JP2014109391A - Heat exchanger - Google Patents

Heat exchanger Download PDF

Info

Publication number
JP2014109391A
JP2014109391A JP2012262713A JP2012262713A JP2014109391A JP 2014109391 A JP2014109391 A JP 2014109391A JP 2012262713 A JP2012262713 A JP 2012262713A JP 2012262713 A JP2012262713 A JP 2012262713A JP 2014109391 A JP2014109391 A JP 2014109391A
Authority
JP
Japan
Prior art keywords
heat exchanger
refrigerant
heat exchange
heat
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012262713A
Other languages
Japanese (ja)
Inventor
Nobuki Kawamoto
信樹 川本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2012262713A priority Critical patent/JP2014109391A/en
Publication of JP2014109391A publication Critical patent/JP2014109391A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve performance for cooling a fluid that is a cooling target.SOLUTION: A heat exchanger includes: a heat exchange element in which a plurality of tubular paths through which a fluid that is a cooling target passes; a housing member that is arranged around the heat exchange element, and that forms an outer-circumference refrigerant path between the housing member and the heat exchange element through which refrigerant exchanging heat with the heat exchange element circulates; and an internal refrigerant path that communicates with the outer-circumference refrigerant path, and that introduces the refrigerant in the outer-circumference refrigerant path into the heat exchange element. The heat exchanger can also remove heat from the neighborhood of a central portion of the heat exchange element by introducing the refrigerant into the neighborhood of the central portion. As a result, the heat exchanger has improved performance for cooling the fluid that is the cooling target as compared with a heat exchanger that is not provided with the internal refrigerant path. Furthermore, a contact area between the heat exchange element and the refrigerant increases by providing the internal refrigerant path, in which respect, too, the performance of the heat exchanger for cooling the fluid that is the cooling target is improved.

Description

本発明は熱交換器に関する。   The present invention relates to a heat exchanger.

従来、例えば、排気再循環装置が備えるEGR(Exhaust Gas Recirculation)ガスを冷却する熱交換器が知られている。また、セラミックを用いた熱交換器が知られており(例えば、特許文献1)、これをEGRガス冷却装置に用いることもできる。特許文献1には、第一の流体である加熱体が流通する複数のセルを有するハニカム構造体によって形成された第一流体流通部と、この第一流体流通部の外周部に設けられた第二流体流通部を備えた熱交換器が開示されている。第二流体流通部には、冷媒が流通し、第一流体流通内を流通する加熱体から熱を奪い、加熱体を冷却する。また、特許文献2には、ハニカム構造を有し、流体が流通する流体流路と、流体の熱を蓄熱する媒体が封じ込められた蓄熱媒体部を備えた蓄熱体が開示されている。特許文献2に開示された蓄熱体では、蓄熱媒体部に封じ込められた媒体と、流体流路を流通する流体との間で熱交換が行われる。   Conventionally, for example, a heat exchanger for cooling EGR (Exhaust Gas Recirculation) gas included in an exhaust gas recirculation device is known. Further, a heat exchanger using ceramic is known (for example, Patent Document 1), and this can also be used for an EGR gas cooling device. In Patent Document 1, a first fluid circulation part formed by a honeycomb structure having a plurality of cells through which a heating body as a first fluid circulates, and a first fluid circulation part provided on the outer periphery of the first fluid circulation part. A heat exchanger having a two-fluid circulation part is disclosed. The refrigerant flows through the second fluid circulation portion, takes heat from the heating element that circulates in the first fluid circulation, and cools the heating element. Further, Patent Document 2 discloses a heat storage body having a honeycomb structure, a fluid flow path through which a fluid flows, and a heat storage medium portion in which a medium for storing heat of the fluid is contained. In the heat storage body disclosed in Patent Literature 2, heat exchange is performed between the medium enclosed in the heat storage medium section and the fluid flowing through the fluid flow path.

国際公開2011/071161号公報International Publication No. 2011/071161 特開2011−52919号公報JP 2011-52919 A

しかしながら、上記特許文献1に開示された熱交換器は、ハニカム構造体の外周部に冷媒を流通させているため、ハニカム構造体の中心部近傍が冷却されにくく、冷却対象となる加熱体が十分に冷却されない可能性がある。また、上記特許文献2に開示された蓄熱体における媒体は、ハニカム両端面を目封止することによって形成された蓄熱媒体部に封入されており、流体の冷却との観点からは、改良の余地がある。   However, in the heat exchanger disclosed in Patent Document 1, since the refrigerant is circulated around the outer peripheral portion of the honeycomb structure, the vicinity of the central portion of the honeycomb structure is difficult to be cooled, and there is sufficient heating body to be cooled. It may not be cooled down. Further, the medium in the heat storage body disclosed in Patent Document 2 is enclosed in a heat storage medium portion formed by plugging both end faces of the honeycomb, and there is room for improvement from the viewpoint of fluid cooling. There is.

そこで本明細書開示の熱交換器は、冷却対象となる流体の冷却性能を向上させることを課題とする。   Then, the heat exchanger of this specification indication makes it a subject to improve the cooling performance of the fluid used as cooling object.

上記課題を解決するために本明細書開示の熱交換器は、冷却対象となる流体が通過する複数の管状通路が形成された熱交換体と、前記熱交換体の周囲に配置され、前記熱交換体との間に前記熱交換体と熱交換する冷媒が流通する外周部冷媒通路を形成するハウジング部材と、前記外周部冷媒通路と連通し、前記外周部冷媒通路内の冷媒を前記熱交換体の内側に導く内部冷媒通路と、を備える。   In order to solve the above problems, a heat exchanger disclosed in this specification includes a heat exchanger formed with a plurality of tubular passages through which a fluid to be cooled passes, and is disposed around the heat exchanger, and the heat exchanger A housing member that forms an outer periphery refrigerant passage through which a refrigerant that exchanges heat with the heat exchanger flows between the exchanger and the outer periphery refrigerant passage, and the heat exchange of the refrigerant in the outer periphery refrigerant passage An internal refrigerant passage leading to the inside of the body.

内部冷媒通路を備えることにより、熱交換体の内側まで冷媒が導かれ、冷却対象となる流体の冷却性能を向上させることができる。   By providing the internal refrigerant passage, the refrigerant is guided to the inside of the heat exchanger, and the cooling performance of the fluid to be cooled can be improved.

前記内部冷媒通路は、前記熱交換体を前記冷却対象となる流体の流通方向から観たときに、前記熱交換体の中心部から前記外周部冷却通路に向かって放射状に設けてもよい。熱交換体が備える任意の管状通路と冷媒との距離が短縮されるため、管状通路内を流通する流体を効果的に冷却することができる。   The internal refrigerant passage may be provided radially from the center of the heat exchange body toward the outer peripheral cooling passage when the heat exchange body is viewed from the flow direction of the fluid to be cooled. Since the distance between the arbitrary tubular passage provided in the heat exchanger and the refrigerant is shortened, the fluid flowing in the tubular passage can be effectively cooled.

前記内部冷媒通路は、前記熱交換体を横断し、前記外周部冷媒通路間を接続してもよい。内部冷媒通路を通じて外周部冷媒通路間の冷媒の流れを創出することにより、冷却効率を向上させることができる。   The internal refrigerant passage may cross the heat exchanger and connect between the outer peripheral refrigerant passages. By creating a flow of refrigerant between the outer peripheral refrigerant passages through the internal refrigerant passage, the cooling efficiency can be improved.

本明細書に開示された熱交換器によれば、冷却対象となる流体の冷却性能を向上させることができる。   According to the heat exchanger disclosed in this specification, it is possible to improve the cooling performance of the fluid to be cooled.

図1(A)は第1実施形態の熱交換器を冷却対象となる流体の入口側から観た説明図であり、図1(B)は、図1(A)におけるA−A線断面図である。FIG. 1A is an explanatory view of the heat exchanger according to the first embodiment viewed from the inlet side of a fluid to be cooled, and FIG. 1B is a cross-sectional view taken along line AA in FIG. It is. 図2は図1(B)におけるB−B線に対応する場所で熱交換器を断面とした説明図である。FIG. 2 is an explanatory diagram with a cross section of the heat exchanger at a location corresponding to the line BB in FIG. 図3は熱交換器内の冷媒の流通を模式的に示す説明図である。FIG. 3 is an explanatory view schematically showing the circulation of the refrigerant in the heat exchanger. 図4(A)は第2実施形態の熱交換器を冷却対象となる流体の入口側から観た説明図であり、(B)は、図4(A)におけるC−C線断面図である。FIG. 4A is an explanatory view of the heat exchanger according to the second embodiment viewed from the inlet side of the fluid to be cooled, and FIG. 4B is a cross-sectional view taken along the line CC in FIG. .

以下、本発明を実施するための形態を図面と共に詳細に説明する。ただし、図面中、各部の寸法、比率等は、実際のものと完全に一致するようには図示されていない場合がある。   DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments for carrying out the present invention will be described in detail with reference to the drawings. However, in the drawings, the dimensions, ratios, and the like of each part may not be shown so as to completely match the actual ones.

(第1実施形態)
まず、図1乃至3を参照して、第1実施形態の熱交換器1について説明する。図1(A)は第1実施形態の熱交換器1を冷却対象となる流体の入口側から観た説明図であり、図1(B)は、図1(A)におけるA−A線断面図である。図2は図1(B)におけるB−B線に対応する場所で熱交換器を断面とした説明図である。図3は熱交換器内の冷媒の流通を模式的に示す説明図である。熱交換器1は、種々の流体を冷却対象とすることができるが、第1実施形態では、内燃機関に装備される排気再循環装置に組み込まれ、EGR(Exhaust Gas Recirculation)ガスを冷却するEGRクーラとして用いられる。すなわち、冷却対象となる流体はEGRガスである。
(First embodiment)
First, the heat exchanger 1 of the first embodiment will be described with reference to FIGS. FIG. 1A is an explanatory view of the heat exchanger 1 according to the first embodiment viewed from the inlet side of a fluid to be cooled, and FIG. 1B is a cross-sectional view taken along line AA in FIG. FIG. FIG. 2 is an explanatory diagram with a cross section of the heat exchanger at a location corresponding to the line BB in FIG. FIG. 3 is an explanatory view schematically showing the circulation of the refrigerant in the heat exchanger. The heat exchanger 1 can cool various fluids. In the first embodiment, the heat exchanger 1 is incorporated in an exhaust gas recirculation device equipped in an internal combustion engine and cools an EGR (Exhaust Gas Recirculation) gas. Used as a cooler. That is, the fluid to be cooled is EGR gas.

熱交換器1は、冷却対象となるEGRガスが通過する複数の管状通路2aが形成された熱交換体2を備える。熱交換体2は、炭化ケイ素(SiC)セラミック製である。セラミック材料は、効率的な熱伝導を有するとともに、高い耐蝕性を発揮することができる。このため、高熱伝導率を有するセラミック材料は、熱交換体2の材料として好適である。熱交換体2は、ハニカム構造又はハニカム構造類似の構造を有することによって複数の管状通路2aを備えている。ここで、ハニカム構造類似の構造と記載したのは、管状通路2aの形状として、六角柱形状のみでなく、例えば、四角柱形状、他の形状であってもよいことを示す意図である。   The heat exchanger 1 includes a heat exchanger 2 in which a plurality of tubular passages 2a through which EGR gas to be cooled passes are formed. The heat exchanger 2 is made of silicon carbide (SiC) ceramic. The ceramic material has efficient heat conduction and can exhibit high corrosion resistance. For this reason, a ceramic material having a high thermal conductivity is suitable as a material for the heat exchanger 2. The heat exchange element 2 includes a plurality of tubular passages 2a by having a honeycomb structure or a structure similar to a honeycomb structure. Here, the description of the structure similar to the honeycomb structure is intended to indicate that the shape of the tubular passage 2a is not limited to the hexagonal column shape, but may be, for example, a rectangular column shape or other shapes.

熱交換体2は、外周縁から内側に向かう領域の管状通路2aを埋め立てて設けられた埋立部2bを備える。図1(A)を参照すると、埋立部2bは、90°ずらして4箇所に設けられている。埋立部2bの位置、数は、これらに限定されるものではないが、埋立部2bを設ける際は、EGRガス流通に対する圧損への影響を考慮する。埋立部2bは、熱交換体2の材料と同一の材料を用いている。埋立部2bは、熱交換体2を押出成形した後、所望の部分管状通路2aに、材料を埋め込むことで成形することができる。埋立部2aは、他の方法によって成形することもできる。各埋立部2aは、熱交換体2の全長に亘って設けられている。各埋立部2aには、熱交換体2の長手方向に沿って、切削により溝が設けられている。この溝は、内部冷媒通路2cとなる。内部冷媒通路2cは、後述する外周部冷媒通路4と連通し、外周部冷媒通路4内の冷媒を前記熱交換体の内側に導く。なお、内部冷媒通路2cの幅や、長さは、特に限定されるものではない。   The heat exchange element 2 includes a landfill portion 2b provided by landfilling a tubular passage 2a in a region from the outer peripheral edge toward the inside. Referring to FIG. 1A, the landfill portion 2b is provided at four positions with a 90 ° shift. The position and number of the landfill portions 2b are not limited to these, but when the landfill portion 2b is provided, the influence of pressure loss on the EGR gas flow is taken into consideration. The landfill part 2b uses the same material as the material of the heat exchanger 2. The landfill 2b can be molded by embedding a material in a desired partial tubular passage 2a after the heat exchanger 2 is extruded. The landfill portion 2a can be formed by other methods. Each landfill 2 a is provided over the entire length of the heat exchange element 2. Each landfill 2a is provided with a groove by cutting along the longitudinal direction of the heat exchange element 2. This groove becomes the internal refrigerant passage 2c. The internal refrigerant passage 2c communicates with an outer peripheral refrigerant passage 4 described later, and guides the refrigerant in the outer peripheral refrigerant passage 4 to the inside of the heat exchanger. In addition, the width | variety and length of the internal refrigerant path 2c are not specifically limited.

内部冷媒通路2cは、熱交換体2をEGRガスの流通方向から観たとき、すなわち、図1(A)の視点で観たときに、熱交換体2の中心部から外周部冷却通路4に向かって放射状に設けられている。   When the heat exchanger 2 is viewed from the flow direction of the EGR gas, that is, when viewed from the viewpoint of FIG. 1 (A), the internal refrigerant passage 2c extends from the center of the heat exchanger 2 to the outer peripheral cooling passage 4. It is provided radially.

熱交換器1は、熱交換体2との間に熱交換体2と熱交換する冷媒が流通する外周部冷媒通路4を形成するハウジング部材3を備える。ハウジング部材3は、ステンレス(SUS)製の管材である。ハウジング部材3はアルミ等、他の材料を用いることもできる。ハウジング部材3は、その両端にそれぞれフランジ部3aを備える。各フランジ部3aの内側には、熱交換体2の端部が位置し、焼嵌めによって両者が一体化されている。フランジ部3aと、熱交換体2との間には、シール剤が設けられ、水止め処置が施されている。図2や図3を参照すると、外周部冷媒通路4は、ハウジング部材3の内周面と熱交換体2の外周壁2dとの間に形成されている。すなわち、冷媒は、熱交換体2に直接触れることになる。熱交換体2と冷媒とを分離する構成とすることもできる。例えば、インナーパイプを備える構成である。なお、このように、熱交換体2には冷媒が直接触れるので、熱交換体2の緻密性は高いことが望ましい。   The heat exchanger 1 includes a housing member 3 that forms an outer peripheral refrigerant passage 4 between which a refrigerant that exchanges heat with the heat exchanger 2 flows. The housing member 3 is a stainless steel (SUS) tube material. The housing member 3 can also use other materials such as aluminum. The housing member 3 includes flange portions 3a at both ends thereof. Inside each flange part 3a, the edge part of the heat exchange body 2 is located, and both are integrated by shrink fitting. A sealing agent is provided between the flange portion 3a and the heat exchange body 2, and a water stop treatment is performed. Referring to FIGS. 2 and 3, the outer peripheral refrigerant passage 4 is formed between the inner peripheral surface of the housing member 3 and the outer peripheral wall 2 d of the heat exchanger 2. That is, the refrigerant directly touches the heat exchanger 2. It can also be set as the structure which isolate | separates the heat exchanger 2 and a refrigerant | coolant. For example, it is a structure provided with an inner pipe. In addition, since the refrigerant directly touches the heat exchanger 2 as described above, it is desirable that the heat exchanger 2 has high density.

ハウジング部材3には、外周部冷媒通路4に冷媒を導入する冷媒入口3b1と外周部冷媒通路4内の冷媒を排出する冷媒出口3b2を備えている。冷媒はどのようなものであってもよいが、本実施形態では、冷却水を用いている。外周部冷媒通路4は、各内部冷媒通路2cと連通している。このため、熱交換器1では、熱交換体2の中心部近傍にも冷媒を導入し、中心部近傍からも熱を奪うことができる。この結果、熱交換器1は、内部冷媒通路2cを備えていない場合と比較して冷却対象となる流体の冷却性能が向上している。また、内部冷媒通路2cが設けられたことにより、熱交換体2と冷媒との接触面積が増大するため、この点においても冷却対象となる流体の冷却性能が向上している。   The housing member 3 includes a refrigerant inlet 3b1 for introducing a refrigerant into the outer peripheral refrigerant passage 4 and a refrigerant outlet 3b2 for discharging the refrigerant in the outer peripheral refrigerant passage 4. Although any refrigerant may be used, in the present embodiment, cooling water is used. The outer peripheral refrigerant passage 4 communicates with each internal refrigerant passage 2c. For this reason, in the heat exchanger 1, a refrigerant | coolant can also be introduce | transduced also to the center part vicinity of the heat exchanger 2, and heat can also be taken from the center part vicinity. As a result, the heat exchanger 1 has improved cooling performance of the fluid to be cooled compared to the case where the internal refrigerant passage 2c is not provided. Further, since the contact area between the heat exchanger 2 and the refrigerant is increased by providing the internal refrigerant passage 2c, the cooling performance of the fluid to be cooled is also improved in this respect.

なお、内部冷媒通路2cを熱交換体2の中心部から外周部冷却通路4に向かって放射状に設ける際に、熱交換体2中の任意の点から、直近の冷媒までの距離をできるだけ均等にすることが望ましい。これにより、熱交換体2の各部が均質に冷却される。熱交換体2の各部、特に、半径方向において均質に冷却されることにより、均等に冷却されたEGRガスが排出される。また、熱交換体2が均質に冷却されると、径方向の温度勾配が緩和され、熱交換体2に作用する熱応力が低減する。これにより、熱交換体2の割れ等が抑制される。   When the internal refrigerant passage 2c is provided radially from the center of the heat exchanger 2 toward the outer periphery cooling passage 4, the distance from any point in the heat exchanger 2 to the nearest refrigerant is made as uniform as possible. It is desirable to do. Thereby, each part of the heat exchange body 2 is cooled uniformly. By uniformly cooling each part of the heat exchanger 2, particularly in the radial direction, the EGR gas cooled uniformly is discharged. Moreover, when the heat exchanger 2 is cooled uniformly, the temperature gradient in the radial direction is relaxed, and the thermal stress acting on the heat exchanger 2 is reduced. Thereby, the crack etc. of the heat exchange body 2 are suppressed.

(第2実施形態)
つぎに、第2実施形態の熱交換器20について図4を参照しつつ説明する。図4(A)は第2実施形態の熱交換器20を冷却対象となる流体の入口側から観た説明図であり、(B)は、図4(A)におけるC−C線断面図である。第2実施形態の熱交換器20が第1実施形態の熱交換器1と異なる点は、第1実施形態における第1実施形態における埋立部2b及び内部冷媒通路2cに代えて埋立部22b及び内部冷媒通路22cを備えた点である。また、第2実施形態では、ハウジング部材3に仕切り板3cが設けられ、この仕切り板3cによって外周部冷媒通路4が高圧部4aと低圧部4bに分断されている。冷媒入口3b1は、高圧部4a側に設けられ、冷媒出口3b2は、低圧部4b側に設けられている。これにより、冷媒が導入される上流側が高圧となり、排出される下流側が低圧となる。
(Second Embodiment)
Next, the heat exchanger 20 of the second embodiment will be described with reference to FIG. FIG. 4A is an explanatory view of the heat exchanger 20 of the second embodiment viewed from the inlet side of the fluid to be cooled, and FIG. 4B is a cross-sectional view taken along the line CC in FIG. is there. The difference between the heat exchanger 20 of the second embodiment and the heat exchanger 1 of the first embodiment is that the landfill 22b and the internal portion of the first embodiment are replaced with the landfill 2b and the internal refrigerant passage 2c in the first embodiment. This is a point provided with a refrigerant passage 22c. Moreover, in 2nd Embodiment, the partition plate 3c is provided in the housing member 3, and the outer peripheral part refrigerant path 4 is divided | segmented into the high voltage | pressure part 4a and the low voltage | pressure part 4b by this partition plate 3c. The refrigerant inlet 3b1 is provided on the high pressure part 4a side, and the refrigerant outlet 3b2 is provided on the low pressure part 4b side. As a result, the upstream side where the refrigerant is introduced has a high pressure, and the downstream side where the refrigerant is discharged has a low pressure.

埋立部22bは、第1実施形態における埋立部2bと同様に熱交換体22を押出成形した後、所望の部分の管状通路22aに材料を埋め込むことで成形する。埋立部22bは、図4(A)に明らかであるように、熱交換体22を横断して設けられている。より具体的に、高圧部4aと低圧部4bを接続するように熱交換体22を横断している。このような埋立部22bには、熱交換体22を横断し、外周部冷媒通路4間、より具体的に、高圧部4aと低圧部4bとを接続する内部冷媒通路22c1、22c2が設けられている。内部冷媒通路22c1、22c2はドリルパスにより設けられている。なお、内部冷媒通路の角度や、本数は、適宜設定することができる。内部冷媒通路22c1、22c2は、熱交換体22の中央部を通過しているため、熱交換体22の中央部を冷却することができる。また、高圧部4aと低圧部4bを設けて両者を内部冷媒通路22c1、22c2によって接続したため冷媒の流速を上昇させることができる。これにより、冷却効率を向上させることができる。また、第1実施形態と同様に、熱交換体22と冷媒との接触面積が増大するため、この点でも冷却効率が向上する。   The landfill portion 22b is formed by embedding a material in the tubular passage 22a at a desired portion after the heat exchanger 22 is extruded as in the landfill portion 2b in the first embodiment. As is apparent from FIG. 4A, the landfill portion 22b is provided across the heat exchanger 22. More specifically, the heat exchanger 22 is traversed so as to connect the high pressure part 4a and the low pressure part 4b. Such a landfill portion 22b is provided with internal refrigerant passages 22c1 and 22c2 that cross the heat exchanger 22 and connect between the outer peripheral refrigerant passages 4, more specifically, the high pressure portion 4a and the low pressure portion 4b. Yes. The internal refrigerant passages 22c1 and 22c2 are provided by a drill path. The angle and number of the internal refrigerant passages can be set as appropriate. Since the internal refrigerant passages 22c1 and 22c2 pass through the central portion of the heat exchanger 22, the central portion of the heat exchanger 22 can be cooled. Moreover, since the high pressure part 4a and the low pressure part 4b are provided and both are connected by the internal refrigerant passages 22c1 and 22c2, the flow rate of the refrigerant can be increased. Thereby, cooling efficiency can be improved. Moreover, since the contact area between the heat exchanger 22 and the refrigerant increases as in the first embodiment, the cooling efficiency is improved in this respect as well.

図4(A)、(B)に示した例では、内部冷媒通路22c1、22c2は、熱交換体22の直径部分で高圧部4aと低圧部4bとを接続しているが、他の部分で両者を接続するようにすることもできる。   In the example shown in FIGS. 4A and 4B, the internal refrigerant passages 22c1 and 22c2 connect the high-pressure part 4a and the low-pressure part 4b at the diameter part of the heat exchanger 22, but at other parts. It is also possible to connect the two.

なお、第1実施形態と共通する構成要素については、図面中、同一の参照番号を付してその詳細な説明は省略する。   In addition, about the component which is common in 1st Embodiment, the same reference number is attached | subjected in drawing and the detailed description is abbreviate | omitted.

上記実施例は本発明を実施するための一例にすぎない。よって本発明はこれらに限定されるものではなく、請求の範囲に記載された本発明の要旨の範囲内において、種々の変形、変更が可能である。   The above embodiments are merely examples for carrying out the present invention. Therefore, the present invention is not limited to these, and various modifications and changes can be made within the scope of the gist of the present invention described in the claims.

1、20 熱交換器
2、22 熱交換体
2a、22a 管状通路
2b 埋立部
2c 内部冷媒通路
2d 外周壁
3 ハウジング部材
3a フランジ部
3b1 冷媒入口
3b2 冷媒出口
4 外周部冷媒通路
DESCRIPTION OF SYMBOLS 1, 20 Heat exchanger 2, 22 Heat exchanger 2a, 22a Tubular passage 2b Landfill part 2c Internal refrigerant path 2d Outer wall 3 Housing member 3a Flange part 3b1 Refrigerant inlet 3b2 Refrigerant outlet 4 Outer part refrigerant path

Claims (3)

冷却対象となる流体が通過する複数の管状通路が形成された熱交換体と、
前記熱交換体の周囲に配置され、前記熱交換体との間に前記熱交換体と熱交換する冷媒が流通する外周部冷媒通路を形成するハウジング部材と、
前記外周部冷媒通路と連通し、前記外周部冷媒通路内の冷媒を前記熱交換体の内側に導く内部冷媒通路と、
を備える熱交換器。
A heat exchanger in which a plurality of tubular passages through which a fluid to be cooled passes are formed;
A housing member that is disposed around the heat exchange body and forms an outer peripheral refrigerant passage through which a refrigerant that exchanges heat with the heat exchange body flows between the heat exchange body;
An internal refrigerant passage that communicates with the outer peripheral refrigerant passage and guides the refrigerant in the outer peripheral refrigerant passage to the inside of the heat exchanger;
A heat exchanger.
前記内部冷媒通路は、前記熱交換体を前記冷却対象となる流体の流通方向から観たときに、前記熱交換体の中心部から前記外周部冷却通路に向かって放射状に設けられた請求項1に記載の熱交換器。   The internal refrigerant passage is provided radially from the center of the heat exchange body toward the outer peripheral cooling passage when the heat exchange body is viewed from the flow direction of the fluid to be cooled. The heat exchanger as described in. 前記内部冷媒通路は、前記熱交換体を横断し、前記外周部冷媒通路間を接続する請求項1又は2に記載の熱交換器。   The heat exchanger according to claim 1 or 2, wherein the internal refrigerant passage crosses the heat exchanger and connects between the outer peripheral refrigerant passages.
JP2012262713A 2012-11-30 2012-11-30 Heat exchanger Pending JP2014109391A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012262713A JP2014109391A (en) 2012-11-30 2012-11-30 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012262713A JP2014109391A (en) 2012-11-30 2012-11-30 Heat exchanger

Publications (1)

Publication Number Publication Date
JP2014109391A true JP2014109391A (en) 2014-06-12

Family

ID=51030136

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012262713A Pending JP2014109391A (en) 2012-11-30 2012-11-30 Heat exchanger

Country Status (1)

Country Link
JP (1) JP2014109391A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109070046A (en) * 2016-03-31 2018-12-21 希尔施贝格工程公司 contactor

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000111277A (en) * 1998-10-09 2000-04-18 Toyota Motor Corp Double piping type heat exchanger
JP2000161871A (en) * 1998-11-25 2000-06-16 Toyota Motor Corp Double piping type heat exchanger
JP2000265908A (en) * 1999-03-12 2000-09-26 Toyota Autom Loom Works Ltd Egr gas cooling device
JP2001073883A (en) * 1999-09-01 2001-03-21 Mitsubishi Motors Corp Egr device
JP2002013882A (en) * 2000-06-30 2002-01-18 Matsushita Refrig Co Ltd Double pipe heat exchanger and refrigerating cycle device using it
JP2003254690A (en) * 2002-02-28 2003-09-10 Usui Kokusai Sangyo Kaisha Ltd Heat exchanger pipe and heat exchanger using this heat exchanger pipe
JP2005265253A (en) * 2004-03-17 2005-09-29 T Rad Co Ltd Double tube type heat exchanger and its manufacturing method
JP2006046846A (en) * 2004-08-06 2006-02-16 Matsumoto Jukogyo Kk Double pipe heat exchanger
JP2006266168A (en) * 2005-03-24 2006-10-05 T Rad Co Ltd Egr cooler
JP2007100990A (en) * 2005-09-30 2007-04-19 Matsumoto Jukogyo Kk Heat exchanger
JP2007163092A (en) * 2005-12-16 2007-06-28 Matsumoto Jukogyo Kk Double-pipe heat exchanger
JP2010503817A (en) * 2006-09-19 2010-02-04 ベール ゲーエムベーハー ウント コー カーゲー Heat exchanger for internal combustion engines
US20100043415A1 (en) * 2008-08-12 2010-02-25 Andreas Capelle Extruded gas cooler
WO2011071161A1 (en) * 2009-12-11 2011-06-16 日本碍子株式会社 Heat exchanger

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000111277A (en) * 1998-10-09 2000-04-18 Toyota Motor Corp Double piping type heat exchanger
JP2000161871A (en) * 1998-11-25 2000-06-16 Toyota Motor Corp Double piping type heat exchanger
JP2000265908A (en) * 1999-03-12 2000-09-26 Toyota Autom Loom Works Ltd Egr gas cooling device
JP2001073883A (en) * 1999-09-01 2001-03-21 Mitsubishi Motors Corp Egr device
JP2002013882A (en) * 2000-06-30 2002-01-18 Matsushita Refrig Co Ltd Double pipe heat exchanger and refrigerating cycle device using it
JP2003254690A (en) * 2002-02-28 2003-09-10 Usui Kokusai Sangyo Kaisha Ltd Heat exchanger pipe and heat exchanger using this heat exchanger pipe
JP2005265253A (en) * 2004-03-17 2005-09-29 T Rad Co Ltd Double tube type heat exchanger and its manufacturing method
JP2006046846A (en) * 2004-08-06 2006-02-16 Matsumoto Jukogyo Kk Double pipe heat exchanger
JP2006266168A (en) * 2005-03-24 2006-10-05 T Rad Co Ltd Egr cooler
JP2007100990A (en) * 2005-09-30 2007-04-19 Matsumoto Jukogyo Kk Heat exchanger
JP2007163092A (en) * 2005-12-16 2007-06-28 Matsumoto Jukogyo Kk Double-pipe heat exchanger
JP2010503817A (en) * 2006-09-19 2010-02-04 ベール ゲーエムベーハー ウント コー カーゲー Heat exchanger for internal combustion engines
US20100043415A1 (en) * 2008-08-12 2010-02-25 Andreas Capelle Extruded gas cooler
WO2011071161A1 (en) * 2009-12-11 2011-06-16 日本碍子株式会社 Heat exchanger

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109070046A (en) * 2016-03-31 2018-12-21 希尔施贝格工程公司 contactor
US11369939B2 (en) 2016-03-31 2022-06-28 Hirschberg Engineering Ag Contacter
US11772065B2 (en) 2016-03-31 2023-10-03 Hirschberg Engineering Ag Contactor

Similar Documents

Publication Publication Date Title
JP6075381B2 (en) Heat exchanger
JP4878287B2 (en) Heat exchanger
WO2010150877A1 (en) Heat exchanger using multiple-conduit pipes
TWI455461B (en) Cooling jacket
US9874407B2 (en) Heat exchanger
ES2409534B1 (en) HEAT EXCHANGER FOR GASES, ESPECIALLY OF EXHAUST GASES OF AN ENGINE
JP5510027B2 (en) EGR cooler
JP2007154683A (en) Exhaust gas recirculation cooler
JP2006118436A (en) Bonnet for egr gas cooling device
JP2007225137A (en) Multitubular heat exchanger and heat transfer tube for exhaust gas cooling device
JP2014109391A (en) Heat exchanger
JP2006200490A (en) Exhaust gas cooling device for exhaust gas recirculating system
JP2017008913A (en) Heat exchanger
JP2015102051A (en) EGR cooler
CN105318356A (en) High aspect ratio variable section heat exchange channel
JP2017203420A (en) Exhaust heat recovery device
JP2017166403A (en) Exhaust heat recovery device
JP2015034530A (en) Egr device
JP2004124809A (en) Exhaust gas recirculation cooler
JP2017048961A (en) Heat exchange device and heat exchange method
KR20190075679A (en) shell in a shell and plate heat exchanger, and shell and plate heat exchanger having the same
KR102194670B1 (en) Exhaust heat recovery unit
JP2007155158A (en) Connecting structure of heat exchanger
KR20180002482A (en) Exhaust gas cooler
JP2017193972A (en) Exhaust heat recovery device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141107

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150821

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150901

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160105