明の実施の形態】(第1実施形態)以下、本発明を
内燃機関の排気ガス再循環装置(以下、「EGR装置」
という。)に具体化した一実施形態を図面に従って説明
する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS (First Embodiment) Hereinafter, the present invention relates to an exhaust gas recirculation device for an internal combustion engine (hereinafter referred to as an "EGR device").
That. An embodiment of the present invention will be described with reference to the drawings.

【0015】図1及び図2に示すように、内燃機関のE
GR装置における排気環流路(図示略)の途中に配設さ
れる2重配管式熱交換器(以下、「EGRクーラ」とい
う。)10は、内側に内燃機関の排気系から取り出した
被冷却媒体としての高温の排気ガス(以下、「EGRガ
ス」という。)を流通させる第1筒部材としての内管1
1を備えている。
As shown in FIG. 1 and FIG.
A double-pipe heat exchanger (hereinafter, referred to as an “EGR cooler”) 10 provided in the middle of an exhaust circulation passage (not shown) in the GR device has a cooling medium taken out from the exhaust system of the internal combustion engine inside. Pipe 1 as a first cylindrical member through which high-temperature exhaust gas (hereinafter, referred to as “EGR gas”) flows
1 is provided.

【0016】前記内管11の外周には、同内管11の外
周を離間して包囲するように第2筒部材としての外管1
2が配置されている。前記外管12の両端は徐々に縮径
され、内管11の外周面に溶接等により固定されてい
る。そして、前記内管11の外周面と外管12の内周面
との間には断面環状の冷却媒体としての冷却水を流通さ
せる流通路13が形成されている。即ち、前記EGRク
ーラ10は前記内管11と外管12との2重配管構造と
して構成されている。
An outer tube 1 as a second cylindrical member is provided on the outer periphery of the inner tube 11 so as to surround the outer periphery of the inner tube 11 at a distance.
2 are arranged. Both ends of the outer tube 12 are gradually reduced in diameter, and are fixed to the outer peripheral surface of the inner tube 11 by welding or the like. A flow passage 13 is formed between the outer peripheral surface of the inner tube 11 and the inner peripheral surface of the outer tube 12 for flowing cooling water as a cooling medium having an annular cross section. That is, the EGR cooler 10 is configured as a double pipe structure of the inner pipe 11 and the outer pipe 12.

【0017】前記外管12には冷却水を流通路13内に
導入するための導入管14と、流通路13内の冷却水を
排出するための排出管15とが設けられている。前記流
通路13には導入管14を介して内燃機関冷却用の冷却
水が供給され、この冷却水は流通路13を流れた後、排
出管15を介して内燃機関の冷却水循環回路(図示略)
に戻される。前記EGRクーラ10は流通路13を流れ
る冷却水と内管11の外周面とが接触する冷却可能範囲
Cを通過するEGRガスを冷却可能となっている。
The outer pipe 12 is provided with an introduction pipe 14 for introducing cooling water into the flow path 13 and a discharge pipe 15 for discharging cooling water in the flow path 13. Cooling water for cooling the internal combustion engine is supplied to the flow passage 13 through an introduction pipe 14, and the cooling water flows through the flow passage 13, and then flows through a discharge pipe 15 to a cooling water circulation circuit (not shown in the drawing) of the internal combustion engine. )
Is returned to. The EGR cooler 10 can cool the EGR gas passing through a coolable range C where the cooling water flowing through the flow passage 13 and the outer peripheral surface of the inner pipe 11 come into contact.

【0018】前記導入管14を介して流通路13内に流
入した冷却水は、導入管14に対向する内管11の外周
壁にぶつかった後、流通路13内の四方に広がる。この
ため、内管11の外周壁における冷却水がぶつかる所定
範囲の部分(以下、「噴流衝突部分P」という。)は、
内管11の中で最も低い温度となる。
The cooling water that has flowed into the flow passage 13 through the introduction pipe 14 collides with the outer peripheral wall of the inner pipe 11 facing the introduction pipe 14, and then spreads in all directions in the flow passage 13. For this reason, a part of the outer peripheral wall of the inner pipe 11 in a predetermined range where the cooling water collides (hereinafter, referred to as a “jet collision part P”).
The temperature is the lowest in the inner tube 11.

【0019】前記内管11内には放熱部材としての放熱
フィン16が収容固定されている。前記放熱フィン16
は内管11の径方向に断面略放射状(断面略星形状)に
形成されると共に、内管11の管軸方向に所定の長さを
有して形成され、内管11の内周面に固定されている。
A radiating fin 16 as a radiating member is accommodated and fixed in the inner tube 11. The radiation fin 16
Is formed to have a substantially radial cross section (substantially star-shaped cross section) in the radial direction of the inner tube 11 and to have a predetermined length in the tube axis direction of the inner tube 11. Fixed.

【0020】即ち、前記放熱フィン16はステンレス鋼
(例えばSUS304)等の高耐熱性、高耐食性及び高
熱伝導性を有する1枚の金属板がプレス等により波状
(略蛇腹状)に屈曲形成され、その一方の各山部16a
が内管11の内周面に接触した状態で沿うように丸めら
れ(波形円筒状)、内管11内に挿入される。そして、
前記放熱フィン16はその各山部16aが内管11の内
周面にろう付けされることによって内管11の内周面に
固定されている。
That is, the heat dissipating fins 16 are formed by bending a single metal plate such as stainless steel (for example, SUS304) having high heat resistance, high corrosion resistance, and high heat conductivity into a wave shape (approximate bellows shape) by pressing or the like. Each mountain part 16a of the one
Is rounded (corrugated cylindrical shape) so as to be in contact with the inner peripheral surface of the inner tube 11, and inserted into the inner tube 11. And
The heat radiation fins 16 are fixed to the inner peripheral surface of the inner tube 11 by brazing the respective peak portions 16 a to the inner peripheral surface of the inner tube 11.

【0021】前記放熱フィン16はEGRガス流入側端
部Aが噴流衝突部分Pよりも下流側に位置するように配
置されていると共に、EGRガス流入側端部Aが導入管
14の取付部位Y1よりも下流側、且つ排出管15の取
付部位Y2よりも上流側に位置するように配置されてい
る。即ち、前記放熱フィン16のEGRガス流入側端部
Aは、導入管14の中心軸O1と排出管15の中心軸O
2との間に位置している。また、前記放熱フィン16の
EGRガス流入側端部Aと導入管14の中心軸O1との
間は間隔Xをもって離間されている。
The radiation fins 16 are arranged such that the EGR gas inflow side end A is located downstream of the jet impingement portion P, and the EGR gas inflow side end A is connected to the mounting portion Y1 of the introduction pipe 14. It is arranged so as to be located further downstream and further upstream than the attachment site Y2 of the discharge pipe 15. That is, the end A of the radiation fin 16 on the EGR gas inflow side is connected to the central axis O1 of the introduction pipe 14 and the central axis O1 of the discharge pipe 15.
It is located between the two. The end A of the radiating fin 16 on the EGR gas inflow side and the central axis O1 of the introduction pipe 14 are spaced apart from each other with an interval X.

【0022】従って、前記放熱フィン16のEGRガス
流入側端部Aの熱は、同放熱フィン16の下流側胴体部
分の熱が冷却水に伝達される前に内管11を介して冷却
水に伝達される。即ち、前記流通路13内に流入した冷
却水にはまず放熱フィン16のEGRガス流入側端部A
の熱が伝達される。そして、冷却水が流通路13内を下
流側に流れるにつれて放熱フィン16の胴体部分の熱が
冷却水に伝達される。このため、放熱フィン16のEG
Rガス流入側端部Aは効率的に冷却されることとなる。
尚、本実施形態においては、EGRガスが内管11に流
入する側を上流側、EGRガスが内管11から流出する
側を下流側とする。
Therefore, the heat at the end A of the radiating fin 16 on the EGR gas inflow side is transferred to the cooling water via the inner pipe 11 before the heat of the downstream body of the radiating fin 16 is transmitted to the cooling water. Is transmitted. That is, first, the cooling water that has flowed into the flow passage 13 has an end A A on the EGR gas inflow side of the radiation fin 16.
Heat is transmitted. Then, as the cooling water flows downstream in the flow passage 13, the heat of the body of the radiation fin 16 is transmitted to the cooling water. For this reason, the EG of the radiation fin 16
The R gas inflow side end A is efficiently cooled.
In the present embodiment, the side where the EGR gas flows into the inner pipe 11 is defined as the upstream side, and the side where the EGR gas flows out of the inner pipe 11 is defined as the downstream side.

【0023】さて、前記EGRクーラ10の内管11内
に高温のEGRガスが流入し、同EGRガスが放熱フィ
ン16に接触すると、高温のEGRガスの熱は放熱フィ
ン16に奪われ、内管11に伝達される。そして、前記
内管11に伝達された熱は流通路13を流れる冷却水に
伝達されて排熱される。即ち、高温のEGRガスは、同
EGRガスと冷却水との間で放熱フィン16及び内管1
1を介して熱交換が行われることにより冷却される。
When high-temperature EGR gas flows into the inner tube 11 of the EGR cooler 10 and the EGR gas comes into contact with the radiating fins 16, the heat of the high-temperature EGR gas is taken by the radiating fins 16 and 11 is transmitted. Then, the heat transmitted to the inner pipe 11 is transmitted to the cooling water flowing through the flow passage 13 and is discharged. That is, the high-temperature EGR gas flows between the radiation fin 16 and the inner pipe 1 between the EGR gas and the cooling water.
The heat is exchanged through 1 to be cooled.

【0024】前記導入管14から流入した冷却水には、
放熱フィン16のEGRガス流入側端部Aの熱が伝達さ
れた後、放熱フィン16の下流側胴体部分の熱が伝達さ
れる。そして、前記放熱フィン16の熱が伝達された冷
却水は排出管15から排出される。即ち、放熱フィン1
6のうちで最も高温となる放熱フィン16の冷却水流入
側端部Aと、導入管14から噴出した冷却水が当たる内
管11の噴流衝突部分Pよりも下流域とは大きな熱勾配
となる。このため、放熱フィン16のEGRガス流入側
端部Aの熱は高い効率で冷却水に伝達され、効率的に冷
却される。従って、放熱フィン16のEGRガス流入側
端部Aの温度が下がり、同EGRガス流入側端部Aに生
じる熱応力が緩和される。この結果、前記放熱フィン1
6の熱疲労による亀裂発生が防止されることとなる。
The cooling water flowing from the introduction pipe 14 includes:
After the heat of the EGR gas inflow side end A of the radiation fin 16 is transmitted, the heat of the downstream body portion of the radiation fin 16 is transmitted. Then, the cooling water to which the heat of the radiation fins 16 has been transmitted is discharged from the discharge pipe 15. That is, the radiation fin 1
6, there is a large thermal gradient between the cooling water inflow side end A of the radiating fin 16 having the highest temperature and the area downstream of the jet collision portion P of the inner pipe 11 where the cooling water jetted from the introduction pipe 14 hits. . For this reason, the heat of the EGR gas inflow side end A of the radiation fin 16 is transmitted to the cooling water with high efficiency, and is efficiently cooled. Therefore, the temperature of the EGR gas inflow side end A of the radiation fin 16 decreases, and the thermal stress generated at the EGR gas inflow side end A is reduced. As a result, the radiation fins 1
6 is prevented from being cracked due to thermal fatigue.

【0025】従って、本実施形態によれば、以下の効果
を得ることができる。 (1) 前記放熱フィン16のEGRガス流入側端部A
を噴流衝突部分Pよりも下流側に配置したことにより、
放熱フィン16のうちで最も高温となる放熱フィン16
の冷却水流入側端部Aと、導入管14から噴出した冷却
水が当たる内管11の噴流衝突部分Pよりも下流域とは
大きな熱勾配となる。このため、放熱フィン16のEG
Rガス流入側端部Aの熱は高い効率で冷却水に伝達さ
れ、効率的に冷却される。従って、放熱フィン16のE
GRガス流入側端部Aの温度が下がり、同EGRガス流
入側端部Aに生じる熱応力が緩和される。この結果、前
記放熱フィン16の熱疲労による亀裂発生を防止するこ
とができる。
Therefore, according to the present embodiment, the following effects can be obtained. (1) EGR gas inflow side end A of the radiation fin 16
Is located downstream of the jet collision portion P,
The radiation fin 16 having the highest temperature among the radiation fins 16
Has a large thermal gradient between the cooling water inflow side end A and the area downstream of the jet collision portion P of the inner pipe 11, which is hit by the cooling water jetted from the introduction pipe 14. For this reason, the EG of the radiation fin 16
The heat of the R gas inflow side end A is transferred to the cooling water with high efficiency and is cooled efficiently. Therefore, E of the radiation fin 16
The temperature of the GR gas inflow side end A decreases, and the thermal stress generated in the EGR gas inflow side end A is reduced. As a result, it is possible to prevent the heat radiation fins 16 from cracking due to thermal fatigue.

【0026】(2) 前記放熱フィン16をEGRガス
流入側端部Aが導入管14よりも下流側に位置するよう
に配置するのみで放熱フィン16のEGRガス流入側端
部Aに生じる熱応力を緩和することができる。即ち、E
GRクーラ10の部品点数を増加させることなく簡単な
構成で放熱フィン16の熱疲労による亀裂の発生を防止
することができる。
(2) The thermal stress generated at the EGR gas inflow side end A of the radiation fin 16 only by arranging the heat radiation fin 16 so that the end A of the EGR gas inflow side is located downstream of the introduction pipe 14. Can be alleviated. That is, E
Cracks due to thermal fatigue of the radiation fins 16 can be prevented with a simple configuration without increasing the number of parts of the GR cooler 10.

【0027】(3) 放熱フィン16を高耐熱性及び高
耐食性を有する金属板で形成したため、放熱フィン16
の腐食性のEGRガスによる酸化腐食等を極力抑えるこ
とができ、ひいてはEGRクーラ10の製品寿命を向上
させることができる。 (第2実施形態)次に、本発明の第2実施形態を図3に
従って説明する。
(3) Since the radiation fin 16 is formed of a metal plate having high heat resistance and high corrosion resistance, the radiation fin 16
Thus, oxidative corrosion and the like due to corrosive EGR gas can be suppressed as much as possible, and the product life of the EGR cooler 10 can be extended. (Second Embodiment) Next, a second embodiment of the present invention will be described with reference to FIG.

【0028】図3に示すように、本第2実施形態は、前
記外管12に互いに径の異なる第1胴体部20及び第2
胴体部21を設けた点でのみ、前記第1実施形態と構成
が相違している。従って、前記第1実施形態と同一の部
材構成については、同一符号を付すことにして重複した
説明を省略する。
As shown in FIG. 3, in the second embodiment, the outer tube 12 has a first body portion 20 and a second body portion having different diameters.
The configuration is different from that of the first embodiment only in that a body portion 21 is provided. Therefore, the same components as those of the first embodiment are denoted by the same reference numerals, and the description thereof will not be repeated.

【0029】前記外管12の上流側には第1胴体部20
が設けられており、その下流側には第2胴体部21が設
けられている。前記第1胴体部20及び第2胴体部21
は、同第1胴体部20の内径をD1、第2胴体部21の
内径をD2としたとき、「D1<D2」となるように設
定されている。前記第1胴体部20の下流側端部は徐々
に拡径され、第2胴体部21と一体的に形成されてい
る。また、第1胴体部20には導入管14が設けられて
おり、第2胴体部21には排出管15が設けられてい
る。
On the upstream side of the outer tube 12, a first body 20
Is provided, and a second body portion 21 is provided downstream thereof. The first body part 20 and the second body part 21
Is set such that “D1 <D2” when the inside diameter of the first body portion 20 is D1 and the inside diameter of the second body portion 21 is D2. The downstream end of the first body part 20 is gradually enlarged in diameter and is formed integrally with the second body part 21. The first body portion 20 is provided with an introduction pipe 14, and the second body portion 21 is provided with a discharge pipe 15.

【0030】従って、内管11は外径が一定とされてい
ると共に、第1胴体部20と内管11との間は、第2胴
体部21と内管11との間よりも狭くなっている。この
ため、流通路13における第1胴体部20に対応する区
間D内の冷却水の流速は、流通路13における第2胴体
部21に対応する区間E内の冷却水の流速よりも大きく
なる。即ち、導入管14を介して流通路13の区間D内
に流入した冷却水は、高速で流通路13下流側の区間E
内に流れ去り、この冷却水は流通路13の区間E内を通
過し排出管15を介して排出される。
Accordingly, the outer diameter of the inner tube 11 is constant, and the distance between the first body portion 20 and the inner tube 11 is smaller than that between the second body portion 21 and the inner tube 11. I have. For this reason, the flow rate of the cooling water in the section D corresponding to the first body section 20 in the flow passage 13 is larger than the flow rate of the cooling water in the section E corresponding to the second body section 21 in the flow path 13. That is, the cooling water that has flowed into the section D of the flow passage 13 via the introduction pipe 14 is moved at a high speed in the section E downstream of the flow passage 13.
The cooling water passes through the section E of the flow passage 13 and is discharged through the discharge pipe 15.

【0031】前記放熱フィン16はEGRガス流入側端
部Aが第1胴体部20(流通路13の区間D)に対応し
て配置されると共に、同端部Aが導入管14の取付部位
Y1の下流側に位置するように内管11内に配置されて
いる。即ち、前記放熱フィン16はEGRガス流入側端
部Aと導入管14の中心軸O1の延長線との間に間隔X
をもって離間して配置されていると共に、EGRガス流
入側端部Aが導入管14の中心軸O1よりも下流側に位
置するように内管11内に配置されている。
The radiation fin 16 has an end A on the EGR gas inflow side corresponding to the first body portion 20 (section D of the flow passage 13), and the end A has a mounting portion Y1 for the introduction pipe 14. Is disposed in the inner tube 11 so as to be located on the downstream side of the inner tube. That is, the radiation fin 16 has a distance X between the end A of the EGR gas inflow side and the extension of the central axis O1 of the introduction pipe 14.
The EGR gas inflow side end A is disposed in the inner pipe 11 such that the EGR gas inflow side end A is located downstream of the central axis O1 of the introduction pipe 14.

【0032】さて、前記EGRクーラ10の内管11内
に高温のEGRガスが流入し、同EGRガスが放熱フィ
ン16に接触すると、高温のEGRガスの熱は放熱フィ
ン16に奪われ、内管11に伝達される。そして、前記
内管11に伝達された熱は流通路13を流れる冷却水に
伝達されて排熱される。即ち、高温のEGRガスは、同
EGRガスと冷却水との間で放熱フィン16及び内管1
1を介して熱交換が行われることにより冷却される。
When high-temperature EGR gas flows into the inner tube 11 of the EGR cooler 10 and the EGR gas comes into contact with the radiating fins 16, heat of the high-temperature EGR gas is taken by the radiating fins 16 and 11 is transmitted. Then, the heat transmitted to the inner pipe 11 is transmitted to the cooling water flowing through the flow passage 13 and is discharged. That is, the high-temperature EGR gas flows between the radiation fin 16 and the inner pipe 1 between the EGR gas and the cooling water.
The heat is exchanged through 1 to be cooled.

【0033】前記導入管14から流入する冷却水には、
放熱フィン16のEGRガス流入側端部Aの熱が伝達さ
れた後、放熱フィン16の下流側胴体部分の熱が伝達さ
れる。そして、前記放熱フィン16の熱が伝達された冷
却水は排出管15から排出される。
The cooling water flowing from the introduction pipe 14 includes:
After the heat of the EGR gas inflow side end A of the radiation fin 16 is transmitted, the heat of the downstream body portion of the radiation fin 16 is transmitted. Then, the cooling water to which the heat of the radiation fins 16 has been transmitted is discharged from the discharge pipe 15.

【0034】前記流通路13の区間D内の加熱された冷
却水は高速で下流側へ流れ去り、同区間D内には加熱さ
れていない冷却水が流入する。即ち、加熱された冷却水
と加熱されていない冷却水が高速で入れ替わることによ
り、放熱フィン16のEGRガス流入側端部Aはいっそ
う高い効率で冷却される。
The heated cooling water in the section D of the flow passage 13 flows downstream at a high speed, and the unheated cooling water flows into the section D. That is, the heated cooling water and the non-heated cooling water are switched at a high speed, so that the EGR gas inflow side end A of the radiation fin 16 is cooled with higher efficiency.

【0035】従って、放熱フィン16のEGRガス流入
側端部Aの温度はいっそう下がり、同EGRガス流入側
端部Aに生じる熱応力が緩和される。この結果、前記放
熱フィン16の熱疲労による亀裂発生が防止されること
となる。
Accordingly, the temperature of the end A of the radiating fin 16 on the EGR gas inflow side is further lowered, and the thermal stress generated at the end A on the EGR gas inflow side is alleviated. As a result, generation of cracks due to thermal fatigue of the radiation fins 16 is prevented.

【0036】従って、本実施形態によれば、前記第1実
施形態における(1)〜(3)番目の効果に加えて、さ
らに以下の効果を得ることができる。 ・ 前記外管12に小径の第1胴体部20及び大径の第
2胴体部21を設け、同各胴体部20,21に導入管1
4及び排出管15をそれぞれ設けた。また、前記放熱フ
ィン16をEGRガス流入側端部Aが第1胴体部20
(流通路13の区間D)に対応すると共に、導入管14
の下流側に位置するように内管11内に配置した。即
ち、加熱された冷却水と加熱前の冷却水が高速で入れ換
えられ、放熱フィン16のEGRガス流入側端部Aの熱
は常に導入管14から流入する加熱されていない冷却水
に伝達されることになる。このため、放熱フィン16の
EGRガス流入側端部Aをいっそう高い効率で冷却する
ことができる。
Therefore, according to the present embodiment, the following effects can be obtained in addition to the effects (1) to (3) of the first embodiment. A first body portion 20 having a small diameter and a second body portion 21 having a large diameter are provided on the outer tube 12, and the introduction tube 1 is provided in each of the body portions 20 and 21.
4 and a discharge pipe 15 were provided. In addition, the radiation fin 16 is connected to the EGR gas inflow side end portion A by the first body portion 20.
(Section D of the flow passage 13) and the introduction pipe 14
In the inner tube 11 so as to be located downstream of the inner tube. That is, the heated cooling water and the cooling water before the heating are exchanged at a high speed, and the heat of the EGR gas inflow side end A of the radiation fin 16 is always transmitted to the unheated cooling water flowing from the introduction pipe 14. Will be. Therefore, the end A of the radiating fin 16 on the EGR gas inflow side can be cooled with higher efficiency.

【0037】尚、前記各実施形態は以下のように変更し
て実施してもよい。 ・ 前記第1実施形態においては、放熱フィン16をE
GRガス流入側端部Aと導入管14の中心軸O1との間
に間隔Xが形成されるように内管11内に配置したが、
EGRガス流入側端部Aが導入管14の中心軸O1に一
致するように放熱フィン16を内管11内に配置しても
よい(即ち、X=0)。また、EGRガス流入側端部A
が導入管14の中心軸O1を上流側に若干越えるように
放熱フィン16を内管11内に配置してもよい。このよ
うにしても、放熱フィン16のEGRガス流入側端部A
の熱は、導入管14からの加熱されていない冷却水に伝
達され、放熱フィン16を効率的に冷却することができ
る。
The above embodiments may be modified as follows. In the first embodiment, the radiation fins 16 are
The GR gas inflow side end A and the central axis O1 of the introduction pipe 14 are arranged in the inner pipe 11 so that a space X is formed between them.
The radiation fins 16 may be arranged in the inner tube 11 such that the EGR gas inflow side end A coincides with the central axis O1 of the introduction tube 14 (that is, X = 0). Also, the EGR gas inflow side end A
The radiation fins 16 may be arranged in the inner tube 11 so that the heat radiation fins slightly exceed the central axis O1 of the introduction tube 14 on the upstream side. Even in this case, the end portion A of the radiating fin 16 on the EGR gas inflow side is formed.
Is transferred to the unheated cooling water from the introduction pipe 14, and the radiating fins 16 can be efficiently cooled.

【0038】・ 前記第1及び第2実施形態において
は、EGRクーラ10を内燃機関のEGRガスを冷却す
るために使用したが、EGRガス等の気体ではなく、液
体などの冷却のために使用してもよい。このようにして
も、前記各実施形態の効果と同様の効果を得ることがで
きる。
In the first and second embodiments, the EGR cooler 10 is used for cooling the EGR gas of the internal combustion engine. However, the EGR cooler 10 is not used for cooling the EGR gas or the like but for cooling a liquid or the like. You may. Even in this case, the same effects as those of the above embodiments can be obtained.

【0039】・ 前記第1及び第2実施形態において
は、EGRクーラ10を略円筒状の内管11及び外管1
2で構成したが、内管11及び外管12のうち少なくと
も一方を四角筒状に形成してもよい。このようにして
も、前記各実施形態の効果と同様の効果を得ることがで
きる。
In the first and second embodiments, the EGR cooler 10 is provided with a substantially cylindrical inner pipe 11 and an outer pipe 1.
Although at least one of the inner tube 11 and the outer tube 12 may be formed in a square tube shape. Even in this case, the same effects as those of the above embodiments can be obtained.

【0040】次に、本実施形態から把握できる請求項記
載発明以外の技術的思想について、以下にそれらの効果
と共に記載する。 ・ 前記導入管を放熱部材の被冷却媒体流入側端部より
も上流側に位置するように配置した2重配管式熱交換
器。このようにしても、請求項1〜請求項3のうちいず
れか一項に記載の発明の効果と同様の効果を得ることが
できる。
Next, technical ideas other than the claimed invention which can be understood from the present embodiment will be described below together with their effects. A double-pipe heat exchanger in which the inlet pipe is located upstream of the cooling medium inflow side end of the heat radiating member. Even in this case, the same effect as the effect of the invention described in any one of claims 1 to 3 can be obtained.

【0041】・ 請求項1又は請求項2重配管式熱交換
器に記載の2重配管式熱交換器を備えた排気ガス再循環
装置。 ・ 前記放熱部材は高耐熱性、高耐食性及び高熱伝導性
を有する金属板により形成した請求項1又は請求項2に
記載の2重配管式熱交換器。このようにすれば、放熱部
材の被冷却媒体による劣化が防止でき、ひいては2重配
管式熱交換器の製品寿命を向上させることができる。
An exhaust gas recirculation apparatus comprising the double-pipe heat exchanger according to claim 1 or 2. 3. The double-pipe heat exchanger according to claim 1, wherein the heat radiating member is formed of a metal plate having high heat resistance, high corrosion resistance, and high thermal conductivity. 4. In this way, the heat radiation member can be prevented from being deteriorated by the medium to be cooled, and the product life of the double-pipe heat exchanger can be improved.

【0042】[0042]

【発明の効果】請求項1に記載の発明によれば、放熱部
材の被冷却媒体流入側端部に生じる熱応力が緩和され、
同放熱部材の熱疲労による亀裂発生を防止することがで
きる。
According to the first aspect of the invention, the thermal stress generated at the cooling medium inflow side end of the heat radiating member is reduced,
The generation of cracks due to thermal fatigue of the heat radiating member can be prevented.

【0043】請求項2に記載の発明によれば、放熱部材
の被冷却媒体流入側端部を冷却水が導入管から排出管へ
と流れる過程において高い冷却効率で冷却することがで
きる。
According to the second aspect of the present invention, it is possible to cool the end of the heat dissipation member on the inflow side of the medium to be cooled with high cooling efficiency in a process in which the cooling water flows from the introduction pipe to the discharge pipe.

【0044】請求項3に記載の発明によれば、請求項1
又は請求項2に記載の発明の効果に加えて、加熱された
冷却媒体と加熱されていない冷却媒体とが高速で循環さ
れ、放熱部材の被冷却媒体流入側端部をいっそう高い効
率で冷却することができる。
According to the invention described in claim 3, according to claim 1
Alternatively, in addition to the effect of the invention described in claim 2, the heated cooling medium and the unheated cooling medium are circulated at a high speed to cool the cooling medium inflow side end of the heat radiation member with higher efficiency. be able to.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本実施形態におけるEGRクーラの正断面
図。
FIG. 1 is a front sectional view of an EGR cooler according to an embodiment.

【図2】 図1における1−1線断面図。FIG. 2 is a sectional view taken along line 1-1 in FIG. 1;

【図3】 別の実施形態におけるEGRクーラの正断面
図。
FIG. 3 is a front sectional view of an EGR cooler according to another embodiment.

【図4】 従来のEGRクーラの正断面図。FIG. 4 is a front sectional view of a conventional EGR cooler.

【図5】 図4における2−2線断面図。FIG. 5 is a sectional view taken along line 2-2 in FIG. 4;

【符号の説明】[Explanation of symbols]

10…EGRクーラ(2重配管式熱交換器)、11…内
管(第1筒部材)、12…外管(第2筒部材)、13…
流通路、14…導入管、15…排出管、16…放熱フィ
ン(放熱部材)、20…第1胴体部、21…第2胴体
部、D1…第1胴体部の内径、D2…第2胴体部の内
径、O1…導入管の中心軸、O2…排出管の中心軸、A
…放熱フィンのEGRガス流入側端部、D…流通路にお
ける第1胴体部に対応する区間、E…流通路における第
2胴体部に対応する区間。
10 EGR cooler (double-pipe heat exchanger), 11 inner pipe (first cylindrical member), 12 outer pipe (second cylindrical member), 13 ...
Flow passage, 14 ... introduction pipe, 15 ... discharge pipe, 16 ... heat radiation fin (heat radiation member), 20 ... first body part, 21 ... second body part, D1 ... inner diameter of first body part, D2 ... second body Inner diameter of part, O1 ... central axis of introduction pipe, O2 ... central axis of discharge pipe, A
... EGR gas inflow end of the radiation fins, D. a section corresponding to the first body in the flow passage, E. section corresponding to the second body in the flow passage.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 内側に被冷却媒体を流通させる第1筒部
材と、 前記第1筒部材の外周を離間して包囲し、同第1筒部材
との間に冷却媒体用の流通部を区画する第2筒部材と、 前記第1筒部材内に収容固定される放熱部材と、 前記第2筒部材に設けられ、流通路内に冷却媒体を導入
するための導入管及び流通路内の冷却媒体を排出するた
めの排出管と、を備えた2重配管式熱交換器において、 前記放熱部材は、導入管から噴出した冷却媒体が当たる
第1筒部材の噴流衝突部分よりも被冷却媒体の流れ方向
において下流側に配置した2重配管式熱交換器。
1. A first cylindrical member through which a medium to be cooled is circulated, and an outer periphery of the first cylindrical member is separated from the first cylindrical member, and a cooling medium flow portion is defined between the first cylindrical member and the first cylindrical member. A second tubular member, a heat dissipating member housed and fixed in the first tubular member, and an introduction pipe provided in the second tubular member for introducing a cooling medium into the flow passage and cooling in the flow passage. And a discharge pipe for discharging the medium, wherein the heat radiating member is formed of a medium to be cooled more than a jet impinging portion of the first cylindrical member hit by the cooling medium ejected from the introduction pipe. A double-pipe heat exchanger arranged downstream in the flow direction.
【請求項2】 前記放熱部材は、導入管の取付部位より
も被冷却媒体の流れ方向において下流側に配置した請求
項1に記載の2重配管式熱交換器。
2. The double-pipe heat exchanger according to claim 1, wherein the heat radiating member is disposed downstream of a mounting portion of the introduction pipe in a flow direction of the medium to be cooled.
【請求項3】 前記放熱部材の被冷却媒体流入側端部
は、導入管の取付部位と排出管の取付部位との間に位置
している請求項1に記載の2重配管式熱交換器。
3. The double-pipe heat exchanger according to claim 1, wherein the cooling medium inflow side end of the heat radiating member is located between a mounting part of the introduction pipe and a mounting part of the discharge pipe. .
【請求項4】 前記第2筒部材は、導入管が接続された
第1胴体部と、冷却媒体の下流側に設けられ、排出管が
接続された第2胴体部とからなり、第1胴体部の内径を
D1、第2胴体部の内径をD2としたとき、 「D1<D2」 となるように設定して設け、前記放熱部材の被冷却媒体
流入側端部を第1胴体部に対応する区間内に位置するよ
うに第1筒部材内に配置した請求項1〜請求項3のうち
いずれか一項に記載の2重配管式熱交換器。
4. The second body member includes a first body portion connected to an introduction pipe, and a second body portion provided downstream of the cooling medium and connected to a discharge pipe. When the inside diameter of the portion is D1 and the inside diameter of the second body portion is D2, "D1 <D2" is set and provided, and the cooling medium inflow side end of the heat radiation member corresponds to the first body portion. The double-pipe heat exchanger according to any one of claims 1 to 3, wherein the double-pipe heat exchanger is disposed in the first tubular member so as to be located in a section where the heat exchanger is located.
JP10304227A 1998-10-26 1998-10-26 Double-pipe heat exchanger Pending JP2000130964A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10304227A JP2000130964A (en) 1998-10-26 1998-10-26 Double-pipe heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10304227A JP2000130964A (en) 1998-10-26 1998-10-26 Double-pipe heat exchanger

Publications (1)

Publication Number Publication Date
JP2000130964A true JP2000130964A (en) 2000-05-12

Family

ID=17930544

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10304227A Pending JP2000130964A (en) 1998-10-26 1998-10-26 Double-pipe heat exchanger

Country Status (1)

Country Link
JP (1) JP2000130964A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002332920A (en) * 2001-05-10 2002-11-22 Denso Corp Exhaust heat exchanging device
GB2417067A (en) * 2004-08-12 2006-02-15 Senior Uk Ltd Gas heat exchanger with a bypass conduit
JP2007315231A (en) * 2006-05-24 2007-12-06 Toyota Motor Corp Exhaust emission control system of internal combustion engine
JP2009002300A (en) * 2007-06-25 2009-01-08 Nissan Diesel Motor Co Ltd Egr cooler
JP2009216285A (en) * 2008-03-10 2009-09-24 Showa Denko Kk Double-tube heat exchanger
JP2014066140A (en) * 2012-09-24 2014-04-17 Toyota Motor Corp Egr cooler

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002332920A (en) * 2001-05-10 2002-11-22 Denso Corp Exhaust heat exchanging device
GB2417067A (en) * 2004-08-12 2006-02-15 Senior Uk Ltd Gas heat exchanger with a bypass conduit
GB2417067B (en) * 2004-08-12 2006-09-06 Senior Uk Ltd Improved gas heat exchanger
US7255096B2 (en) 2004-08-12 2007-08-14 Senior Investments Ag Gas heat exchanger
JP2007315231A (en) * 2006-05-24 2007-12-06 Toyota Motor Corp Exhaust emission control system of internal combustion engine
JP4577270B2 (en) * 2006-05-24 2010-11-10 トヨタ自動車株式会社 Exhaust gas purification system for internal combustion engine
JP2009002300A (en) * 2007-06-25 2009-01-08 Nissan Diesel Motor Co Ltd Egr cooler
JP2009216285A (en) * 2008-03-10 2009-09-24 Showa Denko Kk Double-tube heat exchanger
JP2014066140A (en) * 2012-09-24 2014-04-17 Toyota Motor Corp Egr cooler

Similar Documents

Publication Publication Date Title
US8069905B2 (en) EGR gas cooling device
JP2000111277A (en) Double piping type heat exchanger
US20060090880A1 (en) Egr cooler
US20070295493A1 (en) Heat Exchanger
CN104736959A (en) Heat exchanger
JP2002054511A (en) Egr cooler
JP2006314180A (en) Thermal power generator
JP2006118436A (en) Bonnet for egr gas cooling device
JP2000130964A (en) Double-pipe heat exchanger
JP2000234566A (en) Egr gas cooling device
JPH1183352A (en) Heat exchanger
JP2007225137A (en) Multitubular heat exchanger and heat transfer tube for exhaust gas cooling device
JP2006200490A (en) Exhaust gas cooling device for exhaust gas recirculating system
US5915468A (en) High-temperature generator
JP2000161873A (en) Heat exchanger
JP2000130963A (en) Double-pipe heat exchanger
JP2000161871A (en) Double piping type heat exchanger
JPH1113550A (en) Egr cooler
JP4289740B2 (en) Heat exchanger with connecting piece
JP2000161872A (en) Double piping type heat exchanger
JP2000265908A (en) Egr gas cooling device
JP2006138538A (en) Flat heat exchanger tube, and multitubular heat exchanger and multitubular heat exchange type egr gas cooling device comprised by incorporating the heat exchanger tube
JPH11303688A (en) Egr cooler
JP2000121275A (en) Double pipe heat exchanger
CN208380719U (en) A kind of cooler for recycled exhaust gas