JP2000130963A - Double-pipe heat exchanger - Google Patents

Double-pipe heat exchanger

Info

Publication number
JP2000130963A
JP2000130963A JP10301384A JP30138498A JP2000130963A JP 2000130963 A JP2000130963 A JP 2000130963A JP 10301384 A JP10301384 A JP 10301384A JP 30138498 A JP30138498 A JP 30138498A JP 2000130963 A JP2000130963 A JP 2000130963A
Authority
JP
Japan
Prior art keywords
pipe
cooling water
inner pipe
double
radiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP10301384A
Other languages
Japanese (ja)
Inventor
Yoshio Noda
義雄 野田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP10301384A priority Critical patent/JP2000130963A/en
Publication of JP2000130963A publication Critical patent/JP2000130963A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/10Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically
    • F28D7/106Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically consisting of two coaxial conduits or modules of two coaxial conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/40Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only inside the tubular element

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Exhaust-Gas Circulating Devices (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a double-pipe heat exchanger to prevent the occurrence of a crack due to thermal fatigue of a radiation fan. SOLUTION: An EGR cooler comprises an inner pipe 11 through the inner side of which cooling water flows; an outer pipe 12 surrounding the outer periphery of the inner pipe 11 apart therefrom and partitioning a flow part 13 between the inner pipe 11 and the inner pipe; and radiation fins securely contained in the inner pipe 11. The inner and outer pipes 11 and 12 forms a double piping structure, and the EGR cooler 10 cools cooling water flowing through a cooling section C wherein the outer periphery of the inner pipe 11 and cooling water in the flow passage 13 are brought into contact with each other. In the EGR cooler 10, an end part A on the cooling water inflow side of the radiation fin is positioned outside the cooling section C. Thus, the temperatures of the two ends of the radiation fin 16 and the temperature of the inner pipe 11 corresponding thereto are approximately the same as each other, a thermal stress generated at an outer peripheral part and a brazed part B is relaxed, and a crack due to thermal fatigue of the radiation fin 16 is prevented from occurring.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、例えば内燃機関の
排気ガス再循環装置において、排気系から取り出された
高温の排気ガスを冷却するための2重配管式熱交換器に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a double-pipe heat exchanger for cooling high-temperature exhaust gas extracted from an exhaust system, for example, in an exhaust gas recirculation system for an internal combustion engine.

【0002】[0002]

【従来の技術】従来、内燃機関の排気ガス中の窒素酸化
物を低減するために、排気ガスの一部を排気系(エキゾ
ーストマニホールド)から取り出し、吸気系(インテー
クマニホールド)へ再循環させる排気ガス再循環装置
(以下、「EGR装置」という。)が知られている。前
記EGR装置には排気系から取り出した高温の排気ガス
(以下、「EGRガス」という。)を吸気系に再導入す
る前に冷却するための2重配管式熱交換器(以下、「E
GRクーラ」という。)が設けられている。
2. Description of the Related Art Conventionally, in order to reduce nitrogen oxides in exhaust gas of an internal combustion engine, a part of the exhaust gas is taken out from an exhaust system (exhaust manifold) and recirculated to an intake system (intake manifold). A recirculation device (hereinafter, referred to as an “EGR device”) is known. The EGR device has a double-pipe heat exchanger (hereinafter, referred to as "EGR gas") for cooling high-temperature exhaust gas (hereinafter, referred to as "EGR gas") taken out of an exhaust system before re-introducing it into an intake system.
"GR cooler". ) Is provided.

【0003】図4及び図5に示すように、前記EGR装
置における排気環流路(図示略)の途中に配設されるE
GRクーラ50は、内側にEGRガスを流通させる内管
51と、同内管51の外周面を包囲すると共に両端が内
管51の外周面に固定され、内管51との間に断面環状
の流通路52を区画する外管53との2重配管構造とし
て構成されている。前記内管51には熱伝達を促進させ
るための放熱フィン54が収容されており、同放熱フィ
ン54の外周はろう付けにて内管51の内周面に固定さ
れている。
[0003] As shown in FIGS. 4 and 5, an E is disposed in the exhaust passage (not shown) in the EGR device.
The GR cooler 50 has an inner tube 51 through which EGR gas flows, and an outer peripheral surface of the inner tube 51, the ends of which are fixed to the outer peripheral surface of the inner tube 51. It is configured as a double piping structure with an outer pipe 53 that partitions the flow passage 52. A radiation fin 54 for promoting heat transfer is housed in the inner tube 51, and the outer periphery of the radiation fin 54 is fixed to the inner periphery of the inner tube 51 by brazing.

【0004】前記外管53には冷却水を前記流通路52
に導入するための導入管55と、流通路52内の冷却水
を排出するための排出管56とが設けられている。前記
流通路52内には内燃機関冷却用の冷却水が導入管55
を介して供給され、この冷却水は流通路52を流れ、排
出管56を介して内燃機関の冷却水循環回路(図示略)
に戻される。前記高温のEGRガスと冷却水との間では
内管51を介して熱交換が行われる。この結果、EGR
ガスは冷却されて内燃機関の吸気系に再導入される。
[0004] Cooling water is supplied to the outer pipe 53 through the flow passage 52.
And a discharge pipe 56 for discharging the cooling water in the flow passage 52. Cooling water for cooling the internal combustion engine is introduced into the flow passage 52 through an inlet pipe 55.
The cooling water flows through the flow passage 52, and flows through a discharge pipe 56 to a cooling water circulation circuit (not shown) of the internal combustion engine.
Is returned to. Heat exchange is performed between the high-temperature EGR gas and the cooling water via the inner pipe 51. As a result, EGR
The gas is cooled and reintroduced into the intake system of the internal combustion engine.

【0005】[0005]

【発明が解決しようとする課題】ところが、前記放熱フ
ィン54の外周は冷却水により冷却された内管51によ
って拘束されているため、放熱フィン54の中心部と流
通路52に内管51を介して接する外周部との間には大
きな温度差が生じる。特に、前記放熱フィン54のEG
Rガス流入側端部Aにおける中心部と外周部との間には
非常に大きな温度差(300〜500℃)が生じる。こ
のため、特に放熱フィンのEGRガス流入側端部Aにお
ける外周及びろう付け部分Bには大きな熱応力が生じ
る。従って、前記冷却フィン54の外周及びろう付け部
分Bには熱疲労による亀裂Kが発生するおそれがあっ
た。
However, since the outer periphery of the radiating fin 54 is constrained by the inner tube 51 cooled by the cooling water, the inner periphery of the radiating fin 54 and the flow passage 52 are connected through the inner tube 51. There is a large temperature difference between the outer peripheral portion and the outer peripheral portion that is in contact. In particular, the EG of the radiation fins 54
A very large temperature difference (300 to 500 ° C.) occurs between the central portion and the outer peripheral portion at the R gas inflow side end A. For this reason, a large thermal stress is generated particularly on the outer periphery and the brazing portion B at the EGR gas inflow side end A of the radiation fin. Therefore, a crack K may be generated on the outer periphery of the cooling fin 54 and the brazing portion B due to thermal fatigue.

【0006】本発明は上記問題点を解決するためになさ
れたものであって、その目的は、放熱フィンの熱疲労に
よる亀裂発生を防止することができる2重配管式熱交換
器を提供することにある。
SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and an object of the present invention is to provide a double-pipe heat exchanger capable of preventing a heat radiation fin from being cracked due to thermal fatigue. It is in.

【0007】[0007]

【課題を解決するための手段】請求項1に記載の発明
は、内側に被冷却媒体を流通させる第1筒部材と、前記
第1筒部材の外周を離間して包囲し、同第1筒部材との
間に流通部を区画する第2筒部材と、前記第1筒部材内
に収容固定される放熱部材とを備えると共に、前記第1
及び第2筒部材が2重配管構造として構成され、前記第
1筒部材の外周と流通路内の冷却媒体とが接触する冷却
可能区間を通過する被冷却媒体を冷却する2重配管式熱
交換器において、前記放熱部材の両端部のうち、少なく
とも被冷却媒体の流入側端部を冷却可能区間外に位置さ
せたことをその要旨とする。 (作用)従って、請求項1に記載の発明では、高温の被
冷却媒体が2重配管式熱交換器に流入すると、放熱部材
は被冷却媒体によって加熱され同放熱部材の温度が上昇
する。前記放熱部材の熱は第1筒部材に伝達されて第1
筒部材の温度も上昇する。前記放熱部材の被冷却水流入
側端部は第1筒部材の冷却可能区間外に位置しているこ
とにより、同放熱部材の被冷却水流入側端部とそれに対
応する第1筒部材とはほぼ同じ温度まで上昇する。
According to a first aspect of the present invention, a first cylindrical member through which a medium to be cooled is circulated and an outer periphery of the first cylindrical member are separated from each other to surround the first cylindrical member. A second tubular member defining a circulation section between the first tubular member and a heat dissipating member housed and fixed in the first tubular member;
And the second tubular member is configured as a double-pipe structure, and the double-pipe heat exchange cools the medium to be cooled passing through the coolable section where the outer periphery of the first tubular member and the cooling medium in the flow passage contact each other. The gist of the present invention is that at least the inflow side end of the medium to be cooled is located outside the coolable section among the both ends of the heat radiation member. (Operation) Therefore, according to the first aspect of the present invention, when the high-temperature medium to be cooled flows into the double-pipe heat exchanger, the heat radiating member is heated by the medium to be cooled, and the temperature of the heat radiating member rises. The heat of the heat dissipating member is transmitted to the first cylindrical member, and
The temperature of the tubular member also increases. Since the cooling water inflow side end of the heat radiation member is located outside the coolable section of the first cylindrical member, the cooling water inflow side end of the heat radiation member and the corresponding first cylindrical member are It rises to almost the same temperature.

【0008】[0008]

【発明の実施の形態】以下、本発明を内燃機関の排気ガ
ス再循環装置(以下、「EGR装置」という。)に具体
化した一実施形態を図面に従って説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment in which the present invention is embodied in an exhaust gas recirculation device for an internal combustion engine (hereinafter, referred to as an "EGR device") will be described with reference to the drawings.

【0009】図1〜図3に示すように、内燃機関のEG
R装置における排気環流路(図示略)の途中に配設され
る2重配管式熱交換器(以下、「EGRクーラ」とい
う。)10は、内側に内燃機関の排気系から取り出した
被冷却媒体としての高温の排気ガス(以下、「EGRガ
ス」という。)を流通させる第1筒部材としての内管1
1を備えている。
As shown in FIGS. 1-3, the EG of an internal combustion engine
A double-pipe heat exchanger (hereinafter, referred to as an “EGR cooler”) 10 disposed in the middle of an exhaust circulation passage (not shown) in the R apparatus has a cooling medium taken out from the exhaust system of the internal combustion engine inside. Pipe 1 as a first cylindrical member through which high-temperature exhaust gas (hereinafter, referred to as “EGR gas”) flows
1 is provided.

【0010】前記内管11の外周には、同内管11の外
周を離間して包囲するように第2筒部材としての外管1
2が配置されている。前記外管12の両端は徐々に縮径
され、内管11の外周面に溶接等により固定されてい
る。そして、前記内管11の外周面と外管12の内周面
との間には断面環状の冷却媒体としての冷却水を流通さ
せる流通路13が形成されている。即ち、前記EGRク
ーラ10は前記内管11と外管12との2重配管構造と
して構成されている。
An outer tube 1 serving as a second cylindrical member is provided on the outer periphery of the inner tube 11 so as to surround the outer periphery of the inner tube 11 at a distance.
2 are arranged. Both ends of the outer tube 12 are gradually reduced in diameter, and are fixed to the outer peripheral surface of the inner tube 11 by welding or the like. A flow passage 13 is formed between the outer peripheral surface of the inner tube 11 and the inner peripheral surface of the outer tube 12 for flowing cooling water as a cooling medium having an annular cross section. That is, the EGR cooler 10 is configured as a double pipe structure of the inner pipe 11 and the outer pipe 12.

【0011】前記外管12には冷却水を流通路13内に
導入するための導入管14と、流通路13内の冷却水を
排出するための排出管15とが設けられている。前記流
通路13には導入管14を介して内燃機関冷却用の冷却
水が供給され、この冷却水は流通路13を流れた後、排
出管15を介して内燃機関の冷却水循環回路(図示略)
に戻される。前記EGRクーラ10は流通路13を流れ
る冷却水と内管11の外周面とが接触する冷却可能範囲
Cを通過するEGRガスを冷却可能となっている。
The outer pipe 12 is provided with an introduction pipe 14 for introducing cooling water into the flow path 13 and a discharge pipe 15 for discharging cooling water in the flow path 13. Cooling water for cooling the internal combustion engine is supplied to the flow passage 13 through an introduction pipe 14, and the cooling water flows through the flow passage 13, and then flows through a discharge pipe 15 to a cooling water circulation circuit (not shown in the drawing) of the internal combustion engine. )
Is returned to. The EGR cooler 10 can cool the EGR gas passing through a coolable range C where the cooling water flowing through the flow passage 13 and the outer peripheral surface of the inner pipe 11 come into contact.

【0012】前記内管11には放熱部材としての放熱フ
ィン16が収容固定されている。前記放熱フィン16は
内管11の径方向に断面略放射状(断面略星形状)に形
成されると共に、内管11の管軸方向に所定の長さを有
して形成され、内管11の内周面に固定されている。
A radiating fin 16 as a radiating member is housed and fixed to the inner tube 11. The radiating fins 16 are formed to have a substantially radial cross section (substantially star-shaped cross section) in the radial direction of the inner tube 11 and have a predetermined length in the tube axis direction of the inner tube 11. It is fixed to the inner peripheral surface.

【0013】即ち、前記放熱フィン16はステンレス鋼
(例えばSUS304)等の高耐熱性、高耐食性及び高
熱伝導性を有する1枚の金属板がプレス等により波状
(略蛇腹状)に屈曲形成され、その一方の各山部16a
が内管11の内周面に接触した状態で沿うように丸めら
れ(波形円筒状)、内管11内に挿入される。そして、
前記放熱フィン16は、同各山部16aの外面が内管1
1の内周面にろう付けされることによって内管11の内
周面に固定されている。
That is, the radiation fin 16 is formed by bending a single metal plate such as stainless steel (for example, SUS304) having high heat resistance, high corrosion resistance and high thermal conductivity into a wave shape (approximate bellows shape) by pressing or the like. Each mountain part 16a of the one
Is rounded (corrugated cylindrical shape) so as to be in contact with the inner peripheral surface of the inner tube 11, and inserted into the inner tube 11. And
The heat radiation fins 16 are such that the outer surface of each ridge 16a is
1 is fixed to the inner peripheral surface of the inner tube 11 by brazing to the inner peripheral surface.

【0014】前記放熱フィン16の長さは、冷却水で直
接内管11を冷却可能な「冷却可能区間C」よりも長く
設定されており、放熱フィン16の両端がそれぞれ冷却
可能区間C外に位置するように配置されている。即ち、
前記放熱フィン16における最も高温となるEGRガス
流入側端部Aは、内管11の外周面と大気とが接触する
区間に配置されている。前記内管11の外周面と大気と
が接触する区間においては、内管11は冷却水により冷
却されることがないことにより、同内管の温度は内部を
流通するEGRガスとほぼ同じ温度まで上昇する。
The length of the radiating fins 16 is set to be longer than the "coolable section C" in which the inner tube 11 can be directly cooled by the cooling water. It is arranged to be located. That is,
The end A of the radiating fin 16 at the highest temperature of the EGR gas inflow is disposed in a section where the outer peripheral surface of the inner tube 11 is in contact with the atmosphere. In a section where the outer peripheral surface of the inner pipe 11 is in contact with the atmosphere, the inner pipe 11 is not cooled by the cooling water, so that the temperature of the inner pipe 11 is substantially the same as the temperature of the EGR gas flowing inside. To rise.

【0015】さて、前記EGRクーラ10の内管11内
に高温のEGRガスが流入し、同EGRガスが放熱フィ
ン16に接触すると、高温のEGRガスの熱は放熱フィ
ン16に奪われ、内管11に伝達される。そして、前記
内管11に伝達された熱は流通路13を流れる冷却水に
伝達されて排熱される。即ち、高温のEGRガスは、同
EGRガスと冷却水との間で放熱フィン16及び内管1
1を介して熱交換が行われることにより冷却される。
When high-temperature EGR gas flows into the inner tube 11 of the EGR cooler 10 and the EGR gas comes into contact with the radiating fins 16, heat of the high-temperature EGR gas is taken by the radiating fins 16 and 11 is transmitted. Then, the heat transmitted to the inner pipe 11 is transmitted to the cooling water flowing through the flow passage 13 and is discharged. That is, the high-temperature EGR gas flows between the radiation fin 16 and the inner pipe 1 between the EGR gas and the cooling water.
The heat is exchanged through 1 to be cooled.

【0016】前記放熱フィン16のEGRガス流入側端
部Aに対応する内管11は冷却可能区間C外に位置して
おり冷却水により冷却されていない。従って、内管11
内に高温のEGRガスが流入すると、放熱フィン16の
EGRガス流入側端部Aの温度上昇に伴って、これに対
応する内管11の温度も上昇する。そして、前記放熱フ
ィン16のEGRガス流入側端部Aの温度とこれに対応
する内管11の温度とはほぼ同じ温度となる。即ち、放
熱フィン16のEGRガス流入側端部Aにおける外周部
と中心部との間の温度は均一化される。従って、前記放
熱フィン16の外周部及びろう付け部分Bに生じる熱応
力が緩和される。即ち、前記放熱フィン16の外周部及
びろう付け部分A, Bの熱疲労による亀裂の発生が防止
される。
The inner tube 11 corresponding to the end A of the radiating fin 16 on the EGR gas inflow side is located outside the coolable section C and is not cooled by the cooling water. Therefore, the inner pipe 11
When the high-temperature EGR gas flows into the inside, the temperature of the inner pipe 11 corresponding to this rises with the temperature rise of the end A of the radiation fin 16 on the EGR gas inflow side. Then, the temperature of the end portion A of the radiating fin 16 on the EGR gas inflow side and the corresponding temperature of the inner tube 11 are substantially the same. That is, the temperature between the outer peripheral portion and the central portion of the EGR gas inflow side end A of the radiation fin 16 is made uniform. Therefore, the thermal stress generated in the outer peripheral portion of the radiation fin 16 and the brazing portion B is reduced. That is, cracks due to thermal fatigue of the outer peripheral portion of the heat radiation fin 16 and the brazed portions A and B are prevented.

【0017】従って、本実施形態によれば、以下の効果
を得ることができる。 (1) 前記放熱フィン16の長さを、冷却水と内管1
1の外周面とが接触する冷却可能区間Cよりも長く設定
し、放熱フィン16をその両端が冷却可能区間C外に位
置するように配置した。このため、前記放熱フィン16
の両端の温度とそれに対応する内管11の温度とがほぼ
同じになり、同放熱フィン16の外周部及びろう付け部
分Bに発生する熱応力が緩和される。従って、放熱フィ
ン16の熱疲労による亀裂の発生等を防止することがで
きる。
Therefore, according to the present embodiment, the following effects can be obtained. (1) The length of the radiating fins 16 is set between the cooling water and the inner pipe 1.
1 was set longer than the coolable section C in contact with the outer peripheral surface, and the radiation fins 16 were arranged such that both ends thereof were located outside the coolable section C. Therefore, the radiation fins 16
And the corresponding temperature of the inner tube 11 becomes substantially the same, so that the thermal stress generated in the outer peripheral portion of the radiating fin 16 and the brazing portion B is reduced. Therefore, it is possible to prevent the heat radiation fin 16 from being cracked due to thermal fatigue.

【0018】(2) 前記放熱フィン16をその両端が
冷却可能区間C外に位置させるのみであるため、簡単な
構成で放熱フィン16の熱疲労による亀裂の発生等を防
止することができる。
(2) Since the heat radiation fins 16 are merely positioned at both ends outside the coolable section C, the heat radiation fins 16 can be prevented from cracking due to thermal fatigue with a simple structure.

【0019】(3) 放熱フィン16を高耐熱性及び高
耐食性を有する金属板で形成した。このため、放熱フィ
ン16の腐食性のEGRガスによる酸化腐食等を極力抑
えることができ、ひいてはEGRクーラ10の製品寿命
を向上させることができる。
(3) The radiation fins 16 are formed of a metal plate having high heat resistance and high corrosion resistance. Therefore, oxidative corrosion of the radiation fins 16 due to corrosive EGR gas can be suppressed as much as possible, and the product life of the EGR cooler 10 can be improved.

【0020】・ 前記放熱フィン16の長さを冷却可能
区間Cよりも長くなるように設定し、放熱フィン16を
その両端がそれぞれ冷却可能範囲C外に位置するように
配置した。このため、冷却水をEGRクーラ10のどち
ら側から流入させても放熱フィン16には熱疲労による
亀裂が発生することはない。
The length of the radiating fins 16 is set to be longer than the coolable section C, and the radiating fins 16 are arranged such that both ends thereof are located outside the coolable range C. For this reason, no matter which side of the EGR cooler 10 allows the cooling water to flow, the radiation fins 16 do not crack due to thermal fatigue.

【0021】尚、前記実施形態は以下のように変更して
実施してもよい。 ・ 本実施形態においては、放熱フィン16の長さをを
冷却可能区間Cよりも長く設定し、その両端を冷却可能
区間Cの外側に位置するように配設したが、図3に示す
ように、少なくとも放熱フィン16のEGRガス流入側
端部Aが冷却可能区間C外に位置していれば、放熱フィ
ン16の長さは任意に変更してもよい。この場合、EG
Rガス流出側端部は冷却後のEGRガスが通過すること
により、冷却可能区間C外に位置させる必要はない。こ
のようにしても、放熱フィン16において最も高温とな
るEGRガス流入側端部Aと同端部に対応する内管11
との温度がほぼ同じになり、放熱フィン16におけるE
GRガス流入側端部Aに発生する熱応力が緩和され、放
熱フィン16の熱疲労による亀裂の発生を防止すること
ができる。
The above embodiment may be modified as follows. In the present embodiment, the length of the radiation fins 16 is set to be longer than that of the coolable section C, and both ends are disposed outside the coolable section C. However, as shown in FIG. The length of the radiation fin 16 may be arbitrarily changed as long as at least the EGR gas inflow side end A of the radiation fin 16 is located outside the coolable section C. In this case, EG
The R gas outflow side end does not need to be located outside the coolable section C by passing the cooled EGR gas. Even in this case, the inner pipe 11 corresponding to the end A of the EGR gas inflow side where the temperature is the highest in the radiation fin 16 is the same.
And the temperature of the radiation fin 16 becomes substantially the same.
The thermal stress generated at the GR gas inflow side end A is reduced, and the generation of cracks due to thermal fatigue of the radiation fins 16 can be prevented.

【0022】・ 本実施形態においては、内管11内に
放熱フィン16を一つのみ配置したが、図4に示すよう
に、放熱フィン16を複数の放熱フィンに分割し、互い
に所定距離Xを有するように離間して配置してもよい。
このようにすれば、前記放熱フィン16間において、内
管11及び外管12をEGRクーラ10の設置場所に応
じて任意に折り曲げることができる。
In this embodiment, only one radiating fin 16 is arranged in the inner tube 11, but as shown in FIG. 4, the radiating fin 16 is divided into a plurality of They may be spaced apart to have.
In this way, the inner tube 11 and the outer tube 12 can be arbitrarily bent between the radiation fins 16 according to the installation location of the EGR cooler 10.

【0023】・ 本実施形態においては、EGRクーラ
10を内燃機関のEGRガスを冷却するために使用した
が、EGRガス等の気体ではなく、液体などの冷却のた
めに使用してもよい。このようにしても、本実施形態と
同様の効果を得ることができる。
In the present embodiment, the EGR cooler 10 is used for cooling the EGR gas of the internal combustion engine. However, the EGR cooler 10 may be used for cooling a liquid instead of a gas such as the EGR gas. Even in this case, the same effect as that of the present embodiment can be obtained.

【0024】・ 本実施形態においては、EGRクーラ
10を円筒状の内管11及び外管12にて構成したが、
例えば四角筒状又は楕円筒状等の任意形状の内管11及
び外管12にて構成してもよい。このようにしても、本
実施形態と同様の効果を得ることができる。
In the present embodiment, the EGR cooler 10 is constituted by the cylindrical inner pipe 11 and the outer pipe 12.
For example, the inner tube 11 and the outer tube 12 may have an arbitrary shape such as a square tube or an elliptic tube. Even in this case, the same effect as that of the present embodiment can be obtained.

【0025】次に、本実施形態から把握できる請求項記
載発明以外の技術的思想について、以下にそれらの効果
と共に記載する。 ・ 請求項1に記載の2重配管式熱交換器を備えた排気
ガス再循環装置。
Next, technical ideas other than the claimed invention which can be understood from the present embodiment will be described below together with their effects. An exhaust gas recirculation apparatus comprising the double-pipe heat exchanger according to claim 1.

【0026】・ 前記放熱部材は高耐熱性、高耐食性及
び高熱伝導性を有する金属板により形成した請求項1に
記載の2重配管式熱交換器。このようにすれば、放熱部
材の被冷却媒体による劣化が防止でき、ひいては2重配
管式熱交換器の製品寿命を向上させることができる。
The double-pipe heat exchanger according to claim 1, wherein the heat radiating member is formed of a metal plate having high heat resistance, high corrosion resistance and high thermal conductivity. In this way, the heat radiation member can be prevented from being deteriorated by the medium to be cooled, and the product life of the double-pipe heat exchanger can be improved.

【0027】・ 前記放熱部材は複数に分割されている
請求項1に記載の2重配管式熱交換器。このようにして
も、請求項1に記載の効果と同様の効果を得ることがで
きる。
The double-pipe heat exchanger according to claim 1, wherein the heat radiating member is divided into a plurality. Even in this case, the same effect as the effect described in claim 1 can be obtained.

【0028】・ 前記放熱部材の長さを冷却可能区間よ
りも長くなるように設定し、放熱部材をその両端がそれ
ぞれ冷却可能範囲外に位置するように配置した2重配管
式熱交換器。このようにすれば、被冷却媒体を2重配管
式熱交換器のどちら側から流入させても放熱部材には熱
疲労による亀裂が発生することはない。
[0028] A double-pipe heat exchanger in which the length of the heat radiating member is set to be longer than the coolable section, and the heat radiating members are arranged such that both ends thereof are located outside the coolable range. With this configuration, no crack is generated in the heat dissipating member due to thermal fatigue, regardless of which side of the double-pipe heat exchanger allows the medium to be cooled.

【0029】[0029]

【発明の効果】請求項1に記載の発明によれば、放熱部
材の被冷却媒体流入側端部に発生する熱応力が緩和さ
れ、放熱部材の熱疲労による亀裂発生を防止することが
できる。
According to the first aspect of the present invention, the thermal stress generated at the cooling medium inflow side end of the heat radiating member is reduced, and the generation of cracks due to thermal fatigue of the heat radiating member can be prevented.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本実施形態におけるEGRクーラの正断面
図。
FIG. 1 is a front sectional view of an EGR cooler according to an embodiment.

【図2】 図1における1−1線断面図。FIG. 2 is a sectional view taken along line 1-1 in FIG. 1;

【図3】 別の実施形態におけるEGRクーラの正断面
図。
FIG. 3 is a front sectional view of an EGR cooler according to another embodiment.

【図4】 別の実施形態におけるEGRクーラの正断面
図。
FIG. 4 is a front sectional view of an EGR cooler according to another embodiment.

【図5】 従来のEGRクーラの正断面図。FIG. 5 is a front sectional view of a conventional EGR cooler.

【図6】 図5における2−2線断面図。FIG. 6 is a sectional view taken along line 2-2 in FIG. 5;

【符号の説明】[Explanation of symbols]

10…EGRクーラ(2重配管式熱交換器)、11…内
管(第1筒部材)、12…外管(第2筒部材)、13…
流通路、14…導入管、15…排出管、16…放熱フィ
ン(放熱部材)。
10 EGR cooler (double-pipe heat exchanger), 11 inner pipe (first cylindrical member), 12 outer pipe (second cylindrical member), 13 ...
Flow passages, 14: introduction pipe, 15: discharge pipe, 16: radiation fins (radiation members).

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 内側に被冷却媒体を流通させる第1筒部
材と、 前記第1筒部材の外周を離間して包囲し、同第1筒部材
との間に冷却媒体用の流通部を区画する第2筒部材と、 前記第1筒部材内に収容固定される放熱部材と、を備え
ると共に、前記第1及び第2筒部材が2重配管構造とし
て構成され、前記第1筒部材の外周と流通路内の冷却媒
体とが接触する冷却可能区間を通過する被冷却媒体を冷
却する2重配管式熱交換器において、 前記放熱部材の両端部のうち、少なくとも被冷却媒体の
流入側端部を冷却可能区間外に位置させた2重配管式熱
交換器。
1. A first cylindrical member through which a medium to be cooled is circulated, and an outer periphery of the first cylindrical member is separated from the first cylindrical member, and a cooling medium flow portion is defined between the first cylindrical member and the first cylindrical member. And a heat dissipating member housed and fixed in the first cylinder member, wherein the first and second cylinder members are configured as a double pipe structure, and an outer periphery of the first cylinder member is provided. A double-pipe heat exchanger that cools a medium to be cooled passing through a coolable section in which the cooling medium in the flow path contacts the cooling medium. Is a double-pipe heat exchanger located outside the section where cooling is possible.
JP10301384A 1998-10-22 1998-10-22 Double-pipe heat exchanger Withdrawn JP2000130963A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10301384A JP2000130963A (en) 1998-10-22 1998-10-22 Double-pipe heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10301384A JP2000130963A (en) 1998-10-22 1998-10-22 Double-pipe heat exchanger

Publications (1)

Publication Number Publication Date
JP2000130963A true JP2000130963A (en) 2000-05-12

Family

ID=17896231

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10301384A Withdrawn JP2000130963A (en) 1998-10-22 1998-10-22 Double-pipe heat exchanger

Country Status (1)

Country Link
JP (1) JP2000130963A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002332920A (en) * 2001-05-10 2002-11-22 Denso Corp Exhaust heat exchanging device
JP2013068132A (en) * 2011-09-21 2013-04-18 Taiho Kogyo Co Ltd Swirl plate
JP2014066140A (en) * 2012-09-24 2014-04-17 Toyota Motor Corp Egr cooler
JP2020051302A (en) * 2018-09-26 2020-04-02 古河電気工業株式会社 Exhaust gas warming device
CN113108628A (en) * 2021-04-01 2021-07-13 陈如岩 Energy-saving heat exchanger

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002332920A (en) * 2001-05-10 2002-11-22 Denso Corp Exhaust heat exchanging device
JP2013068132A (en) * 2011-09-21 2013-04-18 Taiho Kogyo Co Ltd Swirl plate
JP2014066140A (en) * 2012-09-24 2014-04-17 Toyota Motor Corp Egr cooler
JP2020051302A (en) * 2018-09-26 2020-04-02 古河電気工業株式会社 Exhaust gas warming device
JP7178226B2 (en) 2018-09-26 2022-11-25 古河電気工業株式会社 Exhaust gas warming device
CN113108628A (en) * 2021-04-01 2021-07-13 陈如岩 Energy-saving heat exchanger
CN113108628B (en) * 2021-04-01 2022-08-09 无锡市华立石化工程有限公司 Energy-saving heat exchanger

Similar Documents

Publication Publication Date Title
US8069905B2 (en) EGR gas cooling device
US6595274B2 (en) Exhaust gas heat exchanger
US6755158B2 (en) Vehicle charge air cooler with a pre-cooler
RU2717732C2 (en) Condensing heat exchanger equipped with heat exchanging device
JP2000111277A (en) Double piping type heat exchanger
CN104736959A (en) Heat exchanger
JP4285438B2 (en) Thermoelectric generator
KR20070094792A (en) Heat exchanger
JP4634291B2 (en) EGR cooler
JP4939980B2 (en) EGR cooler
JP2006118436A (en) Bonnet for egr gas cooling device
JP2000292089A (en) Structure of exhaust cooler
JP2000130963A (en) Double-pipe heat exchanger
JP2006200490A (en) Exhaust gas cooling device for exhaust gas recirculating system
JP2000161873A (en) Heat exchanger
JP2007315325A (en) Heat exchanger structure for egr cooler
JP2000130964A (en) Double-pipe heat exchanger
JP2000161871A (en) Double piping type heat exchanger
JP2000121275A (en) Double pipe heat exchanger
JP2000265908A (en) Egr gas cooling device
JPH11303688A (en) Egr cooler
JP2000161872A (en) Double piping type heat exchanger
JP2000146462A (en) Double-pipe heat exchanger
JPH1123181A (en) Heat exchanger
JP2001041680A (en) Multitubular egr gas cooler and its manufacture

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050516

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20061229