JP2007315324A - Cooling structure of egr cooler - Google Patents

Cooling structure of egr cooler Download PDF

Info

Publication number
JP2007315324A
JP2007315324A JP2006147154A JP2006147154A JP2007315324A JP 2007315324 A JP2007315324 A JP 2007315324A JP 2006147154 A JP2006147154 A JP 2006147154A JP 2006147154 A JP2006147154 A JP 2006147154A JP 2007315324 A JP2007315324 A JP 2007315324A
Authority
JP
Japan
Prior art keywords
heat exchanger
cooling water
temperature side
side heat
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006147154A
Other languages
Japanese (ja)
Inventor
Tamio Komatsubara
民雄 小松原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Radiator Mfg Co Ltd
Original Assignee
Tokyo Radiator Mfg Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Radiator Mfg Co Ltd filed Critical Tokyo Radiator Mfg Co Ltd
Priority to JP2006147154A priority Critical patent/JP2007315324A/en
Publication of JP2007315324A publication Critical patent/JP2007315324A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/16Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/0066Multi-circuit heat-exchangers, e.g. integrating different heat exchange sections in the same unit or heat-exchangers for more than two fluids

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust-Gas Circulating Devices (AREA)
  • Details Of Heat-Exchange And Heat-Transfer (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cooling structure of an EGR cooler, capable of restraining local boiling by a two-piece type, capable of preventing reduction in durability, and capable of enhancing the whole heat exchange efficiency. <P>SOLUTION: Two heat exchangers are formed by adding a cooling water outlet to a heat exchanger outer shell on the side for arranging a cooling water inlet, and adding the cooling water inlet to a heat exchanger outer shell on the side for arranging the cooling water outlet, in a position of the heat exchanger outer shell corresponding to these divided respective spaces, by axially dividing the respective tube outer peripheral side spaces, by adding a partition plate to a central part in the axial direction in a tube assembly stored in the heat exchanger outer shell; and are constituted by connecting an engine cooling water pipe connected to the high temperature side heat exchanger for passing EGR gas first and the low temperature side heat exchanger for passing the EGR gas after this heat exchanger, among these two heat exchangers, so as to cool the high temperature side heat exchanger after cooling the low temperature side heat exchanger. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、冷却水通路中に邪魔板を設けて分割することにより、冷却効率を向上させることができるようにしたEGRクーラの冷却構造に関する。   The present invention relates to a cooling structure of an EGR cooler that can improve cooling efficiency by providing a baffle plate in a cooling water passage and dividing it.

近年、ディーゼルエンジンに対する排ガス規制強化に伴い、EGRガスの温度の上昇、ガス流量の増加、EGRクーラのガス出口温度の低減(放熱量増加)などEGRクーラを取り巻く環境は厳しくなる一方であり、放熱量の増大と高温耐久性の維持などが望まれている。
一般に、図5に示すように、ディーゼルエンジン1を中心にして前方にインタークーラ2とラジエータ3とが配置され、後方にEGRクーラ4又は6を配置しており、側方にターボチャージャ5を配置して、ターボチャージャ5はコンプレッサ5aを前方より吸気するように向けるとともにタービン5bからの排気ガスを後方に向けて排出するように配置している。
通常のEGRクーラ4,6では、図6の円管を多数組み込んだ多管式熱交換器又は図7の放熱フィンを内設した扁平なチュ−ブを多数組み込んだ扁平チューブ式熱交換器で示すように、冷却水入口4a,6aをガス入口側の端部に設け、冷却水出口4b,6bをガス排出側の端部に設け、熱交換器本体の両端部にはフランジ付きヘッダー4c,4d,6c,6dをそれぞれ設け、各フランジ4e,4f,6e,6fはディーゼルエンジン1側からの配管とボルト止めできるように大きさを決めている。
EGRクーラ4,6の内部構造は、図8に示すように、同一長さを有する多数のチューブ4i,…,4i,6i,…,6iを平行に配列し、両端を入口側仕切板4g,6gと出口側仕切板4h,6hとによる端部を閉鎖することによって互いに各チューブ間の間隔をほぼ均等にあけた状態で支えたチューブアセンブリ7を内蔵している多管式熱交換器又は扁平チューブ式熱交換器として構成する。
EGRクーラ4,6への排気ガスの入口出口と冷却水の入口出口との関係は、ガス入口側の端部に冷却水入口4a,6aを設け、ガス出口側の端部に冷却水出口4b,6bを設けて、冷却水の流入する圧力によって流れが本体内を均等に流れるように工夫したもの(並流冷却方式)がある(特許文献1)。また、冷却水入口4a,6aをガス排出側に設けるとともにガス入口側に冷却水出口4b,6bを設けるもの(向流冷却方式)もある(特許文献2)。
In recent years, with the tightening of exhaust gas regulations for diesel engines, the environment surrounding the EGR cooler has become severe, such as an increase in the temperature of the EGR gas, an increase in gas flow rate, and a decrease in the gas outlet temperature of the EGR cooler (an increase in heat dissipation). It is desired to increase the amount of heat and maintain high temperature durability.
In general, as shown in FIG. 5, an intercooler 2 and a radiator 3 are arranged in front of a diesel engine 1, an EGR cooler 4 or 6 is arranged in the rear, and a turbocharger 5 is arranged in the side. Then, the turbocharger 5 is arranged so that the compressor 5a is directed to intake air from the front and exhaust gas from the turbine 5b is discharged backward.
In ordinary EGR coolers 4 and 6, a multi-tubular heat exchanger incorporating a large number of circular tubes shown in FIG. 6 or a flat tube heat exchanger incorporating a large number of flat tubes provided with radiating fins shown in FIG. As shown, the cooling water inlets 4a, 6a are provided at the end on the gas inlet side, the cooling water outlets 4b, 6b are provided at the end on the gas discharge side, and the flanged headers 4c, 4d, 6c, and 6d are provided, and the sizes of the flanges 4e, 4f, 6e, and 6f are determined so that they can be bolted to the piping from the diesel engine 1 side.
As shown in FIG. 8, the internal structure of the EGR coolers 4 and 6 includes a plurality of tubes 4i,..., 4i, 6i,. A multi-tubular heat exchanger or flattening that incorporates a tube assembly 7 that is supported with 6g and outlet side partition plates 4h and 6h being closed so that the intervals between the tubes are substantially evenly spaced from each other. It is configured as a tube heat exchanger.
The relationship between the inlet and outlet of the exhaust gas to the EGR coolers 4 and 6 and the inlet and outlet of the cooling water is that the cooling water inlets 4a and 6a are provided at the end on the gas inlet side, and the cooling water outlet 4b is provided at the end on the gas outlet side. , 6b is provided (cocurrent flow cooling method) that is devised so that the flow flows evenly in the main body by the pressure of cooling water (Patent Document 1). There is also a cooling water inlet 4a, 6a provided on the gas discharge side and a cooling water outlet 4b, 6b provided on the gas inlet side (counterflow cooling method) (Patent Document 2).

特開2000−045883号公報JP 2000-045883 A 特開2000−274990号公報JP 2000-274990 A

〔従来技術の問題点〕
EGRクーラ4,6では、通常、ディーゼルエンジン1を冷却した後の冷却水が使用されるため、冷却水入口温度は概略80℃〜90℃で流入することになり、排気ガス温度がガス入口側の端部で500℃以上の高温で、ガス入口側付近では両流体の温度差が大きく、局部的に冷却水の温度が沸点近くに上昇し、場合によっては沸騰する恐れがある。
また、この沸騰を抑えるために、EGRクーラ4,6のガス入口側の端部に冷却水入口4a,6aを設け、ガス出口側の端部に冷却水出口4b,6bを設け、冷却水の流入する圧力によって流れが均等に拡散する構造とするものもある。この構造の場合では、EGRガスと冷却水の流れが同一方向となるため、出口に向かってガス温度の低下と冷却水温度の上昇によって両流体の温度差が小さくなり、熱交換量が低下する。
これらに対して、熱交換機を長手方向で2分割するものが考えられているが、同じ冷却水を用いることにすると、入口側の温度が変わるわけではなく、入口側および出口側ともに配管系統を分岐して形成することになり、配管が複雑でかつ取付作業が難しくなる。
[Problems of the prior art]
In the EGR coolers 4 and 6, since the cooling water after cooling the diesel engine 1 is normally used, the cooling water inlet temperature is approximately 80 ° C. to 90 ° C., and the exhaust gas temperature is on the gas inlet side. The temperature difference between the two fluids is large near the gas inlet side at a high temperature of 500 ° C. or more at the end of the gas, and the temperature of the cooling water locally rises near the boiling point, and in some cases, it may boil.
In order to suppress this boiling, the cooling water inlets 4a and 6a are provided at the gas inlet side ends of the EGR coolers 4 and 6, and the cooling water outlets 4b and 6b are provided at the gas outlet side ends. Some have a structure in which the flow is evenly diffused by the inflowing pressure. In the case of this structure, since the flow of EGR gas and cooling water is in the same direction, the temperature difference between the two fluids decreases due to the decrease in gas temperature and the increase in cooling water temperature toward the outlet, and the heat exchange amount decreases. .
On the other hand, it is considered that the heat exchanger is divided into two in the longitudinal direction. However, if the same cooling water is used, the temperature on the inlet side does not change, and the piping system on both the inlet side and the outlet side is changed. As a result, the pipes are complicated and the installation work becomes difficult.

本発明は、従来の技術における前記問題点に鑑みて成されたものであり、これを解決するため具体的に設定した技術的な課題は、冷却水路の長手方向で分割して、局部沸騰を抑え、耐久性の低下を防ぎ、全体の熱交換効率を高めることができるようにしたEGRクーラの冷却構造を提供することにある。   The present invention has been made in view of the above problems in the prior art, and the technical problem specifically set in order to solve this problem is to divide local boiling in the longitudinal direction of the cooling water channel. An object of the present invention is to provide a cooling structure for an EGR cooler that can suppress, prevent deterioration of durability, and increase the overall heat exchange efficiency.

本発明における前記課題が効果的に解決されるEGRクーラの冷却構造を特定するために、必要と認める事項の全てが網羅され、具体的に構成された、課題解決手段を以下に示す。
EGRクーラの冷却構造に係る第1の課題解決手段は、同一長さのチューブの多数本を平行にして各チューブ間には互いに間をあけた状態で各チューブの両端を仕切板によって支持したチューブアセンブリを筒状に形成された熱交換器外殻の内部に収容し、上記熱交換器外殻に冷却水入口および冷却水出口を設け、各チューブ内をEGRガスが通過し各チューブ外周を冷却水により冷却するチューブ式熱交換器を有するEGRクーラの冷却構造であって、前記チューブアセンブリには軸方向中央部に仕切板を加えて各チューブ外周側の空間を軸方向に分割し、この分割したそれぞれの空間に対応する熱交換器外殻の位置に、冷却水入口が設けられている方の熱交換器外殻には冷却水出口を加え、冷却水出口が設けられている方の熱交換器外殻には冷却水入口を加えて2つの熱交換器を形成し、この2つの熱交換器のうちEGRガスが先に通過する高温側熱交換器と、この後にEGRガスが通過する低温側熱交換器とに接続するエンジン冷却水の配管を、上記低温側熱交換器を冷却した後に上記高温側熱交換器を冷却するように接続したことを特徴とするものである。
In order to specify the cooling structure of the EGR cooler that effectively solves the above-mentioned problems in the present invention, all the matters recognized as necessary are covered and specifically configured as the problem solving means.
The first problem-solving means related to the cooling structure of the EGR cooler is a tube in which a large number of tubes of the same length are parallel and the tubes are supported at both ends by partition plates in a state where the tubes are spaced from each other. The assembly is accommodated inside a cylindrical heat exchanger outer shell, and a cooling water inlet and a cooling water outlet are provided in the heat exchanger outer shell, and EGR gas passes through each tube to cool each tube outer periphery. A cooling structure of an EGR cooler having a tube heat exchanger cooled by water, wherein a partition plate is added to the axial center of the tube assembly to divide the space on the outer periphery side of each tube in the axial direction. At the position of the heat exchanger outer shell corresponding to each space, a cooling water outlet is added to the heat exchanger outer shell provided with the cooling water inlet, and the heat of the one provided with the cooling water outlet is added. Exchanger shell Adds two cooling water inlets to form two heat exchangers, and of these two heat exchangers, a high temperature side heat exchanger through which EGR gas passes first, and a low temperature side heat exchanger through which EGR gas passes thereafter The engine cooling water pipe connected to is connected to cool the high temperature side heat exchanger after cooling the low temperature side heat exchanger.

また、同上EGRクーラの冷却構造に係る第2の課題解決手段は、前記高温側熱交換器の冷却水入口と前記低温側熱交換器の冷却水出口とを中継管にて接続し、前記低温側熱交換器の冷却水入口にエンジン冷却水の供給側配管を接続し、前記高温側熱交換器の冷却水出口にエンジン冷却水の排出側配管を接続して、前記低温側熱交換器の冷却水入口から流入して前記高温側熱交換器の冷却水出口から流出するようにしたことを特徴とする。
また、同上EGRクーラの冷却構造に係る第3の課題解決手段は、前記高温側熱交換器にはEGRガス入口側に冷却水入口を配置するとともにEGRガス出口側に冷却水出口を配置し、前記低温側熱交換器にはEGRガス出口側に冷却水入口を配置するとともにEGRガス入口側に冷却水出口を配置して、前記高温側熱交換器を並流冷却とし、前記低温側熱交換器を向流冷却としたことを特徴とする。
さらに、同上EGRクーラの冷却構造に係る第4の課題解決手段は、前記低温側熱交換器と前記高温側熱交換器との分割比率を1:9〜5:5の範囲内にすることを特徴とする。
The second problem-solving means related to the cooling structure of the EGR cooler is the same as that described above, wherein the cooling water inlet of the high temperature side heat exchanger and the cooling water outlet of the low temperature side heat exchanger are connected by a relay pipe. Connect the engine cooling water supply side piping to the cooling water inlet of the side heat exchanger, connect the engine cooling water discharge side piping to the cooling water outlet of the high temperature side heat exchanger, and connect the low temperature side heat exchanger It flows from the cooling water inlet and flows out from the cooling water outlet of the high temperature side heat exchanger.
Further, the third problem-solving means related to the cooling structure of the EGR cooler is the same as that described above, in the high-temperature side heat exchanger, a cooling water inlet is arranged on the EGR gas inlet side and a cooling water outlet is arranged on the EGR gas outlet side. The low temperature side heat exchanger is provided with a cooling water inlet on the EGR gas outlet side and a cooling water outlet on the EGR gas inlet side. The apparatus is characterized by countercurrent cooling.
Furthermore, the fourth problem-solving means according to the cooling structure of the EGR cooler is to set the division ratio between the low-temperature side heat exchanger and the high-temperature side heat exchanger within the range of 1: 9 to 5: 5. Features.

EGRクーラの冷却構造に係る第1の課題解決手段では、高温側熱交換器と低温側熱交換器との2つを備えるとともに同一冷却水を用いて低温側熱交換器を先に冷却した後に高温側熱交換器を冷却することにより、高温側熱交換器と低温側熱交換器との2つを具備した場合でも局部沸騰を抑えて耐久性の低下を防ぎ、全体の熱交換効率を高めることができる。   In the first problem-solving means relating to the cooling structure of the EGR cooler, after providing a high-temperature side heat exchanger and a low-temperature side heat exchanger and cooling the low-temperature side heat exchanger first using the same cooling water, By cooling the high-temperature side heat exchanger, even if it has two, a high-temperature side heat exchanger and a low-temperature side heat exchanger, local boiling is suppressed to prevent deterioration in durability and increase overall heat exchange efficiency. be able to.

EGRクーラの冷却構造に係る第2の課題解決手段では、低温側熱交換器に設けた冷却水出口と高温側熱交換器に設けた冷却水入口を中継管により接続し、同一冷却水を用いて低温側熱交換器を先に冷却した後に高温側熱交換器を冷却して、熱交換量を多くし、冷却効率を高めることができ、2つの熱交換器をコンパクトにまとめることができる。   In the second problem solving means relating to the cooling structure of the EGR cooler, the cooling water outlet provided in the low temperature side heat exchanger and the cooling water inlet provided in the high temperature side heat exchanger are connected by a relay pipe, and the same cooling water is used. Thus, after cooling the low-temperature side heat exchanger first, the high-temperature side heat exchanger is cooled to increase the heat exchange amount, and the cooling efficiency can be increased, and the two heat exchangers can be combined in a compact manner.

EGRクーラの冷却構造に係る第3の課題解決手段では、高温側熱交換器は並流冷却とし、低温側熱交換器は向流冷却として使用するから、高温側熱交換器では冷却水が流入する動圧を利用して水の広がりを良くして局部沸騰を抑え、チューブの露出などの耐久性を防止し、低温側熱交換器では最低温度を下げることができ、同一冷却水を用いて、熱交換量を多くして冷却効率を高め、温度管理を容易にし、冷却効率を高めることができる。
また、EGRクーラの冷却構造に係る第4の課題解決手段では、低温側熱交換器と高温側熱交換器との分割比率を1:9〜5:5の範囲内にすることにより、EGRクーラの長さを短めに抑えられ、しかも低温側熱交換器の放熱量を比較的小さくできるとともに水温上昇が比較的小さく抑えられる。また分割比率が5:5に近づくと、低温側熱交換器の放熱量が大きくなっていくが20%以下の許容範囲内であり、コアを分割する仕切板の位置が中央寄りになり、位置決め等が易しくなって作業上有利になる。
In the third problem solving means relating to the cooling structure of the EGR cooler, the high-temperature side heat exchanger is used as cocurrent cooling and the low-temperature side heat exchanger is used as countercurrent cooling. Using dynamic pressure to improve the spread of water, suppress local boiling, prevent durability such as tube exposure, low temperature side heat exchanger can lower the minimum temperature, using the same cooling water By increasing the amount of heat exchange, cooling efficiency can be increased, temperature management can be facilitated, and cooling efficiency can be increased.
Moreover, in the 4th problem-solving means which concerns on the cooling structure of an EGR cooler, by making the division | segmentation ratio of a low temperature side heat exchanger and a high temperature side heat exchanger into the range of 1: 9-5: 5, EGR cooler In addition, the heat radiation amount of the low-temperature side heat exchanger can be made relatively small and the water temperature rise can be kept relatively small. When the split ratio approaches 5: 5, the heat dissipation amount of the low-temperature side heat exchanger increases, but it is within the allowable range of 20% or less, and the position of the partition plate that divides the core is closer to the center. Etc. becomes easy and advantageous in terms of work.

以下、本発明による最良の実施形態を具体的に説明する。
ただし、この実施形態は、発明の趣旨をより良く理解させるため具体的に説明するものであり、特に指定のない限り、発明内容を限定するものではない。
なお、従来例と同じものは同じ符号を付して詳しい説明を省略する。
Hereinafter, the best embodiment according to the present invention will be described in detail.
However, this embodiment is specifically described for better understanding of the gist of the invention, and does not limit the content of the invention unless otherwise specified.
In addition, the same thing as a prior art example attaches | subjects the same code | symbol, and abbreviate | omits detailed description.

「第1の実施形態」
〔構成〕
第1の実施形態のEGRクーラ8は、図1の多管式熱交換器で示すように、1つの熱交換器本体の冷却水流路内に設けるバッフルプレートを仕切板8jに置き換え、仕切板8jで仕切られた各室を隙間なく密封して冷却水流路の長手方向(流れ方向)を二分する。この仕切板8jを境として、EGRガスの入口側に位置する方を高温側熱交換器8aとし、EGRガスの出口側に位置する方を低温側熱交換器8bとして使用することにする。
このEGRクーラ8では、高温側熱交換器8aと低温側熱交換器8bにはそれぞれ冷却水入口14a,24aと、冷却水出口14b,24bとを取り付け、高温側熱交換器8aに設けた冷却水入口14aと低温側熱交換器8bに設けた冷却水出口24bとを中継管8kで接続して、エンジンの冷却水を低温側熱交換器8bから高温側熱交換器8aに供給することができるようにする。
“First Embodiment”
〔Constitution〕
The EGR cooler 8 of the first embodiment replaces the baffle plate provided in the cooling water flow path of one heat exchanger main body with a partition plate 8j as shown in the multi-tube heat exchanger of FIG. Each chamber partitioned by is sealed without gaps, and the longitudinal direction (flow direction) of the cooling water flow path is bisected. With this partition plate 8j as a boundary, the side positioned on the EGR gas inlet side is used as the high temperature side heat exchanger 8a, and the side positioned on the EGR gas outlet side is used as the low temperature side heat exchanger 8b.
In this EGR cooler 8, cooling water inlets 14a and 24a and cooling water outlets 14b and 24b are respectively attached to the high temperature side heat exchanger 8a and the low temperature side heat exchanger 8b, and the cooling provided in the high temperature side heat exchanger 8a. By connecting the water inlet 14a and the cooling water outlet 24b provided in the low temperature side heat exchanger 8b with the relay pipe 8k, the engine cooling water can be supplied from the low temperature side heat exchanger 8b to the high temperature side heat exchanger 8a. It can be so.

このEGRクーラ8では、仕切板8jで仕切られているのは冷却水流路だけで、ガス流路は高温側熱交換器8aと低温側熱交換器8bとは、円管に形成されたそれぞれのチューブ17,27が高温側熱交換器8aから低温側熱交換器8bまで同一チューブにより形成されて、EGRガスが高温側熱交換器8aを通過したあと直ちに低温側熱交換器8bに流入することになり、途中で熱損失を生じて熱交換効率が下がるようなことがないようになっている。
このため、高温側熱交換器8aと低温側熱交換器8bとが、エンジンの冷却水を各熱交換器8a,8bの冷却水入口と冷却水出口とからそれぞれ流入、流出するとき、冷却水入口14aと冷却水出口24bとが中継管8kで接続された配管系統を形成するときには、高温側熱交換器8aは並流冷却となり、低温側熱交換器8bは向流冷却となる。
In this EGR cooler 8, only the cooling water flow path is partitioned by the partition plate 8j, and the gas flow path includes the high temperature side heat exchanger 8a and the low temperature side heat exchanger 8b. The tubes 17 and 27 are formed of the same tube from the high temperature side heat exchanger 8a to the low temperature side heat exchanger 8b, and EGR gas flows into the low temperature side heat exchanger 8b immediately after passing through the high temperature side heat exchanger 8a. Thus, heat loss does not occur in the middle and the heat exchange efficiency does not decrease.
Therefore, when the high temperature side heat exchanger 8a and the low temperature side heat exchanger 8b flow in and out the engine cooling water from the cooling water inlet and the cooling water outlet of the heat exchangers 8a and 8b, respectively, When forming a piping system in which the inlet 14a and the cooling water outlet 24b are connected by the relay pipe 8k, the high temperature side heat exchanger 8a is cocurrent cooling, and the low temperature side heat exchanger 8b is countercurrent cooling.

高温側熱交換器8aを並流冷却にして、冷却水の流入する時の動圧を利用することにより水の拡がりを良くして局部沸騰を抑えると、EGRガス通路であるチューブ17,…,17が露出するなどの耐久性低下となる要因をなくすことができる。また、低温側熱交換器8bでは、EGRガス通路であるチューブ27,…,27におけるEGRガス入口部でEGRガス温度を200℃以下、望ましくは150℃前後になるように設定すると、向流冷却にすることで効果的に冷却することができ、熱交換器としての効率を高く保つことができるとともにEGRガスの出口温度を引き下げることができ、最低温度を従来よりも低くすることができる。   If the high-temperature side heat exchanger 8a is cooled in parallel flow, and the local pressure is suppressed by using the dynamic pressure when the cooling water flows in, the local boiling is suppressed, and the tubes 17,. It is possible to eliminate a factor that deteriorates durability such as exposure of 17. Further, in the low temperature side heat exchanger 8b, when the EGR gas temperature is set to 200 ° C. or less, preferably around 150 ° C. at the EGR gas inlet portion in the tubes 27,. Thus, it is possible to effectively cool, maintain high efficiency as a heat exchanger, lower the EGR gas outlet temperature, and lower the minimum temperature than before.

「第2の実施形態」
〔構成〕
第2の実施形態のEGRクーラ9は、図2の扁平チューブ式熱交換器で示すように、1つの熱交換器本体の冷却水流路内に設けるバッフルプレートを仕切板9jに置き換え、仕切板9jで仕切られた各室を隙間なく密封して冷却水流路の長手方向(流れ方向)を二分する。仕切板9jを境として、EGRガスの入口側に位置する方を高温側熱交換器9aとし、EGRガスの出口側に位置する方を低温側熱交換器9bとして使用することにする。
このEGRクーラ9では、高温側熱交換器9aと低温側熱交換器9bにはそれぞれ冷却水入口34a,44aと、冷却水出口34b,44bとを取り付け、高温側熱交換器9aに設けた冷却水入口34aと低温側熱交換器9bに設けた冷却水出口44bとを中継管(図示せず)で接続して、エンジンの冷却水を低温側熱交換器9bから高温側熱交換器9aに供給することができるようにする。
“Second Embodiment”
〔Constitution〕
As shown in the flat tube heat exchanger of FIG. 2, the EGR cooler 9 of the second embodiment replaces the baffle plate provided in the cooling water flow path of one heat exchanger main body with a partition plate 9j, thereby dividing the partition plate 9j. Each chamber partitioned by is sealed without gaps, and the longitudinal direction (flow direction) of the cooling water flow path is bisected. With the partition plate 9j as a boundary, the side located on the EGR gas inlet side is used as the high temperature side heat exchanger 9a, and the side located on the EGR gas outlet side is used as the low temperature side heat exchanger 9b.
In this EGR cooler 9, cooling water inlets 34a and 44a and cooling water outlets 34b and 44b are respectively attached to the high temperature side heat exchanger 9a and the low temperature side heat exchanger 9b, and the cooling provided in the high temperature side heat exchanger 9a. The water inlet 34a and the cooling water outlet 44b provided in the low temperature side heat exchanger 9b are connected by a relay pipe (not shown), and the engine cooling water is transferred from the low temperature side heat exchanger 9b to the high temperature side heat exchanger 9a. To be able to supply.

このEGRクーラ9では、仕切板9jで仕切られているのは冷却水流路だけで、ガス流路は高温側熱交換器9aと低温側熱交換器9bとは、薄板のフィンが内設された扁平チューブ37,47のそれぞれが高温側熱交換器9aから低温側熱交換器9bまで同一チューブにより形成されて、EGRガスが高温側熱交換器9aを通過したあと直ちに低温側熱交換器9bに流入することになり、途中で熱損失を生じて熱交換効率が下がるようなことがないようになっている。
このため、高温側熱交換器9aと低温側熱交換器9bとが、エンジンの冷却水を各熱交換器9a,9bの冷却水入口と冷却水出口とからそれぞれ流入、流出するとき、冷却水入口34aと冷却水出口44bとが中継管で接続された配管系統を形成するときには、高温側熱交換器9aは並流冷却となり、低温側熱交換器9bは向流冷却となる。
In this EGR cooler 9, only the cooling water flow path is partitioned by the partition plate 9j, and the high temperature side heat exchanger 9a and the low temperature side heat exchanger 9b are provided with thin plate fins. Each of the flat tubes 37, 47 is formed by the same tube from the high temperature side heat exchanger 9a to the low temperature side heat exchanger 9b, and immediately after the EGR gas passes through the high temperature side heat exchanger 9a, the flat tube 37, 47 enters the low temperature side heat exchanger 9b. The heat exchange efficiency does not decrease due to heat loss on the way.
Therefore, when the high temperature side heat exchanger 9a and the low temperature side heat exchanger 9b flow in and out the engine cooling water from the cooling water inlet and the cooling water outlet of the respective heat exchangers 9a and 9b, the cooling water When forming a piping system in which the inlet 34a and the cooling water outlet 44b are connected by a relay pipe, the high temperature side heat exchanger 9a is cocurrent cooling, and the low temperature side heat exchanger 9b is countercurrent cooling.

高温側熱交換器9aを並流冷却にして、冷却水の流入する時の動圧を利用することにより水の拡がりを良くして局部沸騰を抑えると、EGRガス通路であるチューブ37,…,37が露出するなどの耐久性低下となる要因をなくすことができる。また、低温側熱交換器9bでは、EGRガス入口部でEGRガス温度を200℃以下、望ましくは150℃前後になるように設定すると、向流冷却にすることで効果的に冷却することができ、熱交換器としての効率を高く保つことができるとともにEGRガスの出口温度を引き下げることができ、最低温度を従来よりも低くすることができる。   If the high temperature side heat exchanger 9a is cooled in parallel flow and the dynamic pressure at the time when the cooling water flows in is used to improve the spread of water and suppress local boiling, the tubes 37,. It is possible to eliminate a factor that deteriorates durability such as exposure of 37. Moreover, in the low temperature side heat exchanger 9b, if the EGR gas temperature is set to 200 ° C. or lower, preferably around 150 ° C. at the EGR gas inlet, it can be effectively cooled by using countercurrent cooling. Further, the efficiency as a heat exchanger can be kept high, the outlet temperature of the EGR gas can be lowered, and the minimum temperature can be made lower than before.

以下では第1及び第2の実施形態で共通する作用効果を説明する。
〔作用効果〕
このように構成した各実施形態のEGRクーラでは、EGRガスの流れ方向に対して、高温側と低温側との2つの熱交換器8a,8b又は熱交換器9a,9bに分割したことによって、熱交換効率をより効果的に高め、耐久性の低下を抑え、稼動率を向上するばかりでなく、エンジン側に組付けるときには組付けを容易にして、コストを低減することができる。
分割した2つの熱交換器の分割比率を変えると冷却効率が若干変わるので、その変化の状態を調べた結果を図3および図4に示す。
In the following, the effects common to the first and second embodiments will be described.
[Function and effect]
In the EGR cooler of each embodiment configured as described above, by dividing into two heat exchangers 8a and 8b or heat exchangers 9a and 9b on the high temperature side and the low temperature side with respect to the flow direction of the EGR gas, Not only can the heat exchange efficiency be improved more effectively, the deterioration of durability can be suppressed and the operating rate can be improved, but also the assembly can be facilitated and the cost can be reduced when assembled on the engine side.
Since the cooling efficiency slightly changes when the division ratio of the two divided heat exchangers is changed, the results of examining the change state are shown in FIGS.

図3では、放熱量を略同等にする熱交換器の長さの変化として比較したもので、横軸には低温側と高温側の熱交換器分割比率を、縦軸には熱交換器のコア部の長さを示す。この中でハッチング部分が低温側、塗潰し部分が高温側を示す。
この場合、低温側熱交換器8b,9bの分割比率を上げていくと、熱交換器長さを僅かながら短くすることが可能であり、低温側:高温側の分割比率が1:9〜4:6までは比較的その効果の変化が大きいが、分割比率5:5以上に低温側が長くなると、その効果も頭打ちとなる。
In FIG. 3, comparison is made as a change in the length of the heat exchanger that makes the heat dissipation amount substantially the same. The horizontal axis represents the heat exchanger split ratio between the low temperature side and the high temperature side, and the vertical axis represents the heat exchanger. Indicates the length of the core part. Among them, the hatched portion indicates the low temperature side and the painted portion indicates the high temperature side.
In this case, if the division ratio of the low temperature side heat exchangers 8b and 9b is increased, the length of the heat exchanger can be slightly reduced, and the low temperature side: high temperature side division ratio is 1: 9-4. : The effect change is relatively large up to 6, but when the low temperature side becomes longer to a division ratio of 5: 5 or more, the effect reaches its peak.

図4では、熱交換器の全放熱量に対する低温側熱交換器8b,9bの放熱量の割合として示したものである。低温側熱交換器8b,9bの放熱量の割合は、低温側熱交換器8b,9bの分割比率が増加するに伴って増加しており、分割比率が5:5以上でも低温側熱交換器8b,9bの放熱量の割合は増加している。
一方、この低温側熱交換器8b,9bの放熱量の増加に比例して冷却水温度も上昇するので、高温側熱交換器8a,9aの冷却水の入口温度も上昇する。高温側熱交換器8a,9aのEGRガス入口側においてはガス温度が高温であり、冷却水の温度上昇による沸騰の危険性も高まってくる。
FIG. 4 shows the ratio of the heat radiation amount of the low temperature side heat exchangers 8b and 9b to the total heat radiation amount of the heat exchanger. The ratio of the heat radiation amount of the low temperature side heat exchangers 8b and 9b increases as the division ratio of the low temperature side heat exchangers 8b and 9b increases, and the low temperature side heat exchanger even when the division ratio is 5: 5 or more. The ratio of the heat radiation amount of 8b and 9b is increasing.
On the other hand, since the cooling water temperature also rises in proportion to the increase in the heat radiation amount of the low temperature side heat exchangers 8b and 9b, the inlet temperature of the cooling water of the high temperature side heat exchangers 8a and 9a also rises. On the EGR gas inlet side of the high temperature side heat exchangers 8a and 9a, the gas temperature is high, and the risk of boiling due to an increase in the temperature of the cooling water also increases.

従って、低温側熱交換器8b,9bの放熱量はできるだけ小さい範囲を選定する必要があり、これらを鑑みると、熱交換器の分割比率は、1:9〜5:5の範囲では、以下のような特性があり、利用するには適当である。即ち、
(1)分割比率が1:9〜2:8の範囲では、低温側熱交換器8b,9bの放熱量が小さく、分割の効果もある。
(2)分割比率が3:7〜4:6の範囲では、低温側熱交換器8b,9bの放熱量が10%前後で水温上昇も比較的小さく、分割効果も大きい。
(3)分割比率が5:5では、低温側熱交換器8b,9bの放熱量が17%と大きくなるが、コアを分割する位置が中央となり、位置決め等の作り易さの点で有利である。
Therefore, it is necessary to select a range in which the heat radiation amount of the low-temperature side heat exchangers 8b and 9b is as small as possible. In view of these, the division ratio of the heat exchanger is as follows in the range of 1: 9 to 5: 5. These characteristics are suitable for use. That is,
(1) When the division ratio is in the range of 1: 9 to 2: 8, the heat radiation amount of the low-temperature side heat exchangers 8b and 9b is small, and there is an effect of division.
(2) When the split ratio is in the range of 3: 7 to 4: 6, the heat release of the low-temperature side heat exchangers 8b and 9b is around 10%, the water temperature rise is relatively small, and the split effect is large.
(3) When the split ratio is 5: 5, the heat radiation of the low-temperature side heat exchangers 8b and 9b is as large as 17%, but the position where the core is split is the center, which is advantageous in terms of ease of making positioning, etc. is there.

〔別態様〕
このような実施の形態は、発明の趣旨を理解しやすくするため具体的に説明しているが、発明内容を限定するものではないから、特に説明されていない(意匠的な内容も含む)別の態様を制限するものではなく、適宜変更しても良い。このような意味で発明の趣旨に沿ういくつかの別態様を以下に示す。
[Another aspect]
Such an embodiment is specifically described in order to facilitate understanding of the gist of the invention, but does not limit the content of the invention, and is not particularly described (including design content). The embodiment is not limited, and may be changed as appropriate. In this sense, some other embodiments that meet the spirit of the invention are shown below.

高温側熱交換器8a,9aを並流冷却とし、低温側熱交換器8b,9bでは向流冷却にしたけれども、必ずしもこのような形態に形成しなくとも、両方とも並流冷却あるいは向流冷却であっても、熱交換効率を低下しないで配管容易で局部沸騰を抑え、耐久性の低下を防止し、全体の熱交換効率を高めるならば、利用可能である。
また、図示例では、多管式熱交換器あるいは扁平チューブ式熱交換器を示したが、他の形式であっても良い。さらに、冷却水をエンジン冷却水としたが、専用のラジエータによって冷却されたEGRクーラ専用の冷却水を使用しても良い。
このように、2つの熱交換器に分割することができ、また組付けを含めた後工程が効率良く処理できて、作業効率を向上し、コスト削減および熱交換の効率向上に貢献する構成ならば利用可能である。
Although the high temperature side heat exchangers 8a and 9a are cocurrent cooling and the low temperature side heat exchangers 8b and 9b are countercurrent cooling, both are not necessarily formed in such a form, but both are cocurrent cooling or countercurrent cooling. However, it can be used if piping is easy and local boiling is suppressed without lowering heat exchange efficiency, durability is prevented from lowering, and overall heat exchange efficiency is increased.
In the illustrated example, a multi-tube heat exchanger or a flat tube heat exchanger is shown, but other types may be used. Further, although the cooling water is engine cooling water, cooling water dedicated to the EGR cooler cooled by a dedicated radiator may be used.
In this way, the structure can be divided into two heat exchangers, and the post-process including assembly can be processed efficiently, improving work efficiency, and contributing to cost reduction and heat exchange efficiency. If available.

本発明の第1の実施形態による多管式熱交換器を形成するEGRクーラを示す部分断面斜視図である。1 is a partial cross-sectional perspective view showing an EGR cooler forming a multi-tube heat exchanger according to a first embodiment of the present invention. 本発明の第2の実施形態による扁平チューブ式熱交換器を形成するEGRクーラを示す部分断面斜視図である。It is a fragmentary sectional perspective view which shows the EGR cooler which forms the flat tube type heat exchanger by the 2nd Embodiment of this invention. 本発明の実施形態におけるEGRクーラの熱交換器分割による効果を示すグラフである。It is a graph which shows the effect by the heat exchanger division | segmentation of the EGR cooler in embodiment of this invention. 本発明の実施形態によるEGRクーラの低温側放熱量の割合を示すグラフである。It is a graph which shows the ratio of the low temperature side heat radiation amount of the EGR cooler by embodiment of this invention. 従来のEGRクーラのシステム系統図である。It is a system system | strain diagram of the conventional EGR cooler. 従来の多管式熱交換器を形成するEGRクーラを示す斜視図である。It is a perspective view which shows the EGR cooler which forms the conventional multitubular heat exchanger. 従来の扁平チューブ式熱交換器を形成するEGRクーラを示す斜視図である。It is a perspective view which shows the EGR cooler which forms the conventional flat tube type heat exchanger. 従来のEGRクーラに用いられている熱交換器の内部構造を示す縦断面説明図である。It is longitudinal cross-sectional explanatory drawing which shows the internal structure of the heat exchanger used for the conventional EGR cooler.

符号の説明Explanation of symbols

1 ディーゼルエンジン
2 インタークーラ
3 ラジエータ
4,6,8,9 EGRクーラ
4a,6a,14a,24a,34a,44a 冷却水入口
4b,6b,14b,24b,34b,44b 冷却水出口
4g,6g 入口側仕切板
4h,6h 出口側仕切板
4i,6i,17,27,37,47 チューブ
5 ターボチャージャ
5a コンプレッサ
5b タービン
7 チューブアセンブリ
8a,9a 高温側熱交換器
8b,9b 低温側熱交換器
8j,9j 仕切板
8k 中継管
1 Diesel engine 2 Intercooler 3 Radiators 4, 6, 8, 9 EGR coolers 4a, 6a, 14a, 24a, 34a, 44a Cooling water inlets 4b, 6b, 14b, 24b, 34b, 44b Cooling water outlets 4g, 6g Inlet side Partition plates 4h, 6h Exit side partition plates 4i, 6i, 17, 27, 37, 47 Tube 5 Turbocharger 5a Compressor 5b Turbine 7 Tube assembly 8a, 9a High temperature side heat exchangers 8b, 9b Low temperature side heat exchangers 8j, 9j Partition plate 8k relay pipe

Claims (4)

同一長さの軸方向に長いチューブの多数本を平行にして各チューブ間を互いに間をあけた状態で各チューブの両端を仕切板によって支持したチューブアセンブリを筒状に形成された熱交換器外殻の内部に収容し、上記熱交換器外殻に冷却水入口および冷却水出口を設け、各チューブ内をEGRガスが通過し各チューブ外周を冷却水により冷却するチューブ式熱交換器を有するEGRクーラの冷却構造であって、
前記チューブアセンブリには軸方向中央部に仕切板を加えて各チューブ外周側の空間を軸方向に分割し、この分割したそれぞれの空間に対応する熱交換器外殻の位置に、冷却水入口が設けられている方の熱交換器外殻には冷却水出口を加え、冷却水出口が設けられている方の熱交換器外殻には冷却水入口を加えて2つの熱交換器を形成し、
この2つの熱交換器のうちEGRガスが先に通過する高温側熱交換器と、この後にEGRガスが通過する低温側熱交換器とに接続するエンジン冷却水の配管を、上記低温側熱交換器を冷却した後に上記高温側熱交換器を冷却するように接続した
ことを特徴とするEGRクーラの冷却構造。
Outside the heat exchanger in which a tube assembly is formed in a cylindrical shape, with both ends of each tube supported by a partition plate in a state where many tubes of the same length in the axial direction are parallel and the tubes are spaced from each other EGR having a tube-type heat exchanger that is accommodated in the shell, has a cooling water inlet and a cooling water outlet in the outer shell of the heat exchanger, passes EGR gas through each tube, and cools the outer periphery of each tube with cooling water A cooling structure of the cooler,
In the tube assembly, a partition plate is added to the central portion in the axial direction to divide the space on the outer periphery side of each tube in the axial direction, and a cooling water inlet is provided at the position of the heat exchanger outer shell corresponding to each of the divided spaces. A cooling water outlet is added to the outer heat exchanger shell provided, and a cooling water inlet is added to the outer heat exchanger shell provided with the cooling water outlet to form two heat exchangers. ,
Of these two heat exchangers, the engine cooling water pipe connected to the high temperature side heat exchanger through which the EGR gas first passes and the low temperature side heat exchanger through which the EGR gas passes thereafter is connected to the low temperature side heat exchange. A cooling structure for an EGR cooler, wherein the high-temperature side heat exchanger is connected to be cooled after the cooler is cooled.
前記高温側熱交換器の冷却水入口と前記低温側熱交換器の冷却水出口とを中継管にて接続し、前記低温側熱交換器の冷却水入口にエンジン冷却水の供給側配管を接続し、前記高温側熱交換器の冷却水出口にエンジン冷却水の排出側配管を接続して、前記低温側熱交換器の冷却水入口から流入して前記高温側熱交換器の冷却水出口から流出するようにしたことを特徴とする請求項1記載のEGRクーラの冷却構造。   Connect the cooling water inlet of the high temperature side heat exchanger and the cooling water outlet of the low temperature side heat exchanger with a relay pipe, and connect the engine cooling water supply side piping to the cooling water inlet of the low temperature side heat exchanger An engine cooling water discharge side pipe is connected to the cooling water outlet of the high temperature side heat exchanger, and flows in from the cooling water inlet of the low temperature side heat exchanger and from the cooling water outlet of the high temperature side heat exchanger. 2. The cooling structure for an EGR cooler according to claim 1, wherein the cooling structure flows out. 前記高温側熱交換器にはEGRガス入口側に冷却水入口を配置するとともにEGRガス出口側に冷却水出口を配置し、前記低温側熱交換器にはEGRガス出口側に冷却水入口を配置するとともにEGRガス入口側に冷却水出口を配置して、前記高温側熱交換器を並流冷却とし、前記低温側熱交換器を向流冷却としたことを特徴とする請求項1記載のEGRクーラの冷却構造。   The high temperature side heat exchanger has a cooling water inlet on the EGR gas inlet side and a cooling water outlet on the EGR gas outlet side, and the low temperature side heat exchanger has a cooling water inlet on the EGR gas outlet side. The EGR according to claim 1, wherein a cooling water outlet is disposed on the EGR gas inlet side, the high temperature side heat exchanger is configured as cocurrent cooling, and the low temperature side heat exchanger is configured as countercurrent cooling. Cooler cooling structure. 前記低温側熱交換器と前記高温側熱交換器との分割比率を1:9〜5:5の範囲内にすることを特徴とする請求項1記載のEGRクーラの冷却構造。   The cooling structure of the EGR cooler according to claim 1, wherein a division ratio between the low temperature side heat exchanger and the high temperature side heat exchanger is in a range of 1: 9 to 5: 5.
JP2006147154A 2006-05-26 2006-05-26 Cooling structure of egr cooler Pending JP2007315324A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006147154A JP2007315324A (en) 2006-05-26 2006-05-26 Cooling structure of egr cooler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006147154A JP2007315324A (en) 2006-05-26 2006-05-26 Cooling structure of egr cooler

Publications (1)

Publication Number Publication Date
JP2007315324A true JP2007315324A (en) 2007-12-06

Family

ID=38849411

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006147154A Pending JP2007315324A (en) 2006-05-26 2006-05-26 Cooling structure of egr cooler

Country Status (1)

Country Link
JP (1) JP2007315324A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR200446520Y1 (en) * 2009-06-22 2009-11-05 강일중 Air Compressing System
CN101608874B (en) * 2009-04-16 2010-09-01 大冶斯瑞尔换热器有限公司 High and low temperature high-efficiency water heat exchanger
CN102778158A (en) * 2012-07-20 2012-11-14 无锡博利达换热器有限公司 Multi-flow heat exchanger
CN103148721A (en) * 2013-03-14 2013-06-12 江苏昊隆换热器有限公司 Double-layer plate type heat exchanger
EP2392882A3 (en) * 2010-06-01 2014-06-25 Outotec Oyj Heat exchange system
US11199112B2 (en) 2017-08-18 2021-12-14 Nederlandse Organisatie Voor Toegepast-Natuurwetenschappelijk Onderzoek Tno Method and system for heat recovery
CN114234682A (en) * 2021-12-08 2022-03-25 中国船舶重工集团公司第七一九研究所 Integrated heat exchanger of shell and tube

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101608874B (en) * 2009-04-16 2010-09-01 大冶斯瑞尔换热器有限公司 High and low temperature high-efficiency water heat exchanger
KR200446520Y1 (en) * 2009-06-22 2009-11-05 강일중 Air Compressing System
EP2392882A3 (en) * 2010-06-01 2014-06-25 Outotec Oyj Heat exchange system
CN102778158A (en) * 2012-07-20 2012-11-14 无锡博利达换热器有限公司 Multi-flow heat exchanger
CN103148721A (en) * 2013-03-14 2013-06-12 江苏昊隆换热器有限公司 Double-layer plate type heat exchanger
US11199112B2 (en) 2017-08-18 2021-12-14 Nederlandse Organisatie Voor Toegepast-Natuurwetenschappelijk Onderzoek Tno Method and system for heat recovery
CN114234682A (en) * 2021-12-08 2022-03-25 中国船舶重工集团公司第七一九研究所 Integrated heat exchanger of shell and tube

Similar Documents

Publication Publication Date Title
US11149644B2 (en) Heat exchange module for a turbine engine
JP2007315323A (en) System structure of egr cooler
JP2007315324A (en) Cooling structure of egr cooler
US20070193732A1 (en) Heat exchanger
JP2010249129A (en) Charge air cooler and cooling system
JP2010127143A (en) Charge air cooler
US7774937B2 (en) Heat exchanger with divided coolant chamber
US9303596B2 (en) EGR cooler and EGR cooler device using the same
JP2009068809A (en) Hybrid heat exchanger
JP2002054511A (en) Egr cooler
JPH1113551A (en) Egr cooler
JP2006118436A (en) Bonnet for egr gas cooling device
JP2007315325A (en) Heat exchanger structure for egr cooler
JP2008232142A (en) Cooled egr system and heat exchanger for system thereof
JP2005273512A (en) Egr cooler for engine
JP2007225137A (en) Multitubular heat exchanger and heat transfer tube for exhaust gas cooling device
JP2006200490A (en) Exhaust gas cooling device for exhaust gas recirculating system
KR20160009409A (en) Integrated heat exchanger
JP2006132470A (en) Egr device
JP2003161209A (en) Egr cooler
JP2002180915A (en) Egr cooler
JP2011196620A (en) Ebullient cooling type heat exchanger
JP2010091212A (en) Heat exchanger
JPH11303688A (en) Egr cooler
JP2015034530A (en) Egr device