JP2007315325A - Heat exchanger structure for egr cooler - Google Patents

Heat exchanger structure for egr cooler Download PDF

Info

Publication number
JP2007315325A
JP2007315325A JP2006147155A JP2006147155A JP2007315325A JP 2007315325 A JP2007315325 A JP 2007315325A JP 2006147155 A JP2006147155 A JP 2006147155A JP 2006147155 A JP2006147155 A JP 2006147155A JP 2007315325 A JP2007315325 A JP 2007315325A
Authority
JP
Japan
Prior art keywords
heat exchanger
tube
egr cooler
outer shell
cooling water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006147155A
Other languages
Japanese (ja)
Inventor
Susumu Kozai
晋 古財
Noboru Shirako
昇 白子
Hirotaka Miura
洋孝 三浦
Tamio Komatsubara
民雄 小松原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Radiator Mfg Co Ltd
Original Assignee
Tokyo Radiator Mfg Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Radiator Mfg Co Ltd filed Critical Tokyo Radiator Mfg Co Ltd
Priority to JP2006147155A priority Critical patent/JP2007315325A/en
Publication of JP2007315325A publication Critical patent/JP2007315325A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat exchanger structure for an EGR cooler, using two heat exchangers for improving the whole heat exchanging efficiency while suppressing local boiling and preventing the degradation of durability. <P>SOLUTION: A tube assembly consists of a number of tubes having the same length and being long in the axial direction, which are lined in parallel in mutually spaced relation and supported at both ends by partition plates. It is stored in a cylindrical heat exchanger shell. A cooling water inlet pipe and a cooling water outlet pipe are provided on the heat exchanger shell. An EGR gas passage is formed in each tube, and the two heat exchangers with the built-in tubes use cooling water for cooling the outer peripheries of the tubes. The two heat exchangers are formed in one serial and concentric unit. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、EGRガスの流れ方向に2つの熱交換器を配置して冷却効率を向上させることができるようにしたEGRクーラの熱交換器構造に関する。   The present invention relates to a heat exchanger structure of an EGR cooler in which two heat exchangers are arranged in the EGR gas flow direction so that cooling efficiency can be improved.

近年、ディーゼルエンジンに対する排ガス規制強化に伴い、EGRガスの温度の上昇、ガス流量の増加、EGRクーラのガス出口温度の低減(放熱量増加)などEGRクーラを取り巻く環境は厳しくなる一方であり、放熱量の増大と高温耐久性の維持などが望まれている。
一般に、図5に示すように、ディーゼルエンジン1を中心にして前方にインタークーラ2とラジエータ3とが配置され、後方にEGRクーラ4又は6を配置しており、側方にターボチャージャ5を配置して、ターボチャージャ5はコンプレッサ5aを前方より吸気するように向けるとともにタービン5bからの廃棄ガスを後方に向けて排出するように配置している。
通常のEGRクーラ4,6では、図6の円管を多数組み込んだ多管式熱交換器又は図7の放熱フィンを内設した扁平なチューブを多数組み込んだ扁平チューブ式熱交換器で示すように、冷却水入口4a,6aをガス入口側の端部に設け、冷却水出口4b,6bをガス排出側の端部に設け,熱交換器本体の両端部にはフランジ付きヘッダー4c,4d,6c,6dをそれぞれ設け、各フランジ4e,4f,6e,6fはディーゼルエンジン1側からの配管とボルト止めできるように大きさを決めている。
EGRクーラ4,6の内部構造は、図8に示すように、同一長さを有する多数のチューブ4i,…,4i,6i,…,6iを平行に配列し、両端を入口側仕切板4g,6gと出口側仕切板4h,6hとによる端部を閉鎖するための仕切板によって互いに各チューブ間の間隔をあけた状態で支えたチューブアセンブリ7を内蔵している多管式熱交換器又は扁平チューブ式熱交換器として構成する。
EGRクーラ4,6への排気ガスの入口出口と冷却水の入口出口との関係は、ガス入口側の端部に冷却水入口4a,6aを設け、ガス出口側の端部に冷却水出口4b,6bを設けて、冷却水の流入する圧力によって流れが本体内を均等に流れるように工夫したもの(並流冷却方式)がある(特許文献1)。また、冷却水入口4a,6aをガス排出側に設けるとともにガス入口側に冷却水出口4b,6bを設けるもの(向流方式)もある(特許文献2)。
In recent years, with the tightening of exhaust gas regulations for diesel engines, the environment surrounding the EGR cooler has become severe, such as an increase in the temperature of the EGR gas, an increase in gas flow rate, and a decrease in the gas outlet temperature of the EGR cooler (an increase in heat dissipation). It is desired to increase the amount of heat and maintain high temperature durability.
In general, as shown in FIG. 5, an intercooler 2 and a radiator 3 are arranged in front of the diesel engine 1, an EGR cooler 4 or 6 is arranged in the rear, and a turbocharger 5 is arranged in the side. The turbocharger 5 is arranged so that the compressor 5a is directed from the front and the waste gas from the turbine 5b is discharged rearward.
In the normal EGR coolers 4 and 6, as shown in FIG. 6, a multi-tubular heat exchanger incorporating many circular tubes or a flat tube heat exchanger incorporating many flat tubes provided with radiating fins shown in FIG. The cooling water inlets 4a and 6a are provided at the end on the gas inlet side, the cooling water outlets 4b and 6b are provided at the end on the gas discharge side, and flanged headers 4c, 4d, 6c and 6d are provided, and the sizes of the flanges 4e, 4f, 6e, and 6f are determined so as to be bolted to the piping from the diesel engine 1 side.
As shown in FIG. 8, the internal structure of the EGR coolers 4 and 6 includes a plurality of tubes 4i,..., 4i, 6i,. A multi-tube heat exchanger or a flat type incorporating a tube assembly 7 supported by a partition plate for closing an end portion of 6g and outlet side partition plates 4h, 6h with a space between the tubes spaced apart from each other It is configured as a tube heat exchanger.
The relationship between the inlet and outlet of the exhaust gas to the EGR coolers 4 and 6 and the inlet and outlet of the cooling water is that the cooling water inlets 4a and 6a are provided at the end on the gas inlet side, and the cooling water outlet 4b is provided at the end on the gas outlet side. , 6b is provided (cocurrent flow cooling method) that is devised so that the flow flows evenly in the main body by the pressure of cooling water (Patent Document 1). There is also a cooling water inlet 4a, 6a provided on the gas discharge side and a cooling water outlet 4b, 6b provided on the gas inlet side (counterflow system) (Patent Document 2).

特開2000−045883号公報JP 2000-045883 A 特開2000−274990号公報JP 2000-274990 A

〔従来技術の問題点〕
EGRクーラ4,6では、排気ガス温度がガス入口側で500℃以上の高温になり、冷却水入口温度はディーゼルエンジン冷却後の冷却水が使用されるため、概略80〜90℃で流入することになり、ガス入口側では両流体の温度差が大きくなり、冷却水が沸騰する恐れがある。
また、この沸騰を抑えるために、EGRクーラ4,6のガス入口側の端部に冷却水入口4a,6aを設け、ガス出口側の端部に冷却水出口4b,6bを設け、冷却水の流入する圧力によって流れが均等に拡散する構造とするものもあるが、この構造の場合では、EGRガスと冷却水の流れが同一方向となるため、出口に向かってガス温度の低下と冷却水温度の上昇によって両流体の温度差が小さくなり、熱交換量が低下する。
これらのために、長手方向で2分割するものが考えられているが、同じ冷却水を用いることにすると、入口側の温度が変わるわけではなく、入口側および出口側ともに配管系統を分岐して形成することになり、配管が複雑でかつ取付作業が難しくなる。
[Problems of the prior art]
In the EGR coolers 4 and 6, the exhaust gas temperature becomes higher than 500 ° C. on the gas inlet side, and the cooling water inlet temperature is approximately 80 to 90 ° C. because the cooling water after cooling the diesel engine is used. Therefore, the temperature difference between the two fluids increases on the gas inlet side, and the cooling water may boil.
In order to suppress this boiling, the cooling water inlets 4a and 6a are provided at the gas inlet side ends of the EGR coolers 4 and 6, and the cooling water outlets 4b and 6b are provided at the gas outlet side ends. Some structures have a structure in which the flow is evenly diffused by the inflowing pressure. In this structure, the flow of EGR gas and cooling water is in the same direction. As the temperature rises, the temperature difference between the two fluids becomes smaller, and the amount of heat exchange decreases.
For these reasons, it is considered to divide into two in the longitudinal direction. However, if the same cooling water is used, the temperature on the inlet side does not change, and the piping system is branched on both the inlet side and the outlet side. As a result, the piping is complicated and the mounting work becomes difficult.

本発明は、従来の技術における前記問題点に鑑みて成されたものであり、これを解決するため具体的に設定した技術的な課題は、2つの熱交換器で局部沸騰を抑え、耐久性の低下を防ぎ、全体の熱交換効率を高めることができるようにしたEGRクーラの熱交換器構造を提供することにある。   The present invention has been made in view of the above-mentioned problems in the prior art, and the technical problem specifically set in order to solve this problem is to suppress local boiling with two heat exchangers and to improve durability. It is an object of the present invention to provide a heat exchanger structure of an EGR cooler that can prevent a decrease in the temperature and increase the overall heat exchange efficiency.

本発明における前記課題が効果的に解決されるEGRクーラの熱交換器構造を特定するために、必要と認める事項の全てが網羅され、具体的に構成された、課題解決手段を以下に示す。
EGRクーラの熱交換器構造に係る第1の課題解決手段は、同一長さの軸方向に長いチューブの多数本を平行にして各チューブが互いに間をあけた状態で、各チューブの両端をそれぞれ仕切板によって支持したチューブアセンブリを、筒状に形成された熱交換器外殻の内部に収容し、上記熱交換器外殻に冷却水入口管と冷却水出口管とを設け、各チューブ内をEGRガスの通路とし各チューブ外周を冷却水により冷却するチューブ内蔵の熱交換器を2つ備え、この2つの熱交換器を直列かつ同心状に一体化したことを特徴とするものである。
In order to specify the heat exchanger structure of the EGR cooler in which the above-mentioned problems in the present invention can be effectively solved, all the matters recognized as necessary are covered and specifically configured as the problem solving means.
The first problem-solving means relating to the heat exchanger structure of the EGR cooler is that each tube is spaced from each other with a plurality of tubes having the same length in the axial direction and parallel to each other. The tube assembly supported by the partition plate is accommodated in a cylindrical heat exchanger outer shell, and a cooling water inlet pipe and a cooling water outlet pipe are provided in the heat exchanger outer shell. Two heat exchangers with built-in tubes that cool the outer periphery of each tube with cooling water are provided as EGR gas passages, and the two heat exchangers are integrated in series and concentrically.

EGRクーラの熱交換器構造に係る第2の課題解決手段は、前記熱交換器外殻の両端部にそれぞれ一方が嵌合孔で他方が嵌合軸となる嵌合端部を形成した熱交換器を2つ形成し、この2つの熱交換器を前記嵌合端部で直列かつ同心的に結合したことを特徴とするものである。
EGRクーラの熱交換器構造に係る第3の課題解決手段は、前記熱交換器外殻となる筒体の中央部に収納位置の位置決め部材となる凹部を周設し、前記チューブアセンブリの長さを前記熱交換器外殻の端部から凹部までの収納範囲に収納可能な長さに形成し、前記熱交換器外殻に形成した凹部の両側にそれぞれ上記収納可能な長さを有するチューブアセンブリを内蔵して長手方向に2つの熱交換器を形成したことを特徴とするものである。
The second problem-solving means relating to the heat exchanger structure of the EGR cooler is the heat exchange in which both ends of the outer shell of the heat exchanger are formed with fitting ends, one of which is a fitting hole and the other is a fitting shaft. Two heat exchangers are formed, and the two heat exchangers are connected in series and concentrically at the fitting end.
According to a third problem-solving means relating to the heat exchanger structure of the EGR cooler, a recess serving as a positioning member for a storage position is provided in the center of the cylindrical body serving as the outer shell of the heat exchanger, and the length of the tube assembly is determined. A tube assembly having a length that can be stored in a storage range from an end of the outer shell of the heat exchanger to a recess, and having a length that can be stored on both sides of the recess formed in the outer shell of the heat exchanger. And two heat exchangers are formed in the longitudinal direction.

また、同上EGRクーラの熱交換器構造に係る第4の課題解決手段は、前記結合した嵌合端部を溶接して一体化したことを特徴とする。
また、同上EGRクーラの熱交換器構造に係る第5の課題解決手段は、前記チューブアセンブリは各チューブの両端部とこの両端部をそれぞれ支持した両仕切板とを一体ろう付けにより固着し、熱交換器外殻内に挿入後、上記両仕切板と前記熱交換器外殻とを溶接して一体化したことを特徴とする。
Moreover, the 4th problem-solving means which concerns on the heat exchanger structure of an EGR cooler same as the above is characterized by welding and integrating the joined fitting end part.
Further, according to a fifth problem solving means relating to the heat exchanger structure of the EGR cooler, the tube assembly is configured such that both end portions of each tube and both partition plates supporting the both end portions are fixed by integral brazing. After the insertion into the exchanger outer shell, the partition plates and the heat exchanger outer shell are integrated by welding.

また、同上EGRクーラの熱交換器構造に係る第6の課題解決手段は、前記チューブを円筒チューブとし、前記熱交換器外殻を円筒殻に形成したことを特徴とする。
また、同上EGRクーラの熱交換器構造に係る第7の課題解決手段は、前記前記チューブを扁平チューブとし、前記熱交換器外殻を角筒殻に形成したことを特徴とする。
The sixth problem solving means according to the heat exchanger structure of the EGR cooler is characterized in that the tube is a cylindrical tube and the heat exchanger outer shell is a cylindrical shell.
The seventh problem-solving means according to the heat exchanger structure of the EGR cooler is characterized in that the tube is a flat tube and the heat exchanger outer shell is a square tube shell.

EGRクーラの熱交換器構造に係る第1の課題解決手段では、2つの熱交換器を直列で同心状に一体化することによりEGRガスの流れ方向に2つの熱交換器を直列で一体に形成でき、EGRガスの流れに対して上流側のものが高温側熱交換器となり、下流側のものが低温側熱交換器となって、高温側では局部沸騰を抑えて耐久性の低下を防ぎ、低温側ではEGRガスの排出ガス温度の最低温度を引き下げて、全体の熱交換効率を高めることができ、製造を容易にするとともに2つの熱交換器を有するEGRクーラをコンパクトにまとめることができる。   In the first problem solving means related to the heat exchanger structure of the EGR cooler, two heat exchangers are integrated in series in the direction of EGR gas flow by integrating the two heat exchangers concentrically in series. The upstream side of the EGR gas flow becomes a high-temperature side heat exchanger, the downstream side becomes a low-temperature side heat exchanger, and on the high-temperature side, local boiling is suppressed to prevent deterioration of durability, On the low temperature side, the minimum temperature of the exhaust gas temperature of the EGR gas can be lowered to increase the overall heat exchange efficiency, facilitating the production, and the EGR cooler having two heat exchangers can be compactly integrated.

EGRクーラの熱交換器構造に係る第2の課題解決手段では、2つの同一熱交換器の嵌合端部を嵌め合わせることにより容易に直列で同心状に結合でき、EGRガスの流れ方向に一体化された2つの熱交換器が形成でき、EGRガスの流れに対して上流側のものが高温側熱交換器となり、下流側のものが低温側熱交換器となって、高温側では局部沸騰を抑えて耐久性の低下を防ぎ、低温側ではEGRガスの排出ガス温度の最低温度を引き下げて、全体の熱交換効率を高めることができ、製造を容易にするとともに2つの熱交換器を有するEGRクーラをコンパクトにまとめることができる。   In the second problem-solving means relating to the heat exchanger structure of the EGR cooler, the fitting end portions of the two identical heat exchangers can be easily fitted in series and concentrically and integrated in the EGR gas flow direction. Two heat exchangers can be formed, the upstream side of the EGR gas flow becomes the high temperature side heat exchanger, the downstream side becomes the low temperature side heat exchanger, and the high temperature side has local boiling To prevent the deterioration of durability and lower the minimum temperature of the exhaust gas temperature of the EGR gas on the low temperature side, thereby improving the overall heat exchange efficiency, facilitating manufacturing and having two heat exchangers EGR cooler can be put together compactly.

EGRクーラの熱交換器構造に係る第3の課題解決手段では、1つの筒体からなる熱交換器外殻の中に凹部の両側に2つのチューブアセンブリを内蔵するとともに、それぞれに冷却水入口管と冷却水出口管とを設けて2つの熱交換器を直列で一体化して形成したことにより、EGRガスの流れに対して上流側が高温側熱交換器となり、下流側が低温側熱交換器となって、高温側では局部沸騰を抑えて耐久性の低下を防ぎ、低温側ではEGRガスの排出ガス温度の最低温度を引き下げて、全体の熱交換効率を高めることができ、製造を容易にするとともに2つの熱交換器を有するEGRクーラをコンパクトにまとめることができる。   In the third problem solving means relating to the heat exchanger structure of the EGR cooler, two tube assemblies are built in both sides of the recess in the outer shell of the heat exchanger made of one cylinder, and each has a cooling water inlet pipe. And a cooling water outlet pipe, and two heat exchangers are integrally formed in series, so that the upstream side becomes a high temperature side heat exchanger and the downstream side becomes a low temperature side heat exchanger with respect to the flow of EGR gas. On the high temperature side, local boiling can be suppressed to prevent deterioration of durability, and on the low temperature side, the minimum temperature of the exhaust gas temperature of EGR gas can be lowered to increase the overall heat exchange efficiency, facilitating manufacturing. An EGR cooler having two heat exchangers can be put together in a compact manner.

EGRクーラの熱交換器構造に係る第4の課題解決手段では、第2の課題解決手段で結合された嵌合端部を溶接して一体化したことにより、耐久性を増し、全体的に密封度を高め、冷却効率を高めることができる。
EGRクーラの熱交換器構造に係る第5の課題解決手段では、第3の課題解決手段の熱交換器を形成するためのチューブアセンブリは各チューブの端部を支持した両仕切板を一体ろう付けし、熱交換器外殻内に挿入後、各仕切板と熱交換器外殻とを溶接して一体化したことにより、耐久性を増し、密封度を高め、チューブアセンブリは全体的に加熱されるため局所的な熱歪を生じることがなく、冷却効率を高めることができ、製造を容易にするとともに製造コストを下げ、さらに、2つの熱交換器を有するEGRクーラをコンパクトにまとめることができる。
In the fourth problem solving means related to the heat exchanger structure of the EGR cooler, the fitting end portions joined by the second problem solving means are integrated by welding, thereby increasing durability and sealing the whole. The degree of cooling can be increased.
In the fifth problem solving means relating to the heat exchanger structure of the EGR cooler, the tube assembly for forming the heat exchanger of the third problem solving means is integrally brazed with both partition plates supporting the ends of the tubes. After inserting into the heat exchanger outer shell, each partition plate and the heat exchanger outer shell are welded and integrated to increase durability and improve the degree of sealing, and the tube assembly is heated overall. Therefore, local thermal distortion does not occur, cooling efficiency can be increased, manufacturing can be facilitated and manufacturing cost can be reduced, and an EGR cooler having two heat exchangers can be compactly integrated. .

以下、本発明による最良の実施形態を具体的に説明する。
ただし、この実施形態は、発明の趣旨をより良く理解させるため具体的に説明するものであり、特に指定のない限り、発明内容を限定するものではない。
なお、従来例と同じものは同じ符号を付して詳しい説明を省略する。
Hereinafter, the best embodiment according to the present invention will be described in detail.
However, this embodiment is specifically described for better understanding of the gist of the invention, and does not limit the content of the invention unless otherwise specified.
In addition, the same thing as a prior art example attaches | subjects the same code | symbol, and abbreviate | omits detailed description.

〔第1実施形態〕
第1実施形態のEGRクーラ8は、図1に示すように、炉内ろう付けにより一体に成形した同一形状の多管式熱交換器を2つ用意して、一方を高温側熱交換器8aとし、他方を低温側熱交換器8bとして使用するものとする。
高温側熱交換器8aおよび低温側熱交換器8bにはそれぞれ各独立に冷却水入口4aおよび冷却水出口4bの配管を外殻に溶接して、どのようにでも冷却水を供給することができるようにする。
外殻は一方の端部を凸側端部(嵌合軸)10a、他方の端部を凹側端部(嵌合孔)10bとしてそれぞれ相対する端部の嵌合用の端部となる凹凸形状を有する嵌合端部(軸孔嵌合形状の嵌合端部)10を形成し、高温側熱交換器8aの凹側端部10bに低温側熱交換器8bの凸側端部10aを挿入することにより容易にEGRガスの流れに対して直列かつ同心的に接続できるようにする。挿入後は嵌合位置でレーザ溶接して嵌合部を密封するとともにEGRクーラとして一体化する。
[First Embodiment]
As shown in FIG. 1, the EGR cooler 8 of the first embodiment is provided with two multi-tube heat exchangers of the same shape integrally molded by in-furnace brazing, one of which is a high temperature side heat exchanger 8a. The other is used as the low temperature side heat exchanger 8b.
The high temperature side heat exchanger 8a and the low temperature side heat exchanger 8b can be independently supplied with cooling water by welding the cooling water inlet 4a and the cooling water outlet 4b to the outer shell, respectively. Like that.
The outer shell has a concave-convex shape with one end portion as a convex end portion (fitting shaft) 10a and the other end portion as a concave end portion (fitting hole) 10b, which serve as fitting end portions. A fitting end portion (a fitting end portion having a shaft hole fitting shape) 10 is formed, and the convex side end portion 10a of the low temperature side heat exchanger 8b is inserted into the concave side end portion 10b of the high temperature side heat exchanger 8a. By doing so, it is possible to easily connect the EGR gas flow in series and concentrically. After the insertion, laser welding is performed at the fitting position to seal the fitting portion and to integrate as an EGR cooler.

高温側熱交換器8aと低温側熱交換器8bとは、共に、一体ろう付けして形成した個々の熱交換器を同心的に嵌め合わせて2つの熱交換器を有するEGRクーラとして使用するもので、高温側熱交換器8aを通過したEGRガスが嵌合箇所の空間を介して直ちに低温側熱交換器8bに流入するようにして、EGRガスが高温側熱交換器8aから低温側熱交換器8bへ断面方向で均等に流れるようにするとともに不必要に温度低下しないようにする。
そして、高温側熱交換器8aはEGRガスと冷却水とが同じ方向に流れる並流とし、低温側熱交換器8bはEGRガスと冷却水とが対向して流れる向流とするように、冷却水系統の配管をする。
The high temperature side heat exchanger 8a and the low temperature side heat exchanger 8b are both used as an EGR cooler having two heat exchangers by concentrically fitting individual heat exchangers formed by brazing together. Thus, the EGR gas that has passed through the high temperature side heat exchanger 8a immediately flows into the low temperature side heat exchanger 8b through the space of the fitting portion, so that the EGR gas is exchanged from the high temperature side heat exchanger 8a to the low temperature side heat exchange. In order to prevent the temperature from being lowered unnecessarily, the vessel 8b should flow evenly in the cross-sectional direction.
The high-temperature side heat exchanger 8a is cooled so that EGR gas and cooling water flow in the same direction, and the low-temperature side heat exchanger 8b is cooled so that EGR gas and cooling water flow oppositely. Pipe the water system.

高温側熱交換器8aを並流とし、冷却水の流入する時の動圧を利用して水の拡がりを良くして局部沸騰を抑えると、EGRガス通路であるチューブ4i,…,4iが露出するなどの耐久性低下となる要因がなくなり、また、低温側熱交換器8bでは、EGRガス入口部でEGRガス温度を200℃以下、望ましくは150℃前後になるように設定すると、向流にすることで効果的に冷却でき、熱交換器としての効率を高く保つことができ、EGRガス出口部におけるガス温度をより低く下げることができる。   When the high temperature side heat exchanger 8a is used as a parallel flow, and the water is spread by using the dynamic pressure when cooling water flows in to suppress local boiling, the tubes 4i,..., 4i that are EGR gas passages are exposed. In the low-temperature side heat exchanger 8b, if the EGR gas temperature is set to 200 ° C. or lower, preferably around 150 ° C., the counter flow is counteracted. By doing so, it can be cooled effectively, the efficiency as a heat exchanger can be kept high, and the gas temperature at the EGR gas outlet can be lowered further.

〔作用効果〕
このように構成した第1実施形態のEGRクーラでは、EGRガスの流れ方向へ高温側と低温側との2つの熱交換器を一体に構成したことによって、熱交換効率を高め、耐久性の低下を抑え、各熱交換器の稼動率を向上することができる。2つの同一に形成された熱交換器を一体化したことによって、生産性が良くなり、コンパクトに形成でき、組付けを容易にして、コストを低減することができる。
[Function and effect]
In the EGR cooler of the first embodiment configured as described above, the heat exchange efficiency is improved and the durability is lowered by integrally configuring the two heat exchangers of the high temperature side and the low temperature side in the flow direction of the EGR gas. And the operating rate of each heat exchanger can be improved. By integrating two identically formed heat exchangers, productivity can be improved, compact formation can be facilitated, assembly can be facilitated, and cost can be reduced.

〔第2実施形態〕
第2実施形態のEGRクーラ8は、図2に示すように、熱交換器外殻(9a,9b)を形成する筒体の内部に、EGRガスの流れに対して中央部に設けた凹部9cの両側に同一形状のチューブを用いたチューブアセンブリ7,7を内設して2つの熱交換器を形成し、EGRガスの流れに対して凹部9cの上流側を高温側熱交換器8aとし、下流側を低温側熱交換器8bとして使用する。高温側熱交換器8aおよび低温側熱交換器8bにはそれぞれ各独立に冷却水入口4aおよび冷却水出口4bを各熱交換器8a,8bの外殻9a,9bに設けて、並流、向流の、どちらにでも冷却水を供給することができるようにする。
[Second Embodiment]
As shown in FIG. 2, the EGR cooler 8 according to the second embodiment includes a recess 9c provided in the center of the cylindrical body forming the heat exchanger outer shell (9a, 9b) with respect to the flow of EGR gas. Two heat exchangers are formed by installing tube assemblies 7 and 7 having the same shape on both sides of the tube, and the upstream side of the recess 9c with respect to the flow of EGR gas is a high temperature side heat exchanger 8a. The downstream side is used as the low temperature side heat exchanger 8b. The high temperature side heat exchanger 8a and the low temperature side heat exchanger 8b are respectively provided with a cooling water inlet 4a and a cooling water outlet 4b in the outer shells 9a and 9b of the heat exchangers 8a and 8b, respectively. Allow cooling water to be supplied to either of the streams.

EGRクーラ8の熱交換器外殻9a,9bは中央部で中心側に向けて全周が内壁面よりも内側に出るまで凹む収納位置の位置決め部材となる凹部9cを形成し、一方の端部から高温側のチューブアセンブリ7を、他方の端部からは低温側のチューブアセンブリ7をそれぞれ凹部9cに当接するまで挿入する。
このため、凹部9cに当接することにより自動的に必要な挿入深さに達するように、外殻9a,9bの長さおよび凹部9cの位置ならびに各チューブアセンブリ7,7の長さ等の寸法を予め定めておく。
各チューブアセンブリ7,7は炉内ろう付けして一体に形成した後、外殻9a,9bの中にそれぞれ挿入し、外殻9a,9bを各チューブアセンブリ7,7の仕切板6a,6bの配置位置でレーザ溶接することにより、EGRガスに対して直列かつ同心状に一体化した2つの熱交換器を形成する。
The heat exchanger outer shells 9a and 9b of the EGR cooler 8 form a concave portion 9c that serves as a positioning member that is recessed until the entire circumference comes out to the inner side of the inner wall surface toward the center at the central portion. From the other end, the tube assembly 7 on the high temperature side is inserted until the tube assembly 7 on the low temperature side comes into contact with the recess 9c.
For this reason, dimensions such as the lengths of the outer shells 9a and 9b and the positions of the recesses 9c and the lengths of the tube assemblies 7 and 7 are automatically adjusted so as to reach the necessary insertion depth by contacting the recesses 9c. It is determined in advance.
The tube assemblies 7 and 7 are integrally formed by brazing in the furnace, and then inserted into the outer shells 9a and 9b. The outer shells 9a and 9b are inserted into the partition plates 6a and 6b of the tube assemblies 7 and 7, respectively. Two heat exchangers integrated in series and concentrically with the EGR gas are formed by laser welding at the arrangement position.

高温側熱交換器8aと低温側熱交換器8bとは、共に、一体ろう付けしたチューブアセンブリ7,7を外殻9a,9bに嵌め合わせて形成したもので、両方合わせて1つのEGRクーラ用熱交換器となる。
高温側熱交換器8aを通過したEGRガスが凹部9cによって形成されて各チューブアセンブリ7,7の仕切板4g,4hに挟まれた空間を介して、直ちに低温側専用の熱交換器8bに流入するようにして、EGRガスが不必要に温度低下しないようにする。
そして、高温側熱交換器8aは並流とし、低温側熱交換器8bは向流となるように冷却水系統の配管をする。
The high temperature side heat exchanger 8a and the low temperature side heat exchanger 8b are both formed by fitting the integrally brazed tube assemblies 7 and 7 to the outer shells 9a and 9b, and both are used for one EGR cooler. It becomes a heat exchanger.
The EGR gas that has passed through the high temperature side heat exchanger 8a is formed by the recess 9c and immediately flows into the heat exchanger 8b dedicated to the low temperature side through the space between the partition plates 4g and 4h of the tube assemblies 7 and 7. Thus, the temperature of the EGR gas is prevented from being unnecessarily lowered.
And the piping of a cooling water system | strain is made so that the high temperature side heat exchanger 8a may become a parallel flow, and the low temperature side heat exchanger 8b becomes a countercurrent.

高温側熱交換器8aを並流とし、冷却水の流入する時の動圧を利用して水の拡がりを良くして局部沸騰を抑えると、EGRガス通路であるチューブ4i,…,4iのいずれも露出するなどの耐久性低下の要因がなくなり、また、低温側専用の熱交換器8bでは、EGRガス入口でEGRガス温度を200℃以下、望ましくは150℃前後になるように設定すると、向流にすることで効果的に冷却でき、熱交換器としての効率を高い状態に保ち、EGRガス出口ではガス温度をより低く下げることができる。   If the high-temperature side heat exchanger 8a is used as a parallel flow and the dynamic pressure when cooling water flows in is used to improve the spread of water and suppress local boiling, any of the tubes 4i,. In the heat exchanger 8b dedicated to the low temperature side, the EGR gas temperature is set to 200 ° C. or lower, preferably about 150 ° C. The flow can be effectively cooled, the efficiency as a heat exchanger can be kept high, and the gas temperature can be lowered at the EGR gas outlet.

〔作用効果〕
このような第2の実施形態のEGRクーラでは、EGRガスの流れ方向へ高温側と低温側との2つの熱交換器を一体に形成したことによって、熱交換効率を高め、耐久性の低下を抑え、稼動率を向上することができる。
2つの熱交換器を1つの外殻をなす筒体の中に収容したことによって、コンパクトに形成でき、組付けを容易にして、生産性が良くなり、コストを低減することができる。
[Function and effect]
In such an EGR cooler of the second embodiment, two heat exchangers of the high temperature side and the low temperature side are integrally formed in the flow direction of the EGR gas, thereby improving the heat exchange efficiency and reducing the durability. The operating rate can be improved.
By accommodating the two heat exchangers in the cylindrical body forming one outer shell, it is possible to form a compact, facilitate assembly, improve productivity, and reduce cost.

〔第3実施形態〕
第3実施形態のEGRクーラ18は、図3に示すように、炉内ろう付けにより一体に成形した横断面が略矩形に形成された外殻(19a,19b)の中に同一形状の扁平チューブ6i,…,6iを多数組み込んだ角型熱交換器(18a,18b)を2つ用意して、一方を高温側熱交換器18aとし、他方を低温側熱交換器18bとして使用するものとする。
高温側熱交換器18aおよび低温側熱交換器18bにはそれぞれ各独立に冷却水入口6aおよび冷却水出口6bの配管を外殻に溶接して、どのようにでも冷却水を供給することができるようにする。
外殻は一方の端部を凸側端部(嵌合軸側端部)10a、他方の端部を凹側端部(嵌合孔側端部)10bとしてそれぞれ相対する端部の嵌合用の端部となる凹凸形状を有する嵌合端部(軸孔嵌合用の嵌合端部)20を形成し、高温側熱交換器18aの凹側端部20bに低温側熱交換器18bの凸側端部20aを挿入することにより容易にEGRガスの流れに対して直列かつ同心的に接続できるようにする。挿入後は嵌合位置でレーザ溶接して嵌合部を密封するとともにEGRクーラとして一体化する。
[Third Embodiment]
As shown in FIG. 3, the EGR cooler 18 of the third embodiment is a flat tube having the same shape in the outer shell (19 a, 19 b) integrally formed by brazing in the furnace and having a substantially rectangular cross section. Two square heat exchangers (18a, 18b) incorporating a large number of 6i,..., 6i are prepared, and one is used as the high temperature side heat exchanger 18a and the other is used as the low temperature side heat exchanger 18b. .
The high temperature side heat exchanger 18a and the low temperature side heat exchanger 18b can be independently supplied with cooling water by welding the cooling water inlet 6a and the cooling water outlet 6b to the outer shell, respectively. Like that.
The outer shell is used for fitting opposite ends with one end as a convex end (fitting shaft side end) 10a and the other end as a concave end (fitting hole side end) 10b. A fitting end portion (fitting end portion for fitting a shaft hole) 20 having an uneven shape as an end portion is formed, and the convex side of the low temperature side heat exchanger 18b is formed on the concave side end portion 20b of the high temperature side heat exchanger 18a. By inserting the end portion 20a, it can be easily connected in series and concentrically to the flow of EGR gas. After the insertion, laser welding is performed at the fitting position to seal the fitting portion and to integrate as an EGR cooler.

高温側熱交換器18aと低温側熱交換器18bとは、共に、一体ろう付けして形成した個々の熱交換器を同心的に嵌め合わせて2つの熱交換器を有するEGRクーラとして使用するもので、高温側熱交換器18aを通過したEGRガスが嵌合箇所の空間を介して直ちに低温側熱交換器18bに流入するようにして、EGRガスが高温側熱交換器18aから低温側熱交換器18bへ断面方向で均等に流れるようにするとともに不必要に温度低下しないようにする。
そして、高温側熱交換器18aはEGRガスと冷却水とが同じ方向に流れる並流とし、低温側熱交換器18bはEGRガスと冷却水とが対向して流れる向流とするように、冷却水系統の配管をする。
The high temperature side heat exchanger 18a and the low temperature side heat exchanger 18b are both used as an EGR cooler having two heat exchangers by concentrically fitting individual heat exchangers formed by brazing together. Thus, the EGR gas that has passed through the high temperature side heat exchanger 18a immediately flows into the low temperature side heat exchanger 18b through the space of the fitting portion, so that the EGR gas is exchanged from the high temperature side heat exchanger 18a to the low temperature side heat exchanger. It is made to flow evenly in the cross-sectional direction to the vessel 18b and not to unnecessarily decrease the temperature.
The high temperature side heat exchanger 18a is cooled so that EGR gas and cooling water flow in the same direction, and the low temperature side heat exchanger 18b is cooled so that EGR gas and cooling water flow in opposite directions. Pipe the water system.

高温側熱交換器18aを並流とし、冷却水の流入する時の動圧を利用して水の拡がりを良くして局部沸騰を抑えると、EGRガス通路である扁平チューブ6i,…,6iが露出するなどの耐久性低下となる要因がなくなり、また、低温側熱交換器18bでは、EGRガス入口部でEGRガス温度を200℃以下、望ましくは150℃前後になるように設定すると、向流にすることで効果的に冷却でき、熱交換器としての効率を高く保つことができ、EGRガス出口部におけるガス温度をより低く下げることができる。   When the high temperature side heat exchanger 18a is used as a parallel flow and the dynamic pressure at the time when the cooling water flows in is used to improve the spread of the water and suppress the local boiling, the flat tubes 6i,. When the low temperature side heat exchanger 18b is set such that the EGR gas temperature is set to 200 ° C. or lower, preferably about 150 ° C., in the low temperature side heat exchanger 18b, countercurrent flows. Thus, the cooling can be effectively performed, the efficiency as the heat exchanger can be kept high, and the gas temperature at the EGR gas outlet can be lowered.

〔作用効果〕
このように構成した第3実施形態のEGRクーラ18では、EGRガスの流れ方向へ高温側と低温側との2つの熱交換器18a,18bを一体に構成したことによって、熱交換効率を高め、耐久性の低下を抑え、各熱交換器18a,18bの稼動率を向上することができる。2つの同一に形成された熱交換器18a,18bを一体化したことによって、生産性が良くなり、コンパクトに形成でき、組付けを容易にして、コストを低減することができる。
[Function and effect]
In the EGR cooler 18 of the third embodiment configured as described above, the heat exchange efficiency is improved by integrally configuring the two heat exchangers 18a and 18b on the high temperature side and the low temperature side in the EGR gas flow direction, A decrease in durability can be suppressed, and the operating rate of each heat exchanger 18a, 18b can be improved. By integrating two identically formed heat exchangers 18a and 18b, productivity can be improved and the heat exchangers 18a and 18b can be formed compactly, making assembly easy and reducing costs.

〔第4実施形態〕
第4実施形態のEGRクーラ18は、図4に示すように、熱交換器外殻(19a,19b)を形成する筒体の内部に、EGRガスの流れに対して中央部に設けた凹部19cの両側に同一形状の扁平チューブ6i,…,6iを用いたチューブアセンブリ7,7を内設して2つの熱交換器18a,18bを形成し、EGRガスの流れに対して凹部19cの上流側を高温側熱交換器18aとし、下流側を低温側熱交換器18bとして使用する。高温側熱交換器18aおよび低温側熱交換器18bにはそれぞれ各独立に冷却水入口6aおよび冷却水出口6bを各熱交換器18a,18bの外殻19a,19bに設けて、並流、向流の、どちらにでも冷却水を供給することができるようにする。
[Fourth Embodiment]
As shown in FIG. 4, the EGR cooler 18 of the fourth embodiment includes a recess 19 c provided in the center portion with respect to the flow of EGR gas inside the cylindrical body forming the heat exchanger outer shell (19 a, 19 b). Tube assemblies 7 and 7 using flat tubes 6i,..., 6i having the same shape are provided on both sides to form two heat exchangers 18a and 18b, and upstream of the recess 19c with respect to the flow of EGR gas. Is used as the high temperature side heat exchanger 18a, and the downstream side is used as the low temperature side heat exchanger 18b. The high temperature side heat exchanger 18a and the low temperature side heat exchanger 18b are respectively provided with a cooling water inlet 6a and a cooling water outlet 6b in the outer shells 19a and 19b of the heat exchangers 18a and 18b, respectively. Allow cooling water to be supplied to either of the streams.

EGRクーラ18の熱交換器外殻19a,19bは中央部で中心側に向けて全周が内壁面よりも内側に出るまで凹む収納位置の位置決め部材となる凹部19cを形成し、一方の端部から高温側のチューブアセンブリ7を、他方の端部からは低温側のチューブアセンブリ7をそれぞれ凹部19cに当接するまで挿入する。
このため、凹部19cに当接することにより自動的に必要な挿入深さに達するように、外殻19a,19bの長さおよび凹部19cの位置ならびに各チューブアセンブリ7,7の長さ等の寸法を予め定めておく。
各チューブアセンブリ7,7は炉内ろう付けして一体に形成した後、外殻19a,19bの中にそれぞれ挿入し、外殻19a,19bを各チューブアセンブリ7,7の仕切板6g,6hの配置位置でレーザ溶接することにより、EGRガスに対して直列かつ同心状に一体化した2つの熱交換器18a,18bを形成する。
The heat exchanger outer shells 19a and 19b of the EGR cooler 18 form a concave portion 19c that serves as a positioning member that is recessed until the entire circumference comes out from the inner wall surface toward the center at the central portion. From the other end, the tube assembly 7 on the high temperature side is inserted until it contacts the recess 19c.
For this reason, dimensions such as the lengths of the outer shells 19a and 19b and the positions of the recesses 19c and the lengths of the tube assemblies 7 and 7 are automatically adjusted to reach the required insertion depth by contacting the recesses 19c. It is determined in advance.
The tube assemblies 7 and 7 are integrally formed by brazing in the furnace, and then inserted into the outer shells 19a and 19b. The outer shells 19a and 19b are inserted into the partition plates 6g and 6h of the tube assemblies 7 and 7, respectively. By performing laser welding at the arrangement position, two heat exchangers 18a and 18b integrated in series and concentrically with the EGR gas are formed.

高温側熱交換器18aと低温側熱交換器18bとは、共に、一体ろう付けしたチューブアセンブリ7,7を外殻19a,19bに嵌め合わせて形成したもので、両方合わせて1つのEGRクーラ用熱交換器となる。
高温側熱交換器18aを通過したEGRガスが凹部19cによって形成されて各チューブアセンブリ7,7の仕切板6h,6gに挟まれた空間を介して、直ちに低温側専用の熱交換器18bに流入するようにして、EGRガスが不必要に温度低下しないようにする。
そして、高温側熱交換器18aは並流とし、低温側熱交換器18bは向流となるように冷却水系統の配管をする。
Both the high temperature side heat exchanger 18a and the low temperature side heat exchanger 18b are formed by fitting the integrally brazed tube assemblies 7 and 7 to the outer shells 19a and 19b, and both are used for one EGR cooler. It becomes a heat exchanger.
The EGR gas that has passed through the high temperature side heat exchanger 18a is formed by the recess 19c and immediately flows into the low temperature side dedicated heat exchanger 18b through the space between the partition plates 6h and 6g of the tube assemblies 7 and 7. Thus, the temperature of the EGR gas is prevented from being unnecessarily lowered.
And the piping of a cooling water system | strain is made so that the high temperature side heat exchanger 18a may become a parallel flow, and the low temperature side heat exchanger 18b may become a countercurrent.

高温側熱交換器18aを並流とし、冷却水の流入する時の動圧を利用して水の拡がりを良くして局部沸騰を抑えると、EGRガス通路であるチューブ6i,…,6iのいずれも露出するなどの耐久性低下の要因がなくなり、また、低温側熱交換器18bでは、EGRガス入口でEGRガス温度を200℃以下、望ましくは150℃前後になるように設定すると、向流にすることで効果的に冷却でき、熱交換器としての効率を高い状態に保ち、EGRガス出口ではガス温度をより低く下げることができる。   When the high-temperature side heat exchanger 18a is used as a parallel flow and the dynamic pressure when cooling water flows in is used to improve the spread of water and suppress local boiling, any of the tubes 6i,. In the low-temperature side heat exchanger 18b, if the EGR gas temperature is set to 200 ° C. or lower, preferably around 150 ° C., the counter flow is counterflowed. By doing so, it can be effectively cooled, the efficiency as a heat exchanger can be kept high, and the gas temperature can be lowered at the EGR gas outlet.

〔作用効果〕
このような第4の実施形態のEGRクーラでは、EGRガスの流れ方向へ高温側と低温側との2つの熱交換器18a,18bを一体に形成したことによって、熱交換効率を高め、耐久性の低下を抑え、稼動率を向上することができる。
2つの熱交換器18a,18bが外殻(19a,19b)を形成する1つの筒体の中に収容されたことによって、コンパクトに形成でき、組付けを容易にして、生産性が良くなり、コストを低減することができる。
[Function and effect]
In such an EGR cooler of the fourth embodiment, the heat exchanger 18a, 18b of the high temperature side and the low temperature side are integrally formed in the flow direction of the EGR gas, thereby improving the heat exchange efficiency and durability. It is possible to suppress the decrease in the operating rate and improve the operating rate.
Since the two heat exchangers 18a and 18b are accommodated in one cylindrical body that forms the outer shell (19a and 19b), the heat exchanger 18a and 18b can be formed compactly, facilitate assembly, and improve productivity. Cost can be reduced.

〔別態様〕
このような実施の形態は、発明の趣旨を理解しやすくするため具体的に説明しているが、発明内容を限定するものではないから、特に説明されていない(意匠的な内容も含む)別の態様を制限するものではなく、適宜変更しても良い。このような意味で発明の趣旨に沿ういくつかの別態様を以下に示す。
[Another aspect]
Such an embodiment is specifically described in order to facilitate understanding of the gist of the invention, but does not limit the content of the invention, and is not particularly described (including design content). The embodiment is not limited, and may be changed as appropriate. In this sense, some other embodiments that meet the spirit of the invention are shown below.

高温側熱交換器8a,18aを並流とし、低温側熱交換器8b,18bでは向流にしたが、必ずしもこのような形態に形成しなくとも、両方とも並流あるいは向流であっても、熱交換効率を低下しないで配管容易ならば、利用可能である。
このように、2つの熱交換器8a,8bあるいは熱交換器18a,18bに分割することができ、また組付けを含めた後工程が効率良く処理できて、作業効率を向上し、コスト削減および熱交換効率の向上に貢献する構成ならば利用可能である。
Although the high temperature side heat exchangers 8a and 18a are cocurrent, and the low temperature side heat exchangers 8b and 18b are countercurrent, they are not necessarily formed in such a form, but both may be cocurrent or countercurrent. If the piping is easy without lowering the heat exchange efficiency, it can be used.
In this way, it can be divided into two heat exchangers 8a, 8b or heat exchangers 18a, 18b, and the post-process including assembly can be processed efficiently, improving work efficiency, reducing costs and Any configuration that contributes to improving heat exchange efficiency can be used.

本発明によるEGRクーラの第1実施形態で用いられる多管式熱交換器を示す縦断面図である。It is a longitudinal section showing a multi-tube heat exchanger used in a 1st embodiment of an EGR cooler by the present invention. 同上第2実施形態で用いられる多管式熱交換器を示す縦断面図である。It is a longitudinal cross-sectional view which shows the multi-tube heat exchanger used by 2nd Embodiment same as the above. 同上第3実施形態で用いられる扁平チューブ式熱交換器を示す縦断面図である。It is a longitudinal cross-sectional view which shows the flat tube type heat exchanger used by 3rd Embodiment same as the above. 同上第4実施形態で用いられる扁平チューブ式熱交換器を示す縦断面図である。It is a longitudinal cross-sectional view which shows the flat tube type heat exchanger used by 4th Embodiment same as the above. 従来のEGRクーラのシステム系統図である。It is a system system | strain diagram of the conventional EGR cooler. 従来のEGRクーラで用いられている多管式熱交換器を示す拡大斜視図である。It is an expansion perspective view which shows the multitubular heat exchanger used with the conventional EGR cooler. 従来のEGRクーラで用いられている多管式熱交換器を示す側面断面説明図である。It is side surface explanatory drawing which shows the multitubular heat exchanger used with the conventional EGR cooler. 従来のEGRクーラで用いられている扁平チューブ式熱交換器を一部破断して示す斜視説明図である。It is a perspective explanatory view which shows a flat tube type heat exchanger used in a conventional EGR cooler partially broken.

符号の説明Explanation of symbols

1 ディーゼルエンジン
2 インタークーラ
3 ラジエータ
4 EGRクーラ
4a,6a 冷却水入口
4b,6b 冷却水出口
4g,6g (入口側)仕切板
4h,6h (出口側)仕切板
4i チューブ
6i (扁平)チューブ
5 ターボチャージャ
5a コンプレッサ
5b タービン
7 チューブアセンブリ
8a,18a 高温側熱交換器
8b,18b 低温側熱交換器
9a,19a (高温側熱交換器の)外殻
9b,19b (低温側熱交換器の)外殻
9c,19c 凹部
10,20 凹凸形状の嵌合端部(雌雄形状の嵌合端部)
10a,20a 凸側端部(嵌合軸)
10b,20b 凹側端部(嵌合孔)
18 EGRクーラ
19 (熱交換器の)外殻
DESCRIPTION OF SYMBOLS 1 Diesel engine 2 Intercooler 3 Radiator 4 EGR cooler 4a, 6a Cooling water inlet 4b, 6b Cooling water outlet 4g, 6g (Inlet side) Partition plate 4h, 6h (Outlet side) Partition plate 4i Tube 6i (Flat) tube 5 Turbo Charger 5a Compressor 5b Turbine 7 Tube assemblies 8a, 18a High temperature side heat exchangers 8b, 18b Low temperature side heat exchangers 9a, 19a Outer shells 9b, 19b (for high temperature side heat exchangers) Outer shells (for low temperature side heat exchangers) 9c, 19c Concave portion 10, 20 Concave end portion (gender end portion)
10a, 20a Convex side end (fitting shaft)
10b, 20b Concave end (fitting hole)
18 EGR cooler 19 (heat exchanger) outer shell

Claims (7)

同一長さの軸方向に長いチューブの多数本を平行にして各チューブが互いに間をあけた状態で、各チューブの両端をそれぞれ仕切板によって支持したチューブアセンブリを、筒状に形成された熱交換器外殻の内部に収容し、上記熱交換器外殻に冷却水入口管と冷却水出口管とを設け、各チューブ内をEGRガスの通路とし各チューブ外周を冷却水により冷却するチューブ内蔵の熱交換器を2つ備え、この2つの熱交換器を直列かつ同心状に一体化したことを特徴とするEGRクーラの熱交換器構造。   Heat exchange is formed in a cylindrical shape from a tube assembly in which many tubes of the same length in the axial direction are parallel and each tube is spaced from each other and both ends of each tube are supported by partition plates. A cooling water inlet pipe and a cooling water outlet pipe are provided in the outer shell of the heat exchanger, and each tube has an EGR gas passage and the outer periphery of each tube is cooled by cooling water. A heat exchanger structure of an EGR cooler comprising two heat exchangers, wherein the two heat exchangers are integrated in series and concentrically. 前記熱交換器外殻の両端部にそれぞれ一方が嵌合孔で他方が嵌合軸となる嵌合端部を形成した熱交換器を2つ形成し、この2つの熱交換器を前記嵌合端部で直列かつ同心的に結合したことを特徴とする請求項1記載のEGRクーラの熱交換器構造。   Two heat exchangers are formed at both end portions of the outer shell of the heat exchanger, each of which has a fitting end portion where one is a fitting hole and the other is a fitting shaft, and the two heat exchangers are fitted to the fitting portion. 2. The heat exchanger structure for an EGR cooler according to claim 1, wherein the ends are connected in series and concentrically. 前記熱交換器外殻となる筒体の中央部に収納位置の位置決め部材となる凹部を周設し、前記チューブアセンブリの長さを前記熱交換器外殻の端部から凹部までの収納範囲に収納可能な長さに形成し、前記熱交換器外殻に形成した凹部の両側にそれぞれ上記収納可能な長さを有するチューブアセンブリを内蔵して長手方向に2つの熱交換器を形成したことを特徴とする請求項1記載のEGRクーラの熱交換器構造。   A recess serving as a positioning member is provided in the center of the cylindrical body that is the outer shell of the heat exchanger so that the length of the tube assembly is within the storage range from the end of the outer shell of the heat exchanger to the recess. A tube assembly having a length that can be stored, and a tube assembly having a length that can be stored on each side of the recess formed in the outer shell of the heat exchanger is built in to form two heat exchangers in the longitudinal direction. The heat exchanger structure of the EGR cooler according to claim 1, wherein the heat exchanger structure is an EGR cooler. 前記結合した嵌合端部を溶接して一体化したことを特徴とする請求項2記載のEGRクーラの熱交換器構造   The heat exchanger structure of an EGR cooler according to claim 2, wherein the joined fitting end portions are integrated by welding. 前記チューブアセンブリは各チューブの両端部とこの両端部をそれぞれ支持した両仕切板とを一体ろう付けにより固着し、熱交換器外殻内に挿入後、上記両仕切板と前記熱交換器外殻とを溶接して一体化したことを特徴とする請求項3記載のEGRクーラの熱交換器構造。   In the tube assembly, both end portions of each tube and both partition plates supporting the both end portions are fixed by integral brazing and inserted into the heat exchanger outer shell, and then both the partition plates and the heat exchanger outer shell are inserted. And a heat exchanger structure for an EGR cooler according to claim 3, wherein: 前記チューブを円筒チューブとし、前記熱交換器外殻を円筒殻に形成したことを特徴とする請求項3記載のEGRクーラの熱交換器構造。   4. The heat exchanger structure of an EGR cooler according to claim 3, wherein the tube is a cylindrical tube, and the outer shell of the heat exchanger is formed into a cylindrical shell. 前記チューブを扁平チューブとし、前記熱交換器外殻を角筒殻に形成したことを特徴とする請求項3記載のEGRクーラの熱交換器構造。   4. The heat exchanger structure of an EGR cooler according to claim 3, wherein the tube is a flat tube and the outer shell of the heat exchanger is formed as a square tube shell.
JP2006147155A 2006-05-26 2006-05-26 Heat exchanger structure for egr cooler Pending JP2007315325A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006147155A JP2007315325A (en) 2006-05-26 2006-05-26 Heat exchanger structure for egr cooler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006147155A JP2007315325A (en) 2006-05-26 2006-05-26 Heat exchanger structure for egr cooler

Publications (1)

Publication Number Publication Date
JP2007315325A true JP2007315325A (en) 2007-12-06

Family

ID=38849412

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006147155A Pending JP2007315325A (en) 2006-05-26 2006-05-26 Heat exchanger structure for egr cooler

Country Status (1)

Country Link
JP (1) JP2007315325A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009133607A (en) * 2007-10-30 2009-06-18 Denso Corp Heat exchanger
JP2010090785A (en) * 2008-10-07 2010-04-22 Denso Corp Exhaust gas cooling system
KR100994378B1 (en) 2008-05-02 2010-11-16 지엠대우오토앤테크놀로지주식회사 Expansion Gas tube type EGR Cooler
US8651170B2 (en) 2008-08-25 2014-02-18 Denso Corporation Exhaust gas heat exchanger
US20220288729A1 (en) * 2021-03-12 2022-09-15 Denso International America, Inc. Manufacturing process for heat exchangers

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009133607A (en) * 2007-10-30 2009-06-18 Denso Corp Heat exchanger
KR100994378B1 (en) 2008-05-02 2010-11-16 지엠대우오토앤테크놀로지주식회사 Expansion Gas tube type EGR Cooler
US8651170B2 (en) 2008-08-25 2014-02-18 Denso Corporation Exhaust gas heat exchanger
JP2010090785A (en) * 2008-10-07 2010-04-22 Denso Corp Exhaust gas cooling system
US20220288729A1 (en) * 2021-03-12 2022-09-15 Denso International America, Inc. Manufacturing process for heat exchangers

Similar Documents

Publication Publication Date Title
JP5904108B2 (en) Exhaust heat exchanger
US8069905B2 (en) EGR gas cooling device
EP1996891B1 (en) Heat exchanger for egr-gas
US20070193732A1 (en) Heat exchanger
US20070017661A1 (en) Heat exchanger
JP2007315323A (en) System structure of egr cooler
JP2007078194A (en) Heat transfer tube for heat exchanger
JP2010048536A (en) Heat exchanger
JP2010127143A (en) Charge air cooler
JP2013122366A (en) Heat exchanger
JP3991786B2 (en) Exhaust heat exchanger
JP2007315325A (en) Heat exchanger structure for egr cooler
JP2007315324A (en) Cooling structure of egr cooler
JP2007113795A (en) Multitubular heat exchanger for exhaust gas cooling device
JP2006118436A (en) Bonnet for egr gas cooling device
JP4345470B2 (en) Engine EGR cooler
JP2011085315A (en) Heat exchanger
JP2007225137A (en) Multitubular heat exchanger and heat transfer tube for exhaust gas cooling device
KR20130065174A (en) Heat exchanger for vehicle
JP2007255719A (en) Connection structure of heat exchanger
JP2005055153A (en) Heat exchanger
JP4759367B2 (en) Laminate heat exchanger
JP2001041680A (en) Multitubular egr gas cooler and its manufacture
JP2005214586A (en) Heat exchanger for cooling exhaust gas
JP2000161871A (en) Double piping type heat exchanger