JP2016160696A - Reinforcement method of existing base-isolated building - Google Patents

Reinforcement method of existing base-isolated building Download PDF

Info

Publication number
JP2016160696A
JP2016160696A JP2015041891A JP2015041891A JP2016160696A JP 2016160696 A JP2016160696 A JP 2016160696A JP 2015041891 A JP2015041891 A JP 2015041891A JP 2015041891 A JP2015041891 A JP 2015041891A JP 2016160696 A JP2016160696 A JP 2016160696A
Authority
JP
Japan
Prior art keywords
displacement
building
damper
seismic isolation
switching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015041891A
Other languages
Japanese (ja)
Other versions
JP6632201B2 (en
Inventor
龍大 欄木
Ryota Maseki
龍大 欄木
長島 一郎
Ichiro Nagashima
一郎 長島
藍子 新居
Aiko Nii
藍子 新居
木村 雄一
Yuichi Kimura
雄一 木村
中島 徹
Toru Nakajima
徹 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taisei Corp
Original Assignee
Taisei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taisei Corp filed Critical Taisei Corp
Priority to JP2015041891A priority Critical patent/JP6632201B2/en
Publication of JP2016160696A publication Critical patent/JP2016160696A/en
Application granted granted Critical
Publication of JP6632201B2 publication Critical patent/JP6632201B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a reinforcement method of an existing base-isolated building capable of securing both base isolation performance against a middle or small earthquake and an earthquake at an earthquake motion level of the original design and safety against a greater earthquake than was assumed in the original design.SOLUTION: In a base isolation layer 3, a displacement-changeover-type passive damper 10 that switches from a low attenuation mode to a high attenuation mode at a preset displacement is installed.SELECTED DRAWING: Figure 1

Description

本発明は、既存の免震建物に対して、中小地震や設計当初に想定した地震に対する免震性能の確保と、設計時の想定を超える巨大地震に対する安全性の確保を両立させるための補強方法に関するものである。   The present invention provides a method for reinforcing existing seismic isolation buildings to achieve both seismic isolation performance against small and medium earthquakes and earthquakes assumed at the beginning of design and safety against huge earthquakes exceeding the assumptions at the time of design. It is about.

2011年の東北地方太平洋沖地震の発生を受けて、南海トラフ沿いの海溝型巨大地震の想定震源域が見直され、また内陸直下地震の発生確率の上昇が警告されている。ちなみに、上記海溝型巨大地震では、大振幅で繰り返し回数の多い長周期・長時間の地震動の発生が危惧されている。また、内陸直下地震では、大振幅のパルス性地震動の発生が危惧されている。   Following the occurrence of the 2011 off the Pacific coast of Tohoku Earthquake, the hypocenter region of a subduction-zone giant earthquake along the Nankai Trough has been reviewed, and an increase in the probability of an inland earthquake has been warned. By the way, there are concerns about the occurrence of long-period and long-time ground motions with large amplitudes and frequent repetitions in the subduction-zone giant earthquakes. In addition, large-scale pulsed ground motions are feared in inland earthquakes.

一方、上記東北地方太平洋沖地震の発生以前より、地震に対して建物の安全性を確保するために、例えば図8に示すように、建物1の基礎4上に積層ゴムや滑り支承による免震装置(図では積層ゴム支承を示す。)2を介装した免震層3を形成し、地震等によって基礎4側から建物1に伝播しようとする振動を緩和させるとともに、さらに建物1と基礎4との間に、粘弾性ダンパーやオイルダンパー等のダンパー5を介装して、上記振動を積極的に減衰させる各種のパッシブ免震システムが採用されている。   On the other hand, in order to ensure the safety of the building against the earthquake before the occurrence of the Tohoku-Pacific Ocean Earthquake, as shown in FIG. 8, for example, the base 4 of the building 1 is seismically isolated by laminated rubber or a sliding bearing. A seismic isolation layer 3 with a device (laminated rubber bearing is shown in the figure) 2 is formed to reduce vibrations that are transmitted from the foundation 4 side to the building 1 due to an earthquake or the like. Between these, various passive seismic isolation systems are employed that actively dampen the above-described vibrations through dampers 5 such as viscoelastic dampers and oil dampers.

ところが、上記構成からなる既存の免震建物は、想定以上の地震力が作用すると、免震層3の変形が急激に大きくなるという特徴があるため、上述した巨大地震のような設計当初の想定を大きく超える地震動が作用すると、建物1が擁壁6に衝突したり、あるいは免震装置2が損傷するなどの被害を生じる虞がある。   However, the existing base-isolated building having the above-described structure has a feature that when the seismic force more than expected is applied, the deformation of the base-isolated layer 3 rapidly increases. If the earthquake motion greatly exceeds 1, the building 1 may collide with the retaining wall 6, or the seismic isolation device 2 may be damaged.

このような免震層3の過大変形に起因する被害を抑制する従来の技術としては、巨大地震時に建物1が擁壁6に衝突することを前提にして、例えば防舷材やショックアブソーバ等を介装して衝撃力を緩和する試みがあるものの、免震層3における可動変位を狭めることになり、また充分なエネルギー吸収が実現できなくなるという問題点がある。   As a conventional technique for suppressing the damage caused by the excessive deformation of the seismic isolation layer 3, for example, a fender or a shock absorber is used on the assumption that the building 1 collides with the retaining wall 6 in the event of a huge earthquake. Although there are attempts to reduce the impact force by interposing, there is a problem that the movable displacement in the seismic isolation layer 3 is narrowed and sufficient energy absorption cannot be realized.

また、上記衝突を抑止して建物1の安全性を高めるべく、既存免震建物に対して、免震層3にダンパー5を増設して減衰力を高める補強方法も提案されている。   In addition, in order to suppress the above-described collision and improve the safety of the building 1, a reinforcing method for increasing the damping force by adding a damper 5 to the base isolation layer 3 has been proposed.

しかしながら、上記従来の補強方法にあっては、ダンパー5の減衰力を高めることにより、想定を超える巨大地震時における免震層3の変形を抑えて安全性を確保することは出来ても、中小地震や設計当初の地震動レベル(レベル2相当)時における建物1の応答加速度が増加して免震性能が低下してしまうという問題点がある。   However, in the above-described conventional reinforcing method, the damping force of the damper 5 can be increased to suppress the deformation of the seismic isolation layer 3 in the event of a huge earthquake that exceeds the expected level. There is a problem that the response acceleration of the building 1 at the time of an earthquake or an initial ground motion level (equivalent to level 2) increases and the seismic isolation performance deteriorates.

特開2006−144346号公報JP 2006-144346 A

本発明は、上記事情に鑑みてなされたものであり、中小地震や設計当初に想定した地震に対する免震性能の確保と、設計当初の想定を超える巨大地震に対する安全性の確保を両立させることができる既存免震建物の補強方法を提供することを課題とするものである。   The present invention has been made in view of the above circumstances, and it is possible to achieve both seismic isolation performance against small and medium earthquakes and earthquakes assumed at the initial stage of design and safety against huge earthquakes exceeding the initial design assumptions. It is an object to provide a method for reinforcing existing seismic isolation buildings.

上記課題を解決するため、請求項1に記載の発明は、既存免震建物の補強方法であって、上記免震層に、予め設定した変位で低減衰モードから高減衰モードに切り替わる変位切替型のパッシブダンパーを設置することを特徴とするものである。   In order to solve the above-mentioned problem, the invention described in claim 1 is a method for reinforcing an existing seismic isolation building, wherein the seismic isolation layer is a displacement switching type that switches from a low attenuation mode to a high attenuation mode with a preset displacement. The passive damper is installed.

また、請求項2に記載の発明は、請求項1に記載の発明において、上記低減衰モードから上記高減衰モードに切り替わる上記変位を、20cm〜40cmの範囲に設定することを特徴とするものである。   The invention described in claim 2 is characterized in that, in the invention described in claim 1, the displacement for switching from the low attenuation mode to the high attenuation mode is set in a range of 20 cm to 40 cm. is there.

さらに、請求項3に記載の発明は、請求項1または2に記載の発明において、上記変位切替型パッシブダンパーを、上記既存免震建物の地震時の変位方向に対して、当該既存免震建物の重心よりも前方側に位置する上記変位切替型パッシブダンパーの減衰力が、後方側に位置する上記変位切替型パッシブダンパーの減衰力よりも小さくなるように設置することを特徴とするものである。   Furthermore, the invention according to claim 3 is the invention according to claim 1 or 2, wherein the displacement-switching passive damper is connected to the existing base isolated building with respect to the displacement direction at the time of the earthquake of the existing base isolated building. The displacement-switching passive damper located on the front side of the center of gravity is installed so that the damping force of the displacement-switching passive damper located on the rear side is smaller than the damping force of the displacement-switching passive damper located on the rear side. .

請求項1〜3のいずれかに記載の発明によれば、既存の免震建物の免震層に、予め設定した変位で低減衰モードから高減衰モードに切り替わる変位切替型のパッシブダンパーを設置したので、平常時においては、変位切替型パッシブダンパーの減衰係数を小さい値に保持させておくことにより、中小地震や設計当初の地震動レベルの地震に対しては、補強前の免震建物に近い免震性能を発揮させ、建物の応答加速度を低減させることができる。   According to the invention described in any one of claims 1 to 3, a displacement-switching passive damper that switches from a low attenuation mode to a high attenuation mode with a preset displacement is installed in a base isolation layer of an existing base isolation building. Therefore, in normal times, by keeping the damping coefficient of the displacement-switching passive damper at a small value, for small and medium-sized earthquakes and earthquakes of the ground motion level at the initial design stage, the seismic isolation structure is similar to that before the reinforcement. Seismic performance can be demonstrated and the response acceleration of the building can be reduced.

また、既存免震建物における上記免震装置がすべり支承である場合には、中小地震に対してはすべりを生じることがなく、この結果減衰効果が発揮されないために、低減衰モードにある変位切替型パッシブダンパーによって、免震層の変位の大きさに対応した適切な減衰力を付与することにより、上記中小地震に対する免震性能も向上させることができる。   In addition, if the seismic isolation device in the existing base isolation building is a sliding bearing, there will be no slip for small and medium-sized earthquakes. As a result, the damping effect will not be demonstrated. By applying an appropriate damping force corresponding to the magnitude of the displacement of the seismic isolation layer by the type passive damper, it is possible to improve the seismic isolation performance for the above-mentioned small and medium earthquakes.

これに対して、当初設計の想定を超える地震によって免震層に過大な変位が生じた際には、変位切替側パッシブダンパーが高減衰モードに切り替わり、大きな減数力によって免震層の変位を抑制することにより、擁壁等の周囲の構造物との衝突や免震装置の破損を防止することができる。   In contrast, when an excessive displacement occurs in the seismic isolation layer due to an earthquake exceeding the initial design assumption, the displacement switching side passive damper switches to the high attenuation mode, and the displacement of the seismic isolation layer is suppressed by a large reduction force. By doing so, it is possible to prevent collision with surrounding structures such as retaining walls and damage to the seismic isolation device.

なお、変位切替型パッシブダンパーを低減衰モードから高減衰モードに切り替えるための設定変位は、既存免震建物の当初設計において想定したレベルの地震動で生じる応答変位と同程度以上の値に設定して、設計の想定を超える地震動を受けた場合にのみ、大きな減衰力を発揮するようにする。   The set displacement for switching the displacement-switching passive damper from the low attenuation mode to the high attenuation mode is set to a value equal to or greater than the response displacement generated by the ground motion at the level assumed in the initial design of the existing base-isolated building. A large damping force should be exerted only when subjected to earthquake motion exceeding the design assumptions.

ちなみに、周囲の構造物とのクリアランスが60cm程度の一般的な免震建物においては、当初設計の地震動レベル(レベル2)に対する免震層の応答変位は20cm〜40cm程度となっていることが多い。したがって、このような一般的な既存の免震建物に上記補強を施工するに際しては、請求項2に記載の発明のように、変位切替型パッシブダンパーが低減衰モードから高減衰モードに切り替わる変位を、20cm〜40cmの範囲に設定することが好ましい。   By the way, in a general base-isolated building whose clearance with surrounding structures is about 60 cm, the response displacement of the base isolation layer with respect to the originally designed ground motion level (level 2) is often about 20 cm to 40 cm. . Therefore, when the reinforcement is applied to such a general existing base-isolated building, the displacement switching type passive damper has a displacement that switches from the low attenuation mode to the high attenuation mode as in the invention described in claim 2. It is preferable to set in the range of 20 cm to 40 cm.

さらに、請求項3に記載の発明によれば、変位切替型パッシブダンパーを、上記既存免震建物の地震時の変位方向に対して、当該既存免震建物の重心よりも前方側に位置する上記変位切替型パッシブダンパーの減衰力が、後方側に位置する上記変位切替型パッシブダンパーの減衰力よりも小さくなるように設置しているために、巨大地震時に重心よりも変位方向前方側に位置する変位切替型パッシブダンパーの減衰力によって免震建物にロッキングが生じることを防止することができる。   Furthermore, according to the invention described in claim 3, the displacement-switching passive damper is located on the front side of the center of gravity of the existing base isolated building with respect to the displacement direction at the time of the earthquake of the existing base isolated building. Since the damping force of the displacement-switching passive damper is set to be smaller than the damping force of the displacement-switching passive damper located on the rear side, it is located on the front side in the displacement direction from the center of gravity during a huge earthquake. It is possible to prevent the seismic isolation building from rocking due to the damping force of the displacement switching passive damper.

本発明の第1の実施形態を説明するための縦断面視した正面図である。It is the front view seen from the longitudinal cross-section for demonstrating the 1st Embodiment of this invention. 図1の変位切替型パッシブオイルダンパーを示す縦断面視した概略構成図である。It is the schematic block diagram which looked at the longitudinal cross-section which shows the displacement switching type passive oil damper of FIG. 図2のシャットオフ弁の先端形状を示す図で、(a)は斜視図、(b)はその側面図である。It is a figure which shows the front-end | tip shape of the shut-off valve of FIG. 2, (a) is a perspective view, (b) is the side view. 図2の変位切替型パッシブオイルダンパーの大地震時における作動状態を示す縦断面視した概略構成図である。It is the schematic block diagram seen from the longitudinal cross-section which shows the operation state at the time of the big earthquake of the displacement switching type passive oil damper of FIG. 本発明の第2の実施形態を説明するための縦断面視した正面図である。It is the front view seen from the longitudinal cross-section for demonstrating the 2nd Embodiment of this invention. 図1の変位切替型パッシブオイルダンパーを示す縦断面視した概略構成図である。It is the schematic block diagram which looked at the longitudinal cross-section which shows the displacement switching type passive oil damper of FIG. 図6の逆止弁付き減衰弁の作動を示す縦断面図である。It is a longitudinal cross-sectional view which shows the action | operation of the damping valve with a non-return valve of FIG. 既存の免震建物を示す縦断面視した正面図である。It is the front view which looked at the longitudinal cross-section which shows the existing seismic isolation building.

(第1の実施形態)
図1〜図4は、本発明に係る既存免震建物の補強方法を、図8に示した既存の免震建物の補強に適用した第1の実施形態を説明するためのもので、図8と同一構成部分については、同一構成部分については同一符号を付してその説明を簡略化する。
(First embodiment)
1-4 is for demonstrating 1st Embodiment which applied the reinforcement method of the existing seismic isolation building which concerns on this invention to reinforcement of the existing seismic isolation building shown in FIG. The same components are denoted by the same reference numerals and the description thereof is simplified.

この既存免震建物の補強方法は、免震装置2が介装されるとともにダンパー5が設置さることによって形成された免震層3に、さらに変位切替型のパッシブオイルダンパー(パッシブダンパー)を増設することを特徴とするものである。   In this existing seismic isolation building reinforcement method, a displacement-switching passive oil damper (passive damper) is further added to the seismic isolation layer 3 formed by installing the damper 5 and installing the damper 5. It is characterized by doing.

この変位切替型パッシブオイルダンパー10は、平常時にダンパー5よりも減衰係数が小さい低減衰モードに設定されるとともに、免震層3に予め設定した変位が生じた場合に、ダンパー5よりも減衰係数が大きい高減衰モードに切り替わるものである。   The displacement-switching passive oil damper 10 is set to a low attenuation mode in which the attenuation coefficient is smaller than that of the damper 5 in a normal state, and moreover than the damper 5 when a preset displacement occurs in the seismic isolation layer 3. Is switched to a high attenuation mode.

図2〜図4は、上記変位切替型パッシブオイルダンパー10の一例を示すものである。 この変位切替型パッシブオイルダンパー10は、作動オイルが充填されたシリンダー11と、このシリンダー11内に移動可能に設けられたピストン12とから概略構成されたもので、シリンダーから外方に延出するピストン12のロッド13に、変位検出用ロッド14が平行に一体化されている。そして、この経にピストン12のロッド13が基礎4側に固定されるとともに、シリンダー11が建物1側に接続されている。   2 to 4 show an example of the displacement switching type passive oil damper 10 described above. The displacement-switching passive oil damper 10 is composed of a cylinder 11 filled with working oil and a piston 12 movably provided in the cylinder 11 and extends outward from the cylinder. A displacement detection rod 14 is integrated in parallel with the rod 13 of the piston 12. At this time, the rod 13 of the piston 12 is fixed to the foundation 4 side, and the cylinder 11 is connected to the building 1 side.

また、ピストン12には、当該ピストン12の前後のシリンダー室11a、11bを連通させるとともに高減衰モード用の減衰弁15が介装されたピストン流路16が形成されている。また、シリンダー室11a、11bの外部には、これらシリンダー室11a、11bを連通させる外部流路17が設けられ、この外部流路17に低減衰モード用の減衰弁18と、当該外部流路17を開閉させるシャットオフ弁19が設けられている。   Further, the piston 12 is formed with a piston flow path 16 in which cylinder chambers 11a and 11b before and after the piston 12 are communicated and a damping valve 15 for high damping mode is interposed. Further, an external flow path 17 for communicating the cylinder chambers 11a and 11b is provided outside the cylinder chambers 11a and 11b. The external flow path 17 includes a damping valve 18 for a low attenuation mode and the external flow path 17. A shut-off valve 19 for opening and closing is provided.

他方、検出用ロッド14の上面には、変位検出溝20が形成されており、平常時にはシャットオフ弁19が上記変位検出溝20内に配置されている。そして、シャットオフ弁19の上部には、図3に示すように、変位検出溝20内に配置されている状態で、減衰弁18が介装された外部流路17およびこれと並列的に設けられた外部流路21を連通させる貫通孔19a、19bが穿設されるとともに、他の部分が中実の円柱状に形成されている。   On the other hand, a displacement detection groove 20 is formed on the upper surface of the detection rod 14, and a shutoff valve 19 is arranged in the displacement detection groove 20 in normal times. As shown in FIG. 3, the shutoff valve 19 is provided in parallel with the external flow path 17 in which the damping valve 18 is interposed in a state of being disposed in the displacement detection groove 20 as shown in FIG. 3. Through holes 19a and 19b for communicating the external channel 21 thus formed are formed, and other portions are formed in a solid cylindrical shape.

これにより、変位切替型パッシブオイルダンパー10は、平常時においては、シャットオフ弁19が、図2に示すように変位検出溝20に配置されて外部流路18が開いた状態に保持され、作動オイルがピストン12内の減衰弁15と外部流路18の減衰弁18とに流れることによって、低い減衰係数に設定されている。   As a result, the displacement-switching passive oil damper 10 operates in a normal state in which the shutoff valve 19 is arranged in the displacement detection groove 20 as shown in FIG. The oil is set to a low damping coefficient by flowing through the damping valve 15 in the piston 12 and the damping valve 18 in the external flow path 18.

また、免震層3に想定を超える変位が生じて、図4に示すように、シャットオフ弁19が変位検出溝20から変位検出用ロッド14の上面14aに乗り上げて上昇し、外部流路18、21を閉じることにより、作動オイルがピストン12内の減衰弁15のみを流れることにより高い減衰係数に切り替わるようになっている。   Further, as shown in FIG. 4, the seismic isolation layer 3 is displaced more than expected, and the shutoff valve 19 rises from the displacement detection groove 20 onto the upper surface 14a of the displacement detection rod 14 and rises. , 21 is switched so that the hydraulic oil flows only through the damping valve 15 in the piston 12 to switch to a high damping coefficient.

ここで、本実施形態においては、変位検出溝20の長さ寸法は、シャットオフ弁19が変位検出溝20内にある平常時から、変位検出用ロッド14に対して20cm〜40cm相対変位した際に上面14a上に乗り上げる寸法に設定されている。   Here, in the present embodiment, the length of the displacement detection groove 20 is such that when the shutoff valve 19 is displaced from the normal position in the displacement detection groove 20 by 20 cm to 40 cm relative to the displacement detection rod 14. Are set to run on the upper surface 14a.

なお、この変位切替型パッシブオイルダンパー10は、シャットオフ弁19が変位検出用ロッド14の上面14aに乗り上げて外部流路18、21を閉じると、その状態が保持され、地震後に手動で図2に示す状態に復帰させるものである。   The displacement-switching passive oil damper 10 is maintained when the shut-off valve 19 rides on the upper surface 14a of the displacement detection rod 14 and closes the external flow paths 18 and 21, and the state is maintained manually after the earthquake. It is made to return to the state shown in FIG.

以上説明したように、上記構成からなる既存免震建物の補強方法によれば、既存免震建物1の免震層3に、新に上記変位切替型のパッシブオイルダンパー10を増設したので、平常時においては、変位切替型パッシブオイルダンパー10の減衰係数を既存のダンパー5の減衰係数よりも小さい値に保持させておくことにより、中小地震や設計当初の地震動レベルの地震に対しては、既存のダンパー5によって補強前の免震建物1における免震性能を発揮させ、建物1の応答加速度を低減させることができる。   As described above, according to the method for reinforcing an existing base-isolated building having the above-described configuration, the displacement-switching passive oil damper 10 is newly added to the base-isolated layer 3 of the existing base-isolated building 1. In some cases, the damping coefficient of the displacement-switching passive oil damper 10 is kept smaller than the damping coefficient of the existing damper 5, so that it can be used for small and medium-sized earthquakes and earthquakes at the initial ground motion level. The seismic isolation performance of the base-isolated building 1 before reinforcement can be exhibited by the damper 5 and the response acceleration of the building 1 can be reduced.

また、当初設計の想定を超える地震によって免震層3に過大な変位が生じた際には、変位切替側パッシブオイルダンパー10が高減衰モードに切り替わり、ダンパー5よりも大きな減数力によって免震層3の変位を抑制することにより、擁壁6等の周囲の構造物との衝突や免震装置の破損を防止することができる。   In addition, when an excessive displacement occurs in the seismic isolation layer 3 due to an earthquake exceeding the initial design assumption, the displacement switching side passive oil damper 10 is switched to the high damping mode, and the seismic isolation layer is larger than the damper 5 by a reduced force. By suppressing the displacement 3, it is possible to prevent collision with surrounding structures such as the retaining wall 6 and damage to the seismic isolation device.

(第2の実施形態)
図5〜図7は、本発明の第2の実施形態を説明するための図で、図1〜図4に示した第1の実施形態と共通する構成部分については、同様に同一符号を用いてその説明を省略する。この既存免震建物の補強方法は、免震層3に、第1の実施形態に示した変位切替型パッシブオイルダンパー10に代えて、変位切替型のパッシブオイルダンパー30を増設したことに特徴がある。
(Second Embodiment)
5-7 is a figure for demonstrating the 2nd Embodiment of this invention, and uses the same code | symbol similarly about the component which is common in 1st Embodiment shown in FIGS. 1-4. The description is omitted. This existing seismic isolation building reinforcement method is characterized in that a displacement switching type passive oil damper 30 is added to the seismic isolation layer 3 instead of the displacement switching type passive oil damper 10 shown in the first embodiment. is there.

この変位切替型パッシブオイルダンパー30は、図6および図7に示すように、図2および図3に示した変位切替型パッシブオイルダンパー10における高減衰モード用の減衰弁15および低減衰モード用の減衰弁18を、それぞれ高減衰モード用の逆止弁付き減衰弁31および低減衰モード用の逆止弁付き減衰弁32に変えたものである。   As shown in FIGS. 6 and 7, the displacement-switching passive oil damper 30 includes a high-damping mode damping valve 15 and a low-damping mode damping valve in the displacement-switching passive oil damper 10 shown in FIGS. 2 and 3. The damping valve 18 is changed to a damping valve 31 with a check valve for a high damping mode and a damping valve 32 with a check valve for a low damping mode, respectively.

これらの逆止弁付き減衰弁31、32は、いずれも図6に示すようにロッド13からピストン12に圧縮力が作用してシリンダー室11a側が高圧になった際に、図7(a)に示すように、ピストン流路16または外部流路17から作用する高圧の作動オイルによって開き、逆にロッド13に引張力が作用してシリンダー室11b側が高圧になった際には、図7(b)に示すように、シンダー室11b側から作用する高圧の作動オイルによって閉じることにより、引張側に対してのみ大きな減衰力が作用するものである。   As shown in FIG. 6, these damping valves 31 and 32 with check valves are shown in FIG. 7A when the compression force is applied from the rod 13 to the piston 12 and the cylinder chamber 11 a side becomes high pressure. As shown in FIG. 7B, when the cylinder 13b is opened by the high pressure hydraulic oil acting from the piston flow path 16 or the external flow path 17 and a tensile force acts on the rod 13 to increase the pressure on the cylinder chamber 11b side. As shown in (2), a large damping force acts only on the tension side by closing with high-pressure hydraulic oil acting from the cinder chamber 11b side.

そして、上記変位切替型パッシブオイルダンパー30を増設するに際しては、既存免震建物1の地震時の変位方向に対して、既存免震建物1の重心よりも前方側に位置する変位切替型パッシブオイルダンパー30の減衰力が、後方側に位置する変位切替型パッシブオイルダンパー30の減衰力よりも小さくなるように設置する。   When the displacement-switching passive oil damper 30 is added, the displacement-switching passive oil located on the front side of the center of gravity of the existing seismic isolation building 1 with respect to the displacement direction during the earthquake of the existing seismic isolation building 1. The damper 30 is installed so that the damping force is smaller than the damping force of the displacement switching passive oil damper 30 located on the rear side.

これを具体的に説明すると、本実施形態においては、図5に示すように、変位切替型パッシブオイルダンパー30を、シリンダー11のシリンダー室11bが建物1の外周側に位置し、シリンダー室11aが建物1の重心側に位置するように配置する。   Specifically, in this embodiment, as shown in FIG. 5, the displacement switching type passive oil damper 30 is configured such that the cylinder chamber 11 b of the cylinder 11 is positioned on the outer peripheral side of the building 1, and the cylinder chamber 11 a is It arrange | positions so that it may be located in the gravity center side of the building 1.

これにより、地震時に、既存免震建物1に図中白抜き矢印で示す相対変位が生じた際に、上記変位方向に対して重心よりも前方側に位置する図中右側の変位切替型パッシブオイルダンパー30においては、ロッド13からピストン12に圧縮力が作用するために、図7(a)に示すように、シリンダー室11aからの高圧の作動オイルによって逆止弁付き減衰弁31、32が開き、減衰力が小さくなる。   As a result, when a relative displacement indicated by a hollow arrow in the figure occurs in the existing base-isolated building 1 during an earthquake, the displacement-switching passive oil on the right side in the figure is located in front of the center of gravity with respect to the displacement direction. In the damper 30, since the compression force acts on the piston 12 from the rod 13, as shown in FIG. 7A, the damping valves 31 and 32 with check valves are opened by the high-pressure hydraulic oil from the cylinder chamber 11 a. The damping force becomes smaller.

これに対して、上記変位方向に対して重心よりも後方側に位置する図中左側の変位切替型パッシブオイルダンパー30においては、ロッド13に引張力が作用するために、図7(b)に示すように、シリンダー室11bからの高圧の作動オイルによって逆止弁付き減衰弁31、32が閉じて減衰力が大きくなる。   On the other hand, in the displacement switching type passive oil damper 30 on the left side in the figure located behind the center of gravity with respect to the displacement direction, a tensile force acts on the rod 13, so that FIG. As shown, the damping valves 31 and 32 with check valves are closed by the high pressure hydraulic oil from the cylinder chamber 11b, and the damping force increases.

次いで、建物1が上記白抜き矢印で示した方向と反対側に変位した際には、上記変位方向に対して重心よりも前方側に位置する図中左側の変位切替型パッシブオイルダンパー30においては、ロッド13からピストン12に圧縮力が作用してシリンダー室11aからの高圧の作動オイルによって逆止弁付き減衰弁31、32が開き、減衰力が小さくなる。   Next, when the building 1 is displaced in the direction opposite to the direction indicated by the white arrow, in the displacement switching type passive oil damper 30 on the left side in the figure, which is located in front of the center of gravity with respect to the displacement direction, The compression force is applied from the rod 13 to the piston 12, and the damping valves 31 and 32 with check valves are opened by the high pressure hydraulic oil from the cylinder chamber 11a, so that the damping force is reduced.

他方、上記変位方向に対して重心よりも後方側に位置する図中右側の変位切替型パッシブオイルダンパー30においては、ロッド13に引張力が作用してシリンダー室11bからの高圧の作動オイルにより逆止弁付き減衰弁31、32が閉じて減衰力が大きくなる。   On the other hand, in the displacement switching type passive oil damper 30 on the right side in the drawing, which is located behind the center of gravity with respect to the displacement direction, a tensile force acts on the rod 13 and the reverse is caused by the high pressure hydraulic oil from the cylinder chamber 11b. The damping valves 31 and 32 with stop valves are closed to increase the damping force.

したがって、第2の実施形態に示した既存免震建物の補強方法によれば、第1の実施形態に示したものと同様の作用効果が得られることに加えて、さらに変位切替型パッシブオイルダンパー30を、既存免震建物1の地震時の変位方向に対して、重心よりも前方側に位置する変位切替型パッシブオイルダンパー30の減衰力が、後方側に位置する変位切替型パッシブオイルダンパー30の減衰力よりも小さくなるように設置しているために、巨大地震時に重心よりも変位方向前方側に位置する変位切替型パッシブオイルダンパー30の減衰力によって建物1にロッキングが生じることを防止することができるという効果が得られる。   Therefore, according to the reinforcement method of the existing seismic isolation building shown in 2nd Embodiment, in addition to the effect similar to what was shown in 1st Embodiment, it is further a displacement switching type passive oil damper. 30 with respect to the direction of displacement of the existing base-isolated building 1 when the displacement switching type passive oil damper 30 is located on the rear side of the displacement switching type passive oil damper 30 located on the front side of the center of gravity. Therefore, the building 1 is prevented from rocking due to the damping force of the displacement switching type passive oil damper 30 located in front of the center of gravity in the displacement direction in the event of a huge earthquake. The effect that it can be obtained.

なお、上記第1および第2の実施形態においては、いずれも既存免震建物1の免震層3に、変位切替型パッシブオイルダンパー10、30を増設した場合についてのみ説明したが、本発明はこれに限定されるものではなく、既存のダンパー5の一部を撤去して上記変位切替型パッシブオイルダンパー10、30に置き換える場合にも同様に適用することができる。   In the first and second embodiments described above, only the case where the displacement-switching passive oil dampers 10 and 30 are added to the base isolation layer 3 of the existing base isolation building 1 has been described. The present invention is not limited to this, and the present invention can be similarly applied to a case where a part of the existing damper 5 is removed and replaced with the displacement switching passive oil dampers 10 and 30 described above.

また、上記実施形態においては、変位切替型パッシブダンパーとして、パッシブオイルダンパー10、30を用いた場合について示したが、これに限るものではなく、建物の揺れを抑える働きを有するものであれば、鋼材ダンパー、鉛ダンパー、摩擦ダンパー等を用いることもできる。   Moreover, in the said embodiment, although it showed about the case where the passive oil dampers 10 and 30 were used as a displacement switching type passive damper, it is not restricted to this, If it has a function which suppresses the shaking of a building, Steel dampers, lead dampers, friction dampers and the like can also be used.

1 建物(既存免震建物)
2 免震装置
3 免震層
5 ダンパー
10、30 変位切替型パッシブオイルダンパー
31,32 逆止弁付き減衰弁
1 building (existing seismic isolation building)
2 Seismic isolation device 3 Seismic isolation layer 5 Damper 10, 30 Displacement switching passive oil damper 31, 32 Damping valve with check valve

Claims (3)

免震層に、予め設定した変位で低減衰モードから高減衰モードに切り替わる変位切替型のパッシブダンパーを設置することを特徴とする既存免震建物の補強方法。   A method of reinforcing an existing base-isolated building, wherein a displacement-switching passive damper that switches from a low attenuation mode to a high attenuation mode with a preset displacement is installed in the base isolation layer. 上記低減衰モードから上記高減衰モードに切り替わる上記変位を、20cm〜40cmの範囲に設定することを特徴とする請求項1に記載の既存免震建物の補強方法。   The method for reinforcing an existing seismic isolation building according to claim 1, wherein the displacement for switching from the low attenuation mode to the high attenuation mode is set in a range of 20 cm to 40 cm. 上記変位切替型パッシブダンパーを、上記既存免震建物の地震時の変位方向に対して、当該既存免震建物の重心よりも前方側に位置する上記変位切替型パッシブダンパーの減衰力が、後方側に位置する上記変位切替型パッシブダンパーの減衰力よりも小さくなるように設置することを特徴とする請求項1または2に記載の既存免震建物の補強方法。   The damping force of the displacement-switching passive damper, which is located on the front side of the center of gravity of the existing base-isolated building with respect to the displacement direction at the time of the earthquake of the existing base-isolating building, is The method for reinforcing an existing seismic isolation building according to claim 1, wherein the existing seismic isolation building is installed so as to be smaller than a damping force of the displacement-switching passive damper located in the center.
JP2015041891A 2015-03-04 2015-03-04 Existing seismic isolation building reinforcement method Active JP6632201B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015041891A JP6632201B2 (en) 2015-03-04 2015-03-04 Existing seismic isolation building reinforcement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015041891A JP6632201B2 (en) 2015-03-04 2015-03-04 Existing seismic isolation building reinforcement method

Publications (2)

Publication Number Publication Date
JP2016160696A true JP2016160696A (en) 2016-09-05
JP6632201B2 JP6632201B2 (en) 2020-01-22

Family

ID=56844433

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015041891A Active JP6632201B2 (en) 2015-03-04 2015-03-04 Existing seismic isolation building reinforcement method

Country Status (1)

Country Link
JP (1) JP6632201B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113431100A (en) * 2021-06-15 2021-09-24 阳光学院 Civil engineering antidetonation structure

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0658006A (en) * 1992-08-04 1994-03-01 Ohbayashi Corp Damping device
JP2005042822A (en) * 2003-07-22 2005-02-17 Kobe Steel Ltd Cylindrical liquid damper for base isolator and base isolator using the same
JP2006349067A (en) * 2005-06-16 2006-12-28 Bando Chem Ind Ltd Passive damper
JP2009019383A (en) * 2007-07-11 2009-01-29 Taisei Corp Base-isolating system
JP2011163057A (en) * 2010-02-12 2011-08-25 Shimizu Corp Method for repairing of quake absorbing structure and quake absorbing device
JP2014159850A (en) * 2013-02-20 2014-09-04 Kayaba System Machinery Co Ltd Hydraulic damper

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0658006A (en) * 1992-08-04 1994-03-01 Ohbayashi Corp Damping device
JP2005042822A (en) * 2003-07-22 2005-02-17 Kobe Steel Ltd Cylindrical liquid damper for base isolator and base isolator using the same
JP2006349067A (en) * 2005-06-16 2006-12-28 Bando Chem Ind Ltd Passive damper
JP2009019383A (en) * 2007-07-11 2009-01-29 Taisei Corp Base-isolating system
JP2011163057A (en) * 2010-02-12 2011-08-25 Shimizu Corp Method for repairing of quake absorbing structure and quake absorbing device
JP2014159850A (en) * 2013-02-20 2014-09-04 Kayaba System Machinery Co Ltd Hydraulic damper

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113431100A (en) * 2021-06-15 2021-09-24 阳光学院 Civil engineering antidetonation structure

Also Published As

Publication number Publication date
JP6632201B2 (en) 2020-01-22

Similar Documents

Publication Publication Date Title
KR101653475B1 (en) Damper
JP6046986B2 (en) Damping damper for structures
JP6626671B2 (en) Building damping structure
JP2015113846A (en) Vibration damper for structure
JP5870138B2 (en) Hydraulic damper with speed limiting function with hardened hydraulic circuit
JP2016160696A (en) Reinforcement method of existing base-isolated building
JP6774234B2 (en) Seismic isolation damper
JP5356563B2 (en) Shock absorber filled with viscoelastic fluid
JP2011032849A (en) Brake damper for base isolator
JP7268973B2 (en) seismic isolation damper
JP4442770B2 (en) Oil damper for seismic isolation device
JP6773278B2 (en) Vibration reduction device
JP2015203452A (en) Vibration reduction device and base isolation structure
JPH11230249A (en) Passive type mass damper for large earthquake
JP6853688B2 (en) Building collision prevention device
JP6738528B2 (en) Vibration reduction device
JP5773390B2 (en) Shock absorbing cable
JP6885670B2 (en) Building structure
JP2004232386A (en) Base isolation structure of wide area response
KR102024442B1 (en) Fluid Daper For Earthquake-proof
JP2005248520A (en) Base isolation damper, base isolation structure and base isolation method of structure
JP6875961B2 (en) Seismic isolation damper
JP2005042822A (en) Cylindrical liquid damper for base isolator and base isolator using the same
JP4579760B2 (en) Seismic isolation structure
JP6963529B2 (en) Seismic isolation damper

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171219

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20180124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181025

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181030

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190514

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190708

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191210

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191210

R150 Certificate of patent or registration of utility model

Ref document number: 6632201

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150