JP2007315323A - System structure of egr cooler - Google Patents

System structure of egr cooler Download PDF

Info

Publication number
JP2007315323A
JP2007315323A JP2006147153A JP2006147153A JP2007315323A JP 2007315323 A JP2007315323 A JP 2007315323A JP 2006147153 A JP2006147153 A JP 2006147153A JP 2006147153 A JP2006147153 A JP 2006147153A JP 2007315323 A JP2007315323 A JP 2007315323A
Authority
JP
Japan
Prior art keywords
heat exchanger
cooling water
temperature side
side heat
egr gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006147153A
Other languages
Japanese (ja)
Inventor
Tamio Komatsubara
民雄 小松原
Masaaki Hayashi
正章 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Radiator Mfg Co Ltd
Original Assignee
Tokyo Radiator Mfg Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Radiator Mfg Co Ltd filed Critical Tokyo Radiator Mfg Co Ltd
Priority to JP2006147153A priority Critical patent/JP2007315323A/en
Publication of JP2007315323A publication Critical patent/JP2007315323A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Exhaust-Gas Circulating Devices (AREA)
  • Details Of Heat-Exchange And Heat-Transfer (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a system structure of an EGR cooler, capable of restraining local boiling by two heat exchangers, capable of preventing reduction in durability, and capable of enhancing the whole heat exchange efficiency. <P>SOLUTION: This system structure has two tube type heat exchangers for cooling the respective tube outer peripheries by cooling water, by passing EGR gas through into respective tubes, by arranging a cooling water inlet pipe and a cooling water outlet pipe in an outer shell of these heat exchangers, by storing a tube assembly of supporting both ends of the respective tubes by a partition plate, inside the outer shell of the cylindrically formed heat exchangers, in a state of respectively opening the mutual respective tubes, by arranging a large number of axially long tubes of the same length in parallel; and is constituted so as to connect a pipe of engine cooling water to the high temperature side heat exchanger for passing the EGR gas first among these two tube type heat exchangers, and to connect a pipe of the cooling water cooled by an exclusive radiator to the low temperature side heat exchanger for passing the EGR gas after this high temperature side heat exchanger. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、流れ方向に2分割して冷却効率を向上させることができるようにしたEGRクーラのシステム構造に関する。   The present invention relates to a system structure of an EGR cooler that can be divided into two in the flow direction to improve cooling efficiency.

近年、ディーゼルエンジンに対する排ガス規制強化に伴い、EGRガスの温度の上昇、ガス流量の増加、EGRクーラのガス出口温度の低減(放熱量増加)などEGRクーラを取り巻く環境は厳しくなる一方であり、放熱量の増大と高温耐久性の維持などが望まれている。
一般に、エンジン周りでは、図5に示すように、ディーゼルエンジン1を中心にして前方にインタークーラ2とラジエータ3とが配置され、後方にEGRクーラ4又は6を配置しており、側方にターボチャージャ5を配置して、ターボチャージャ5はコンプレッサ5aを前方より吸気するように向けるとともにタービン5bからの排気ガスを後方に向けて排出するように配置している。
In recent years, with the tightening of exhaust gas regulations for diesel engines, the environment surrounding the EGR cooler has become severe, such as an increase in the temperature of the EGR gas, an increase in gas flow rate, and a decrease in the gas outlet temperature of the EGR cooler (an increase in heat dissipation). It is desired to increase the amount of heat and maintain high temperature durability.
In general, around the engine, as shown in FIG. 5, an intercooler 2 and a radiator 3 are arranged in front of the diesel engine 1, and an EGR cooler 4 or 6 is arranged in the rear. The charger 5 is disposed, and the turbocharger 5 is disposed so that the compressor 5a is directed from the front and the exhaust gas from the turbine 5b is discharged rearward.

EGRクーラ4,6では、図6の円管を多数組み込んだ多管式熱交換器又は図7の放熱フィンを内設した扁平なチューブを多数組み込んだ扁平チューブ式熱交換器で示すように、冷却水入口4a,6aをガス入口側の端部に設け、冷却水出口4b,6bをガス排出側の端部に設け、熱交換器本体の両端部にはフランジ付きヘッダー4c,4d,6c,6dをそれぞれ設け、各フランジ4e,4f,6e,6fはディーゼルエンジン1側からの配管とボルト止めできるように大きさを決めている。
EGRクーラ4,6の内部構造は、図8に示すように、同一長さを有する多数のチューブ4i,…,4i,6i,…,6iを平行に配列し、両端を入口側仕切板4g,6gと出口側仕切板4h,6hとによる端部を閉鎖するための仕切板によって互いに各チューブ間をほぼ等間隔に支えているチューブアセンブリ7を内蔵している多管式熱交換器又は扁平チューブ式熱交換器として構成する。
In the EGR coolers 4 and 6, as shown by a multi-tube heat exchanger incorporating a large number of circular tubes in FIG. 6 or a flat tube heat exchanger incorporating a large number of flat tubes in which radiating fins are installed in FIG. Cooling water inlets 4a and 6a are provided at the end on the gas inlet side, cooling water outlets 4b and 6b are provided at the end on the gas discharge side, and flanged headers 4c, 4d, 6c, 6d is provided, and the sizes of the flanges 4e, 4f, 6e, and 6f are determined so that they can be bolted to the piping from the diesel engine 1 side.
As shown in FIG. 8, the internal structure of the EGR coolers 4 and 6 includes a plurality of tubes 4i,..., 4i, 6i,. A multi-tube heat exchanger or a flat tube containing a tube assembly 7 that supports each tube at approximately equal intervals by a partition plate for closing the end portion of 6g and the outlet side partition plates 4h, 6h. Configure as a heat exchanger.

多管式熱交換器やチューブ式熱交換器を形成するEGRクーラ4,6への排気ガスの入口出口と冷却水の入口出口との関係は、ガス入口側の端部に冷却水入口4a,6aを設け、ガス出口側の端部に冷却水出口4b,6bを設けて、冷却水の流入する圧力によって流れが本体内を均等に流れるように工夫したもの(並流方式)がある(特許文献1)。
また、冷却水入口4a,6aをガス排出側の端部に設け、冷却水出口4b,6bをガス入口側の端部に設けるもの(向流方式)もある(特許文献2)。
The relationship between the inlet / outlet of the exhaust gas and the inlet / outlet of the cooling water to the EGR coolers 4 and 6 forming the multi-tubular heat exchanger and the tube type heat exchanger is as follows. 6a is provided, and cooling water outlets 4b and 6b are provided at the end on the gas outlet side, and a device is devised so that the flow can flow evenly in the main body by the pressure of the cooling water (patent flow method). Reference 1).
There is also a cooling water inlet 4a, 6a provided at the end on the gas discharge side and a cooling water outlet 4b, 6b provided at the end on the gas inlet side (counterflow system) (Patent Document 2).

特開2000−045883号公報JP 2000-045883 A 特開2000−274990号公報JP 2000-274990 A

〔従来技術の問題点〕
EGRクーラ4,6では、排気ガス温度がガス入口側で500℃以上の高温になり、冷却水入口温度はディーゼルエンジン1を冷却した後の冷却水を使用するため、概略80℃〜90℃となり、ガス入口側では両流体の温度差が大きくなり、冷却水が沸騰する恐れがある。
また、この沸騰を抑えるために、EGRクーラ4,6のガス入口側の端部に冷却水入口4a,6aを設け、ガス出口側の端部に冷却水出口4b,6bを設け、冷却水の流入する圧力によって流れが均等に拡散する構造とするもの(並流型)があるが、この構造の場合では、EGRガスと冷却水の流れが同一方向となるため、出口に向かってガス温度の低下と冷却水温度の上昇によって両流体の温度差が小さくなり、熱交換量が低下する。
このため、長手方向で2分割するものが考えられているが、同じ冷却水を用いることにすると、入口側の温度が変わるわけではなく、入口側および出口側ともに配管系統を分岐して形成することになり、配管が複雑でかつ取付作業が難しくなる。
[Problems of the prior art]
In the EGR coolers 4 and 6, the exhaust gas temperature is higher than 500 ° C. on the gas inlet side, and the cooling water inlet temperature is approximately 80 ° C. to 90 ° C. because the cooling water after cooling the diesel engine 1 is used. On the gas inlet side, the temperature difference between the two fluids increases, and the cooling water may boil.
In order to suppress this boiling, the cooling water inlets 4a and 6a are provided at the gas inlet side ends of the EGR coolers 4 and 6, and the cooling water outlets 4b and 6b are provided at the gas outlet side ends. There is a structure in which the flow is evenly diffused by the inflowing pressure (cocurrent flow type). In this structure, the flow of EGR gas and cooling water is in the same direction. The temperature difference between the two fluids decreases due to the decrease and the increase in the cooling water temperature, and the amount of heat exchange decreases.
For this reason, although what is divided into two in the longitudinal direction is considered, if the same cooling water is used, the temperature on the inlet side does not change, and the piping system is branched and formed on both the inlet side and the outlet side. As a result, piping is complicated and installation work becomes difficult.

本発明は、従来の技術における前記問題点に鑑みて成されたものであり、これを解決するため具体的に設定した技術的な課題は、2分割型で局部沸騰を抑え、耐久性の低下を防ぎ、全体の熱交換効率を高めることができるようにしたEGRクーラのシステム構造を提供することにある。   The present invention has been made in view of the above-mentioned problems in the prior art, and the technical problem specifically set in order to solve this problem is to suppress local boiling with a 2-split type and to reduce durability. It is an object of the present invention to provide a system structure of an EGR cooler that can prevent the occurrence of heat and improve the overall heat exchange efficiency.

本発明における前記課題が効果的に解決されるEGRクーラのシステム構造を特定するために、必要と認める事項の全てが網羅され、具体的に構成された、課題解決手段を以下に示す。
EGRクーラのシステム構造に係る第1の課題解決手段は、同一長さの軸方向に長いチューブの多数本を並行にして各チューブの間をそれぞれあけた状態で各チューブの両端を仕切板によって支持したチューブアセンブリを筒状に形成された熱交換器外殻の内部に収容し、この熱交換器外殻に冷却水入口管および冷却水出口管を設け、各チューブ内をEGRガスが通過し各チューブ外周を冷却水により冷却するチューブ式熱交換器を2つ備え、この2つのチューブ式熱交換器のうちEGRガスが先に通過する高温側熱交換器にはエンジン冷却水の配管を接続し、この高温側熱交換器の後にEGRガスが通過する低温側熱交換器には専用のラジエータにより冷却した冷却水の配管を接続したことを特徴とするものである。
In order to identify the system structure of the EGR cooler that effectively solves the above-mentioned problems in the present invention, all the matters recognized as necessary are covered and concretely configured problem solving means is shown below.
The first problem-solving means related to the system structure of the EGR cooler is to support both ends of each tube by a partition plate in a state where a large number of tubes having the same length in the axial direction are parallel and each tube is opened. The tube assembly is accommodated inside a cylindrical heat exchanger outer shell, and a cooling water inlet pipe and a cooling water outlet pipe are provided in the outer shell of the heat exchanger, and EGR gas passes through each tube. Two tube heat exchangers that cool the tube periphery with cooling water are provided, and the engine cooling water piping is connected to the high temperature side heat exchanger through which the EGR gas first passes among these two tube heat exchangers. The low-temperature side heat exchanger through which the EGR gas passes after the high-temperature side heat exchanger is connected to a cooling water pipe cooled by a dedicated radiator.

また、同上EGRクーラのシステム構造に係る第2の課題解決手段は、前記高温側熱交換器と前記低温側熱交換器とを同心状にボルト結合して一体に形成したことを特徴とする。
また、同上EGRクーラのシステム構造に係る第3の課題解決手段は、前記高温側熱交換器の冷却水入口をEGRガス入口側に配置するとともに冷却水出口をEGRガス出口側に配置し、前記低温側熱交換器の冷却水入口をEGRガス出口側に配置するとともに冷却水出口をEGRガス入口側に配置して、前記高温側熱交換器を並流とし、前記低温側熱交換器を向流としたことを特徴とする。
また、同上EGRクーラのシステム構造に係る第4の課題解決手段は、前記高温側熱交換器として多管式熱交換器を形成してEGRガス入口側に配置するとともに前記低温側熱交換器として扁平チューブ式熱交換器を形成してEGRガス出口側に配置し、前記高温側熱交換器を並流とし、前記低温側熱交換器を向流としたことを特徴とする。
Further, the second problem-solving means according to the system structure of the EGR cooler is characterized in that the high-temperature side heat exchanger and the low-temperature side heat exchanger are integrally formed by bolting concentrically.
Further, the third problem-solving means according to the system structure of the EGR cooler is the same as that described above, in which the cooling water inlet of the high temperature side heat exchanger is arranged on the EGR gas inlet side and the cooling water outlet is arranged on the EGR gas outlet side. The cooling water inlet of the low temperature side heat exchanger is arranged on the EGR gas outlet side, and the cooling water outlet is arranged on the EGR gas inlet side, so that the high temperature side heat exchanger is cocurrent and the low temperature side heat exchanger is directed. It is characterized by the flow.
Further, the fourth problem-solving means related to the system structure of the EGR cooler is the same as that described above, in which a multi-tubular heat exchanger is formed as the high-temperature side heat exchanger and arranged on the EGR gas inlet side, and as the low-temperature side heat exchanger A flat tube heat exchanger is formed and arranged on the EGR gas outlet side, the high temperature side heat exchanger is set as a parallel flow, and the low temperature side heat exchanger is set as a counter flow.

EGRクーラのシステム構造に係る第1の課題解決手段では、高温側熱交換器と低温側熱交換器との2つを備え、エンジン冷却水と専用のラジエータにより冷却した冷却水とをそれぞれの熱交換器に使用したことにより、EGRガスと冷却水との温度関係を容易に規定の状態に保ち、熱交換量を高くし、局部沸騰を抑えて耐久性の低下を防ぎ、全体の熱交換効率を高めることができる。
EGRクーラのシステム構造に係る第2の課題解決手段では、高温側熱交換器と低温側熱交換器とを一体にしたことにより、EGRガスの通過を効率良くして、熱交換効率を高めるとともに、熱交換器をコンパクトにまとめることができる。
In the first problem solving means relating to the system structure of the EGR cooler, there are two high-temperature side heat exchangers and low-temperature side heat exchangers, and each of the engine cooling water and the cooling water cooled by a dedicated radiator is heated. By using it in the exchanger, the temperature relationship between the EGR gas and the cooling water is easily maintained in the specified state, the heat exchange amount is increased, the local boiling is suppressed, the deterioration of durability is prevented, and the overall heat exchange efficiency Can be increased.
In the second problem-solving means related to the system structure of the EGR cooler, the high-temperature side heat exchanger and the low-temperature side heat exchanger are integrated, so that the passage of the EGR gas is improved and the heat exchange efficiency is improved. , Heat exchangers can be put together compactly.

EGRクーラのシステム構造に係る第3の課題解決手段では、高温側熱交換器にはエンジン冷却水を供給でき、低温側熱交換器には独立したラジエータからの冷却水を供給することができて、冷却水供給の自由度が増し、温度管理を容易にし、冷却効率を高めることができ、高温側熱交換器は並流とし、低温側熱交換器は向流としたから、高温側熱交換器においては高温ガスの入口側のエンドプレート及びチューブに対して冷却水が流入する動圧を利用して水の広がりを良くして効果的に冷却し、局部沸騰を抑え、チューブの露出などの耐久性を防止することができ、低温側熱交換器においては高温側熱交換器のEGRガス出口温度を200℃以下、望ましくは150℃前後に設定することにより、向流として好ましく使用することができ、熱交換器の効率を高く保つことができ、EGRガス出口における最低排出ガス温度を引き下げることができる。   In the third problem solving means relating to the system structure of the EGR cooler, the engine cooling water can be supplied to the high temperature side heat exchanger, and the cooling water from an independent radiator can be supplied to the low temperature side heat exchanger. The degree of freedom of cooling water supply is increased, temperature management is facilitated, cooling efficiency can be improved, the high-temperature side heat exchanger is parallel flow, and the low-temperature side heat exchanger is counterflow, so high-temperature side heat exchange In the vessel, the dynamic pressure at which the cooling water flows into the end plate and the tube on the inlet side of the high-temperature gas is used to effectively cool the water by spreading it, suppressing local boiling, and exposing the tube. Durability can be prevented, and in a low-temperature side heat exchanger, the EGR gas outlet temperature of the high-temperature side heat exchanger can be preferably used as a countercurrent by setting it to 200 ° C. or less, preferably around 150 ° C. Can It is possible to maintain high efficiency of the exchanger, it is possible to lower the minimum exhaust gas temperature at EGR gas outlet.

EGRクーラのシステム構造に係る第4の課題解決手段では、EGRガス入口側に配置した高温側熱交換器は冷却水を並流にして冷却する多管式熱交換器としたから、冷却水の流れがスムーズで広がりも良く、EGRガス出口温度を望ましい設定温度に容易に下げることができ、EGRガス出口側に配置した低温側熱交換器は冷却水を向流にして冷却する扁平チューブ式熱交換器としたから、熱交換効率を高く保つことができて効果的に冷却することができ、EGRガス出口の最低排出ガス温度を効果的に引き下げることができる。   In the fourth problem-solving means relating to the system structure of the EGR cooler, the high-temperature side heat exchanger disposed on the EGR gas inlet side is a multi-tube heat exchanger that cools cooling water in parallel flow. The flow is smooth and spreads easily, the EGR gas outlet temperature can be easily lowered to the desired set temperature, and the low temperature side heat exchanger located on the EGR gas outlet side is a flat tube type heat that cools the cooling water countercurrently Since the exchanger is used, the heat exchange efficiency can be kept high, the cooling can be effectively performed, and the minimum exhaust gas temperature at the EGR gas outlet can be effectively reduced.

以下、本発明による最良の実施形態を具体的に説明する。
ただし、この実施形態は、発明の趣旨をより良く理解させるため具体的に説明するものであり、特に指定のない限り、発明内容を限定するものではない。
なお、従来例と同じものは同じ符号を付して詳しい説明を省略する。
Hereinafter, the best embodiment according to the present invention will be described in detail.
However, this embodiment is specifically described for better understanding of the gist of the invention, and does not limit the content of the invention unless otherwise specified.
In addition, the same thing as a prior art example attaches | subjects the same code | symbol, and abbreviate | omits detailed description.

〔第1実施形態〕
第1実施形態のEGRクーラは、図1に示すように、ディーゼルエンジン1の後方に高温側熱交換器10aと、低温側熱交換器10bとをEGRガスの流れに対して直列に配置し、高温側熱交換器10aではエンジン冷却水の配管8a,8bを接続する冷却水入口11aと冷却水出口11bとを設けてエンジン冷却水を供給することができるようにし、低温側熱交換器10bには専用のラジエータ9からの配管9a,9bに接続する冷却水入口12aと冷却水出口12bとを設けて低温側専用の冷却水を供給することができるようにする。
[First Embodiment]
As shown in FIG. 1, the EGR cooler of the first embodiment has a high temperature side heat exchanger 10a and a low temperature side heat exchanger 10b arranged in series behind the diesel engine 1 with respect to the flow of EGR gas, The high temperature side heat exchanger 10a is provided with a cooling water inlet 11a and a cooling water outlet 11b for connecting the engine cooling water pipes 8a and 8b so that the engine cooling water can be supplied to the low temperature side heat exchanger 10b. Is provided with a cooling water inlet 12a and a cooling water outlet 12b connected to the pipes 9a and 9b from the dedicated radiator 9, so that cooling water dedicated to the low temperature side can be supplied.

高温側熱交換器10aと低温側熱交換器10bとは、図2に示すように、どちらも多管式熱交換器を形成し、共に外殻の端部にフランジ10c,10dを設け、ボルト絞めにより同心的にかつ一体に結合して、高温側熱交換器10aを通過したEGRガスが直ちに低温側熱交換器10bに流入するようにして、熱交換効率を下げないようにする。
そして、高温側熱交換器10aと低温側熱交換器10bとに、それぞれ設けた冷却水入口11a,12aと冷却水出口11b,12bとを、高温側熱交換器10aの冷却水入口11aはEGRガス入口側に配置するとともに冷却水出口11bをEGRガス出口側に配置し、低温側熱交換器10bの冷却水入口12aはEGRガス出口側に配置するとともに冷却水出口12bをEGRガス入口側に配置して、高温側熱交換器10aは並流とし、低温側熱交換器10bは向流として使用する。
As shown in FIG. 2, the high temperature side heat exchanger 10a and the low temperature side heat exchanger 10b both form a multi-tubular heat exchanger, and both are provided with flanges 10c and 10d at the ends of the outer shell, The EGR gas that has been concentrically and integrally coupled by constriction and has passed through the high temperature side heat exchanger 10a immediately flows into the low temperature side heat exchanger 10b so as not to lower the heat exchange efficiency.
And the high temperature side heat exchanger 10a and the low temperature side heat exchanger 10b are respectively provided with cooling water inlets 11a and 12a and cooling water outlets 11b and 12b, and the high temperature side heat exchanger 10a has a cooling water inlet 11a that is EGR. The cooling water outlet 11b is arranged on the EGR gas outlet side, the cooling water inlet 12a of the low temperature side heat exchanger 10b is arranged on the EGR gas outlet side, and the cooling water outlet 12b is arranged on the EGR gas inlet side. Arranged, the high temperature side heat exchanger 10a is used as a parallel flow, and the low temperature side heat exchanger 10b is used as a counter flow.

高温側熱交換器10aを並流とし、冷却水の流入する時の動圧を利用して水の拡がりを良くすることにより局部沸騰を抑えると、EGRガス通路であるチューブアセンブリ7の各チューブ4i,…,4iが冷却水から露出するなどの耐久性低下となる要因をなくすことができる。また、低温側熱交換器10bでは、EGRガス入口部でEGRガス温度を200℃以下、好ましくは150℃前後になるように設定すると、向流にすることで効果的に冷却でき、熱交換器としての効率を高く保つことができ、さらにEGRガスの最低温度をより低温に引き下げることができる。   When local boiling is suppressed by using the high-temperature side heat exchanger 10a as a parallel flow and improving the spreading of the water by using the dynamic pressure when cooling water flows in, each tube 4i of the tube assembly 7 which is an EGR gas passage. ,..., 4i can be eliminated from factors such as being exposed from the cooling water. Further, in the low temperature side heat exchanger 10b, when the EGR gas temperature is set to 200 ° C. or less, preferably around 150 ° C. at the EGR gas inlet, it can be effectively cooled by using a counter flow, and the heat exchanger As a result, the minimum temperature of the EGR gas can be lowered to a lower temperature.

〔第2実施形態〕
第2実施形態のEGRクーラは、第1実施形態と同様に、ディーゼルエンジン1の後方に高温側熱交換器20aと、低温側熱交換器20bとをEGRガスの流れに対して直列に配置し、高温側熱交換器20aでは冷却水入口21aと、冷却水出口21bを設けて、それぞれ配管8a,8bと接続し、エンジン冷却水を冷却用に供給することができるようにし、低温側熱交換器20bには冷却水入口22aと冷却水出口22bとを設けて、専用のラジエータ9に接続するための配管9a,9bをそれぞれ接続して、低温側専用の冷却水を供給することができるようにする。
[Second Embodiment]
As in the first embodiment, the EGR cooler of the second embodiment has a high-temperature side heat exchanger 20a and a low-temperature side heat exchanger 20b arranged in series behind the diesel engine 1 with respect to the flow of EGR gas. In the high temperature side heat exchanger 20a, a cooling water inlet 21a and a cooling water outlet 21b are provided and connected to the pipes 8a and 8b, respectively, so that engine cooling water can be supplied for cooling, and low temperature side heat exchange is performed. The vessel 20b is provided with a cooling water inlet 22a and a cooling water outlet 22b, and pipes 9a and 9b for connecting to a dedicated radiator 9 can be connected to supply cooling water dedicated to the low temperature side. To.

高温側熱交換器20aと低温側熱交換器20bとは、図3に示すように、共に外殻の端部にフランジ20c,20dを設け、ボルト絞めにより同心的にかつ一体に結合して、高温側熱交換器20aを通過したEGRガスが直ちに低温側熱交換器20bに流入するようにして、熱交換効率を下げないようにする。
そして、高温側熱交換器20aと低温側熱交換器20bとのそれぞれの冷却水入口21a,22aと冷却水出口21b,22bとは、高温側熱交換器20aの冷却水入口21aをEGRガス入口側に配置するとともに冷却水出口21bをEGRガス出口側に配置し、低温側熱交換器20bの冷却水入口22aをEGRガス出口側に配置するとともに冷却水出口22bをEGRガス入口側に配置して、高温側熱交換器20aは並流とし、低温側熱交換器20bは向流として使用できるようにする。
As shown in FIG. 3, the high temperature side heat exchanger 20a and the low temperature side heat exchanger 20b are both provided with flanges 20c and 20d at the end of the outer shell, and are concentrically and integrally coupled by bolt tightening. The EGR gas that has passed through the high temperature side heat exchanger 20a immediately flows into the low temperature side heat exchanger 20b so as not to lower the heat exchange efficiency.
And each of the cooling water inlets 21a, 22a and the cooling water outlets 21b, 22b of the high temperature side heat exchanger 20a and the low temperature side heat exchanger 20b is connected to the cooling water inlet 21a of the high temperature side heat exchanger 20a as an EGR gas inlet. The cooling water outlet 21b is arranged on the EGR gas outlet side, the cooling water inlet 22a of the low temperature side heat exchanger 20b is arranged on the EGR gas outlet side, and the cooling water outlet 22b is arranged on the EGR gas inlet side. Thus, the high temperature side heat exchanger 20a is used as a parallel flow, and the low temperature side heat exchanger 20b is used as a counter flow.

高温側熱交換器20aを並流とし、冷却水の流入する時の動圧を利用して水の拡がりを良くすることにより局部沸騰を抑えると、EGRガス通路であるチューブアセンブリ7の各チューブ6i,…,6iが冷却水から露出するなどの耐久性低下となる要因をなくすことができる。また、低温側熱交換器20bでは、EGRガス入口部でEGRガス温度を200℃以下、好ましくは150℃前後になるように設定すると、向流にすることで効果的に冷却でき、熱交換器としての効率を高く保つことができ、さらにEGRガスの最低温度をより低温に引き下げることができる。   When local boiling is suppressed by making the high temperature side heat exchanger 20a a parallel flow and using a dynamic pressure when cooling water flows in to improve the spread of water, each tube 6i of the tube assembly 7 which is an EGR gas passage. ,..., 6i can be eliminated from factors such as exposure from the cooling water. Moreover, in the low temperature side heat exchanger 20b, when the EGR gas temperature is set to 200 ° C. or less, preferably around 150 ° C. at the EGR gas inlet portion, it can be effectively cooled by making it countercurrent, and the heat exchanger As a result, the minimum temperature of the EGR gas can be lowered to a lower temperature.

〔作用効果〕
このように構成した第1実施形態および第2実施形態のEGRクーラでは、どちらもEGRガスの流れ方向へ高温側と低温側との2つの独立した熱交換器を直列に連結したことによって、熱交換効率を高め、耐久性の低下を抑え、稼動率を向上し、組付けを容易にして、コストを低減することができる。
[Function and effect]
In the EGR cooler according to the first embodiment and the second embodiment configured as described above, both of the independent heat exchangers of the high temperature side and the low temperature side are connected in series in the EGR gas flow direction, thereby It is possible to increase the exchange efficiency, suppress the decrease in durability, improve the operation rate, facilitate the assembly, and reduce the cost.

〔第3実施形態〕
第3実施形態のEGRクーラは、第1,2実施態様と同様に、ディーゼルエンジン1の後方に高温側熱交換器30aと、低温側熱交換器30bとをEGRガスの流れ方向に対して直列に配置し、高温側熱交換器30aでは多管式熱交換器に形成し、冷却水入口31aと冷却水出口31bとを設けてそれぞれ配管8a,8bを接続することにより、エンジン冷却水を供給することができるようにし、低温側熱交換器30bでは扁平チューブ式熱交換器に形成し、冷却水入口32aと冷却水出口32bとを設けてそれぞれ配管9a,9bを接続することにより低温側専用のラジエータ9から冷却水を供給することができるようにする。
[Third Embodiment]
In the EGR cooler of the third embodiment, as in the first and second embodiments, a high temperature side heat exchanger 30a and a low temperature side heat exchanger 30b are arranged in series behind the diesel engine 1 with respect to the flow direction of the EGR gas. The high temperature side heat exchanger 30a is formed as a multi-tube heat exchanger, and the cooling water inlet 31a and the cooling water outlet 31b are provided to connect the pipes 8a and 8b to supply engine cooling water. The low temperature side heat exchanger 30b is formed as a flat tube heat exchanger, and is provided with a cooling water inlet 32a and a cooling water outlet 32b and connected to the pipes 9a and 9b, respectively. The cooling water can be supplied from the radiator 9.

高温側熱交換器30aと低温側熱交換器30bとは、図4に示すように、外殻の端部にフランジ30cと、30dを設けて、ボルト絞めにより同心的にかつ一体に結合することができるようにし、高温側熱交換器30aを通過したEGRガスが直ちに低温側熱交換器30bに流入するようにして、熱交換効率を下げずに済むようにする。
そして、高温側熱交換器30aと低温側熱交換器30bとには、それぞれ配管31a,32aを冷却水入口とし、配管31b,32bを冷却水出口として設け、高温側熱交換器30aの冷却水入口31aをEGRガス入口側に配置するとともに冷却水出口31bをEGRガス出口側に配置し、低温側熱交換器30bの冷却水入口32aをEGRガス出口側に配置するとともに冷却水出口32bをEGRガス入口側に配置して、高温側熱交換器30aは並流とし、低温側熱交換器30bは向流として使用する。
As shown in FIG. 4, the high temperature side heat exchanger 30a and the low temperature side heat exchanger 30b are provided with flanges 30c and 30d at the end of the outer shell, and are concentrically and integrally coupled by bolt tightening. The EGR gas that has passed through the high temperature side heat exchanger 30a immediately flows into the low temperature side heat exchanger 30b so that the heat exchange efficiency does not have to be lowered.
The high temperature side heat exchanger 30a and the low temperature side heat exchanger 30b are respectively provided with pipes 31a and 32a as cooling water inlets and the pipes 31b and 32b as cooling water outlets. The inlet 31a is disposed on the EGR gas inlet side, the cooling water outlet 31b is disposed on the EGR gas outlet side, the cooling water inlet 32a of the low temperature side heat exchanger 30b is disposed on the EGR gas outlet side, and the cooling water outlet 32b is disposed on the EGR. Arranged on the gas inlet side, the high temperature side heat exchanger 30a is used as a parallel flow, and the low temperature side heat exchanger 30b is used as a counter flow.

高温側熱交換器30aを並流とし、冷却水の流入する時の動圧を利用して水の拡がりを良くして局部沸騰を抑えると、EGRガス通路であるチューブアセンブリ7の各チューブ4i,…,4iが冷却水から露出するなどの耐久性低下となる要因をなくすことができる。また、低温側熱交換器30bでは、EGRガス入口部でEGRガス温度を200℃以下、好ましくは150℃前後になるように設定すると、EGRガス通路であるチューブアセンブリ7の各チューブ6i,…,6i内のEGRガスがチューブ外の冷却水と向流により冷却されることで効果的に冷却でき、熱交換器としての効率を高く保つことができ、さらにEGRガスの最低温度をより効果的に低温に引き下げることができる。   When the high-temperature side heat exchanger 30a is used as a parallel flow and the dynamic pressure at the time when cooling water flows in is used to improve the spread of water and suppress local boiling, each tube 4i of the tube assembly 7 serving as an EGR gas passage is provided. .., 4i can be eliminated from factors such as exposure from the cooling water. Further, in the low temperature side heat exchanger 30b, when the EGR gas temperature is set to 200 ° C. or less, preferably around 150 ° C. at the EGR gas inlet, each tube 6i,. The EGR gas in 6i can be cooled effectively by cooling with the cooling water outside the tube and countercurrent, so that the efficiency as a heat exchanger can be kept high, and the minimum temperature of EGR gas can be more effectively reduced. Can be lowered to low temperatures.

〔作用効果〕
このように構成した第3実施形態のEGRクーラでは、高温側熱交換器を多管式熱交換器とし、低温側熱交換器を扁平チューブ式熱交換器として、EGRガスの流れ方向へ直列的に連結したことによって、EGRガスの流れ方向に従ってより効率的に熱交換器を利用することができ、熱交換効率を高め、耐久性の低下を抑えることができる。
[Function and effect]
In the EGR cooler of the third embodiment configured as described above, the high-temperature side heat exchanger is a multi-tube heat exchanger, and the low-temperature side heat exchanger is a flat tube heat exchanger, which is serially arranged in the EGR gas flow direction. By connecting to the heat exchanger, the heat exchanger can be used more efficiently according to the flow direction of the EGR gas, the heat exchange efficiency can be improved, and the decrease in durability can be suppressed.

〔別態様〕
このような実施の形態は、発明の趣旨を理解しやすくするため具体的に説明しているが、発明内容を限定するものではないから、特に説明されていない(意匠的な内容も含む)別の態様を制限するものではなく、適宜変更しても良い。このような意味で発明の趣旨に沿ういくつかの別態様を以下に示す。
[Another aspect]
Such an embodiment is specifically described in order to facilitate understanding of the gist of the invention, but does not limit the content of the invention, and is not particularly described (including design content). The embodiment is not limited, and may be changed as appropriate. In this sense, some other embodiments that meet the spirit of the invention are shown below.

高温側熱交換器20aを並流とし、低温側熱交換器20bでは向流にしたが、必ずしもこのような形態に形成しなくとも、両方とも並流あるいは向流であっても、熱交換効率を低下しないで配管容易ならば、利用可能である。
このため、2つの熱交換器に分割することができ、また組付けを含めた後工程が効率良く処理できて、作業効率を向上し、コスト削減および熱交換の効率向上に貢献する構成ならば利用可能である。
Although the high-temperature side heat exchanger 20a is a parallel flow and the low-temperature side heat exchanger 20b is a countercurrent, the heat exchange efficiency is not necessarily formed in such a form, but both are parallel or countercurrent. If piping is easy without lowering, it can be used.
For this reason, it can be divided into two heat exchangers, and the post-process including assembly can be processed efficiently, improving work efficiency, and reducing costs and improving heat exchange efficiency. Is available.

本発明の実施形態によるEGRクーラのシステム系統図である。1 is a system diagram of an EGR cooler according to an embodiment of the present invention. 同上EGRクーラの第1実施態様による多管式熱交換器を示す拡大斜視図である。It is an expansion perspective view which shows the multitubular heat exchanger by the 1st embodiment of an EGR cooler same as the above. 同上EGRクーラの第2実施態様による扁平チューブ式熱交換器を示す拡大斜視図である。It is an expansion perspective view which shows the flat tube type heat exchanger by the 2nd embodiment of an EGR cooler same as the above. 同上EGRクーラの第3実施態様による多管式熱交換器と扁平チューブ式熱交換器とを組み合せた場合を示す拡大斜視図である。It is an expansion perspective view which shows the case where the multitubular heat exchanger and flat tube type heat exchanger by a 3rd embodiment of an EGR cooler same as the above are combined. 従来のEGRクーラのシステム系統図である。It is a system system | strain diagram of the conventional EGR cooler. 従来のEGRクーラに用いられている多管式熱交換器を示す斜視図である。It is a perspective view which shows the multitubular heat exchanger used for the conventional EGR cooler. 従来のEGRクーラに用いられている扁平チューブ式熱交換器を示す斜視図である。It is a perspective view which shows the flat tube type heat exchanger used for the conventional EGR cooler. 従来のEGRクーラの内部構造を示す縦断面図である。It is a longitudinal cross-sectional view which shows the internal structure of the conventional EGR cooler.

符号の説明Explanation of symbols

1 ディーゼルエンジン
2 インタークーラ
3 ラジエータ
4,6 EGRクーラ
4a,6a 冷却水入口
4b,6b 冷却水出口
4c,4d,6c,6d フランジ付きヘッダー
4e,4f,6e,6f フランジ
4g,6g (EGRガス入口側)仕切板
4h,6h,7h (EGRガス出口側)仕切板
4i,6i チューブ
7 チューブアセンブリ
8a,8b (エンジン冷却水の)配管
9 (専用の)ラジェータ
9a,9b (専用のラジェータによる冷却水の)配管
10a,20a,30a 高温側熱交換器
10b,20b,30b 低温側熱交換器
10c,10d,20c,20d,30c,30d フランジ
11a,12a,21a,22a,31a,32a 冷却水入口
11b,12b,21b,22b,31b,32b 冷却水出口
1 Diesel engine 2 Intercooler 3 Radiator 4, 6 EGR cooler 4a, 6a Cooling water inlet 4b, 6b Cooling water outlet 4c, 4d, 6c, 6d Flange header 4e, 4f, 6e, 6f Flange 4g, 6g (EGR gas inlet Side) Partition plates 4h, 6h, 7h (EGR gas outlet side) Partition plates 4i, 6i Tube 7 Tube assemblies 8a, 8b (Engine cooling water) Piping 9 (Dedicated) Rajectors 9a, 9b (Cooling water by dedicated radiators) Piping 10a, 20a, 30a High temperature side heat exchangers 10b, 20b, 30b Low temperature side heat exchangers 10c, 10d, 20c, 20d, 30c, 30d Flange 11a, 12a, 21a, 22a, 31a, 32a Cooling water inlet 11b , 12b, 21b, 22b, 31b, 32b Cooling water outlet

Claims (4)

同一長さの軸方向に長いチューブの多数本を並行にして各チューブの間をそれぞれあけた状態で各チューブの両端を仕切板によって支持したチューブアセンブリを、筒状に形成された熱交換器外殻の内部に収容し、この熱交換器外殻に冷却水入口管および冷却水出口管を設けて、各チューブ内をEGRガスが通過し各チューブ外周を冷却水により冷却するチューブ式熱交換器を2つ備え、
この2つのチューブ式熱交換器のうちEGRガスを先に通す高温側熱交換器にはエンジン冷却水の配管を接続し、この後にEGRガスを通す低温側熱交換器には専用のラジエータにより冷却した冷却水の配管を接続した
ことを特徴とするEGRクーラのシステム構造。
A tube assembly in which a large number of tubes with the same length in the axial direction are parallel to each other and the tubes are spaced from each other and both ends of each tube are supported by a partition plate is placed outside the cylindrical heat exchanger. Tube-type heat exchanger that is housed inside the shell, and is provided with a cooling water inlet pipe and a cooling water outlet pipe in the outer shell of the heat exchanger so that EGR gas passes through each tube and the outer periphery of each tube is cooled by cooling water. With two,
Of these two tube-type heat exchangers, the high-temperature side heat exchanger that passes EGR gas first is connected to the engine cooling water piping, and the low-temperature side heat exchanger that passes EGR gas is cooled by a dedicated radiator. The system structure of the EGR cooler, characterized by connecting the piping of the cooling water.
前記高温側熱交換器と前記低温側熱交換器とを同心状にボルト結合して一体に形成したことを特徴とする請求項1記載のEGRクーラのシステム構造。   The system structure of the EGR cooler according to claim 1, wherein the high temperature side heat exchanger and the low temperature side heat exchanger are integrally formed by concentrically connecting bolts. 前記高温側熱交換器の冷却水入口をEGRガス入口側に配置するとともに冷却水出口をEGRガス出口側に配置し、前記低温側熱交換器の冷却水入口をEGRガス出口側に配置するとともに冷却水出口をEGRガス入口側に配置して、前記高温側熱交換器を並流とし、前記低温側熱交換器を向流としたことを特徴とする請求項1記載のEGRクーラのシステム構造。   The cooling water inlet of the high temperature side heat exchanger is arranged on the EGR gas inlet side, the cooling water outlet is arranged on the EGR gas outlet side, and the cooling water inlet of the low temperature side heat exchanger is arranged on the EGR gas outlet side. The system structure of the EGR cooler according to claim 1, wherein a cooling water outlet is disposed on an EGR gas inlet side, the high temperature side heat exchanger is set as a parallel flow, and the low temperature side heat exchanger is set as a counter flow. . 前記高温側熱交換器として多管式熱交換器を形成してEGRガス入口側に配置するとともに前記低温側熱交換器として扁平チューブ式熱交換器を形成してEGRガス出口側に配置し、前記高温側熱交換器を並流とし、前記低温側熱交換器を向流としたことを特徴とする請求項1記載のEGRクーラのシステム構造。   A multi-tube heat exchanger is formed as the high temperature side heat exchanger and disposed on the EGR gas inlet side, and a flat tube heat exchanger is formed as the low temperature side heat exchanger and disposed on the EGR gas outlet side. The system structure of the EGR cooler according to claim 1, wherein the high temperature side heat exchanger is a parallel flow and the low temperature side heat exchanger is a counter flow.
JP2006147153A 2006-05-26 2006-05-26 System structure of egr cooler Pending JP2007315323A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006147153A JP2007315323A (en) 2006-05-26 2006-05-26 System structure of egr cooler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006147153A JP2007315323A (en) 2006-05-26 2006-05-26 System structure of egr cooler

Publications (1)

Publication Number Publication Date
JP2007315323A true JP2007315323A (en) 2007-12-06

Family

ID=38849410

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006147153A Pending JP2007315323A (en) 2006-05-26 2006-05-26 System structure of egr cooler

Country Status (1)

Country Link
JP (1) JP2007315323A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009133607A (en) * 2007-10-30 2009-06-18 Denso Corp Heat exchanger
JP2011514477A (en) * 2008-03-06 2011-05-06 スカニア シーブイ アクチボラグ Device in a supercharged internal combustion engine
JP2011522996A (en) * 2008-06-13 2011-08-04 スカニア シーブイ アクチボラグ Cooling device for supercharged combustion engine
US8132407B2 (en) * 2008-04-03 2012-03-13 GM Global Technology Operations LLC Modular exhaust gas recirculation cooling for internal combustion engines
JP2012506973A (en) * 2008-11-05 2012-03-22 スカニア シーブイ アクチボラグ Cooling device for recirculated exhaust gas in a combustion engine
JP2012202577A (en) * 2011-03-24 2012-10-22 Fujitsu General Ltd Heat exchanger
WO2013039176A1 (en) * 2011-09-16 2013-03-21 カルソニックカンセイ株式会社 Egr gas cooling system
WO2014132755A1 (en) * 2013-02-27 2014-09-04 カルソニックカンセイ株式会社 Cooling device and cooling method for exhaust recirculation device
KR20160118573A (en) 2015-04-02 2016-10-12 한온시스템 주식회사 Cooling water flow control device of EGR cooler for vehicle and method thereof
US11199112B2 (en) 2017-08-18 2021-12-14 Nederlandse Organisatie Voor Toegepast-Natuurwetenschappelijk Onderzoek Tno Method and system for heat recovery

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009133607A (en) * 2007-10-30 2009-06-18 Denso Corp Heat exchanger
JP2011514477A (en) * 2008-03-06 2011-05-06 スカニア シーブイ アクチボラグ Device in a supercharged internal combustion engine
US8132407B2 (en) * 2008-04-03 2012-03-13 GM Global Technology Operations LLC Modular exhaust gas recirculation cooling for internal combustion engines
JP2011522996A (en) * 2008-06-13 2011-08-04 スカニア シーブイ アクチボラグ Cooling device for supercharged combustion engine
KR101577369B1 (en) 2008-06-13 2015-12-14 스카니아 씨브이 악티에볼라그 Cooling arrangement for a supercharged combustion engine
JP2012506973A (en) * 2008-11-05 2012-03-22 スカニア シーブイ アクチボラグ Cooling device for recirculated exhaust gas in a combustion engine
JP2012202577A (en) * 2011-03-24 2012-10-22 Fujitsu General Ltd Heat exchanger
WO2013039176A1 (en) * 2011-09-16 2013-03-21 カルソニックカンセイ株式会社 Egr gas cooling system
WO2014132755A1 (en) * 2013-02-27 2014-09-04 カルソニックカンセイ株式会社 Cooling device and cooling method for exhaust recirculation device
JP2014163335A (en) * 2013-02-27 2014-09-08 Calsonic Kansei Corp Cooling device of exhaust gas recirculation device
KR20160118573A (en) 2015-04-02 2016-10-12 한온시스템 주식회사 Cooling water flow control device of EGR cooler for vehicle and method thereof
US11199112B2 (en) 2017-08-18 2021-12-14 Nederlandse Organisatie Voor Toegepast-Natuurwetenschappelijk Onderzoek Tno Method and system for heat recovery

Similar Documents

Publication Publication Date Title
JP2007315323A (en) System structure of egr cooler
US11149644B2 (en) Heat exchange module for a turbine engine
US8424296B2 (en) Annular heat exchanger
JP2010249129A (en) Charge air cooler and cooling system
JP2010127143A (en) Charge air cooler
JP2013122366A (en) Heat exchanger
JP2007315324A (en) Cooling structure of egr cooler
JP2009068809A (en) Hybrid heat exchanger
JP3991786B2 (en) Exhaust heat exchanger
EP2378234B1 (en) Compound heat exchanger
JP2006314180A (en) Thermal power generator
JP2007113795A (en) Multitubular heat exchanger for exhaust gas cooling device
JPH1113551A (en) Egr cooler
CN107966048A (en) A kind of cooler
JP2006118436A (en) Bonnet for egr gas cooling device
JP2007315325A (en) Heat exchanger structure for egr cooler
JP2008232142A (en) Cooled egr system and heat exchanger for system thereof
JP2005273512A (en) Egr cooler for engine
JP2006200490A (en) Exhaust gas cooling device for exhaust gas recirculating system
CN110542334A (en) Pure countercurrent shell and tube type fresh water cooler
JP2003161209A (en) Egr cooler
US7726697B2 (en) Structure for connecting heat exchangers
JP2011196620A (en) Ebullient cooling type heat exchanger
JP2003214262A (en) Egr gas cooling device
CN212566458U (en) Circulating cooling water system for gas-steam combined cycle power plant