JP2017193972A - Exhaust heat recovery device - Google Patents

Exhaust heat recovery device Download PDF

Info

Publication number
JP2017193972A
JP2017193972A JP2016083420A JP2016083420A JP2017193972A JP 2017193972 A JP2017193972 A JP 2017193972A JP 2016083420 A JP2016083420 A JP 2016083420A JP 2016083420 A JP2016083420 A JP 2016083420A JP 2017193972 A JP2017193972 A JP 2017193972A
Authority
JP
Japan
Prior art keywords
cooling medium
annular
passage
exhaust
exhaust gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016083420A
Other languages
Japanese (ja)
Inventor
出居 一博
Kazuhiro Idei
一博 出居
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Marelli Corp
Original Assignee
Calsonic Kansei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Calsonic Kansei Corp filed Critical Calsonic Kansei Corp
Priority to JP2016083420A priority Critical patent/JP2017193972A/en
Publication of JP2017193972A publication Critical patent/JP2017193972A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

PROBLEM TO BE SOLVED: To provide an exhaust heat recovery device capable of suppressing boiling of a cooling medium due to heating by exhaust gas by controlling flowing of the cooling medium.SOLUTION: In an exhaust heat recovery device 1, a number of communication holes 15 are formed in an inner tube 10 to introduce exhaust gas G from a bypass passage 11 in the inside of the inner tube 10 to an annular heat exchange passage 21 lying between the inner tube 10 and an outer tube 20 when the bypass passage 11 is closed, and an annular cooling medium passage 35 having a cooling medium inlet pipe 36 and a cooling medium outlet pipe is provided on the outer peripheral side of the outer tube 20. In at least one of the cooling medium inlet pipe 36 and the cooling medium outlet pipe, a control member 38 is provided for controlling a cooling medium W such that the same flows to a part H side of the annular cooling medium passage 35, which faces a gas introduction side of the exhaust gas G.SELECTED DRAWING: Figure 3

Description

本発明は、エンジンや燃焼機器等から排気ガスと共に排出される熱を回収する排気熱回収装置(排気熱回収器)に関するものである。   The present invention relates to an exhaust heat recovery device (exhaust heat recovery device) that recovers heat discharged together with exhaust gas from an engine or combustion equipment.

例えば、エンジンから排出される排気ガスの熱を回収する排気熱回収装置として、特許文献1に記載されたものが知られている。   For example, an exhaust heat recovery device that recovers heat of exhaust gas discharged from an engine is known as described in Patent Document 1.

この排気熱回収装置100は、図11に示すように、排気ガスGが流れるバイパス通路としての第1排気通路111を形成する内筒110と、この内筒110の外周側に配置された外筒120と、内筒110と外筒120の間に熱交換通路としての環状の第2排気通路121を形成する中間筒130と、環状の第2排気通路121を流れる排気ガスGの熱を、流通する冷却媒体(例えば冷却水)Wに伝達するように外筒120と中間筒130との間に形成された環状の冷却媒体通路140と、外筒120の一端と他端に設けられた冷却媒体導入ポート125及び冷却媒体導出ポート126と、内筒110の上流側の円周方向に形成され、第1排気通路111の上流端に導入された排気ガスGを第1排気通路111から環状の第2排気通路121の上流側に導入可能な多数の連通孔115と、第1排気通路111の下流側に設けられ、開いた状態で排気ガスGを第1排気通路111に流通させ、閉じた状態で排気ガスGを多数の連通孔115を通して環状の第2排気通路121に流通させる弁体150と、を備えている。   As shown in FIG. 11, the exhaust heat recovery apparatus 100 includes an inner cylinder 110 that forms a first exhaust passage 111 as a bypass passage through which exhaust gas G flows, and an outer cylinder that is disposed on the outer peripheral side of the inner cylinder 110. 120, the intermediate cylinder 130 forming the annular second exhaust passage 121 as a heat exchange passage between the inner cylinder 110 and the outer cylinder 120, and the heat of the exhaust gas G flowing through the annular second exhaust passage 121 are circulated. An annular cooling medium passage 140 formed between the outer cylinder 120 and the intermediate cylinder 130 so as to be transmitted to a cooling medium (for example, cooling water) W, and a cooling medium provided at one end and the other end of the outer cylinder 120 The exhaust gas G formed in the circumferential direction on the upstream side of the inner cylinder 110 and the introduction port 125 and the cooling medium outlet port 126 is introduced into the upstream end of the first exhaust passage 111 from the first exhaust passage 111 in an annular shape. 2 exhaust passage 12 Are provided on the downstream side of the first exhaust passage 111, and the exhaust gas G is circulated through the first exhaust passage 111 in an open state, and the exhaust gas G is closed in a closed state. And a valve body 150 that circulates to the annular second exhaust passage 121 through a large number of communication holes 115.

そして、熱回収時には弁体150が閉じた状態となり、排気ガスGが内筒110の多数の連通孔115を通って環状の第2排気通路121に流通し、冷却媒体導入ポート125から流入した冷却媒体Wが環状の冷却媒体通路140を流れながら排気ガスGと熱交換し、熱を持って冷却媒体導出ポート126から流出することにより熱回収される。   When the heat is recovered, the valve body 150 is closed, and the exhaust gas G flows through the plurality of communication holes 115 of the inner cylinder 110 into the annular second exhaust passage 121 and flows into the cooling medium introduction port 125. The medium W exchanges heat with the exhaust gas G while flowing through the annular cooling medium passage 140, and heat is recovered by flowing out of the cooling medium outlet port 126 with heat.

尚、熱交換通路としての環状の第2排気通路121と冷却媒体通路140が接する中間筒130の第2排気通路121側の面には、螺旋溝状の凹凸131を設けて、熱交換面積を広くしている。   A spiral groove-like unevenness 131 is provided on the surface of the intermediate cylinder 130 on the second exhaust passage 121 side where the annular second exhaust passage 121 as the heat exchange passage and the cooling medium passage 140 are in contact with each other, thereby increasing the heat exchange area. Wide.

特開2006−250524号公報JP 2006-250524 A 特開2008−128128号公報JP 2008-128128 A

前述した従来の排気熱回収装置100では、第1排気通路111から環状の第2排気通路121に排気ガスGを導入する連通孔115を、内筒110の円周方向の全周に亘り等間隔に多数形成しているため、高温の排気ガスGが冷却媒体導出ポート126の存在する方向にも多く流れることになり、冷却媒体導出ポート126の近傍において冷却媒体Wが過度に加熱されて沸騰し易く、この沸騰し易い部位(排気ガスGの導入側)に低温の冷却媒体Wを積極的に流すことはできなかった。また、環状の冷却媒体通路140は通路内が狭いため、該通路内に傾斜板やリブを設けて、冷却媒体Wの流れを制御することが困難であった。   In the conventional exhaust heat recovery apparatus 100 described above, the communication holes 115 for introducing the exhaust gas G from the first exhaust passage 111 to the annular second exhaust passage 121 are equally spaced over the entire circumference of the inner cylinder 110. Therefore, a large amount of high-temperature exhaust gas G also flows in the direction in which the cooling medium outlet port 126 exists, and the cooling medium W is heated excessively in the vicinity of the cooling medium outlet port 126 and boils. It was easy, and the low temperature cooling medium W could not be made to flow positively to the portion that easily boiled (exhaust gas G introduction side). Further, since the annular cooling medium passage 140 is narrow in the passage, it is difficult to control the flow of the cooling medium W by providing inclined plates and ribs in the passage.

本発明は、上記事情を考慮し、冷却媒体の流れを制御して排気ガスの加熱による冷却媒体の沸騰を抑制することができる排気熱回収装置を提供することを目的とする。   In view of the above circumstances, an object of the present invention is to provide an exhaust heat recovery apparatus that can control boiling of a cooling medium due to heating of exhaust gas by controlling the flow of the cooling medium.

上記課題を解決するために、請求項1の発明は、排気ガスの熱を伝熱部材を介して冷却媒体に伝熱することで排気熱を回収する排気熱回収装置において、前記排気ガスが流れるバイパス通路を形成する内管と、前記内管の外周側に配置され、前記内管の外周との間に環状の熱交換通路を形成する外管と、前記環状の熱交換通路に配置され、該環状の熱交換通路を軸方向に流れる排気ガスから熱を受け取る環状の伝熱部材と、前記環状の伝熱部材の受け取った熱を、流通する冷却媒体に伝達するように前記環状の伝熱部材の外周側に配置され、かつ、前記外管の外周側に形成された環状の冷却媒体通路と、前記環状の冷却媒体通路の周方向の異なる位置に設けられた冷却媒体入口管及び冷却媒体出口管と、前記内管の上流側の管壁に穿設され、前記バイパス通路の上流端に導入された排気ガスを前記バイパス通路から前記環状の熱交換通路の上流側に導入可能な多数の連通孔と、前記バイパス通路の下流側に設けられ、開いた状態で排気ガスを前記バイパス通路に流通させ、閉じた状態で排気ガスを前記連通孔を通して前記環状の熱交換通路に流通させる開閉弁と、を備え、前記冷却媒体入口管と前記冷却媒体出口管の少なくとも一方に、前記冷却媒体を前記環状の冷却媒体通路の前記排気ガスのガス導入側に相対向する部位側に流れるように制御させる制御部材を設けたことを特徴とする。   In order to solve the above-mentioned problems, the invention of claim 1 is directed to an exhaust heat recovery device that recovers exhaust heat by transferring heat of exhaust gas to a cooling medium through a heat transfer member. An inner pipe that forms a bypass passage, and an outer pipe that is arranged on the outer circumference side of the inner pipe and that forms an annular heat exchange passage between the outer circumference of the inner pipe, and an annular heat exchange passage, An annular heat transfer member for receiving heat from the exhaust gas flowing in the axial direction through the annular heat exchange passage, and the annular heat transfer so as to transfer the heat received by the annular heat transfer member to a circulating cooling medium. An annular cooling medium passage disposed on the outer peripheral side of the member and formed on the outer peripheral side of the outer tube, and a cooling medium inlet pipe and a cooling medium provided at different positions in the circumferential direction of the annular cooling medium passage An outlet pipe and a pipe wall on the upstream side of the inner pipe, The exhaust gas introduced into the upstream end of the bypass passage is provided on the downstream side of the bypass passage with a large number of communication holes through which the exhaust gas can be introduced from the bypass passage to the upstream side of the annular heat exchange passage. An open / close valve that circulates exhaust gas through the bypass passage and circulates the exhaust gas through the communication hole to the annular heat exchange passage in a closed state, and includes at least one of the cooling medium inlet pipe and the cooling medium outlet pipe. On the other hand, a control member for controlling the cooling medium so as to flow to a portion of the annular cooling medium passage facing the gas introduction side of the exhaust gas is provided.

請求項2の発明は、請求項1記載の排気熱回収装置であって、前記制御部材は、前記環状の冷却媒体通路の前記排気ガスのガス導入側に相対向する部位側に傾斜部を有した筒状の管材で形成されていることを特徴とする。   A second aspect of the present invention is the exhaust heat recovery apparatus according to the first aspect, wherein the control member has an inclined portion on a side of the annular cooling medium passage facing the gas introduction side of the exhaust gas. It is characterized by being formed with a cylindrical tube material.

請求項3の発明は、請求項1記載の排気熱回収装置であって、前記制御部材は、前記環状の冷却媒体通路の前記排気ガスのガス導入側に相対向する部位側に逆U字状の切欠き部を有した筒状の管材で形成されていることを特徴とする。   A third aspect of the present invention is the exhaust heat recovery apparatus according to the first aspect, wherein the control member has an inverted U shape on a side of the annular cooling medium passage facing the gas introduction side of the exhaust gas. It is characterized by being formed of a tubular tube material having a notch.

請求項4の発明は、請求項1記載の排気熱回収装置であって、前記制御部材は、前記環状の冷却媒体通路の前記排気ガスのガス導入側に相対向する部位側に開口部を有した半筒状の管材で形成されていることを特徴とする。   A fourth aspect of the present invention is the exhaust heat recovery apparatus according to the first aspect, wherein the control member has an opening on a side of the annular cooling medium passage facing the gas introduction side of the exhaust gas. It is characterized by being formed of a semi-cylindrical tube material.

請求項5の発明は、請求項2〜4のいずれか1項に記載の排気熱回収装置であって、前記制御部材は、前記冷却媒体入口管と前記冷却媒体出口管の少なくとも一方の前記環状の冷却媒体通路側の端部を筒状に延ばして一体に形成されていることを特徴とする。   A fifth aspect of the present invention is the exhaust heat recovery apparatus according to any one of the second to fourth aspects, wherein the control member has the annular shape of at least one of the cooling medium inlet pipe and the cooling medium outlet pipe. It is characterized in that the end of the cooling medium passage side is integrally formed by extending in a cylindrical shape.

請求項1の発明によれば、環状の冷却媒体通路の周方向の異なる位置に設けられた冷却媒体入口管と冷却媒体出口管の少なくとも一方に、冷却媒体を環状の冷却媒体通路の排気ガスのガス導入側に相対向する部位側に流れるように制御させる制御部材を設けたことにより、冷却媒体の流れを制御して排気ガスの加熱による冷却媒体の沸騰を抑制することができる。   According to the first aspect of the present invention, the cooling medium is supplied to at least one of the cooling medium inlet pipe and the cooling medium outlet pipe provided at different positions in the circumferential direction of the annular cooling medium passage. By providing a control member that controls the gas introduction side so as to flow toward the opposite side, it is possible to control the flow of the cooling medium and suppress boiling of the cooling medium due to heating of the exhaust gas.

請求項2の発明によれば、制御部材を、環状の冷却媒体通路の排気ガスのガス導入側に相対向する部位側に傾斜部を有した筒状の管材で形成したことで、制御部材に傾斜部を形成するだけの簡単な構造により、低温の冷却媒体を沸騰し易い部位側に流れるように制御させることができる。   According to the second aspect of the present invention, the control member is formed of a tubular tube member having an inclined portion on the side of the annular cooling medium passage facing the exhaust gas introduction side. With a simple structure that only forms the inclined portion, the low-temperature cooling medium can be controlled to flow toward the portion that is likely to boil.

請求項3の発明によれば、制御部材を、環状の冷却媒体通路の排気ガスのガス導入側に相対向する部位側に逆U字状の切欠き部を有した筒状の管材で形成したことで、制御部材に逆U字状の切欠き部を形成するだけの簡単な構造により、低温の冷却媒体を沸騰し易い部位側に流れるように制御させることができる。   According to the invention of claim 3, the control member is formed of a tubular tube having an inverted U-shaped notch on the side of the annular coolant passage facing the exhaust gas introduction side. Thus, it is possible to control the low-temperature cooling medium to flow to the portion where it is likely to boil with a simple structure in which the control member is simply formed with an inverted U-shaped notch.

請求項4の発明によれば、制御部材を、環状の冷却媒体通路の排気ガスのガス導入側に相対向する部位側に開口部を有した半筒状の管材で形成したことで、制御部材に開口部を形成するだけの簡単な構造により、低温の冷却媒体を沸騰し易い部位側に流れるように制御させることができる。   According to the invention of claim 4, the control member is formed of a semi-cylindrical tube member having an opening on the side of the annular cooling medium passage facing the exhaust gas introduction side. With a simple structure that merely forms an opening, it is possible to control the low-temperature cooling medium to flow toward the portion that is likely to boil.

請求項5の発明によれば、制御部材を、冷却媒体入口管と冷却媒体出口管の少なくとも一方の環状の冷却媒体通路側の端部を筒状に延ばして一体に形成したことにより、冷却媒体入口管と冷却媒体出口管の少なくとも一方に制御部材を簡単かつ低コストで設けることができる。   According to the invention of claim 5, the control member is formed integrally by extending the end portion of at least one of the cooling medium inlet pipe and the cooling medium outlet pipe on the annular cooling medium passage side into a cylindrical shape. A control member can be provided easily and at low cost on at least one of the inlet pipe and the cooling medium outlet pipe.

本発明の第1実施形態の排気熱回収装置の側面図である。It is a side view of the exhaust heat recovery device of a 1st embodiment of the present invention. 図1のA矢視図である。It is A arrow directional view of FIG. 図1中B−B線に沿う断面図である。It is sectional drawing which follows the BB line in FIG. (a)は上記排気熱回収装置の冷却媒体入口管周辺の部分断面図、(b)は同冷却媒体入口管の要部の斜視図である。(A) is a fragmentary sectional view of the periphery of the cooling medium inlet pipe of the exhaust heat recovery apparatus, and (b) is a perspective view of the main part of the cooling medium inlet pipe. 図3中C−C線に沿う断面図である。It is sectional drawing which follows the CC line in FIG. 本発明の第2実施形態の冷却媒体入口管周辺の部分断面図である。It is a fragmentary sectional view around the cooling medium inlet pipe of the second embodiment of the present invention. 上記第2実施形態の冷却媒体入口管の要部の斜視図である。It is a perspective view of the principal part of the cooling-medium inlet pipe of the said 2nd Embodiment. 本発明の第3実施形態の冷却媒体入口管周辺の部分断面図である。It is a fragmentary sectional view around the cooling medium inlet pipe of the third embodiment of the present invention. 上記第3実施形態の冷却媒体入口管の要部の斜視図である。It is a perspective view of the principal part of the cooling medium inlet pipe of the said 3rd Embodiment. 本発明の第4実施形態の図3中C−C線に沿う断面図である。It is sectional drawing which follows the CC line in FIG. 3 of 4th Embodiment of this invention. 従来の排気熱回収装置の断面図である。It is sectional drawing of the conventional exhaust heat recovery apparatus.

以下、本発明の実施形態を図面を参照して説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は第1実施形態の排気熱回収装置の側面図、図2は図1のA矢視図、図3は図1中B−B線に沿う断面図、図4(a)は同排気熱回収装置の冷却媒体入口管周辺の部分断面図、図4(b)は同冷却媒体入口管の要部の斜視図、図5は図3中C−C線に沿う断面図である。   1 is a side view of the exhaust heat recovery apparatus according to the first embodiment, FIG. 2 is a view taken along the arrow A in FIG. 1, FIG. 3 is a cross-sectional view taken along line BB in FIG. FIG. 4B is a perspective view of the main part of the cooling medium inlet pipe, and FIG. 5 is a sectional view taken along the line CC in FIG.

この排気熱回収装置(排気熱回収器)1は、上流側から下流側へ向かって排気ガスGが流れる図示しない排気管の途中に設けられるもので、図1〜図3に示すように、内管10と外管20と冷却媒体ジャケット部材30と開閉弁16と下流側連絡管50及び取付フランジ18,53等から構成されている。   This exhaust heat recovery device (exhaust heat recovery device) 1 is provided in the middle of an exhaust pipe (not shown) through which exhaust gas G flows from the upstream side toward the downstream side. As shown in FIGS. The pipe 10, the outer pipe 20, the cooling medium jacket member 30, the on-off valve 16, the downstream communication pipe 50, the mounting flanges 18 and 53, and the like.

図3に示すように、内管10は、排気ガスGが流れるバイパス通路11を形成する小径の円形配管からなり、その上流側にはテーパ部13を介して大径の上流側連絡管12が一体に形成されている。この上流側連絡管12の上流端には、排気管に接続するための上流側取付フランジ18が溶接で接合されている。   As shown in FIG. 3, the inner pipe 10 is composed of a small-diameter circular pipe that forms a bypass passage 11 through which the exhaust gas G flows. A large-diameter upstream communication pipe 12 is connected to the upstream side via a taper portion 13. It is integrally formed. An upstream attachment flange 18 for connecting to the exhaust pipe is joined to the upstream end of the upstream communication pipe 12 by welding.

また、内管10の上流側の管壁の全周には、バイパス通路11の上流端に導入された排気ガスGをバイパス通路11から後述する円環状の熱交換通路21の上流側に導入可能な多数の連通孔15が設けられている。   Further, exhaust gas G introduced to the upstream end of the bypass passage 11 can be introduced from the bypass passage 11 to the upstream side of an annular heat exchange passage 21 described later on the entire circumference of the pipe wall on the upstream side of the inner pipe 10. A large number of communication holes 15 are provided.

さらに、バイパス通路11を構成する内管10の下流端には、開いた状態で排気ガスGをバイパス通路11に流通させ、閉じた状態で排気ガスGを連通孔15を通して円環状の熱交換通路21に図3中実線の矢印のように流通させる開閉弁16が設けられている。この開閉弁16は支軸17を介して後述する下流側連絡管50に開閉自在に取り付けられており、図示しない電気制御アクチュエータにより開閉される。尚、開閉弁16を、冷却媒体温度感知アクチュエータや排気圧感知アクチュエータ等の他のアクチュエータにより開閉させるようにしても良い。   Further, at the downstream end of the inner pipe 10 constituting the bypass passage 11, the exhaust gas G is circulated through the bypass passage 11 in an open state, and the exhaust gas G is passed through the communication hole 15 in a closed state to form an annular heat exchange passage. An on-off valve 16 is provided at 21 as shown by the solid line arrow in FIG. The on-off valve 16 is attached to a downstream communication pipe 50, which will be described later, via a support shaft 17, and can be opened and closed by an electric control actuator (not shown). The on-off valve 16 may be opened and closed by another actuator such as a cooling medium temperature sensing actuator or an exhaust pressure sensing actuator.

図3及び図5に示すように、外管20は、内管10の外周側に同心に配置され、内管10の外周面10bとの間に円環状の熱交換通路21を形成している。即ち、外管20は、内管10よりも大径の円形管で構成され、その内周面20aに外管20と一体に設けられた円環状の伝熱部材22を備えている。この伝熱部材22は、断面円形の円環状に形成され、その中心部に内管10が挿通する断面円形の中空部22aを有している。また、この円環状の伝熱部材22は、円環状の熱交換通路21の略中央に配置されており、円環状の熱交換通路21を軸方向に流れる排気ガスGから熱を受け取る役目を果たす。尚、円環状の伝熱部材22としては、軸線方向に貫通した多数のセルを伝熱隔壁で画成したハニカム構造体や多数のフィンを放射状に配設したフィン構造体等を使用する。   As shown in FIGS. 3 and 5, the outer tube 20 is disposed concentrically on the outer peripheral side of the inner tube 10, and an annular heat exchange passage 21 is formed between the outer tube 20 and the outer peripheral surface 10 b of the inner tube 10. . That is, the outer tube 20 is formed of a circular tube having a larger diameter than the inner tube 10, and includes an annular heat transfer member 22 provided integrally with the outer tube 20 on the inner peripheral surface 20 a. The heat transfer member 22 is formed in an annular shape with a circular cross section, and has a hollow portion 22a with a circular cross section through which the inner tube 10 is inserted. The annular heat transfer member 22 is disposed substantially at the center of the annular heat exchange passage 21 and serves to receive heat from the exhaust gas G flowing in the axial direction through the annular heat exchange passage 21. . As the annular heat transfer member 22, a honeycomb structure in which a large number of cells penetrating in the axial direction are defined by heat transfer partitions, a fin structure in which a large number of fins are radially arranged, or the like is used.

また、外管20は、その外周側に冷却媒体ジャケット部材30を一体に備えている。冷却媒体ジャケット部材30は、円環状の膨出部31と、その上流側及び下流側のストレート管部32,33とを有し、円環状の膨出部31と外管20との間に円環状の冷却媒体通路35を形成している。この円環状の冷却媒体通路35は、その中を流れる冷却媒体(例えばクーラント)Wに伝熱部材22の受け取った熱を有効に伝えることができるように、円環状の伝熱部材22の外周側に設けられている。尚、円環状の冷却媒体通路35の軸方向長さは、円環状の伝熱部材22の軸方向長さに対応させてある。   Further, the outer tube 20 is integrally provided with a cooling medium jacket member 30 on the outer peripheral side thereof. The cooling medium jacket member 30 has an annular bulging portion 31 and straight pipe portions 32 and 33 on the upstream side and the downstream side thereof, and a circular shape is provided between the annular bulging portion 31 and the outer tube 20. An annular cooling medium passage 35 is formed. The annular cooling medium passage 35 is arranged on the outer peripheral side of the annular heat transfer member 22 so that the heat received by the heat transfer member 22 can be effectively transferred to the cooling medium (for example, coolant) W flowing therethrough. Is provided. The axial length of the annular cooling medium passage 35 corresponds to the axial length of the annular heat transfer member 22.

外管20及び冷却媒体ジャケット部材30は、冷却媒体ジャケット部材30のストレート管部32の端部を円環板状の支持板41を介して上流側連絡管12に溶接で固定し、かつ、冷却媒体ジャケット部材30のストレート管部33の端部を後述する下流側連絡管50内に溶接で固定すると共に、内管10の端部を下流側連絡管50に溶接で固定された円環板状の支持板42に挿通自在(摺動自在)に支持することで、内管10の熱による伸びが吸収されるようになっている。尚、上流側支持板41は閉塞板として構成されているが、下流側支持板42には、排気ガスGを流通させるための開口孔43が形成されている。   The outer tube 20 and the cooling medium jacket member 30 are fixed by welding the end of the straight tube portion 32 of the cooling medium jacket member 30 to the upstream connecting tube 12 via an annular plate-like support plate 41 and cooled. An end of the straight pipe portion 33 of the medium jacket member 30 is fixed by welding in a downstream communication pipe 50 described later, and an end of the inner pipe 10 is fixed to the downstream communication pipe 50 by welding. By supporting the support plate 42 so as to be freely inserted (slidable), the elongation due to heat of the inner tube 10 is absorbed. Although the upstream side support plate 41 is configured as a blocking plate, the downstream side support plate 42 is formed with an opening hole 43 for allowing the exhaust gas G to flow therethrough.

また、外管20及び冷却媒体ジャケット部材30の下流端には下流側連絡管50が接続され、下流側連絡管50の下流側にテーパ部51を介して設けられた小径連絡管52の下流端には、排気管に接続するための下流側取付フランジ53が溶接で接合されている。   A downstream communication pipe 50 is connected to the downstream ends of the outer pipe 20 and the cooling medium jacket member 30, and a downstream end of a small-diameter communication pipe 52 provided on the downstream side of the downstream communication pipe 50 via a tapered portion 51. A downstream mounting flange 53 for connecting to the exhaust pipe is joined by welding.

また、図3及び図5に示すように、冷却媒体ジャケット部材30の円環状の膨出部31の周壁には円形で一対の取付孔31a,31bが所定距離隔てて形成されており、この一対の取付孔31a,31bには円筒状の冷却媒体入口管36と円筒状の冷却媒体出口管37がそれぞれ取り付けられている。これら冷却媒体入口管36と冷却媒体出口管37は、円環状の冷却媒体通路35の周方向の異なる位置(図示例では、90°周方向に離れた位置)に配置されている。尚、高温の排気ガスGが冷却媒体出口管37の存在する側に流れて冷却媒体出口管37の近傍において冷却媒体Wの過度の加熱(沸騰)により気泡が発生する場合があるので、その気泡発生時の気泡の排出性から、図5に示すように、冷却媒体ジャケット部材30の上部に冷却媒体出口管37を設けた方が良い。   As shown in FIGS. 3 and 5, a pair of mounting holes 31 a and 31 b are formed in a circular shape on the peripheral wall of the annular bulging portion 31 of the cooling medium jacket member 30 with a predetermined distance therebetween. A cylindrical cooling medium inlet pipe 36 and a cylindrical cooling medium outlet pipe 37 are attached to the mounting holes 31a and 31b, respectively. The cooling medium inlet pipe 36 and the cooling medium outlet pipe 37 are arranged at different positions in the circumferential direction of the annular cooling medium passage 35 (positions separated in the circumferential direction by 90 ° in the illustrated example). In addition, since the high-temperature exhaust gas G flows to the side where the cooling medium outlet pipe 37 exists and bubbles may be generated in the vicinity of the cooling medium outlet pipe 37 due to excessive heating (boiling) of the cooling medium W, the bubbles are generated. From the viewpoint of discharging the bubbles at the time of generation, it is better to provide a cooling medium outlet pipe 37 on the upper part of the cooling medium jacket member 30 as shown in FIG.

図3及び図4(a),(b)に示すように、円筒状の冷却媒体入口管36の冷却媒体通路35側の端部36aには、低温の冷却媒体Wが冷却媒体通路35の排気ガスGのガス導入側に相対向する部位(冷却媒体Wが沸騰し易い部位)H側に流れるように制御させる制御部材38が設けられている。この制御部材38は、円筒状の冷却媒体入口管36の端部36aを更に円筒状に延ばすことで該端部36aに一体形成されている。即ち、制御部材38は、冷却媒体入口管36の端部36aと一体の円筒状の管材で形成されていて、円環状の冷却媒体通路35の排気ガスGのガス導入側に相対向する部位H側に傾斜部38bを有している。この傾斜部38bは、図4(a)に示すように、冷却媒体入口管36の端部36aと一体に形成された円筒状の管材をその先端部38aから冷却媒体入口管36の鍔部36b側に向けて斜めに切断することにより形成されている。そして、制御部材38の傾斜部38bを円環状の冷却媒体通路35の排気ガスGのガス導入側に相対向する部位H側に向けたことにより、冷却媒体入口管36から供給された低温の冷却媒体Wが円環状の冷却媒体通路35の排気ガスGのガス導入側に相対向する部位H側に流れるようになっている。   As shown in FIGS. 3, 4 (a) and 4 (b), the low-temperature cooling medium W is exhausted from the cooling medium passage 35 at the end 36 a of the cylindrical cooling medium inlet pipe 36 on the cooling medium passage 35 side. A control member 38 is provided for controlling the gas G to flow to the side opposite to the gas introduction side (portion where the cooling medium W is likely to boil) H. The control member 38 is integrally formed with the end portion 36a by further extending the end portion 36a of the cylindrical cooling medium inlet pipe 36 into a cylindrical shape. That is, the control member 38 is formed of a cylindrical tube material that is integral with the end 36 a of the cooling medium inlet pipe 36, and is a portion H that faces the gas introduction side of the exhaust gas G in the annular cooling medium passage 35. An inclined portion 38b is provided on the side. As shown in FIG. 4A, the inclined portion 38b is formed by connecting a cylindrical tube material formed integrally with the end portion 36a of the cooling medium inlet pipe 36 from the distal end portion 38a to the flange portion 36b of the cooling medium inlet pipe 36. It is formed by cutting obliquely toward the side. The inclined portion 38b of the control member 38 is directed to the portion H side opposite to the gas introduction side of the exhaust gas G in the annular cooling medium passage 35, so that the low-temperature cooling supplied from the cooling medium inlet pipe 36 is achieved. The medium W flows to a portion H side facing the gas introduction side of the exhaust gas G in the annular cooling medium passage 35.

また、図4(a)に示すように、制御部材38の先端部38aと外管20の外周面20bとの間には隙間tが形成されている。尚、図4(a)及び図5に示すように、冷却媒体入口管36は、その端部36aを冷却媒体ジャケット部材30の膨出部31の取付孔31aに嵌め込み、鍔部36bを膨出部31に溶接することで冷却媒体ジャケット部材30に固定されている。また、図5に示すように、冷却媒体出口管37は、その端部37aを冷却媒体ジャケット部材30の膨出部31の取付孔31bに嵌め込み、鍔部37bを膨出部31に溶接することで冷却媒体ジャケット部材30に固定されている。   Further, as shown in FIG. 4A, a gap t is formed between the distal end portion 38a of the control member 38 and the outer peripheral surface 20b of the outer tube 20. As shown in FIGS. 4A and 5, the cooling medium inlet pipe 36 has its end 36a fitted into the mounting hole 31a of the bulging portion 31 of the cooling medium jacket member 30, and the flange 36b bulged. It is fixed to the cooling medium jacket member 30 by welding to the portion 31. Further, as shown in FIG. 5, the cooling medium outlet pipe 37 has its end portion 37 a fitted into the mounting hole 31 b of the bulging portion 31 of the cooling medium jacket member 30, and the flange portion 37 b is welded to the bulging portion 31. And is fixed to the cooling medium jacket member 30.

次に作用を述べる。   Next, the operation will be described.

排気熱回収装置1の開閉弁16が開いている場合には、排気ガスGはバイパス通路11を流れて下流側に到達する。この開閉弁16が開いている時は、排気ガスGはバイパス通路11から円環状の熱交換通路21に流れないため、排気ガスGの熱は、円環状の伝熱部材22に受け渡されることはない。よって、排気ガスGの熱は、円環状の冷却媒体通路35を流れる冷却媒体Wに伝達されて回収されることはない熱の非回収状態となる。   When the on-off valve 16 of the exhaust heat recovery apparatus 1 is open, the exhaust gas G flows through the bypass passage 11 and reaches the downstream side. When the on-off valve 16 is open, the exhaust gas G does not flow from the bypass passage 11 to the annular heat exchange passage 21, so that the heat of the exhaust gas G is transferred to the annular heat transfer member 22. There is no. Therefore, the heat of the exhaust gas G is transferred to the cooling medium W flowing through the annular cooling medium passage 35 and is not recovered.

一方、排気熱回収装置1の開閉弁16が閉じている場合には、図3中実線の矢印で示すように、排気ガスGはバイパス通路11から円環状の熱交換通路21に流れ、支持板42の開口孔43を経て下流側連絡管50に流れる。この間に、排気ガスGの熱は、円環状の伝熱部材22に受け渡され、この円環状の伝熱部材22に受け渡され熱が、図5に示すように、円環状の冷却媒体通路35を流れる冷却媒体Wに伝達されて回収される。   On the other hand, when the on-off valve 16 of the exhaust heat recovery device 1 is closed, the exhaust gas G flows from the bypass passage 11 to the annular heat exchange passage 21 as shown by the solid line arrow in FIG. It flows to the downstream side communication pipe 50 through the opening hole 43 of 42. During this time, the heat of the exhaust gas G is transferred to the annular heat transfer member 22, and the heat transferred to the annular heat transfer member 22 is transferred to the annular cooling medium passage as shown in FIG. It is transmitted to the cooling medium W flowing through 35 and collected.

この際に、図5に示すように、中心部に内管10が挿通する中空部22aを有する円環状の伝熱部材22が、軸線方向に貫通した多数のセルを伝熱隔壁で画成したハニカム構造体で構成されている場合は、円環状の熱交換通路21を流通する排気ガスGの流れを阻害せずに効率よく排気ガスGの熱を円環状の伝熱部材22で受け取ることができ、熱回収効率の向上を図ることができる。   At this time, as shown in FIG. 5, an annular heat transfer member 22 having a hollow portion 22a through which the inner tube 10 is inserted in the center portion defined a large number of cells penetrating in the axial direction with heat transfer partitions. In the case of the honeycomb structure, the annular heat transfer member 22 can efficiently receive the heat of the exhaust gas G without hindering the flow of the exhaust gas G flowing through the annular heat exchange passage 21. The heat recovery efficiency can be improved.

この排気熱回収装置1によれば、冷却媒体入口管36の端部36aと一体の円筒状の管材で制御部材38を形成し、この制御部材38が円環状の冷却媒体通路35の排気ガスGのガス導入側に相対向する部位H側に傾斜部38bを有しているため、冷却媒体入口管36から供給された低温の冷却媒体Wが円環状の冷却媒体通路35の排気ガスGのガス導入側に相対向する部位H側に流れるように制御される。即ち、制御部材38に傾斜部38bを形成するだけの簡単な構造により、低温の冷却媒体Wを沸騰し易い部位H側に流れるように制御させることができる。これにより、排気ガスGの加熱で沸騰し易い冷却媒体Wが低温の冷却媒体Wで冷やされるため、排気ガスGの加熱による冷却媒体Wの沸騰を確実に抑制することができる。   According to the exhaust heat recovery apparatus 1, the control member 38 is formed by a cylindrical tube material integral with the end portion 36 a of the cooling medium inlet pipe 36, and the control member 38 is an exhaust gas G in the annular cooling medium passage 35. Since the inclined portion 38b is provided on the portion H side opposite to the gas introduction side, the low-temperature cooling medium W supplied from the cooling medium inlet pipe 36 is the gas of the exhaust gas G in the annular cooling medium passage 35. The flow is controlled so as to flow to the part H side opposite to the introduction side. That is, it is possible to control the low-temperature cooling medium W to flow toward the portion H where it is likely to boil with a simple structure in which the inclined portion 38b is formed in the control member 38. Thereby, since the cooling medium W that is easily boiled by the heating of the exhaust gas G is cooled by the low-temperature cooling medium W, the boiling of the cooling medium W due to the heating of the exhaust gas G can be reliably suppressed.

また、図4(a)に示すように、制御部材38の傾斜部38bを円環状の冷却媒体通路35の排気ガスGのガス導入側に相対向する部位H側に向けたことにより、低温の冷却媒体Wを円環状の冷却媒体通路35の排気ガスGのガス導入側に相対向する部位H側に流すように制御することで、円環状の冷却媒体通路35のガス導入側の冷却媒体流量を上昇させることができるため、排気ガスGの加熱による冷却媒体Wの沸騰を確実に抑制することができる。   Further, as shown in FIG. 4A, the inclined portion 38b of the control member 38 is directed to the portion H side opposite to the gas introduction side of the exhaust gas G in the annular cooling medium passage 35, so that the low temperature is reduced. By controlling the cooling medium W to flow to the portion H side facing the gas introduction side of the exhaust gas G in the annular cooling medium passage 35, the cooling medium flow rate on the gas introduction side of the annular cooling medium passage 35 is controlled. Therefore, boiling of the cooling medium W due to heating of the exhaust gas G can be reliably suppressed.

さらに、冷却媒体入口管36の端部36aを円筒状に延ばして制御部材38を端部36aに一体形成したことにより、冷却媒体入口管36の端部36aに制御部材38を簡単かつ低コストで設けることができる。   Further, the end portion 36a of the cooling medium inlet pipe 36 is extended in a cylindrical shape, and the control member 38 is integrally formed with the end portion 36a. Can be provided.

図6は第2実施形態の排気熱回収装置の冷却媒体入口管周辺の部分断面図、図7は同冷却媒体入口管の要部の斜視図である。   FIG. 6 is a partial cross-sectional view around the cooling medium inlet pipe of the exhaust heat recovery apparatus of the second embodiment, and FIG. 7 is a perspective view of the main part of the cooling medium inlet pipe.

この第2実施形態では、制御部材38は、円環状の冷却媒体通路35の排気ガスGのガス導入側に相対向する部位H側に逆U字状の切欠き部38cを有した冷却媒体入口管36の端部36aと一体の円筒状の管材で形成されている。尚、他の構成は、前記第1実施形態と同様であるため、同一構成部分には、同一符号を付して詳細な説明は省略する。   In the second embodiment, the control member 38 has a cooling medium inlet having an inverted U-shaped notch 38c on the portion H side opposite to the gas introduction side of the exhaust gas G in the annular cooling medium passage 35. It is formed of a cylindrical tube material integral with the end portion 36 a of the tube 36. Since other configurations are the same as those of the first embodiment, the same components are denoted by the same reference numerals, and detailed description thereof is omitted.

この第2実施形態によれば、制御部材38の逆U字状の切欠き部38cを円環状の冷却媒体通路35の排気ガスGのガス導入側に相対向する部位H側に向けたことにより、冷却媒体入口管36から供給された低温の冷却媒体Wを、円環状の冷却媒体通路35の排気ガスGのガス導入側に相対向する部位H側に流れるように制御することができるため、前記第1実施形態と同様に、排気ガスGの加熱による冷却媒体Wの沸騰を確実に抑制することができる。   According to the second embodiment, the inverted U-shaped notch 38c of the control member 38 is directed to the portion H side facing the gas introduction side of the exhaust gas G in the annular cooling medium passage 35. Since the low-temperature cooling medium W supplied from the cooling medium inlet pipe 36 can be controlled to flow to the portion H side opposite to the gas introduction side of the exhaust gas G in the annular cooling medium passage 35, As in the first embodiment, boiling of the cooling medium W due to heating of the exhaust gas G can be reliably suppressed.

図8は第3実施形態の排気熱回収装置の冷却媒体入口管周辺の部分断面図、図9は同冷却媒体入口管の要部の斜視図である。   FIG. 8 is a partial cross-sectional view of the vicinity of the cooling medium inlet pipe of the exhaust heat recovery apparatus of the third embodiment, and FIG. 9 is a perspective view of the main part of the cooling medium inlet pipe.

この第3実施形態では、制御部材38は、円環状の冷却媒体通路35の排気ガスGのガス導入側に相対向する部位H側に開口部38dを有した冷却媒体入口管36の端部36aと一体の半円筒状の管材で形成されている。尚、他の構成は、前記第1実施形態と同様であるため、同一構成部分には、同一符号を付して詳細な説明は省略する。   In the third embodiment, the control member 38 includes an end portion 36a of the cooling medium inlet pipe 36 having an opening 38d on the portion H side facing the gas introduction side of the exhaust gas G in the annular cooling medium passage 35. And is formed of a semi-cylindrical tube material. Since other configurations are the same as those of the first embodiment, the same components are denoted by the same reference numerals, and detailed description thereof is omitted.

この第3実施形態によれば、制御部材38の開口部38dを円環状の冷却媒体通路35の排気ガスGのガス導入側に相対向する部位H側に向けたことにより、冷却媒体入口管36から供給された低温の冷却媒体Wを、円環状の冷却媒体通路35の排気ガスGのガス導入側に相対向する部位H側に流れるように制御することができるため、前記第1実施形態と同様に、排気ガスGの加熱による冷却媒体Wの沸騰を確実に抑制することができる。   According to the third embodiment, the opening 38 d of the control member 38 is directed to the portion H side facing the gas introduction side of the exhaust gas G in the annular cooling medium passage 35, whereby the cooling medium inlet pipe 36. It is possible to control the low-temperature cooling medium W supplied from the refrigerant to flow to the portion H side opposite to the gas introduction side of the exhaust gas G in the annular cooling medium passage 35. Similarly, boiling of the cooling medium W due to heating of the exhaust gas G can be reliably suppressed.

図10は第4実施形態の図3中C−C線に沿う断面図である。   FIG. 10 is a sectional view taken along the line CC in FIG. 3 of the fourth embodiment.

この第4実施形態では、冷却媒体入口管36と冷却媒体出口管37の両方の各端部36a,37aに傾斜部38bを有した制御部材38がそれぞれ一体に形成されている。尚、他の構成は、前記第1実施形態と同様であるため、同一構成部分には、同一符号を付して詳細な説明は省略する。   In the fourth embodiment, control members 38 each having an inclined portion 38b are integrally formed at each end portion 36a, 37a of both the cooling medium inlet pipe 36 and the cooling medium outlet pipe 37. Since other configurations are the same as those of the first embodiment, the same components are denoted by the same reference numerals, and detailed description thereof is omitted.

この第4実施形態によれば、各制御部材38の傾斜部38bを円環状の冷却媒体通路35の排気ガスGのガス導入側に相対向する部位H側にそれぞれ向けたことにより、冷却媒体入口管36から供給されて冷却媒体出口管37へ流出する低温の冷却媒体Wを、円環状の冷却媒体通路35の排気ガスGのガス導入側に相対向する部位H側に流れるように制御することができるため、前記第1実施形態と同様に、排気ガスGの加熱による冷却媒体Wの沸騰を確実に抑制することができる。   According to the fourth embodiment, the inclined portion 38b of each control member 38 is directed to the portion H side opposite to the gas introduction side of the exhaust gas G in the annular cooling medium passage 35, so that the cooling medium inlet port Control is performed so that the low-temperature cooling medium W supplied from the pipe 36 and flowing out to the cooling medium outlet pipe 37 flows to the portion H side opposite to the gas introduction side of the exhaust gas G in the annular cooling medium passage 35. Therefore, similarly to the first embodiment, boiling of the cooling medium W due to heating of the exhaust gas G can be reliably suppressed.

尚、前記各実施形態では、冷却媒体入口管に制御部材を設けたり、冷却媒体入口管と冷却媒体出口管の両方に制御部材をそれぞれ設けた場合について説明したが、冷却媒体出口管にのみ制御部材を設けても良い。この場合には、冷却媒体出口管の近傍において冷却媒体の過度の加熱(沸騰)により気泡が発生するのを確実に抑制することができる。   In each of the embodiments described above, the control member is provided in the cooling medium inlet pipe, or the control member is provided in both the cooling medium inlet pipe and the cooling medium outlet pipe. However, the control is performed only on the cooling medium outlet pipe. A member may be provided. In this case, it is possible to reliably suppress the generation of bubbles due to excessive heating (boiling) of the cooling medium in the vicinity of the cooling medium outlet pipe.

1 排気熱回収装置
10 内管
11 バイパス通路
15 連通孔
16 開閉弁
20 外管
21 円環状の熱交換通路(環状の熱交換通路)
22 円環状の伝熱部材(環状の伝熱部材)
35 円環状の冷却媒体通路(環状の冷却媒体通路)
36 冷却媒体入口管
36a 端部
37 冷却媒体出口管
37a 端部
38 制御部材
38b 傾斜部
38c 逆U字状の切欠き部
38d 開口部
G 排気ガス
W 冷却媒体
H 冷却媒体通路の排気ガスのガス導入側に相対向する部位(冷却媒体が沸騰し易い部位)
DESCRIPTION OF SYMBOLS 1 Exhaust heat recovery apparatus 10 Inner pipe 11 Bypass path 15 Communication hole 16 On-off valve 20 Outer pipe 21 Annular heat exchange path (annular heat exchange path)
22 Annular heat transfer member (annular heat transfer member)
35 Annular coolant passage (annular coolant passage)
36 Cooling medium inlet tube 36a End portion 37 Cooling medium outlet tube 37a End portion 38 Control member 38b Inclined portion 38c Inverted U-shaped cutout portion 38d Opening portion G Exhaust gas W Cooling medium H Gas exhaust gas introduction into cooling medium passage Opposite side (part where cooling medium is likely to boil)

Claims (5)

排気ガス(G)の熱を伝熱部材(22)を介して冷却媒体(W)に伝熱することで排気熱を回収する排気熱回収装置(1)において、
前記排気ガス(G)が流れるバイパス通路(11)を形成する内管(10)と、
前記内管(10)の外周側に配置され、前記内管(10)の外周との間に環状の熱交換通路(21)を形成する外管(20)と、
前記環状の熱交換通路(21)に配置され、該環状の熱交換通路(21)を軸方向に流れる排気ガス(G)から熱を受け取る環状の伝熱部材(22)と、
前記環状の伝熱部材(22)の受け取った熱を、流通する冷却媒体(W)に伝達するように前記環状の伝熱部材(22)の外周側に配置され、かつ、前記外管(20)の外周側に形成された環状の冷却媒体通路(35)と、
前記環状の冷却媒体通路(35)の周方向の異なる位置に設けられた冷却媒体入口管(36)及び冷却媒体出口管(37)と、
前記内管(10)の上流側の管壁に穿設され、前記バイパス通路(11)の上流端に導入された排気ガス(G)を前記バイパス通路(11)から前記環状の熱交換通路(21)の上流側に導入可能な多数の連通孔(15)と、
前記バイパス通路(11)の下流側に設けられ、開いた状態で排気ガス(G)を前記バイパス通路(11)に流通させ、閉じた状態で排気ガス(G)を前記連通孔(15)を通して前記環状の熱交換通路(21)に流通させる開閉弁(16)と、を備え、
前記冷却媒体入口管(36)と前記冷却媒体出口管(37)の少なくとも一方に、前記冷却媒体(W)を前記環状の冷却媒体通路(35)の前記排気ガス(G)のガス導入側に相対向する部位(H)側に流れるように制御させる制御部材(38)を設けたことを特徴とする排気熱回収装置。
In the exhaust heat recovery device (1) for recovering the exhaust heat by transferring the heat of the exhaust gas (G) to the cooling medium (W) through the heat transfer member (22),
An inner pipe (10) forming a bypass passage (11) through which the exhaust gas (G) flows;
An outer pipe (20) disposed on the outer peripheral side of the inner pipe (10) and forming an annular heat exchange passage (21) with the outer circumference of the inner pipe (10);
An annular heat transfer member (22) disposed in the annular heat exchange passage (21) and receiving heat from exhaust gas (G) flowing in the axial direction through the annular heat exchange passage (21);
It arrange | positions at the outer peripheral side of the said annular heat-transfer member (22) so that the heat received by the said annular heat-transfer member (22) may be transmitted to the circulating cooling medium (W), and the said outer tube (20) ) An annular cooling medium passage (35) formed on the outer peripheral side of
A cooling medium inlet pipe (36) and a cooling medium outlet pipe (37) provided at different positions in the circumferential direction of the annular cooling medium passage (35);
Exhaust gas (G) drilled in the upstream pipe wall of the inner pipe (10) and introduced into the upstream end of the bypass passage (11) is transferred from the bypass passage (11) to the annular heat exchange passage ( 21) a number of communication holes (15) that can be introduced upstream of
Provided downstream of the bypass passage (11), the exhaust gas (G) flows through the bypass passage (11) in an open state, and the exhaust gas (G) passes through the communication hole (15) in a closed state. An on-off valve (16) that circulates in the annular heat exchange passage (21),
The cooling medium (W) is placed on at least one of the cooling medium inlet pipe (36) and the cooling medium outlet pipe (37) on the gas introduction side of the exhaust gas (G) in the annular cooling medium passage (35). An exhaust heat recovery apparatus, characterized in that a control member (38) is provided for controlling the flow so as to flow toward the opposite part (H).
請求項1記載の排気熱回収装置(1)であって、
前記制御部材(38)は、前記環状の冷却媒体通路(35)の前記排気ガス(G)のガス導入側に相対向する部位(H)側に傾斜部(38b)を有した筒状の管材で形成されていることを特徴とする排気熱回収装置。
An exhaust heat recovery device (1) according to claim 1,
The control member (38) is a tubular tube member having an inclined portion (38b) on a portion (H) side facing the gas introduction side of the exhaust gas (G) of the annular cooling medium passage (35). An exhaust heat recovery device, characterized in that it is formed by.
請求項1記載の排気熱回収装置(1)であって、
前記制御部材(38)は、前記環状の冷却媒体通路(35)の前記排気ガス(G)のガス導入側に相対向する部位(H)側に逆U字状の切欠き部(38c)を有した筒状の管材で形成されていることを特徴とする排気熱回収装置。
An exhaust heat recovery device (1) according to claim 1,
The control member (38) has an inverted U-shaped notch (38c) on the side (H) of the annular cooling medium passage (35) facing the gas introduction side of the exhaust gas (G). An exhaust heat recovery apparatus, characterized in that the exhaust heat recovery apparatus is formed of a cylindrical tubular material.
請求項1記載の排気熱回収装置(1)であって、
前記制御部材(38)は、前記環状の冷却媒体通路(35)の前記排気ガス(G)のガス導入側に相対向する部位(H)側に開口部(38d)を有した半筒状の管材で形成されていることを特徴とする排気熱回収装置。
An exhaust heat recovery device (1) according to claim 1,
The control member (38) has a semi-cylindrical shape having an opening (38d) on the side (H) of the annular cooling medium passage (35) facing the gas introduction side of the exhaust gas (G). An exhaust heat recovery device, characterized by being formed of a tube material.
請求項2〜4のいずれか1項に記載の排気熱回収装置(1)であって、
前記制御部材(38)は、前記冷却媒体入口管(36)と前記冷却媒体出口管(37)の少なくとも一方の前記環状の冷却媒体通路(35)側の端部(36a,37a)を筒状に延ばして一体に形成されていることを特徴とする排気熱回収装置。
An exhaust heat recovery device (1) according to any one of claims 2 to 4,
The control member (38) has a cylindrical end (36a, 37a) on the annular cooling medium passage (35) side of at least one of the cooling medium inlet pipe (36) and the cooling medium outlet pipe (37). An exhaust heat recovery device, wherein the exhaust heat recovery device is formed integrally with the exhaust heat.
JP2016083420A 2016-04-19 2016-04-19 Exhaust heat recovery device Pending JP2017193972A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016083420A JP2017193972A (en) 2016-04-19 2016-04-19 Exhaust heat recovery device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016083420A JP2017193972A (en) 2016-04-19 2016-04-19 Exhaust heat recovery device

Publications (1)

Publication Number Publication Date
JP2017193972A true JP2017193972A (en) 2017-10-26

Family

ID=60155313

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016083420A Pending JP2017193972A (en) 2016-04-19 2016-04-19 Exhaust heat recovery device

Country Status (1)

Country Link
JP (1) JP2017193972A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020084860A (en) * 2018-11-21 2020-06-04 フタバ産業株式会社 Exhaust heat recovery apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020084860A (en) * 2018-11-21 2020-06-04 フタバ産業株式会社 Exhaust heat recovery apparatus

Similar Documents

Publication Publication Date Title
KR101317373B1 (en) Heat exchanger
EP2208874B1 (en) Heat recovery system
CN101405484B (en) Exhaust gas heat recovery device
WO2010150877A1 (en) Heat exchanger using multiple-conduit pipes
JP2013539006A (en) Waste heat boiler
JPWO2016190445A1 (en) Heat exchanger tank structure and manufacturing method thereof
JP2017203420A (en) Exhaust heat recovery device
JP2017166403A (en) Exhaust heat recovery device
JP2006314180A (en) Thermal power generator
JP2016108980A (en) Exhaust heat recovery device
JP2007192535A (en) Heat exchanger device
JP2017193972A (en) Exhaust heat recovery device
JP2005127684A (en) Double tube type heat exchanger
JP2006200490A (en) Exhaust gas cooling device for exhaust gas recirculating system
JP2006266168A (en) Egr cooler
JP2006200861A (en) Multi-fluid heat exchanger
JP3180377U (en) Heat exchanger
CN109945716B (en) A kind of high-temperature cooler supporting device for heat exchange tube bundle
CN109945718B (en) A kind of cooling device for preventing high-temperature cooler prime tube bundle support plate from overheating
JP2008175461A (en) Heat exchanger
US20170343302A1 (en) Heat exchanger
JP2017002811A (en) Exhaust heat recovery device
JP2017133362A (en) Exhaust heat recovery device
JP2006057988A (en) Heat exchanger for recovering waste heat of combustion type heat source machine
CN214250613U (en) Wine steam condensing equipment and wine making system