JP2000161871A - Double piping type heat exchanger - Google Patents

Double piping type heat exchanger

Info

Publication number
JP2000161871A
JP2000161871A JP10334001A JP33400198A JP2000161871A JP 2000161871 A JP2000161871 A JP 2000161871A JP 10334001 A JP10334001 A JP 10334001A JP 33400198 A JP33400198 A JP 33400198A JP 2000161871 A JP2000161871 A JP 2000161871A
Authority
JP
Japan
Prior art keywords
inner tube
pipe
heat exchanger
double
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10334001A
Other languages
Japanese (ja)
Inventor
Hitoshi Hashioka
仁 橋岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP10334001A priority Critical patent/JP2000161871A/en
Publication of JP2000161871A publication Critical patent/JP2000161871A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/10Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically
    • F28D7/106Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically consisting of two coaxial conduits or modules of two coaxial conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/40Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only inside the tubular element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D21/0001Recuperative heat exchangers
    • F28D21/0003Recuperative heat exchangers the heat being recuperated from exhaust gases

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Exhaust-Gas Circulating Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve reliability, use life, and cooling efficiency, and reduce parts number, manufacturing processes, and manufacturing cost. SOLUTION: An EGR cooler 10 is constructed as a double piping structure composed of an inner tube 11 and an outer tube 12. A heat radiation fin 11a is formed integrally with the inner tube 11 at an intermediate portion of the inner tube 11. The heat radiation fin 11A is formed radially of the inner tube 11 with a cross section formed substantially radially. More specifically, there is formed a concave portion 11b recessed in a center direction of the inner tube 121 at an equal angular interval from an outer peripheral surface of the inner tube 11 while there is formed a convex portion 11c protruded in a center direction of the inner tube 11 at an equal angular interval from an internal peripheral surface of the inner tube 11.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、例えば内燃機関の
排気ガス再循環装置において、排気系から取り出された
高温の排気ガスを冷却するための2重配管式熱交換器に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a double-pipe heat exchanger for cooling high-temperature exhaust gas extracted from an exhaust system, for example, in an exhaust gas recirculation system for an internal combustion engine.

【0002】[0002]

【従来の技術】従来、内燃機関の排気ガス中の窒素酸化
物を低減するために、排気ガスの一部を排気系(エキゾ
ーストマニホールド)から取り出し、吸気系(インテー
クマニホールド)へ再循環させる排気ガス再循環装置
(以下、「EGR装置」という。)が知られている。前
記EGR装置には排気系から取り出した高温の排気ガス
(以下、「EGRガス」という。)を吸気系に再導入す
る前に冷却するための2重配管式熱交換器(以下、「E
GRクーラ」という。)が設けられている。
2. Description of the Related Art Conventionally, in order to reduce nitrogen oxides in exhaust gas of an internal combustion engine, a part of the exhaust gas is taken out from an exhaust system (exhaust manifold) and recirculated to an intake system (intake manifold). A recirculation device (hereinafter, referred to as an “EGR device”) is known. The EGR device has a double-pipe heat exchanger (hereinafter, referred to as "EGR gas") for cooling high-temperature exhaust gas (hereinafter, referred to as "EGR gas") taken out of an exhaust system before re-introducing it into an intake system.
"GR cooler". ) Is provided.

【0003】図5及び図6に示すように、前記EGR装
置における排気環流路(図示略)の途中に配設されるE
GRクーラ50は、内側にEGRガスを流通させる内管
51と、同内管51の外周面を包囲すると共に両端が内
管51の外周面に閉塞し固定され、内管51との間に断
面環状の流通路52を区画する外管53との2重配管構
造となっている。前記内管51には図6に示すように熱
伝達を促進させるための放熱フィン54が収容固定され
ている。
[0005] As shown in FIGS. 5 and 6, an E is disposed in the exhaust passage (not shown) in the EGR device.
The GR cooler 50 has an inner pipe 51 through which EGR gas flows, and an outer peripheral surface of the inner pipe 51 which is enclosed and fixed at both ends to an outer peripheral surface of the inner pipe 51. It has a double piping structure with an outer pipe 53 that partitions the annular flow passage 52. As shown in FIG. 6, a radiation fin 54 for promoting heat transfer is housed and fixed in the inner tube 51.

【0004】前記外管53には冷却水を前記流通路52
に導入するための導入管55と、流通路52内の冷却水
を排出するための排出管56とが設けられている。前記
流通路52内には内燃機関冷却用の冷却水が導入管55
を介して供給され、この冷却水は流通路52を流れ、排
出管56を介して内燃機関の冷却水循環回路(図示略)
に戻される。前記高温のEGRガスと冷却水との間では
内管51を介して熱交換が行われる。この結果、EGR
ガスは冷却されて内燃機関の吸気系に再導入される。
[0004] Cooling water is supplied to the outer pipe 53 through the flow passage 52.
And a discharge pipe 56 for discharging the cooling water in the flow passage 52. Cooling water for cooling the internal combustion engine is introduced into the flow passage 52 through an inlet pipe 55.
The cooling water flows through the flow passage 52, and flows through a discharge pipe 56 to a cooling water circulation circuit (not shown) of the internal combustion engine.
Is returned to. Heat exchange is performed between the high-temperature EGR gas and the cooling water via the inner pipe 51. As a result, EGR
The gas is cooled and reintroduced into the intake system of the internal combustion engine.

【0005】[0005]

【発明が解決しようとする課題】ところで、高温のEG
Rガスが放熱フィン54に当たると、放熱フィン54
は、熱膨張が発生する。このとき、放熱フィン54の外
周は冷却水により冷却された内管51によって拘束され
ているため、放熱フィン54の中心部と流通路52に内
管51を介して接する外周部との間には大きな温度差が
生じる。このため、放熱フィン54には大きな熱応力が
生じる。この大きな熱応力により放熱フィン54はクリ
ープ(熱へたり)変形されてしまい、前記放熱フィン5
4の外周及びろう付け部分には熱疲労による亀裂が発生
するおそれがある。
By the way, high-temperature EG
When the R gas hits the radiation fins 54, the radiation fins 54
Causes thermal expansion. At this time, since the outer periphery of the radiation fin 54 is constrained by the inner tube 51 cooled by the cooling water, there is a gap between the central portion of the radiation fin 54 and the outer peripheral portion in contact with the flow passage 52 via the inner tube 51. Large temperature differences occur. Therefore, a large thermal stress is generated in the radiation fins 54. Due to this large thermal stress, the heat radiation fins 54 are creeped (heated) and deformed.
There is a possibility that a crack due to thermal fatigue may be generated on the outer periphery and the brazing portion of 4.

【0006】また、クリープ変形により放熱フィン54
と内管51との間に隙間が形成して、放熱フィン54の
内管51内でのガタツキによる異音が発生する。さら
に、放熱フィン54は、そのろう付け部が腐食すると、
内管51の内周面から剥離してしまい脱落するおそれが
ある。
Further, the radiation fins 54 are formed by creep deformation.
A gap is formed between the heat radiation fin 54 and the inner tube 51, and the noise of the heat radiation fin 54 due to rattling in the inner tube 51 is generated. In addition, when the brazing portion is corroded,
There is a possibility that the inner tube 51 may be separated from the inner peripheral surface and fall off.

【0007】これらのことは、2重配管式熱交換器の信
頼性及び使用寿命の向上を図る上の問題点となった。ま
た、高温のEGRガスは、同EGRガスと冷却水との間
で放熱フィン54及び内管51を介して熱交換が行われ
ることにより冷却される。つまり、高温のEGRガスの
熱はまず放熱フィン54に奪われ、放熱フィン54から
内管51に伝達される。そして、前記内管51に伝達さ
れた熱は流通路52を流れる冷却水に伝達されて排熱さ
れる。従って、放熱フィン54の形状(つまり、有効に
EGRガスと熱交換できる形状)をいくら工夫しても、
内管51の存在によって冷却効率の向上が限度があると
いう問題点があった。
[0007] These are problems in improving the reliability and service life of the double-pipe heat exchanger. The high-temperature EGR gas is cooled by heat exchange between the EGR gas and the cooling water via the radiation fins 54 and the inner pipe 51. That is, the heat of the high-temperature EGR gas is first taken by the radiating fins 54 and is transmitted from the radiating fins 54 to the inner tube 51. Then, the heat transmitted to the inner pipe 51 is transmitted to the cooling water flowing through the flow passage 52 and is discharged. Therefore, no matter how much the shape of the radiation fin 54 (that is, the shape that can effectively exchange heat with the EGR gas),
There is a problem that the improvement of the cooling efficiency is limited by the presence of the inner tube 51.

【0008】また、前記EGRクーラ50は内管51と
外管53とを2重配管構造とした後、内管51内に予め
断面放射状に形成した放熱フィン54を挿入し、同放熱
フィン54を信頼性及び品質上の管理項目が多いろう付
けによって内管11内に固定していた。従って、部品点
数及び製造工数が増加すると共に、製造コストが高くな
るという問題点があった。
In the EGR cooler 50, after the inner pipe 51 and the outer pipe 53 have a double pipe structure, a radiation fin 54 previously formed in a radial cross section is inserted into the inner pipe 51, and the radiation fin 54 is It has been fixed in the inner tube 11 by brazing, which has many reliability and quality control items. Therefore, there is a problem that the number of parts and the number of manufacturing steps increase, and the manufacturing cost increases.

【0009】本発明は上記問題点を解決するためになさ
れたものであって、その目的は、信頼性、使用寿命及び
冷却効率を向上するとともに、部品点数、製造工数及び
製造コストを低減することができる2重配管式熱交換器
を提供することにある。
The present invention has been made to solve the above problems, and an object of the present invention is to improve reliability, service life, and cooling efficiency, and to reduce the number of parts, the number of manufacturing steps, and the manufacturing cost. To provide a double-pipe heat exchanger that can perform the heat treatment.

【0010】[0010]

【課題を解決するための手段】上記問題点を解決するた
めに、請求項1に記載の発明は、内側に被冷却媒体を流
通させる第1筒部材と、前記第1筒部材の外周を離間し
て包囲し、同第1筒部材との間に冷却媒体用の流通路を
区画する第2筒部材とからなる2重配管式熱交換器にお
いて、前記第1筒部材の流通路形成部分には放熱部が一
体に成形されていることを要旨とする。
According to a first aspect of the present invention, a first cylindrical member through which a medium to be cooled flows is separated from an outer periphery of the first cylindrical member. And a second pipe member that surrounds and surrounds the first pipe member to define a flow path for the cooling medium between the first pipe member and the second pipe member. The gist is that the heat radiating part is integrally formed.

【0011】請求項2に記載の発明は、請求項1に記載
の2重配管式熱交換器において、前記放熱部は、第1筒
部材の径方向に断面略放射状に形成された凹凸部である
ことを要旨とする。
According to a second aspect of the present invention, in the double-pipe heat exchanger according to the first aspect, the heat radiating portion is a concavo-convex portion formed to have a substantially radial cross section in a radial direction of the first cylindrical member. The gist is that there is.

【0012】(作用)従って、請求項1に記載の発明に
よれば、被冷却媒体が放熱部に当たると、放熱部は、他
の部材により拘束されず、自由に熱膨張することができ
る。つまり、放熱部はその内部に大きな熱応力が生じに
くくなり、熱応力乃至熱疲労による亀裂が発生すること
を防止することができる。また、従来技術に比べ、クリ
ープ変形による放熱部のガタツキや異音の発生及び脱落
等の不具合を完全になくすことができる。さらに、従来
技術に比べ、放熱部のための別の部材が不要となるとと
もに、放熱部を別の部材で単独製造する必要がなくな
り、別部材の放熱部を第1筒部材内に溶接又はろう付け
する必要がなくなる。その結果、2重配管式熱交換器の
信頼性、使用寿命を向上するとともに、部品点数、製造
工数及び製造コストを低減することができる。
According to the first aspect of the present invention, when the medium to be cooled hits the heat radiating portion, the heat radiating portion can be freely thermally expanded without being restricted by other members. That is, a large thermal stress is hardly generated in the heat radiating portion, and it is possible to prevent a crack from being generated due to the thermal stress or thermal fatigue. In addition, as compared with the related art, it is possible to completely eliminate problems such as rattling of the heat radiating portion, generation of abnormal noise, and falling off due to creep deformation. Furthermore, compared with the prior art, another member for the heat radiating portion is not required, and it is not necessary to manufacture the heat radiating portion by another member alone, and the heat radiating portion of another member is welded or soldered to the first cylindrical member. There is no need to attach. As a result, the reliability and service life of the double-pipe heat exchanger can be improved, and the number of parts, the number of manufacturing steps, and the manufacturing cost can be reduced.

【0013】請求項2に記載の発明によれば、請求項1
に記載の発明の作用に加えて、放熱部と冷却媒体又は被
冷却媒体との接触面積、即ち冷却媒体と被冷却媒体との
間の伝熱面積が増大される。また、被冷却媒体の熱は放
熱部の凸部に奪われ、直接に放熱部の凹部内を流れる冷
却媒体に伝達されて排熱される。その結果、2重配管式
熱交換器の冷却効率の向上を図ることができる。
According to the second aspect of the present invention, the first aspect is provided.
In addition to the effect of the invention described in (1), the contact area between the heat radiating portion and the cooling medium or the medium to be cooled, that is, the heat transfer area between the cooling medium and the medium to be cooled is increased. In addition, the heat of the medium to be cooled is taken by the convex portion of the heat radiating portion, and is directly transmitted to the cooling medium flowing in the concave portion of the heat radiating portion to be discharged. As a result, the cooling efficiency of the double-pipe heat exchanger can be improved.

【0014】[0014]

【発明の実施の形態】以下、本発明を内燃機関の排気ガ
ス再循環装置(以下、「EGR装置」という。)に具体
化した一実施形態を図面に従って説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment in which the present invention is embodied in an exhaust gas recirculation device for an internal combustion engine (hereinafter, referred to as an "EGR device") will be described with reference to the drawings.

【0015】図1及び図2に示すように、内燃機関のE
GR装置における排気環流路(図示略)の途中に配設さ
れる2重配管式熱交換器(以下、「EGRクーラ」とい
う。)10は、内側に内燃機関の排気系から取り出した
被冷却媒体としての高温の排気ガス(以下、「EGRガ
ス」という。)を流通させる第1筒部材としての内管1
1を備えている。
As shown in FIG. 1 and FIG.
A double-pipe heat exchanger (hereinafter, referred to as an “EGR cooler”) 10 provided in the middle of an exhaust circulation passage (not shown) in the GR device has a cooling medium taken out from the exhaust system of the internal combustion engine inside. Pipe 1 as a first cylindrical member through which high-temperature exhaust gas (hereinafter, referred to as “EGR gas”) flows
1 is provided.

【0016】前記内管11は、耐熱・耐腐食性の高い材
質例えばステンレススチール材からなり、その外周に
は、同内管11の外周を離間して包囲するように第2筒
部材としての外管12が配置されている。前記外管12
の両端は徐々に縮径され、内管11の外周面に溶接等に
より固定されている。そして、前記内管11の外周面と
外管12の内周面との間には断面環状の冷却媒体として
の冷却水を流通させる流通路13が形成されている。即
ち、前記EGRクーラ10は前記内管11と外管12と
の2重配管構造として構成されている。
The inner tube 11 is made of a material having high heat resistance and corrosion resistance, for example, a stainless steel material, and has an outer periphery formed as a second cylindrical member so as to surround the outer periphery of the inner tube 11 at a distance. A tube 12 is arranged. The outer tube 12
Are gradually reduced in diameter and fixed to the outer peripheral surface of the inner tube 11 by welding or the like. A flow passage 13 is formed between the outer peripheral surface of the inner tube 11 and the inner peripheral surface of the outer tube 12 for flowing cooling water as a cooling medium having an annular cross section. That is, the EGR cooler 10 is configured as a double pipe structure of the inner pipe 11 and the outer pipe 12.

【0017】前記外管12には冷却水を流通路13内に
導入するための導入管14と、流通路13内の冷却水を
排出するための排出管15とが設けられている。前記流
通路13には導入管14を介して内燃機関冷却用の冷却
水が供給され、この冷却水は流通路13を流れた後、排
出管15を介して内燃機関の冷却水循環回路(図示略)
に戻される。従って、EGRクーラ10は流通路13を
流れる冷却水と内管11の外周面とが接触する冷却可能
区間Cを通過するEGRガスを冷却可能となっている。
The outer pipe 12 is provided with an introduction pipe 14 for introducing cooling water into the flow path 13 and a discharge pipe 15 for discharging cooling water in the flow path 13. Cooling water for cooling the internal combustion engine is supplied to the flow passage 13 through an introduction pipe 14, and the cooling water flows through the flow passage 13, and then flows through a discharge pipe 15 to a cooling water circulation circuit (not shown in the drawing) of the internal combustion engine. )
Is returned to. Therefore, the EGR cooler 10 can cool the EGR gas passing through the coolable section C where the cooling water flowing through the flow passage 13 and the outer peripheral surface of the inner pipe 11 are in contact.

【0018】前記内管11の流通路形成部分としての中
間部には放熱部としての放熱フィン11aが内管11と
一体に成形されている。前記放熱フィン11aは、図1
〜図3に示すように、内管11の径方向に断面略放射状
(断面略星形状)に形成されると共に、内管11の管軸
方向に所定の長さ(本実施形態では、両端が前記冷却可
能区間C内に位置する長さ)を有して形成されている。
このとき、内管11の外周面から等角度間隔で内管11
の中心方向に凹入する凹部11bが形成される一方、内
管11の内周面から等角度間隔で内管11の中心方向に
突出する凸部(又は山部)11cが形成されるようにな
っている。
A radiating fin 11a as a heat radiating portion is formed integrally with the inner tube 11 at an intermediate portion of the inner tube 11 as a flow passage forming portion. The radiating fins 11a are shown in FIG.
As shown in FIG. 3, the inner tube 11 is formed to have a substantially radial cross section (substantially star-shaped cross section) in the radial direction, and has a predetermined length in the tube axis direction of the inner tube 11 (in the present embodiment, both ends are formed). (The length located in the coolable section C).
At this time, the inner pipe 11 is spaced at equal angular intervals from the outer peripheral surface of the inner pipe 11.
Is formed in the center direction of the inner tube 11, while a concave portion 11b protruding toward the center direction of the inner tube 11 is formed at equal angular intervals from the inner peripheral surface of the inner tube 11. Has become.

【0019】放熱フィン11aを含む内管11の製造方
法としては、例えば、液圧(ハイドロフォーミング)を
使う方法がある。つまり、放熱フィン11aを転写した
ような型を作り、丸管に水圧をかけて膨らませ型に沿わ
せる方法である。
As a method for manufacturing the inner tube 11 including the radiation fins 11a, for example, there is a method using hydraulic pressure (hydroforming). That is, a method in which a heat transfer fin 11a is transcribed is made, and the round tube is inflated by applying water pressure to conform to the mold.

【0020】なお、ハブのギアなどを加工するフローフ
ォーミングという塑性加工方法にて製造してもよい。ま
た、丸管をロールやダイス等にて引き抜くという成形方
法にて製造してもよい。
It should be noted that it may be manufactured by a plastic working method called flow forming for working gears of a hub. Further, the round tube may be manufactured by a forming method of drawing out the roll tube with a roll or a die.

【0021】このとき、放熱フィン11a部分の周長が
内管11の原管周長より長くなるため、放熱フィン11
a部分の肉厚t1が内管11の原管肉厚t2より薄肉と
なっている。しかも、内管11の原管肉厚t2を、内管
11の外周面に外管12を溶接又はろう付けなどにて固
定できる最小厚さに設定している。
At this time, since the circumference of the radiation fin 11a is longer than the circumference of the original tube of the inner tube 11, the radiation fin 11a
The thickness t1 of the portion a is thinner than the original tube thickness t2 of the inner tube 11. In addition, the original pipe wall thickness t2 of the inner pipe 11 is set to a minimum thickness at which the outer pipe 12 can be fixed to the outer peripheral surface of the inner pipe 11 by welding or brazing.

【0022】さて、前記EGRクーラ10の内管11内
に高温のEGRガスが流入し、図4に示すように、同E
GRガスが放熱フィン11aの凸部11cに接触する
と、高温のEGRガスの熱は放熱フィン11aの凸部1
1cに奪われ、放熱フィン11aの凹部11bに伝達さ
れる。そして、前記凹部11bに伝達された熱は凹部1
1b内を流れる冷却水に伝達されて排熱される。即ち、
高温のEGRガスは、同EGRガスと冷却水との間で内
管11の放熱フィン11aを介して熱交換が行われるこ
とにより冷却される。
Now, high-temperature EGR gas flows into the inner pipe 11 of the EGR cooler 10, and as shown in FIG.
When the GR gas comes into contact with the projection 11c of the radiation fin 11a, the heat of the high-temperature EGR gas is transferred to the projection 1c of the radiation fin 11a.
1c and is transmitted to the concave portion 11b of the radiation fin 11a. The heat transmitted to the recess 11b is
The heat is transmitted to the cooling water flowing in the inside 1b and discharged. That is,
The high-temperature EGR gas is cooled by heat exchange between the EGR gas and the cooling water via the radiation fins 11a of the inner pipe 11.

【0023】従って、本実施形態の2重配管式熱交換器
(EGRクーラ)10は以下の特徴を有する。 (1)本実施形態では、内管11の中間部には放熱フィ
ン11aが内管11と一体に成形されている。従って、
高温のEGRガスが放熱フィン11aに当たると、放熱
フィン11aは、従来技術に比べ、他の部材により拘束
されず、自由に熱膨張することができる。つまり、放熱
フィン11aはその内部に大きな熱応力が生じにくくな
り、熱応力乃至熱疲労による亀裂が発生することを防止
することができる。
Accordingly, the double-pipe heat exchanger (EGR cooler) 10 of the present embodiment has the following features. (1) In the present embodiment, a radiation fin 11 a is formed integrally with the inner tube 11 at an intermediate portion of the inner tube 11. Therefore,
When the high-temperature EGR gas hits the radiating fins 11a, the radiating fins 11a can be thermally expanded freely without being restrained by other members as compared with the related art. In other words, the heat radiation fins 11a are less likely to generate large thermal stress therein, and can prevent the occurrence of cracks due to thermal stress or thermal fatigue.

【0024】また、従来技術に比べ、クリープ変形によ
る放熱フィン11aのガタツキや異音の発生及び脱落等
の不具合を完全になくすことができる。その結果、2重
配管式熱交換器10の信頼性及び使用寿命の向上を図る
ことができる。
Further, as compared with the prior art, it is possible to completely eliminate problems such as rattling of the radiating fins 11a due to creep deformation, generation of unusual noise, and falling off. As a result, the reliability and the service life of the double-pipe heat exchanger 10 can be improved.

【0025】(2)本実施形態では、内管11の中間部
には放熱フィン11aが内管11と一体に成形されてい
る。放熱フィン11aは、内管11の径方向に断面略放
射状(断面略星形状)に形成されている。このとき、内
管11の外周面から等角度間隔で内管11の中心方向に
凹入する凹部11bが形成される一方、内管11の内周
面から等角度間隔で内管11の中心方向に突出する凸部
11cが形成されている。つまり、同放熱フィン11a
と冷却水又はEGRガスとの接触面積、即ち冷却水とE
GRガスとの間の伝熱面積が増大される。
(2) In the present embodiment, a radiation fin 11a is formed integrally with the inner tube 11 at an intermediate portion of the inner tube 11. The radiation fins 11a are formed in a substantially radial cross section (substantially star-shaped cross section) in the radial direction of the inner tube 11. At this time, a concave portion 11b is formed to be recessed from the outer peripheral surface of the inner pipe 11 at an equal angular interval in the center direction of the inner pipe 11, while the central direction of the inner pipe 11 is formed at an equal angular interval from the inner peripheral surface of the inner pipe 11. A protruding portion 11c is formed. That is, the radiation fin 11a
Contact area between the cooling water and EGR gas, that is, cooling water and EGR gas
The heat transfer area with the GR gas is increased.

【0026】従って、高温のEGRガスの熱は放熱フィ
ン11aの凸部11cに奪われ、直接に放熱フィン11
aの凹部11b内を流れる冷却水に伝達されて排熱され
る。その結果、2重配管式熱交換器10の冷却効率の向
上を図ることができる。
Therefore, the heat of the high-temperature EGR gas is taken away by the projections 11c of the radiation fins 11a and directly
The heat is transmitted to the cooling water flowing in the concave portion 11b of FIG. As a result, the cooling efficiency of the double-pipe heat exchanger 10 can be improved.

【0027】(3)本実施形態では、内管11の中間部
には放熱フィン11aが塑性加工にて内管11と一体に
成形されている。従って、従来技術に比べ、放熱フィン
11aのための別の部材が不要となる。そして、放熱フ
ィン11aを単独製造する必要がなくなり、放熱フィン
11aを内管11に溶接又はろう付けする必要がなくな
る。
(3) In the present embodiment, a radiation fin 11a is formed integrally with the inner tube 11 by plastic working at an intermediate portion of the inner tube 11. Therefore, another member for the radiation fins 11a is not required as compared with the related art. In addition, there is no need to manufacture the radiation fins 11a independently, and it is not necessary to weld or braze the radiation fins 11a to the inner tube 11.

【0028】その結果、2重配管式熱交換器10の部品
点数、製造工数及び製造コストを低減することができ
る。 (4)本実施形態では、放熱フィン11a部分の周長が
内管11の原管周長より長くなるため、放熱フィン11
a部分の肉厚t1が内管11の原管肉厚t2より薄肉と
なっている。従って、放熱フィン11aでの伝熱距離が
短くなり、つまり、放熱フィン11aによる熱交換の効
率が向上される。
As a result, the number of parts, the number of manufacturing steps, and the manufacturing cost of the double-pipe heat exchanger 10 can be reduced. (4) In the present embodiment, since the circumference of the radiating fin 11 a is longer than the circumference of the inner tube 11, the radiating fin 11 a
The thickness t1 of the portion a is thinner than the original tube thickness t2 of the inner tube 11. Therefore, the heat transfer distance in the radiation fin 11a is shortened, that is, the efficiency of heat exchange by the radiation fin 11a is improved.

【0029】その結果、2重配管式熱交換器10の冷却
効率の向上を図ることができる。尚、上記実施形態は以
下のように変更して実施してもよい。 ○上記実施形態においては、放熱フィン11aは、内管
11の径方向に断面略放射状(断面略星形状)に形成さ
れて実施したが、放熱フィン11aの断面形状が略放射
状(略星形状)に限定されず、例えば、断面略瓢箪状等
に形成されて実施してもよい。この場合、上記実施形態
とほぼ同様な効果を得ることができる。
As a result, the cooling efficiency of the double-pipe heat exchanger 10 can be improved. The above embodiment may be modified as follows. In the above embodiment, the radiation fins 11a are formed to have a substantially radial cross section (substantially star shape) in the radial direction of the inner tube 11, but the radiation fins 11a have a substantially radial cross section (substantially star shape). However, the present invention is not limited to this, and may be implemented, for example, by forming a cross section in a substantially gourd shape. In this case, substantially the same effects as in the above embodiment can be obtained.

【0030】○上記実施形態においては、放熱フィン1
1aは、内管11の径方向に断面略放射状(断面略星形
状)に形成される際、内管11の外周面から等角度間隔
で内管11の中心方向に凹入する凹部11bが形成され
る一方、内管11の内周面から等角度間隔で内管11の
中心方向に突出する凸部(又は山部)11cが形成され
るように実施したが、凹部11b又は凸部11cが非等
角度間隔で形成されるように実施してもよい。この場
合、上記実施形態とほぼ同様な効果を得ることができ
る。
In the above embodiment, the radiation fins 1
When formed in the radial direction of the inner tube 11 and having a substantially radial cross section (substantially star-shaped cross section), the concave portion 11b is recessed at an equal angular interval from the outer peripheral surface of the inner tube 11 toward the center of the inner tube 11. On the other hand, the projections (or peaks) 11c protruding from the inner peripheral surface of the inner pipe 11 at equal angular intervals in the center direction of the inner pipe 11 were formed. However, the recesses 11b or the projections 11c were formed. You may implement so that it may be formed in a non-equiangular interval. In this case, substantially the same effects as in the above embodiment can be obtained.

【0031】○上記実施形態においては、内管11をス
テンレススチール材にて実施したが、ステンレススチー
ル材に限定されず、熱伝導性の高い材質であれば、例え
ば、銅合金、亜鉛合金又はアルミ合金等にて実施しても
よい。この場合、上記実施形態とほぼ同様な効果を得る
ことができる。
In the above embodiment, the inner tube 11 is made of a stainless steel material. However, the material is not limited to the stainless steel material. You may implement with an alloy etc. In this case, substantially the same effects as in the above embodiment can be obtained.

【0032】○上記実施形態においては、2重配管式熱
交換器10を内燃機関のEGRガスを冷却するために使
用したが、EGRガス等の気体ではなく、液体などの冷
却のために使用してもよい。このようにしても、上記実
施形態と同様の効果を得ることができる。
In the above embodiment, the double-pipe heat exchanger 10 is used for cooling the EGR gas of the internal combustion engine, but is used for cooling not the gas such as the EGR gas but the liquid. You may. Even in this case, the same effect as in the above embodiment can be obtained.

【0033】○上記実施形態においては、EGRクーラ
10を円筒状の内管11及び外管12にて構成したが、
例えば四角筒状又は楕円筒状等の形状の内管11及び外
管12にて構成してもよい。このようにしても、上記実
施形態と同様の効果を得ることができる。
In the above embodiment, the EGR cooler 10 is constituted by the cylindrical inner pipe 11 and the outer pipe 12.
For example, the inner tube 11 and the outer tube 12 may have a rectangular or elliptical cylindrical shape. Even in this case, the same effect as in the above embodiment can be obtained.

【0034】[0034]

【発明の効果】請求項1に記載の発明によれば、2重配
管式熱交換器の信頼性、使用寿命を向上するとともに、
部品点数、製造工数及び製造コストを低減することがで
きる。
According to the first aspect of the present invention, the reliability and service life of the double-pipe heat exchanger are improved,
The number of parts, the number of manufacturing steps, and the manufacturing cost can be reduced.

【0035】請求項2に記載の発明によれば、請求項1
に記載の発明の効果に加えて、2重配管式熱交換器の冷
却効率の向上を図ることができる。
According to the invention described in claim 2, according to claim 1
In addition to the effects of the invention described in (1), the cooling efficiency of the double-pipe heat exchanger can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明のEGRクーラの正断面図。FIG. 1 is a front sectional view of an EGR cooler according to the present invention.

【図2】 同じくEGRクーラの内管の斜視図。FIG. 2 is a perspective view of an inner tube of the EGR cooler.

【図3】 図1におけるA−A線断面図。FIG. 3 is a sectional view taken along line AA in FIG. 1;

【図4】 図1におけるB−B線断面図。FIG. 4 is a sectional view taken along line BB in FIG. 1;

【図5】 従来のEGRクーラの正断面図。FIG. 5 is a front sectional view of a conventional EGR cooler.

【図6】 図5におけるD−D線断面図。FIG. 6 is a sectional view taken along line DD in FIG. 5;

【符号の説明】[Explanation of symbols]

10…EGRクーラ(2重配管式熱交換器)、11…第
1筒部材としての内管、11a…放熱部としての放熱フ
ィン、11b…凹部、11c…凸部、12…第2筒部材
としての外管、13…流通路。
10 EGR cooler (double-pipe heat exchanger), 11 Inner tube as first cylindrical member, 11a Radiating fins as radiator, 11b concave portion, 11c convex portion, 12 as second cylindrical member Outer tube, 13 ... flow passage.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 内側に被冷却媒体を流通させる第1筒部
材と、 前記第1筒部材の外周を離間して包囲し、同第1筒部材
との間に冷却媒体用の流通路を区画する第2筒部材とか
らなる2重配管式熱交換器において、 前記第1筒部材の流通路形成部分には放熱部が一体に成
形されていることを特徴とする2重配管式熱交換器。
1. A first cylindrical member through which a medium to be cooled flows, and a flow path for a cooling medium defined between the first cylindrical member and the first cylindrical member. A double-pipe heat exchanger, comprising: a heat transfer section integrally formed with a flow passage forming portion of the first pipe member. .
【請求項2】 請求項1に記載の2重配管式熱交換器に
おいて、 前記放熱部は、第1筒部材の径方向に断面略放射状に形
成された凹凸部であることを特徴とする2重配管式熱交
換器。
2. The double-pipe heat exchanger according to claim 1, wherein the heat radiating portion is a concavo-convex portion formed to have a substantially radial cross section in a radial direction of the first cylindrical member. Heavy piping type heat exchanger.
JP10334001A 1998-11-25 1998-11-25 Double piping type heat exchanger Pending JP2000161871A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10334001A JP2000161871A (en) 1998-11-25 1998-11-25 Double piping type heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10334001A JP2000161871A (en) 1998-11-25 1998-11-25 Double piping type heat exchanger

Publications (1)

Publication Number Publication Date
JP2000161871A true JP2000161871A (en) 2000-06-16

Family

ID=18272396

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10334001A Pending JP2000161871A (en) 1998-11-25 1998-11-25 Double piping type heat exchanger

Country Status (1)

Country Link
JP (1) JP2000161871A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006509637A (en) * 2002-12-13 2006-03-23 テクノロジー・デ・レエシャンジェ・テルミク Heat exchanger, manufacturing method and manufacturing method thereof
CN100510599C (en) * 2005-01-21 2009-07-08 株式会社T.Rad Double pipe heat exchanger and method of making the same
US7984752B2 (en) 2004-03-17 2011-07-26 T. Rad Co., Ltd. Double-pipe heat exchanger and manufacturing method thereof
JP2012042125A (en) * 2010-08-19 2012-03-01 Corona Corp Heat exchanger for hot water supply
JP2014109391A (en) * 2012-11-30 2014-06-12 Toyota Motor Corp Heat exchanger
JP2019120174A (en) * 2017-12-28 2019-07-22 株式会社クボタ Egr-equipped engine

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006509637A (en) * 2002-12-13 2006-03-23 テクノロジー・デ・レエシャンジェ・テルミク Heat exchanger, manufacturing method and manufacturing method thereof
US7984752B2 (en) 2004-03-17 2011-07-26 T. Rad Co., Ltd. Double-pipe heat exchanger and manufacturing method thereof
CN100510599C (en) * 2005-01-21 2009-07-08 株式会社T.Rad Double pipe heat exchanger and method of making the same
JP2012042125A (en) * 2010-08-19 2012-03-01 Corona Corp Heat exchanger for hot water supply
JP2014109391A (en) * 2012-11-30 2014-06-12 Toyota Motor Corp Heat exchanger
JP2019120174A (en) * 2017-12-28 2019-07-22 株式会社クボタ Egr-equipped engine

Similar Documents

Publication Publication Date Title
US7048042B2 (en) Heat exchanger, in particular exhaust gas heat exchanger for motor vehicles, and method for producing same
JP4926892B2 (en) Flange connection structure of heat exchanger
US20070000652A1 (en) Heat exchanger with dimpled tube surfaces
KR20050062580A (en) Egr cooler
JP2000111277A (en) Double piping type heat exchanger
JP2002054511A (en) Egr cooler
JP3558131B2 (en) Double tube heat exchanger
JP2006118436A (en) Bonnet for egr gas cooling device
JPH0989491A (en) Egr gas cooling device
JP2000161871A (en) Double piping type heat exchanger
JP2000292089A (en) Structure of exhaust cooler
JP4253975B2 (en) EGR gas cooling device
JP2007225137A (en) Multitubular heat exchanger and heat transfer tube for exhaust gas cooling device
JPH10170172A (en) Double tube type heat exchanger
JP2006200490A (en) Exhaust gas cooling device for exhaust gas recirculating system
JP2007315325A (en) Heat exchanger structure for egr cooler
JP2000161873A (en) Heat exchanger
JP2000045884A (en) Egr cooler
JP4074044B2 (en) Core part of EGR gas cooling device and method for manufacturing the same
JP2002180915A (en) Egr cooler
JP2000130963A (en) Double-pipe heat exchanger
JP2000130964A (en) Double-pipe heat exchanger
JP2004124809A (en) Exhaust gas recirculation cooler
JP2001041680A (en) Multitubular egr gas cooler and its manufacture
JP2001342912A (en) Egr cooler