JP5870138B2 - Hydraulic damper with speed limiting function with hardened hydraulic circuit - Google Patents

Hydraulic damper with speed limiting function with hardened hydraulic circuit Download PDF

Info

Publication number
JP5870138B2
JP5870138B2 JP2014045852A JP2014045852A JP5870138B2 JP 5870138 B2 JP5870138 B2 JP 5870138B2 JP 2014045852 A JP2014045852 A JP 2014045852A JP 2014045852 A JP2014045852 A JP 2014045852A JP 5870138 B2 JP5870138 B2 JP 5870138B2
Authority
JP
Japan
Prior art keywords
hydraulic
pressure
valve
regulating valve
pressure regulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014045852A
Other languages
Japanese (ja)
Other versions
JP2015169294A (en
Inventor
栗野 治彦
治彦 栗野
直樹 狩野
直樹 狩野
隆介 福田
隆介 福田
小竹 祐治
祐治 小竹
鈴木 隆之
隆之 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Senqcia Corp
Original Assignee
Kajima Corp
Senqcia Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp, Senqcia Corp filed Critical Kajima Corp
Priority to JP2014045852A priority Critical patent/JP5870138B2/en
Publication of JP2015169294A publication Critical patent/JP2015169294A/en
Application granted granted Critical
Publication of JP5870138B2 publication Critical patent/JP5870138B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Vibration Prevention Devices (AREA)
  • Fluid-Damping Devices (AREA)

Description

本発明は地震や風等による構造物の振動を低減するために使用される同調質量ダンパ(TMD)や免震構造物用のダンパ等として使用され、自らに生じる速度が一定値を超えたときに発生する荷重を増大させる機能を持つ、ハードニング油圧回路を搭載した速度制限機能付き油圧ダンパに関するものである。   The present invention is used as a tuned mass damper (TMD) used for reducing vibrations of structures due to earthquakes, winds, etc., dampers for seismic isolation structures, etc., and the speed generated by itself exceeds a certain value The present invention relates to a hydraulic damper with a speed limiting function equipped with a hardened hydraulic circuit, which has a function of increasing the load generated in the motor.

地震や風に対する建物等、構造物の揺れを低減する制震装置に一つに、同調質量ダンパ(TMD)がある。TMDは図7に示すように振動に応じて移動可能な質量(錘)とこれを支持するばねとダンパとで構成され、ばねと質量から定まるTMDの周期を対象建物の振動周期に同調させることで、地震時に建物より大きく動いて振動エネルギーを吸収し、建物の振動を低減する機能を有する。   One of the vibration control devices that reduce the shaking of structures such as buildings against earthquakes and winds is a tuned mass damper (TMD). As shown in FIG. 7, the TMD is composed of a mass (weight) that can move in response to vibration, and a spring and a damper that support the mass, and synchronizes the TMD cycle determined from the spring and mass with the vibration cycle of the target building. In the event of an earthquake, it has a function of moving more than the building and absorbing vibration energy to reduce building vibration.

TMDにはばねの可動範囲で定まるストロークの限界があるため、想定外の大きな地震入力が加わったときには、質量が許容ストロークを超えて損傷する可能性があり、実際に過去の地震でこの種の事故が発生している。こうした事態に備える技術として、図8に示すように衝突時の衝撃を緩和するバッファを設置する方法があるが、勢いの付いている質量の振動エネルギーを抑える際にはバッファに非常に大きな荷重が発生するため、対応できる地震動のレベルは制限される。別の手段として、ダンパの減衰係数を予め大きく設定しておく方法があり、その場合、質量のストロークは小さく抑えられるが、同調の条件(最適範囲)から外れてしまうため、対象としているレベルの地震に対する効果が損なわれる。   TMD has a stroke limit that is determined by the movable range of the spring, so if an unexpected large earthquake input is applied, the mass may be damaged beyond the allowable stroke. An accident has occurred. As a technique to prepare for such a situation, there is a method of installing a buffer for reducing the impact at the time of collision as shown in FIG. 8, but when the vibration energy of the mass that is gaining momentum is suppressed, a very large load is applied to the buffer. As a result, the level of seismic motion that can be handled is limited. As another means, there is a method in which the damping coefficient of the damper is set to be large in advance. In this case, the stroke of the mass can be suppressed small, but it is out of the tuning condition (optimum range). The effect on earthquakes is impaired.

免震構造も同様な課題を抱えており、想定外の大きな地震に対して免震層の変形が許容ストロークを超えることは最も避けるべき事象である。図9に示すような基礎免震の場合には免震層が許容ストロークに達して上部構造が地下擁壁(下部構造)等に衝突することになる。この場合は、地下擁壁が図8のバッファと同じ役割を果たすが、地下擁壁との接触時に上部建物には設計荷重以上の大きな力が加わることになる。建物中間階に免震層がある場合には、擁壁に代わる、バッファの機能をする部材が存在しないため、想定外の地震外乱に対して変形を抑制する機構が求められる。この場合も、免震層に設置されるダンパの減衰係数を予め大きく設定しておけば、免震層の変形は制限されるが、対象としているレベルの地震に対する免震効果(加速度低減効果)は損なわれる。   The seismic isolation structure has the same problem, and it is the most important event that the deformation of the seismic isolation layer exceeds the allowable stroke for an unexpected large earthquake. In the case of basic seismic isolation as shown in FIG. 9, the seismic isolation layer reaches the allowable stroke, and the upper structure collides with the underground retaining wall (lower structure) or the like. In this case, the underground retaining wall plays the same role as the buffer of FIG. 8, but a large force greater than the design load is applied to the upper building when contacting the underground retaining wall. When there is a seismic isolation layer on the intermediate floor of the building, there is no member that functions as a buffer instead of a retaining wall, so a mechanism that suppresses deformation against unexpected earthquake disturbance is required. In this case as well, if the damping coefficient of the damper installed in the seismic isolation layer is set large in advance, deformation of the seismic isolation layer is limited, but the seismic isolation effect (acceleration reduction effect) for the target level of earthquake Is damaged.

上記の例に共通した課題である、想定した地震レベルに対して同調条件を満足しながら、想定外の大地震に対して効率的に変形を抑制するには、振動体(構造物)の速度がある想定値以上になったときに急激に抵抗力が大きくなるような(ハードニング型の)ダンパ特性を設定することが有効である。地震のエネルギーはまず振動体に速度(運動エネルギー)として入力され、その結果として変形(歪エネルギー)が生じるため、理論上は速度を制限することにより、効率的に変形を抑えることが可能になる。   In order to efficiently suppress deformation for unexpected large earthquakes while satisfying the tuning conditions for the assumed earthquake level, which is a problem common to the above example, the speed of the vibrating body (structure) It is effective to set a (hardening type) damper characteristic in which the resistance force suddenly increases when the value exceeds a certain assumed value. The energy of the earthquake is first input to the vibrating body as velocity (kinetic energy), resulting in deformation (strain energy). Therefore, theoretically, it is possible to efficiently suppress deformation by limiting the velocity. .

但し、理想的なハードニング型減衰特性を実現することは容易ではない。ハードニングする減衰特性を発揮する最も簡単な油圧ダンパの例は図10に示すようにシリンダ内のピストンの両側の油圧室を連結する流路にオリフィス(固定開口)を設けた構造である(例えば特許文献1参照)。   However, it is not easy to realize an ideal hardening type attenuation characteristic. An example of the simplest hydraulic damper that exhibits a damping characteristic for hardening is a structure in which an orifice (fixed opening) is provided in a flow path connecting hydraulic chambers on both sides of a piston in a cylinder as shown in FIG. Patent Document 1).

特開平3−37448号公報(第6欄第5行〜第8行、第4図)Japanese Patent Laid-Open No. 3-37448 (column 6, line 5 to line 8, FIG. 4)

図10に示す例では図11に示すようにオリフィス式油圧ダンパの発生荷重Fは速度Vの2乗に比例した曲線になる。図中の破線はオリフィスの2次曲線を2折線に近似した直線である。この近似直線から、概ね速度V0(あるいは荷重F0)近傍を境に、減衰係数C1からC2にハードニングしていると見なすことは可能である。   In the example shown in FIG. 10, the generated load F of the orifice type hydraulic damper is a curve proportional to the square of the speed V as shown in FIG. The broken line in the figure is a straight line that approximates the quadratic curve of the orifice to a two-fold line. From this approximate straight line, it is possible to consider that the damping coefficient C1 is hardened from C1 to C2 around the speed V0 (or load F0).

しかしながら、速度V0(荷重F0)以下の領域での非線形性が強いことで、前記した質量や免震層の振動に油圧ダンパを同調させにくくなるため、所定の制震・免震効果を得にくい。また速度V0(荷重F0)以上の領域での減衰係数C2が質量の許容ストロークを制限するには十分に高くはないため、大入力に対する変形制限(制動)の効果も高くはならない。   However, since the nonlinearity in the region below the velocity V0 (load F0) is strong, it becomes difficult to synchronize the hydraulic damper with the above-described mass and vibration of the seismic isolation layer. . In addition, since the damping coefficient C2 in the region of the speed V0 (load F0) or higher is not high enough to limit the allowable stroke of mass, the effect of deformation limitation (braking) for a large input does not increase.

本発明は上記背景より、上記したある速度V0(荷重F0)以下の領域においては高い線形特性を維持しつつ、速度V0(荷重F0)以上の領域で急激に抵抗力が上昇する特性を持つハードニング油圧回路を搭載した速度制限機能付き油圧ダンパを提案するものである。   From the above background, the present invention maintains a high linear characteristic in the region below the certain speed V0 (load F0), while having a characteristic that the resistance force increases rapidly in the region above the speed V0 (load F0). We propose a hydraulic damper with a speed limiting function equipped with a hydraulic circuit.

請求項1に記載の発明のハードニング油圧回路を搭載した速度制限機能付き油圧ダンパは、シリンダと、このシリンダ内を往復動するピストンと、このピストンの両側に設けられ、圧油が充填された油圧室とを備えた油圧ダンパにおいて、
前記両油圧室間に、前記油圧ダンパ自体に生じた速度の増加に伴い、減衰係数が増大する減衰特性を発揮するハードニング油圧回路が2組、互いに逆向きに並列に接続され、
前記各ハードニング油圧回路が、前記両油圧室間に接続され、いずれか高圧側の油圧室の圧力に応じて作動状態が切り替えられ、作動時に固有の減衰係数を発揮する調圧弁と、前記両油圧室間に前記調圧弁と並列に接続され、常に作動状態を維持し、固有の減衰係数を発揮する付加油圧弁と、
前記調圧弁のばね室といずれか低圧側の油圧室との間に接続され、プレストレスが与えられたばねの復元力を受け、平常時に開放状態を維持して前記調圧弁を作動状態に保持し、前記ばねの復元力を超える圧力がいずれか高圧側の油圧室から作用したときに閉鎖状態に切り替わり、前記調圧弁を閉鎖状態にする一方の切替弁と、
前記調圧弁のばね室といずれか低圧側の油圧室との間に接続され、平常時にばねの復元力により閉鎖状態を維持し、前記高圧側の油圧室の圧力が上昇から降下に切り替わったときに開放状態に切り替わることで前記調圧弁を作動状態にする他方の切替弁と、
前記高圧側の油圧室と前記他方の切替弁との間に接続され、前記高圧側の油圧室からの圧油を蓄積し、前記高圧側の油圧室の圧力が上昇して最大圧力に達した後、降下に切り替わった際、前記最大圧力を維持することで、閉鎖状態にある前記他方の切替弁を開放状態に切り替えるバッファと、
前記バッファと前記低圧側の油圧室との間に接続され、前記バッファ内の前記最大圧力を規定するリリーフ弁とを備えていることを構成要件とする。
A hydraulic damper with a speed limiting function equipped with the hardened hydraulic circuit according to the first aspect of the present invention is provided with a cylinder, a piston that reciprocates in the cylinder, and both sides of the piston, and is filled with pressure oil. In a hydraulic damper with a hydraulic chamber,
Between the hydraulic chambers, two sets of hardening hydraulic circuits that exhibit a damping characteristic in which a damping coefficient increases with an increase in speed generated in the hydraulic damper itself, are connected in parallel in opposite directions,
Each of the hardening hydraulic circuits is connected between the hydraulic chambers, the operating state is switched according to the pressure of the hydraulic chamber on either high pressure side, and a pressure regulating valve that exhibits a specific damping coefficient during operation; An additional hydraulic valve that is connected between the hydraulic chambers in parallel with the pressure regulating valve, always maintains an operating state, and exhibits a specific damping coefficient;
It is connected between the spring chamber of the pressure regulating valve and one of the low pressure side hydraulic chambers, receives the restoring force of the prestressed spring, keeps the pressure regulating valve in an operating state while maintaining an open state in normal times. A switching valve that switches to a closed state when a pressure exceeding the restoring force of the spring is applied from any one of the hydraulic chambers on the high pressure side, and closes the pressure regulating valve;
When it is connected between the spring chamber of the pressure regulating valve and one of the low pressure side hydraulic chambers, and is normally closed by the restoring force of the spring, and the pressure of the high pressure side hydraulic chamber is switched from rising to falling The other switching valve that activates the pressure regulating valve by switching to the open state,
Connected between the high pressure side hydraulic chamber and the other switching valve, the pressure oil from the high pressure side hydraulic chamber is accumulated, and the pressure in the high pressure side hydraulic chamber rises to reach the maximum pressure. After that, when switching to lowering, by maintaining the maximum pressure, the buffer that switches the other switching valve in the closed state to the open state,
It is a constituent feature that a relief valve that is connected between the buffer and the low-pressure side hydraulic chamber and defines the maximum pressure in the buffer is provided.

油圧室41、42間にハードニング油圧回路51、52が2組、並列して接続される理由は各油圧室41(42)がピストン3の移動の向きに応じて高圧側と低圧側とに交互に入れ替わりながらも、各油圧室41(42)が高圧側になったときにそれぞれの油圧室41(42)からの圧油がハードニング油圧回路51(52)に流入するようにするためである。各油圧室41、42とハードニング油圧回路51(52)の上流側と下流側との間に互いに逆向きの一対の逆止弁が接続される場合には(請求項2)、図5に示すようにハードニング油圧回路51は油圧室41、42間に1組、接続されれば足りる。   The reason why two sets of the hardened hydraulic circuits 51 and 52 are connected in parallel between the hydraulic chambers 41 and 42 is that each hydraulic chamber 41 (42) has a high pressure side and a low pressure side according to the direction of movement of the piston 3. In order to allow the pressure oil from the respective hydraulic chambers 41 (42) to flow into the hardening hydraulic circuit 51 (52) when the respective hydraulic chambers 41 (42) are on the high pressure side, although they are alternately switched. is there. When a pair of check valves in opposite directions are connected between the hydraulic chambers 41 and 42 and the upstream side and the downstream side of the hardening hydraulic circuit 51 (52) (Claim 2), FIG. As shown, one set of the hardening hydraulic circuit 51 need only be connected between the hydraulic chambers 41 and 42.

その場合、図5に示すようにハードニング油圧回路51の調圧弁61及び付加油圧弁の上流側と各油圧室41、42との間に、高圧側になったときの油圧室41(42)からの圧油の調圧弁61及び付加油圧弁への移動を許容する、互いに逆向きの、一対の逆止弁21、21が接続され、調圧弁61及び付加油圧弁の下流側と各油圧室41、42との間に、調圧弁61及び付加油圧弁からの圧油の、低圧側になったときの油圧室42(41)への移動を許容する互いに逆向きの、一対の逆止弁22、22が接続される(請求項2)。図5では付加油圧弁が付加調圧弁62の場合を示しているが、付加油圧弁は図3に示す例のオリフィス19である場合もある。   In this case, as shown in FIG. 5, the hydraulic chamber 41 (42) when the high pressure side is provided between the upstream side of the pressure regulating valve 61 and the additional hydraulic valve of the hardening hydraulic circuit 51 and the hydraulic chambers 41 and 42. A pair of check valves 21 and 21, which are opposite to each other and permit the movement of pressure oil to the pressure regulating valve 61 and the additional hydraulic valve, are connected to each other, and downstream of the pressure regulating valve 61 and the additional hydraulic valve and each hydraulic chamber A pair of check valves opposite to each other that allow the pressure oil from the pressure regulating valve 61 and the additional hydraulic valve to move to the hydraulic chamber 42 (41) when the pressure becomes low. 22 and 22 are connected (Claim 2). Although FIG. 5 shows a case where the additional hydraulic valve is the additional pressure regulating valve 62, the additional hydraulic valve may be the orifice 19 in the example shown in FIG.

請求項2では高圧側となるいずれの油圧室41、42からの圧油も同一のハードニング油圧回路51の調圧弁61及び付加油圧弁に流れ、調圧弁61及び付加油圧弁からいずれかの低圧側の油圧室42、41に流れる油圧回路が形成されることで、両油圧室41、42間に接続されるハードニング油圧回路51が一つで済むため、両油圧室41、42間に接続される油圧回路の構成が単純化される利点がある。   In the second aspect, the pressure oil from any of the hydraulic chambers 41 and 42 on the high pressure side flows to the pressure regulating valve 61 and the additional hydraulic valve of the same hardening hydraulic circuit 51, and any low pressure from the pressure regulating valve 61 and the additional hydraulic valve. By forming the hydraulic circuit that flows in the hydraulic chambers 42 and 41 on the side, only one hardening hydraulic circuit 51 is connected between the hydraulic chambers 41 and 42. There is an advantage that the configuration of the hydraulic circuit is simplified.

請求項1における「2組のハードニング油圧回路51、52が互いに逆向きに両油圧室41、42間に並列に接続されること」は、一方のハードニング油圧回路51の調圧弁61及び付加油圧弁の上流側に一方の油圧室41が接続され、他方のハードニング油圧回路52の調圧弁61及び付加油圧弁の上流側に他方の油圧室42が接続されることであり、各ハードニング油圧回路51、52の調圧弁61及び付加油圧弁の下流側にはそれぞれ反対側の油圧室42、41が接続される。   The fact that “two sets of the hardening hydraulic circuits 51 and 52 are connected in parallel between the two hydraulic chambers 41 and 42 in opposite directions” in claim 1 means that the pressure regulating valve 61 of the one hardening hydraulic circuit 51 and the addition are added. One hydraulic chamber 41 is connected to the upstream side of the hydraulic valve, and the other hydraulic chamber 42 is connected to the upstream side of the pressure regulating valve 61 of the other hardening hydraulic circuit 52 and the additional hydraulic valve. Opposite hydraulic chambers 42 and 41 are connected to the downstream sides of the pressure regulating valve 61 and the additional hydraulic valve of the hydraulic circuits 51 and 52, respectively.

この場合、2組のハードニング油圧回路51、52が互いに逆向きに配置されることで、一方の油圧室41(42)が高圧側となったときにその油圧室41(42)からの圧油が一方のハードニング油圧回路51の調圧弁61及び付加油圧弁と切替弁71、72に流れる油圧回路と、他方の油圧室42(41)が高圧側となったときにその油圧室42(41)からの圧油が他方のハードニング油圧回路52の調圧弁61及び付加油圧弁と切替弁71、72に流れる油圧回路が独立して形成される。   In this case, the two sets of the hardened hydraulic circuits 51 and 52 are arranged in opposite directions so that the pressure from the hydraulic chamber 41 (42) when one hydraulic chamber 41 (42) is on the high pressure side. The hydraulic circuit flows through the pressure regulating valve 61 and the additional hydraulic valve of the one hardening hydraulic circuit 51 and the switching valves 71 and 72, and the hydraulic chamber 42 (41) when the other hydraulic chamber 42 (41) becomes the high pressure side. 41), the hydraulic circuit through which the pressure oil from 41) flows to the pressure regulating valve 61 and the additional hydraulic valve of the other hardening hydraulic circuit 52 and the switching valves 71 and 72 is formed independently.

油圧ダンパの速度Vがある一定の速度V0(荷重F0)以下のとき(V≦V0)の減衰係数C1と、速度V0(荷重F0)を超えたとき(V>V0)の減衰係数C2は各ハードニング油圧回路51(52)を構成し、両油圧室41、42間に並列に接続される調圧弁61と付加油圧弁の各減衰係数K1、K2(K11)で決まる。   The damping coefficient C1 when the speed V of the hydraulic damper is below a certain speed V0 (load F0) (V ≦ V0) and the damping coefficient C2 when the speed V0 (load F0) is exceeded (V> V0) are The hardening hydraulic circuit 51 (52) is configured and determined by the damping coefficients K1 and K2 (K11) of the pressure regulating valve 61 and the additional hydraulic valve connected in parallel between the hydraulic chambers 41 and 42.

油圧ダンパの速度VがV0(荷重F0)以下(V≦V0)、すなわち高圧側の油圧室41(42)の圧力PがP0以下のとき(P≦P0)には、調圧弁61と低圧側の油圧室42(41)との間に接続された一方の切替弁71の一方側に配置され、プレストレス(元圧縮力)が与えられたばね7aの復元力が切替弁71の他方側(上流側)に作用する高圧側の油圧室41(42)からの圧力Pを上回ることで、切替弁71が開放状態を維持する。このとき、調圧弁61のばね室61aは切替弁71を通して低圧側の油圧室42(41)と連結され、調圧弁61は高圧側の油圧室41(42)の圧力に応じて開閉し、調圧弁61を通過した圧油は流路10、11に接続された流路100、110を通して低圧側の油圧室42(41)に流れる状態にあり、切替弁71は調圧弁61を作動状態に保持している。一方の切替弁71のばね7aの復元力は弁体の上流側に作用する高圧側の油圧室41(42)の圧力PがP0を超えたときに弁体を閉じるように調整される。   When the speed V of the hydraulic damper is V0 (load F0) or less (V ≦ V0), that is, when the pressure P of the high pressure side hydraulic chamber 41 (42) is P0 or less (P ≦ P0), the pressure regulating valve 61 and the low pressure side Is disposed on one side of one switching valve 71 connected to the hydraulic chamber 42 (41), and the restoring force of the spring 7a to which prestress (original compression force) is applied is the other side (upstream) of the switching valve 71. The switching valve 71 maintains the open state by exceeding the pressure P from the high pressure side hydraulic chamber 41 (42) acting on the side). At this time, the spring chamber 61a of the pressure regulating valve 61 is connected to the low pressure side hydraulic chamber 42 (41) through the switching valve 71, and the pressure regulating valve 61 opens and closes according to the pressure of the high pressure side hydraulic chamber 41 (42). The pressure oil that has passed through the pressure valve 61 flows into the low pressure side hydraulic chamber 42 (41) through the flow paths 100, 110 connected to the flow paths 10, 11, and the switching valve 71 keeps the pressure regulating valve 61 in an operating state. doing. The restoring force of the spring 7a of one switching valve 71 is adjusted so that the valve body is closed when the pressure P of the high pressure side hydraulic chamber 41 (42) acting on the upstream side of the valve body exceeds P0.

調圧弁61は弁体の圧力がばね6aの復元力により調整されて線形の減衰係数K1を発揮する状態に設定され、作動状態にあるときに高圧側となるいずれか一方の油圧室41(42)からの圧油が低圧側となる他方の油圧室42(41)側へ移動可能な状態に保つ。図1に示すように調圧弁61と並列に接続される付加油圧弁が付加調圧弁62である場合(請求項3)には、調圧弁61と付加調圧弁62が共に、作動しているときに油圧ダンパ1自体に生じた速度Vに比例した減衰係数C1を発揮する状態にばね6a、6bの復元力により弁体の圧力(減衰係数K1、K2)が調整される。   The pressure regulating valve 61 is set to a state in which the pressure of the valve body is adjusted by the restoring force of the spring 6a and exhibits a linear damping coefficient K1, and when in the operating state, one of the hydraulic chambers 41 (42) which is on the high pressure side. ) Is kept movable to the other hydraulic chamber 42 (41) side on the low pressure side. As shown in FIG. 1, when the additional hydraulic valve connected in parallel with the pressure regulating valve 61 is the additional pressure regulating valve 62 (Claim 3), both the pressure regulating valve 61 and the additional pressure regulating valve 62 are operating. In addition, the pressure (damping coefficients K1, K2) of the valve body is adjusted by the restoring force of the springs 6a, 6b so that the damping coefficient C1 proportional to the speed V generated in the hydraulic damper 1 itself is exhibited.

「線形の減衰係数K1を発揮する」とは、油圧ダンパ1に生じる速度Vに対応した高圧側の圧油の圧力P(油圧ダンパが発生する荷重F)の大きさに応じて弁体の開放面積が拡大し、調圧弁61、62を通過する圧油の流量を多くすることにより減衰係数K1、K2が線形関係(油圧ダンパの速度Vと油圧ダンパの荷重Fとが比例する関係)を維持することを言う。   “Exhibiting a linear damping coefficient K1” means that the valve element is opened according to the magnitude of the pressure P (load F generated by the hydraulic damper) of the high-pressure side hydraulic oil corresponding to the speed V generated in the hydraulic damper 1. By expanding the area and increasing the flow rate of the pressure oil passing through the pressure regulating valves 61 and 62, the damping coefficients K1 and K2 maintain a linear relationship (a relationship in which the hydraulic damper speed V and the hydraulic damper load F are proportional). Say to do.

調圧弁61、62の弁体の開放の程度(開放面積)は高圧側の油圧室41(42)の圧力Pの程度に応じて変化し、圧力Pの上昇に伴い、調圧弁61、62を通過する圧油の圧力が増す程、開放の程度が大きくなり、圧油が流れる流量が増大することにより高圧側の油圧室41(42)の圧力Pと油圧ダンパ1が発生する荷重Fとの関係(減衰係数C1)を線形に保つ。調圧弁61、62を通過する圧油の流量は油圧ダンパ1に生じる速度Vに対応する。高圧側の油圧室41(42)の圧力Pは油圧ダンパ1の速度V0に対応し、調圧弁61、62の弁体の開放の程度は油圧ダンパ1が発生する荷重F0に対応するため、図2に示すように油圧ダンパの速度V0と油圧ダンパが発生する荷重F0の関係が線形になる。   The degree of opening (open area) of the valve bodies of the pressure regulating valves 61 and 62 changes according to the degree of the pressure P in the hydraulic chamber 41 (42) on the high pressure side, and the pressure regulating valves 61 and 62 are increased as the pressure P increases. As the pressure of the pressure oil passing through increases, the degree of opening increases, and the flow rate of the pressure oil increases, so that the pressure P of the high-pressure side hydraulic chamber 41 (42) and the load F generated by the hydraulic damper 1 are increased. Keep the relationship (damping coefficient C1) linear. The flow rate of the pressure oil passing through the pressure regulating valves 61 and 62 corresponds to the speed V generated in the hydraulic damper 1. Since the pressure P of the high pressure side hydraulic chamber 41 (42) corresponds to the speed V0 of the hydraulic damper 1, and the degree of opening of the valve bodies of the pressure regulating valves 61 and 62 corresponds to the load F0 generated by the hydraulic damper 1, FIG. As shown in FIG. 2, the relationship between the speed V0 of the hydraulic damper and the load F0 generated by the hydraulic damper is linear.

図1に示すように付加油圧弁が付加調圧弁62である場合(請求項3)、付加調圧弁62は常に作動状態を維持するため、油圧ダンパ1(ピストン)の荷重Fが、調圧弁61が作動状態を維持する荷重F0(速度がV0)以下での油圧ダンパ1の減衰係数C1は図2に示すように調圧弁61の減衰係数K1と付加油圧弁の減衰係数K2の直列和になる(C1=K1・K2/(K1+K2))。   As shown in FIG. 1, when the additional hydraulic valve is the additional pressure regulating valve 62 (Claim 3), the load F of the hydraulic damper 1 (piston) is maintained by the pressure regulating valve 61 because the additional pressure regulating valve 62 always maintains an operating state. As shown in FIG. 2, the damping coefficient C1 of the hydraulic damper 1 below the load F0 (speed is V0) that maintains the operating state is the series sum of the damping coefficient K1 of the pressure regulating valve 61 and the damping coefficient K2 of the additional hydraulic valve. (C1 = K1 / K2 / (K1 + K2)).

調圧弁61と付加調圧弁62の減衰係数K1、K2はばね6a、6bの復元力により線形関係を維持するように設定可能であるため、調圧弁61と付加調圧弁62を合わせた油圧ダンパの初期の減衰係数C1(=K1・K2/(K1+K2))も線形になり、後述のように調圧弁61が閉鎖(非作動)状態になった後の油圧ダンパの減衰係数C2(=付加調圧弁62の単独の減衰係数K2)も線形を維持する。油圧ダンパ1の荷重FがF0を超えたときには調圧弁61が閉鎖するため、油圧ダンパ1の減衰係数C2は付加調圧弁62の減衰係数K2のみになるが、付加調圧弁62はピストン3の荷重FがF0(速度がV0)以下のときから作動しているため、減衰係数C2は原点を通る直線になる。   Since the damping coefficients K1 and K2 of the pressure regulating valve 61 and the additional pressure regulating valve 62 can be set so as to maintain a linear relationship by the restoring force of the springs 6a and 6b, the hydraulic damper including the pressure regulating valve 61 and the additional pressure regulating valve 62 is combined. The initial damping coefficient C1 (= K1 · K2 / (K1 + K2)) is also linear, and the damping coefficient C2 (= additional regulating valve) of the hydraulic damper after the pressure regulating valve 61 is closed (non-actuated) as described later. A single attenuation coefficient K2) of 62 remains linear. Since the pressure regulating valve 61 is closed when the load F of the hydraulic damper 1 exceeds F0, the damping coefficient C2 of the hydraulic damper 1 is only the damping coefficient K2 of the additional pressure regulating valve 62, but the additional pressure regulating valve 62 is the load of the piston 3. Since it has been operating since F is less than F0 (speed is V0), the damping coefficient C2 is a straight line passing through the origin.

図3に示すように付加油圧弁がオリフィス19である場合(請求項4)、オリフィス19も付加調圧弁62と同様にピストン3の荷重FがF0(速度がV0)以下のときから開放していることで、油圧ダンパ1の初期の減衰係数C1は図4に示すように調圧弁61の減衰係数K1と常に開放状態を維持するオリフィス19の減衰係数K11の直列和になる(C1=K1・K11/(K1+K11))。調圧弁61が閉鎖状態になった後(荷重がF0を超えたとき)の油圧ダンパ1の減衰係数C2はオリフィス19単体の減衰係数K11になるが、オリフィス19はピストン3の荷重FがF0(速度がV0)以下のときから開放しているため、減衰係数C2は原点を通る曲線になる。   As shown in FIG. 3, when the additional hydraulic valve is the orifice 19 (Claim 4), the orifice 19 is released from the time when the load F of the piston 3 is equal to or less than F0 (the speed is V0) as in the case of the additional pressure regulating valve 62. As a result, the initial damping coefficient C1 of the hydraulic damper 1 is the series sum of the damping coefficient K1 of the pressure regulating valve 61 and the damping coefficient K11 of the orifice 19 that always maintains the open state (C1 = K1 · K11 / (K1 + K11)). The damping coefficient C2 of the hydraulic damper 1 after the pressure regulating valve 61 is closed (when the load exceeds F0) becomes the damping coefficient K11 of the orifice 19 alone, but the orifice 19 has a load F of the piston 3 of F0 ( Since the speed is released from the time of V0) or less, the attenuation coefficient C2 is a curve passing through the origin.

図3の場合、油圧ダンパ1の減衰係数C1、C2には若干、オリフィス特有の非線形性が含まれるものの、減衰係数C1には調圧弁61の線形性の特性が反映されることで、図4に示すように図11に示す場合との対比では非線形性は抑えられながら、速度VがV0の時点でピストン3の荷重Fが急激に上昇する特性が実現される。また図1に示す例との対比では付加油圧弁の構成が単純化される利点がある。   In the case of FIG. 3, although the damping coefficients C1 and C2 of the hydraulic damper 1 include some non-linearity specific to the orifice, the damping coefficient C1 reflects the linearity characteristics of the pressure regulating valve 61, and FIG. As shown in FIG. 11, a characteristic that the load F of the piston 3 rapidly increases when the speed V is V0 is realized while the nonlinearity is suppressed in comparison with the case shown in FIG. Further, in comparison with the example shown in FIG. 1, there is an advantage that the configuration of the additional hydraulic valve is simplified.

付加油圧弁が付加調圧弁62である場合(請求項3)とオリフィス19である場合(請求項4)のいずれも、油圧ダンパ1の初期の減衰係数C1は線形、もしくは線形に近い曲線を描く。調圧弁61が閉鎖し、付加油圧弁のみが開放状態になったとき(減衰係数C1から減衰係数C2に移行するとき)には、図2、図4に示すように油圧ダンパが発生する抵抗力FがF0からF2へ急激に上昇し、油圧ダンパ1の剛性が一時的にほぼ無限大近くになる。   In both cases where the additional hydraulic valve is the additional pressure regulating valve 62 (Claim 3) and the orifice 19 (Claim 4), the initial damping coefficient C1 of the hydraulic damper 1 is linear or draws a curve close to linear. . When the pressure regulating valve 61 is closed and only the additional hydraulic valve is opened (when the damping coefficient C1 is shifted to the damping coefficient C2), the resistance force generated by the hydraulic damper as shown in FIGS. F rises rapidly from F0 to F2, and the rigidity of the hydraulic damper 1 temporarily becomes nearly infinite.

この結果、ある速度V0(荷重F0)以下の領域においては高い線形特性を維持しつつ、速度V0(荷重F0)以上の領域で急激に抵抗力が上昇するハードニング特性が油圧ダンパ1に付与されることになる。油圧ダンパ1にハードニング特性が付与されることで、油圧ダンパ1が同調質量ダンパ(TMD)や免震構造物等として使用された場合に想定外の大きな地震入力があったときにも、質量や上部構造が許容ストロークを超えて損傷する事態を回避することが可能になる。   As a result, the hydraulic damper 1 is imparted with a hardening characteristic that maintains a high linear characteristic in a region below a certain speed V0 (load F0) and a sudden increase in resistance in a region above the speed V0 (load F0). Will be. When the hydraulic damper 1 is given a hardening characteristic, when the hydraulic damper 1 is used as a tuned mass damper (TMD), seismic isolation structure, etc. It is possible to avoid a situation where the upper structure and the upper structure are damaged beyond the allowable stroke.

油圧ダンパ1が線形の、もしくは線形に近い減衰係数C1を発揮することは、油圧ダンパ1が同調質量ダンパに適用された場合に建物の振動に同調させる制御をし易く、同調質量ダンパによる制震効果を得易くする意味がある。免震構造物に適用された場合には免震の対象とするレベルの地震に対する免震効果(加速度低減効果)を阻害しない意味がある。油圧ダンパ1が設置される対象は主に同調質量ダンパが設置される構造物の他、免震構造物であるが、構造物には橋梁等の土木構造物も含まれる。   The fact that the hydraulic damper 1 exhibits a linear or nearly linear damping coefficient C1 facilitates control to be tuned to the vibration of the building when the hydraulic damper 1 is applied to a tuned mass damper, and is controlled by the tuned mass damper. There is a meaning which makes it easy to obtain the effect. When applied to seismic isolation structures, it has the meaning of not hindering the seismic isolation effect (acceleration reduction effect) for earthquakes at the level targeted for isolation. The object on which the hydraulic damper 1 is installed is mainly a seismic isolation structure in addition to the structure on which the tuned mass damper is installed, and the structure includes civil structures such as bridges.

調圧弁61と低圧側の油圧室42(41)との間に接続された他方の切替弁72の一方側には、高圧側の油圧室41(42)の圧油が流入しているバッファ8から高圧側の油圧室41(42)の圧力P0が作用する。この圧力P0は、高圧側の油圧室41(42)に接続された流路10から分岐し、バッファ8に接続される流路10aから分岐した流路10bを通じて他方の切替弁72の他方側に作用している圧力P0と等しいため、他方の切替弁72は弁体の他方側に配置されたばね7bの復元力により平常時には閉鎖状態を維持している。   The buffer 8 into which the pressure oil in the high pressure side hydraulic chamber 41 (42) flows into one side of the other switching valve 72 connected between the pressure regulating valve 61 and the low pressure side hydraulic chamber 42 (41). The pressure P0 of the hydraulic chamber 41 (42) on the high pressure side is applied. This pressure P0 branches from the flow path 10 connected to the high pressure side hydraulic chamber 41 (42), and flows to the other side of the other switching valve 72 through the flow path 10b branched from the flow path 10a connected to the buffer 8. Since it is equal to the acting pressure P0, the other switching valve 72 is normally kept closed by the restoring force of the spring 7b disposed on the other side of the valve body.

油圧ダンパ1の速度Vが速度V0(荷重F0)を超え(V>V0)、高圧側の油圧室41(42)の圧力PがP0を上回ったときには(P>P0)、圧力Pが一方の切替弁71のばね7aの復元力に勝ることで、切替弁71が閉鎖状態に切り替わり、調圧弁61のばね室61aと低圧側の油圧室42(41)との連結状態が遮断されるため、高圧側の油圧室41(42)からオリフィス15を通って流れ込んできた圧油の圧力により調圧弁61が閉鎖(非作動)状態に切り替わる。調圧弁61の閉鎖と同時に図2に示すように油圧ダンパの減衰係数C2は付加油圧弁の減衰係数K2(K11)のみになり(C2=K2(K11))、油圧ダンパ1が発生する抵抗力Fが急激に上昇する。高圧側の油圧室41(42)の圧力がP0以上であれば、一方の切替弁71は閉鎖状態を維持する。   When the speed V of the hydraulic damper 1 exceeds the speed V0 (load F0) (V> V0) and the pressure P of the high-pressure side hydraulic chamber 41 (42) exceeds P0 (P> P0), the pressure P By surpassing the restoring force of the spring 7a of the switching valve 71, the switching valve 71 is switched to the closed state, and the connection state between the spring chamber 61a of the pressure regulating valve 61 and the hydraulic chamber 42 (41) on the low pressure side is cut off. The pressure regulating valve 61 is switched to a closed (non-actuated) state by the pressure of the pressure oil flowing through the orifice 15 from the high pressure side hydraulic chamber 41 (42). Simultaneously with closing of the pressure regulating valve 61, the damping coefficient C2 of the hydraulic damper is only the damping coefficient K2 (K11) of the additional hydraulic valve (C2 = K2 (K11)), and the resistance force generated by the hydraulic damper 1 is as shown in FIG. F rises rapidly. If the pressure in the high pressure side hydraulic chamber 41 (42) is equal to or higher than P0, one switching valve 71 is kept closed.

ここで、調圧弁61が非作動状態に切り替わって付加油圧弁のみが開放(作動)状態になり、油圧ダンパ1の抵抗力Fが上昇したときの油圧ダンパ1の抵抗力(高圧側の油圧室41(42)の圧力)をF2(P2)とする。ここで、高圧側の油圧室41(42)の圧力がP2以上に一旦、上昇した後に降下に転じ、高圧側の油圧室41(42)の圧力PがP2より降下した(P≦P2)ときにも、高圧側の油圧室41(42)と他方の切替弁72との間に接続されたバッファ8は圧力がP2であるときの高圧側の油圧室41(42)の圧油を蓄積し、その圧力P2を維持するため、他方の切替弁72の一方側(バッファ側)の圧力(P2)は他方側(高圧側の油圧室41(42)側)の圧力Pより高い状態に保たれる。バッファ8の最大圧力の大きさはバッファ8と低圧側の油圧室42(41)との間に接続されるリリーフ弁9の調整により設定される。   Here, when the pressure regulating valve 61 is switched to the non-operating state and only the additional hydraulic valve is opened (operated), and the resistance force F of the hydraulic damper 1 increases, the resistance force of the hydraulic damper 1 (the hydraulic chamber on the high pressure side) 41 (42) pressure) is F2 (P2). Here, when the pressure in the high pressure side hydraulic chamber 41 (42) once rises to P2 or higher and then turns down, the pressure P in the high pressure side hydraulic chamber 41 (42) drops from P2 (P ≦ P2). In addition, the buffer 8 connected between the high pressure side hydraulic chamber 41 (42) and the other switching valve 72 accumulates the pressure oil in the high pressure side hydraulic chamber 41 (42) when the pressure is P2. In order to maintain the pressure P2, the pressure (P2) on one side (buffer side) of the other switching valve 72 is kept higher than the pressure P on the other side (high pressure side hydraulic chamber 41 (42) side). It is. The magnitude of the maximum pressure of the buffer 8 is set by adjusting the relief valve 9 connected between the buffer 8 and the low pressure side hydraulic chamber 42 (41).

この結果、油圧ダンパ1の速度Vが速度V0を下回り(V<V0)、高圧側の油圧室41(42)の圧力Pが一定の圧力P2以下にまで降下したとき(P≦P2)には、バッファ8内の圧力P2が他方の切替弁72の他方側の圧力Pより高い状態にあり、切替弁72の一方側の圧力(P2)が弁体の他方側に配置されたばね7bの復元力に勝るため、他方の切替弁72は開放状態に切り替えられる。高圧側の油圧室41(42)の圧力Pが一方の切替弁71が閉鎖状態を維持する圧力P2より降下しながらも、バッファ8が圧力P2を維持する状態は、バッファ8の上流側(高圧側の油圧室41(42)側)にバッファ8内の圧油の、油圧室41(42)への逆流を阻止する逆止弁12が接続されることで得られる。   As a result, when the speed V of the hydraulic damper 1 falls below the speed V0 (V <V0) and the pressure P of the high pressure side hydraulic chamber 41 (42) drops below a certain pressure P2 (P ≦ P2). The pressure P2 in the buffer 8 is higher than the pressure P on the other side of the other switching valve 72, and the pressure (P2) on one side of the switching valve 72 is the restoring force of the spring 7b disposed on the other side of the valve body. Therefore, the other switching valve 72 is switched to the open state. The state in which the buffer 8 maintains the pressure P2 while the pressure P in the hydraulic chamber 41 (42) on the high pressure side is lower than the pressure P2 at which one of the switching valves 71 maintains the closed state is the upstream side of the buffer 8 (high pressure This is obtained by connecting the check valve 12 for preventing the backflow of the pressure oil in the buffer 8 to the hydraulic chamber 41 (42) to the hydraulic chamber 41 (42) side.

他方の切替弁72が開放状態に切り替わることで、調圧弁61のばね室(ばね6a側)と低圧側の油圧室42(41)が他方の切替弁72を通じて連結された状態になるため、調圧弁61が作動状態に復帰し、油圧ダンパ1の減衰係数CはC1に戻り、荷重F(圧力P)がF0(P0)以下に戻る。   Since the other switching valve 72 is switched to the open state, the spring chamber (spring 6a side) of the pressure regulating valve 61 and the low pressure side hydraulic chamber 42 (41) are connected through the other switching valve 72. The pressure valve 61 returns to the operating state, the damping coefficient C of the hydraulic damper 1 returns to C1, and the load F (pressure P) returns to F0 (P0) or less.

このとき、バッファ8から他方の切替弁72を通過して調圧弁61側へ流れる圧油は流路10cを通じて切替弁72を通過し、高圧側の油圧室41(42)側へ向かうことで、次第に切替弁72の一方側(バッファ8側)の圧力と他方側(調圧弁61側)の圧力が等しくなる。切替弁72の一方側と他方側の圧力が等しくなったときには、切替弁72はばね7bの復元力により閉鎖状態に復帰する。   At this time, the pressure oil that flows from the buffer 8 to the pressure regulating valve 61 side through the other switching valve 72 passes through the switching valve 72 through the flow path 10c and moves toward the hydraulic chamber 41 (42) side on the high pressure side. Gradually, the pressure on one side (buffer 8 side) of the switching valve 72 and the pressure on the other side (pressure regulating valve 61 side) become equal. When the pressure on one side and the other side of the switching valve 72 become equal, the switching valve 72 returns to the closed state by the restoring force of the spring 7b.

切替弁72が閉鎖状態に復帰すると同時に、前記のように高圧側の油圧室41(42)の圧力PがP0以下になっている(P≦P0)ことで、一方の切替弁71のばね7aの復元力が油圧室41(42)の圧力Pに勝り、一方の切替弁71が開放状態に復帰するため、調圧弁61のばね室61aは一方の切替弁71により低圧側の油圧室42(41)と連結された状態に復帰する。   Simultaneously with the return of the switching valve 72 to the closed state, the pressure P of the high pressure side hydraulic chamber 41 (42) is equal to or lower than P0 (P ≦ P0) as described above. Therefore, one of the switching valves 71 returns to the open state, so that the spring chamber 61a of the pressure regulating valve 61 is moved by the one switching valve 71 to the low pressure side hydraulic chamber 42 ( 41).

バッファ8の上流側(高圧側の油圧室41(42)側)には、高圧側の油圧室41(42)の圧力Pが上昇するときに、すなわちバッファ8に圧油が蓄積されるときに、その蓄積に要する時間を調整する役目を果たすオリフィス13が接続される。   When the pressure P of the high pressure side hydraulic chamber 41 (42) rises on the upstream side (the high pressure side hydraulic chamber 41 (42) side) of the buffer 8, that is, when pressure oil is accumulated in the buffer 8. The orifice 13 serving to adjust the time required for the accumulation is connected.

油圧ダンパの油圧室間に調圧弁と付加油圧弁を並列に接続し、調圧弁をピストンの荷重が一定荷重F0(速度がV0)以下のときに開放状態に保ち、荷重F0を超えたときに閉鎖状態にする一方、付加油圧弁を常に開放状態に保つことで、ピストンの荷重がF0を超え、油圧ダンパの減衰係数C2が付加油圧弁の減衰係数K2のみになるときに、油圧ダンパが発生する抵抗力FをF0からF2へ急激に上昇させ、油圧ダンパの剛性を一時的にほぼ無限大近くにする状態を得ることができるため、油圧ダンパにハードニング特性を付与することができる。   A pressure regulating valve and an additional hydraulic valve are connected in parallel between the hydraulic chambers of the hydraulic damper, and the pressure regulating valve is kept open when the piston load is below a certain load F0 (speed is V0), and when the load F0 is exceeded. By keeping the additional hydraulic valve open at all times while being closed, a hydraulic damper is generated when the piston load exceeds F0 and the damping coefficient C2 of the hydraulic damper is only the damping coefficient K2 of the additional hydraulic valve. The resistance force F to be increased can be rapidly increased from F0 to F2 to obtain a state in which the rigidity of the hydraulic damper is temporarily nearly infinite, so that a hardening characteristic can be imparted to the hydraulic damper.

この結果、油圧ダンパが同調質量ダンパ(TMD)や免震構造物等として使用された場合に想定外の大きな地震入力があったときにも、質量や上部構造が許容ストロークを超えて損傷する事態を回避することができる。   As a result, when the hydraulic damper is used as a tuned mass damper (TMD) or seismic isolation structure, the mass and superstructure may be damaged beyond the allowable stroke even when there is an unexpected large earthquake input. Can be avoided.

また切替弁のばねに与えられるプレストレスの設定により任意の速度でハードニングする減衰特性を発揮するダンパを実現することができるため、バッファ等を使用する方法との対比では遙かに小さな発生荷重で、TMDや免震層のストロークを安定して小さく抑えることが可能であり、大地震時の損傷防止だけでなく、装置の小型化、低コスト化も実現可能になる。   In addition, since a damper that exhibits a damping characteristic that hardens at an arbitrary speed can be realized by setting a prestress applied to the spring of the switching valve, the generated load is much smaller compared to a method using a buffer or the like. Thus, the stroke of the TMD and the seismic isolation layer can be stably reduced, and not only can the damage be prevented during a large earthquake, but also the device can be downsized and the cost can be reduced.

高圧側の油圧室の圧力に応じて開閉状態が切り替えられる調圧弁と、常に開放状態を維持する付加油圧弁としての付加調圧弁を油圧室間に並列に接続したハードニング油圧回路を搭載した油圧ダンパの構成例を示した油圧回路図である。Hydraulic pressure control valve that switches between open and closed states according to the pressure in the hydraulic chamber on the high-pressure side, and a hydraulic circuit equipped with a hardened hydraulic circuit that connects the additional pressure control valve as an additional hydraulic valve that always remains open in parallel between the hydraulic chambers FIG. 3 is a hydraulic circuit diagram illustrating a configuration example of a damper. 図1に示す油圧ダンパの荷重−速度関係を示したグラフである。It is the graph which showed the load-speed relationship of the hydraulic damper shown in FIG. 図1に示すハードニング油圧回路の付加油圧弁としてオリフィスを接続したハードニング油圧回路を搭載した油圧ダンパの構成例を示した油圧回路図である。FIG. 2 is a hydraulic circuit diagram showing a configuration example of a hydraulic damper equipped with a hardening hydraulic circuit connected with an orifice as an additional hydraulic valve of the hardening hydraulic circuit shown in FIG. 1. 図3に示す油圧ダンパの荷重−速度関係を示したグラフである。It is the graph which showed the load-speed relationship of the hydraulic damper shown in FIG. 逆止弁を用いた整流型の油圧ダンパにハードニング油圧回路を設置した油圧ダンパの構成例を示した油圧回路図である。It is a hydraulic circuit diagram showing a configuration example of a hydraulic damper in which a hardening hydraulic circuit is installed in a rectifying hydraulic damper using a check valve. 大気開放型のリザーバタンクを有する片ロッド式油圧ダンパにハードニング油圧回路を設置した油圧ダンパの構成例を示した油圧回路図である。FIG. 3 is a hydraulic circuit diagram showing a configuration example of a hydraulic damper in which a hardening hydraulic circuit is installed in a single rod hydraulic damper having an open-air reservoir tank. 建物に設置されたTMDを示した概念図である。It is the conceptual diagram which showed TMD installed in the building. 図7に示すTMDにバッファを付加した様子を示した図7の拡大図である。FIG. 8 is an enlarged view of FIG. 7 showing a state in which a buffer is added to the TMD shown in FIG. 7. 免震構造の構成例を示した概念図である。It is the conceptual diagram which showed the structural example of the seismic isolation structure. オリフィスを使用した従来の油圧ダンパの構成例を示した油圧回路図である。It is the hydraulic circuit diagram which showed the structural example of the conventional hydraulic damper which uses an orifice. 図10に示すオリフィス式油圧ダンパの荷重−速度関係を示したグラフである。It is the graph which showed the load-speed relationship of the orifice type hydraulic damper shown in FIG.

図1はシリンダ2と、シリンダ2内を往復動するピストン3と、ピストン3の両側に設けられ、圧油が充填された油圧室41、42とを備えた油圧ダンパ1において、両油圧室41、42間に、油圧ダンパ1自体に生じた速度の増加に伴い、減衰係数が増大する減衰特性を発揮する2組のハードニング油圧回路51、52を互いに逆向きに、並列に接続した油圧ダンパ1の基本的な構成例を示す。ハードニング油圧回路51、52は両油圧室41、42を結ぶ流路10、11に接続される。   1 shows a hydraulic damper 1 having a cylinder 2, a piston 3 reciprocating in the cylinder 2, and hydraulic chambers 41 and 42 provided on both sides of the piston 3 and filled with pressure oil. , 42, a hydraulic damper in which two sets of hardened hydraulic circuits 51 and 52 exhibiting a damping characteristic that increases a damping coefficient with an increase in speed generated in the hydraulic damper 1 itself are connected in parallel in opposite directions. 1 shows a basic configuration example. The hardening hydraulic circuits 51 and 52 are connected to the flow paths 10 and 11 connecting both the hydraulic chambers 41 and 42.

各ハードニング油圧回路51、52は、両油圧室41、42間に接続され、いずれか高圧側の油圧室41(42)の圧力に応じて作動状態が切り替えられ、作動時に固有の減衰係数K1を発揮する調圧弁61と、両油圧室41、42間に調圧弁61と並列に接続され、常に作動状態を維持し、固有の減衰係数K2(K11)を発揮する付加油圧弁(付加調圧弁62、またはオリフィス19)と、調圧弁61のばね室61aといずれか低圧側の油圧室42(41)との間に接続される一方の切替弁71と、調圧弁61のばね室61aといずれか低圧側の油圧室42(41)との間に接続される他方の切替弁72と、高圧側の油圧室41(42)と他方の切替弁72との間に接続されるバッファ8と、バッファ8と低圧側の油圧室42(41)との間に接続され、バッファ8内の最大圧力を規定するリリーフ弁9を基本的な構成要素として備える。   Each hardening hydraulic circuit 51, 52 is connected between both hydraulic chambers 41, 42, and the operation state is switched according to the pressure of either one of the high pressure side hydraulic chambers 41 (42), and a unique damping coefficient K1 at the time of operation. And an additional hydraulic valve (additional pressure regulating valve) which is connected between the hydraulic chambers 41 and 42 in parallel with the pressure regulating valve 61 and always maintains an operating state and exhibits a specific damping coefficient K2 (K11). 62 or the orifice 19), one switching valve 71 connected between the spring chamber 61a of the pressure regulating valve 61 and one of the low pressure side hydraulic chambers 42 (41), and the spring chamber 61a of the pressure regulating valve 61. The other switching valve 72 connected between the low pressure side hydraulic chamber 42 (41), the buffer 8 connected between the high pressure side hydraulic chamber 41 (42) and the other switching valve 72, A buffer 8 and a low pressure side hydraulic chamber 42 (41); It is connected between, and a relief valve 9 which defines the maximum pressure in the buffer 8 as the basic components.

図1は両油圧室41、42間に調圧弁61と並列に接続される付加油圧弁が調圧弁61と同じ構造の付加調圧弁62である場合の油圧ダンパ1の構成例を示す。調圧弁61と付加調圧弁62は予めばね6a、6bの復元力で弁体の圧力が調整されることにより図2に示すように油圧ダンパ1に生じた速度V(ピストン3の速度)が一定の速度V0に達するまでは速度Vに比例して増大する抵抗力(減衰係数K1、K2)を発揮する状態にある。調圧弁61はその下流側に接続された一方の切替弁71と他方の切替弁72の開閉に応じて作動状態が切り替えられる。   FIG. 1 shows a configuration example of the hydraulic damper 1 when the additional hydraulic valve connected in parallel with the pressure regulating valve 61 between the hydraulic chambers 41 and 42 is the additional pressure regulating valve 62 having the same structure as the pressure regulating valve 61. The pressure regulating valve 61 and the additional pressure regulating valve 62 have a constant speed V (speed of the piston 3) generated in the hydraulic damper 1 as shown in FIG. 2 by adjusting the pressure of the valve body in advance by the restoring force of the springs 6a and 6b. Until the speed V0 is reached, the resistance force (damping coefficients K1, K2) that increases in proportion to the speed V is exhibited. The operation state of the pressure regulating valve 61 is switched according to opening and closing of one switching valve 71 and the other switching valve 72 connected to the downstream side thereof.

油圧ダンパ1の速度VがV0になるまでの油圧ダンパ1の減衰係数C1は調圧弁61と付加調圧弁62の各減衰係数K1、K2の直列和として表され(C1=K1・K2/(K1+K2))、この減衰係数C1は速度Vが0のときの荷重Fを0にし、速度VがV0のときの荷重FをF0にする関係を満たす。   The damping coefficient C1 of the hydraulic damper 1 until the speed V of the hydraulic damper 1 reaches V0 is expressed as a series sum of the damping coefficients K1 and K2 of the pressure regulating valve 61 and the additional pressure regulating valve 62 (C1 = K1 · K2 / (K1 + K2). )), The damping coefficient C1 satisfies the relationship that the load F when the speed V is 0 is 0, and the load F when the speed V is V0 is F0.

高圧側の油圧室41(42)に接続された流路10、11に各ハードニング油圧回路51、52の調圧弁61と付加油圧弁が62が接続され、流路10、11から分岐した流路10a、11aにバッファ8とリリーフ弁9が接続される。一方の切替弁71は調圧弁61の下流側(低圧側の油圧室42(41)側)と低圧側の油圧室42(41)との間に接続され、他方の切替弁72はバッファ8の下流側と低圧側の油圧室42(41)との間に接続される。付加調圧弁62は流路10、11から分岐した流路10d、11dに接続される。   A pressure regulating valve 61 and an additional hydraulic valve 62 of each hardening hydraulic circuit 51, 52 are connected to the flow paths 10, 11 connected to the high pressure side hydraulic chamber 41 (42), and the flow branched from the flow paths 10, 11 A buffer 8 and a relief valve 9 are connected to the passages 10a and 11a. One switching valve 71 is connected between the downstream side of the pressure regulating valve 61 (the low pressure side hydraulic chamber 42 (41) side) and the low pressure side hydraulic chamber 42 (41), and the other switching valve 72 is connected to the buffer 8. Connected between the downstream and low pressure hydraulic chambers 42 (41). The additional pressure regulating valve 62 is connected to the flow paths 10d and 11d branched from the flow paths 10 and 11.

一方の切替弁71の片側にはプレストレスが与えられたばね7aが接続され、ばね7aの反対側には流路10aから分岐した流路10bが接続され、ばね7aの復元力に抵抗する、高圧側の油圧室41(42)内の圧力Pが切替弁71に作用する状態にある。平常時、すなわち高圧側の油圧室41(42)内の圧力PがP0以下のとき(P≦P0)にはばね7aの復元力が高圧側の油圧室41(42)内の圧力Pを上回ることで、切替弁71が開放した状態を維持し、調圧弁61のばね室61aを低圧側の油圧室42(41)に連結した状態に保ち、調圧弁61を作動させた状態に保持している。   One side of the switching valve 71 is connected to a prestressed spring 7a, and the other side of the spring 7a is connected to a flow path 10b branched from the flow path 10a to resist the restoring force of the spring 7a. The pressure P in the side hydraulic chamber 41 (42) is in a state of acting on the switching valve 71. In normal times, that is, when the pressure P in the high pressure side hydraulic chamber 41 (42) is equal to or lower than P0 (P ≦ P0), the restoring force of the spring 7a exceeds the pressure P in the high pressure side hydraulic chamber 41 (42). Thus, the switching valve 71 is kept open, the spring chamber 61a of the pressure regulating valve 61 is kept connected to the low pressure side hydraulic chamber 42 (41), and the pressure regulating valve 61 is kept in an activated state. Yes.

油圧ダンパ1の速度Vが一定の速度V0に達し、油圧ダンパ1が発生する荷重F0(高圧側の油圧室41(42)から作用する圧力P0)がばね7aの復元力を上回ったときに、切替弁71が閉鎖状態に切り替わり、調圧弁61を閉鎖(非作動)状態に切り替える。油圧室41(42)の圧力PがP0を超えたとき(P>P0)には、調圧弁61が閉鎖することで、図2に示すように油圧ダンパ1の減衰係数C2が付加調圧弁62の減衰係数K2になるため、油圧室41(42)の圧力PはP0からP2まで急激に上昇する。   When the speed V of the hydraulic damper 1 reaches a constant speed V0 and the load F0 generated by the hydraulic damper 1 (pressure P0 acting from the high pressure side hydraulic chamber 41 (42)) exceeds the restoring force of the spring 7a, The switching valve 71 is switched to the closed state, and the pressure regulating valve 61 is switched to the closed (non-actuated) state. When the pressure P of the hydraulic chamber 41 (42) exceeds P0 (P> P0), the pressure regulating valve 61 is closed, so that the damping coefficient C2 of the hydraulic damper 1 is added to the additional pressure regulating valve 62 as shown in FIG. Therefore, the pressure P of the hydraulic chamber 41 (42) increases rapidly from P0 to P2.

油圧ダンパ1の速度Vが速度V0になったときに油圧室41(42)の圧力PがP0からP2まで上昇することで、油圧ダンパ1は減衰係数が増大するハードニング特性を示す。切替弁71は油圧室41(42)の圧力PがP0を超えたときに閉鎖するため、圧力Pが一旦、P2以上になった後にP2以下にまで降下したときには、P0より大きい限り、切替弁71は閉鎖状態を維持する。   When the speed V of the hydraulic damper 1 reaches the speed V0, the hydraulic damper 41 exhibits a hardening characteristic in which the damping coefficient increases as the pressure P of the hydraulic chamber 41 (42) increases from P0 to P2. The switching valve 71 is closed when the pressure P of the hydraulic chamber 41 (42) exceeds P0. Therefore, when the pressure P once drops to P2 or less after it has exceeded P2, the switching valve 71 is limited as long as it is greater than P0. 71 maintains a closed state.

他方の切替弁72の一方側にはバッファ8が接続された流路10a、11aが接続され、他方側には流路10a、11aから分岐した流路10b、11bとばね7bが接続され、切替弁72の一方側にはバッファ8内の圧力が作用し、他方側には高圧側の油圧室41(42)内の圧力Pとばね7bの復元力が作用している。バッファ8内の圧力と高圧側の油圧室41(42)内の圧力Pが等しいときには、切替弁72はばね7bの復元力により閉鎖状態を維持する。高圧側の油圧室41(42)の圧力Pが一旦、P2を超えた後に降下し、一方の切替弁71が閉鎖状態を維持し続ける圧力P2を下回ったときに、切替弁72の上流側の圧力(P2)が下流側の圧力(P)を上回ること(P2>P)で切替弁72は開放状態になり、調圧弁61を作動状態にさせる。   One side of the other switching valve 72 is connected to the flow paths 10a, 11a to which the buffer 8 is connected, and the other side is connected to the flow paths 10b, 11b branched from the flow paths 10a, 11a and the springs 7b. The pressure in the buffer 8 acts on one side of the valve 72, and the pressure P in the hydraulic chamber 41 (42) on the high pressure side and the restoring force of the spring 7 b act on the other side. When the pressure in the buffer 8 and the pressure P in the high pressure side hydraulic chamber 41 (42) are equal, the switching valve 72 is kept closed by the restoring force of the spring 7b. When the pressure P of the high pressure side hydraulic chamber 41 (42) once exceeds P2, the pressure P drops, and when one of the switching valves 71 falls below the pressure P2 that keeps the closed state, the upstream side of the switching valve 72 When the pressure (P2) exceeds the downstream pressure (P) (P2> P), the switching valve 72 is opened, and the pressure regulating valve 61 is activated.

高圧側の油圧室41(42)の圧力Pが一旦、P2を超えた後にP2以下にまで降下したとき(P≦P2)、P0より大きい状況下(P>P0)では圧力Pがばね7aの復元力を上回っているため、切替弁71は閉鎖状態を維持している。一方、切替弁72の下流側の流路10b(11b)から作用する圧力PはP2より小さいのに対し、切替弁72の上流側の流路10a(11a)からは、バッファ8の上流側に接続された逆止弁12と下流側のリリーフ弁9の働きによりP2の圧力を維持しているバッファ8の圧力が作用し、ばね7bの復元力に勝るため、切替弁72が開放状態に移行し、調圧弁61のばね室61aが切替弁72を通じて低圧側の油圧室42(41)と連結された状態、すなわちに調圧弁61が作動する状態に移行する。   When the pressure P of the high-pressure side hydraulic chamber 41 (42) once exceeds P2 and then drops to P2 or less (P ≦ P2), the pressure P of the spring 7a is higher than P0 (P> P0). Since the restoring force is exceeded, the switching valve 71 maintains the closed state. On the other hand, the pressure P acting from the flow path 10b (11b) on the downstream side of the switching valve 72 is smaller than P2, whereas the flow path 10a (11a) on the upstream side of the switching valve 72 is on the upstream side of the buffer 8. The pressure of the buffer 8 maintaining the pressure of P2 is acted by the action of the connected check valve 12 and the relief valve 9 on the downstream side, and the switching valve 72 shifts to the open state in order to overcome the restoring force of the spring 7b. Then, the state shifts to a state in which the spring chamber 61a of the pressure regulating valve 61 is connected to the low pressure side hydraulic chamber 42 (41) through the switching valve 72, that is, the pressure regulating valve 61 is activated.

バッファ8の上流側の逆止弁12はバッファ8内の圧油の油圧室41(42)側への逆流を阻止することで、バッファ8内の圧力を油圧室41(42)内の圧力より高い状態に保つ。バッファ8の下流側に接続されたリリーフ弁9は後述のように油圧室41(42)内の圧力PがP2を超えた後にP2以下にまで降下したとき(P≦P2)、閉鎖状態にある他方の切替弁72を開放状態に切り替えるために、バッファ8内の圧力がP2を超えないよう制御する。   The check valve 12 on the upstream side of the buffer 8 prevents the pressure oil in the buffer 8 from flowing back to the hydraulic chamber 41 (42) side, so that the pressure in the buffer 8 is made higher than the pressure in the hydraulic chamber 41 (42). Keep it high. As will be described later, the relief valve 9 connected to the downstream side of the buffer 8 is in a closed state when the pressure P in the hydraulic chamber 41 (42) drops below P2 after exceeding P2 (P ≦ P2). In order to switch the other switching valve 72 to the open state, control is performed so that the pressure in the buffer 8 does not exceed P2.

切替弁72が開放しているときは、バッファ8内のP2の圧力を持つ圧油が切替弁72を通過して流路10b(11b)へ向かって流れる。流路10b(11b)と流路10a(11a)は連結されているため、バッファ8の上流側の圧力(油圧室41(42)内の圧力P)と下流側の圧力(バッファ8内の圧力)は次第に等しくなり、等しくなったときに切替弁72はばね7bの復元力により閉鎖状態に復帰する。   When the switching valve 72 is open, the pressure oil having the pressure P2 in the buffer 8 passes through the switching valve 72 and flows toward the flow path 10b (11b). Since the flow path 10b (11b) and the flow path 10a (11a) are connected, the pressure on the upstream side of the buffer 8 (pressure P in the hydraulic chamber 41 (42)) and the pressure on the downstream side (pressure in the buffer 8). ) Gradually become equal, and when they become equal, the switching valve 72 returns to the closed state by the restoring force of the spring 7b.

なお、図1以下の例ではハードニング油圧回路51、52に並列し、両油圧室41、42間に互いに逆向きの一対の逆止弁16、16を接続し、各逆止弁16にオリフィス17を並列に接続し、一対の逆止弁16、16間にアキュムレータ18を接続している。アキュムレータ18は油圧ダンパ1の使用中の温度変化による圧油の膨張と収縮(体積変化)を吸収し、油圧ダンパ1内の圧力が変化することを防止する役目を持つ。オリフィス17は高圧側の油圧室41(42)の圧力を低減し、アキュムレータ18側を低圧に保つ役目を持つ。逆止弁16は低圧側の油圧室42(41)の圧力が負圧にならないよう、アキュムレータ18から素早く油を低圧側の油圧室42(41)に供給できるようにするためにアキュムレータ18と流路10、11との間に設けられている。   In the example shown in FIG. 1 and subsequent figures, a pair of check valves 16, 16 opposite to each other are connected between the hydraulic chambers 41, 42 in parallel with the hardening hydraulic circuits 51, 52, and an orifice is connected to each check valve 16. 17 is connected in parallel, and an accumulator 18 is connected between the pair of check valves 16 and 16. The accumulator 18 absorbs expansion and contraction (volume change) of the pressure oil due to a temperature change during use of the hydraulic damper 1, and has a role of preventing the pressure in the hydraulic damper 1 from changing. The orifice 17 serves to reduce the pressure in the hydraulic chamber 41 (42) on the high pressure side and keep the accumulator 18 side at a low pressure. The check valve 16 flows with the accumulator 18 so that oil can be quickly supplied from the accumulator 18 to the low pressure side hydraulic chamber 42 (41) so that the pressure in the low pressure side hydraulic chamber 42 (41) does not become negative. It is provided between the paths 10 and 11.

図3は図1に示す例における各ハードニング油圧回路51、52の調圧弁61に、付加油圧弁としてのオリフィス19と、低圧側の油圧室42(41)からの圧油の逆流防止のための逆止弁20を並列に接続した場合の例を示す。オリフィス19と逆止弁20は流路10、11から分岐した流路10d、11dに接続され、高圧側油圧室42(41)からの圧油は調圧弁61とオリフィス19を通過して低圧側油圧室41(42)へ流れる。   FIG. 3 shows the pressure regulating valve 61 of each of the hardening hydraulic circuits 51 and 52 in the example shown in FIG. 1 to prevent backflow of pressure oil from the orifice 19 as an additional hydraulic valve and the hydraulic chamber 42 (41) on the low pressure side. The example at the time of connecting the non-return valve 20 in parallel is shown. The orifice 19 and the check valve 20 are connected to the flow paths 10 d and 11 d branched from the flow paths 10 and 11, and the pressure oil from the high pressure side hydraulic chamber 42 (41) passes through the pressure regulating valve 61 and the orifice 19 and is on the low pressure side. It flows to the hydraulic chamber 41 (42).

この例においてもオリフィス19は図1に示す例の付加調圧弁62と同様にピストン3の荷重がF0(速度がV0)以下のときから作動することで、荷重F0以下の油圧ダンパ1の減衰係数C1は図4に示すようにハードニング油圧回路51(52)の調圧弁61単体の減衰係数C1と付加油圧弁としてのオリフィス19の減衰係数K11の和になり、荷重がF0を超えたときの油圧ダンパの減衰係数C2はオリフィス19単体の減衰係数K11になる。   In this example as well, the orifice 19 operates from the time when the load of the piston 3 is F0 (the speed is V0) or less similarly to the additional pressure regulating valve 62 of the example shown in FIG. 1, so that the damping coefficient of the hydraulic damper 1 with the load F0 or less is obtained. As shown in FIG. 4, C1 is the sum of the damping coefficient C1 of the pressure regulating valve 61 in the hardening hydraulic circuit 51 (52) and the damping coefficient K11 of the orifice 19 as an additional hydraulic valve, and when the load exceeds F0. The damping coefficient C2 of the hydraulic damper is the damping coefficient K11 of the orifice 19 alone.

図5はいずれの油圧室41(42)からも圧油が調圧弁61及び付加油圧弁としての付加調圧弁62と切替弁71、72を通過して他方の油圧室42(41)に流れるようにするためのハードニング油圧回路51を両油圧室41、42間に1組、配置した形態の油圧ダンパ1の構成例を示す。   In FIG. 5, pressure oil flows from any hydraulic chamber 41 (42) through the pressure regulating valve 61, the additional pressure regulating valve 62 as an additional hydraulic valve, and the switching valves 71, 72 to the other hydraulic chamber 42 (41). A configuration example of the hydraulic damper 1 in a form in which one set of the hardening hydraulic circuit 51 is arranged between the hydraulic chambers 41 and 42 is shown.

図5の場合、ハードニング油圧回路51の調圧弁61及び付加調圧弁62の上流側と各油圧室41、42とを結ぶ各流路10、11に、高圧側となった油圧室42(41)からの圧油が調圧弁61及び付加調圧弁62側へ移動することを許容する逆止弁21、21が接続される。各流路10、11に接続される逆止弁21、21は互いに逆向きであり、高圧側の油圧室41(42)からの圧油が直接、低圧側の油圧室42(41)に流れることを阻止する。   In the case of FIG. 5, the hydraulic chamber 42 (41) on the high pressure side is connected to each flow path 10, 11 connecting the upstream side of the pressure regulating valve 61 and the additional pressure regulating valve 62 of the hardening hydraulic circuit 51 and each hydraulic chamber 41, 42. ) Are connected to the check valves 21 and 21 that allow the pressure oil from () to move toward the pressure regulating valve 61 and the additional pressure regulating valve 62. The check valves 21, 21 connected to the flow paths 10, 11 are in opposite directions, and the pressure oil from the high pressure side hydraulic chamber 41 (42) flows directly into the low pressure side hydraulic chamber 42 (41). Stop that.

調圧弁61及び付加調圧弁62の下流側と各油圧室41、42とを結ぶ各流路10、11には調圧弁61及び付加調圧弁62を通過した圧油が低圧側の油圧室42(41)へ移動することを許容する逆止弁22、22が接続される。各流路10、11に接続される逆止弁22、22は互いに逆向きであり、高圧側の油圧室41(42)からの圧油が調圧弁61及び付加調圧弁62の下流側に流れることを阻止する。図5における逆止弁22、22は図1等における逆止弁16を兼ねている。   In each flow path 10, 11 connecting the downstream side of the pressure regulating valve 61 and the additional pressure regulating valve 62 and each hydraulic chamber 41, 42, the pressure oil that has passed through the pressure regulating valve 61 and the additional pressure regulating valve 62 is on the low pressure side hydraulic chamber 42 ( 41) check valves 22 and 22 are connected that allow movement to 41). The check valves 22, 22 connected to the flow paths 10, 11 are in opposite directions, and the pressure oil from the high pressure side hydraulic chamber 41 (42) flows downstream of the pressure regulating valve 61 and the additional pressure regulating valve 62. Stop that. The check valves 22 and 22 in FIG. 5 also serve as the check valve 16 in FIG.

図6は免震用油圧ダンパで多く使用される、片ロッド式で、大気開放型のリザーバタンク23を使用した油圧ダンパ1にハードニング油圧回路51、52を組み込んだ油圧ダンパ1の構成例を示す。片ロッド式の油圧ダンパ1ではピストン3を挟んだ両側の油圧室41、42の容積が相違することから、ピストン3の移動に伴う圧油の体積変化を吸収するために、リザーバタンク23からの各油圧室41、42への圧油の供給が行われるよう、流路10、11に逆止弁24、24が設けられている。   FIG. 6 shows a configuration example of a hydraulic damper 1 that is often used in a seismic isolation hydraulic damper and is a one-rod type hydraulic damper 1 that uses a reservoir tank 23 that is open to the atmosphere. Show. In the single rod type hydraulic damper 1, the volumes of the hydraulic chambers 41 and 42 on both sides of the piston 3 are different, so that the volume of the pressurized oil accompanying the movement of the piston 3 is absorbed. Check valves 24 and 24 are provided in the flow paths 10 and 11 so that the pressure oil is supplied to the hydraulic chambers 41 and 42, respectively.

図6に示す例は油圧室41、42毎にハードニング油圧回路51、52が接続されているが、各ハードニング油圧回路51、52の調圧弁61及び付加調圧弁62の上流側から下流側へかけて高圧側油圧室41(42)から低圧側油圧室42(41)へ流れる状態に流路10、11が両油圧室41、42間に接続されている点では図1、図3等に示す例と同様である。   In the example shown in FIG. 6, the hardening hydraulic circuits 51 and 52 are connected to the respective hydraulic chambers 41 and 42, but from the upstream side to the downstream side of the pressure regulating valve 61 and the additional pressure regulating valve 62 of each hardening hydraulic circuit 51 and 52. 1, 3, etc. in that the flow paths 10 and 11 are connected between the hydraulic chambers 41 and 42 so as to flow from the high-pressure hydraulic chamber 41 (42) to the low-pressure hydraulic chamber 42 (41). It is the same as the example shown in.

なお、図5、図6に示す例における付加調圧弁62は図3に示すオリフィス19に置換可能である。   The additional pressure regulating valve 62 in the example shown in FIGS. 5 and 6 can be replaced with the orifice 19 shown in FIG.

1……油圧ダンパ、
2……シリンダ、3……ピストン、
41、42……油圧室、
51、52……ハードニング油圧回路、
61……調圧弁、61a……ばね室、6a……ばね、62……付加調圧弁、6b……ばね、
71……一方の切替弁、7a……ばね、72……他方の切替弁、7b……ばね、
8……バッファ、9……リリーフ弁、
10、10a〜10d、100……流路、11、11a〜11d、110……流路、
12……逆止弁(バッファ8用(流路10a上))、13……オリフィス(流路10a上)、
14……逆止弁(切替弁72用(流路10c上))、15……オリフィス(流路10c上)、
16……逆止弁(アキュムレータ18用)、17……オリフィス(アキュムレータ18用)、18……アキュムレータ、
19……オリフィス(付加油圧弁(流路10d上))、20……逆止弁(流路10d上)、
21……逆止弁、22……逆止弁、
23……リザーバタンク、24……逆止弁。
1 …… Hydraulic damper,
2 ... Cylinder, 3 ... Piston,
41, 42 ... Hydraulic room,
51, 52 …… Hardening hydraulic circuit,
61 ... Pressure regulating valve, 61a ... Spring chamber, 6a ... Spring, 62 ... Additional pressure regulating valve, 6b ... Spring,
71 ... one switching valve, 7a ... spring, 72 ... the other switching valve, 7b ... spring,
8 ... Buffer, 9 ... Relief valve,
10, 10a to 10d, 100 ... channel, 11, 11a to 11d, 110 ... channel,
12... Check valve (for buffer 8 (on channel 10a)), 13. Orifice (on channel 10a),
14... Check valve (for switching valve 72 (on channel 10c)), 15. Orifice (on channel 10c),
16: Check valve (for accumulator 18), 17: Orifice (for accumulator 18), 18: Accumulator,
19... Orifice (additional hydraulic valve (on channel 10 d)) 20... Check valve (on channel 10 d),
21 ... Check valve, 22 ... Check valve,
23 ... Reservoir tank, 24 ... Check valve.

Claims (4)

シリンダと、このシリンダ内を往復動するピストンと、このピストンの両側に設けられ、圧油が充填された油圧室とを備えた油圧ダンパにおいて、
前記両油圧室間に、前記油圧ダンパ自体に生じた速度の増加に伴い、減衰係数が増大する減衰特性を発揮するハードニング油圧回路が2組、互いに逆向きに並列に接続され、
前記各ハードニング油圧回路は、前記両油圧室間に接続され、いずれか高圧側の油圧室の圧力に応じて作動状態が切り替えられ、作動時には固有の減衰係数を発揮する調圧弁と、前記両油圧室間に前記調圧弁と並列に接続され、常に作動状態を維持し、固有の減衰係数を発揮する付加油圧弁と、
前記調圧弁のばね室といずれか低圧側の油圧室との間に接続され、プレストレスが与えられたばねの復元力を受け、平常時に開放状態を維持して前記調圧弁を作動状態に保持し、前記ばねの復元力を超える圧力がいずれか高圧側の油圧室から作用したときに閉鎖状態に切り替わり、前記調圧弁を閉鎖状態にする一方の切替弁と、
前記調圧弁のばね室といずれか低圧側の油圧室との間に接続され、平常時にばねの復元力により閉鎖状態を維持し、前記高圧側の油圧室の圧力が上昇から降下に切り替わったときに開放状態に切り替わることで前記調圧弁を作動状態にする他方の切替弁と、
前記高圧側の油圧室と前記他方の切替弁との間に接続され、前記高圧側の油圧室からの圧油を蓄積し、前記高圧側の油圧室の圧力が上昇して最大圧力に達した後、降下に切り替わった際、前記最大圧力を維持することで、閉鎖状態にある前記他方の切替弁を開放状態に切り替えるバッファと、
前記バッファと前記低圧側の油圧室との間に接続され、前記バッファ内の前記最大圧力を規定するリリーフ弁とを備えていることを特徴とするハードニング油圧回路を搭載した速度制限機能付き油圧ダンパ。
In a hydraulic damper including a cylinder, a piston that reciprocates in the cylinder, and a hydraulic chamber that is provided on both sides of the piston and is filled with pressure oil,
Between the hydraulic chambers, two sets of hardening hydraulic circuits that exhibit a damping characteristic in which a damping coefficient increases with an increase in speed generated in the hydraulic damper itself, are connected in parallel in opposite directions,
Each of the hardening hydraulic circuits is connected between the hydraulic chambers, the operating state is switched according to the pressure of the hydraulic chamber on either high pressure side, and a pressure regulating valve that exhibits a specific damping coefficient during operation; An additional hydraulic valve that is connected between the hydraulic chambers in parallel with the pressure regulating valve, always maintains an operating state, and exhibits a specific damping coefficient;
It is connected between the spring chamber of the pressure regulating valve and one of the low pressure side hydraulic chambers, receives the restoring force of the prestressed spring, keeps the pressure regulating valve in an operating state while maintaining an open state in normal times. A switching valve that switches to a closed state when a pressure exceeding the restoring force of the spring is applied from any one of the hydraulic chambers on the high pressure side, and closes the pressure regulating valve;
When it is connected between the spring chamber of the pressure regulating valve and one of the low pressure side hydraulic chambers, and is normally closed by the restoring force of the spring, and the pressure of the high pressure side hydraulic chamber is switched from rising to falling The other switching valve that activates the pressure regulating valve by switching to the open state,
Connected between the high pressure side hydraulic chamber and the other switching valve, the pressure oil from the high pressure side hydraulic chamber is accumulated, and the pressure in the high pressure side hydraulic chamber rises to reach the maximum pressure. After that, when switching to lowering, by maintaining the maximum pressure, the buffer that switches the other switching valve in the closed state to the open state,
Hydraulic pressure with speed limiting function equipped with a hardened hydraulic circuit, comprising a relief valve connected between the buffer and the low pressure side hydraulic chamber and defining the maximum pressure in the buffer damper.
シリンダと、このシリンダ内を往復動するピストンと、このピストンの両側に設けられ、圧油が充填された油圧室とを備えた油圧ダンパにおいて、
前記両油圧室間に、前記油圧ダンパ自体に生じた速度の増加に伴い、減衰係数が増大する減衰特性を発揮する1組のハードニング油圧回路が接続され、
前記ハードニング油圧回路は、前記両油圧室間に接続され、いずれか高圧側の油圧室の圧力に応じて作動状態が切り替えられ、作動時には固有の減衰係数を発揮する調圧弁と、前記両油圧室間に前記調圧弁と並列に接続され、常に作動状態を維持し、固有の減衰係数を発揮する付加油圧弁と、
前記調圧弁のばね室といずれか低圧側の油圧室との間に接続され、プレストレスが与えられたばねの復元力を受け、平常時に開放状態を維持して前記調圧弁を作動状態に保持し、前記ばねの復元力を超える圧力がいずれか高圧側の油圧室から作用したときに閉鎖状態に切り替わり、前記調圧弁を閉鎖状態にする一方の切替弁と、
前記調圧弁のばね室といずれか低圧側の油圧室との間に接続され、平常時にばねの復元力により閉鎖状態を維持し、前記高圧側の油圧室の圧力が上昇から降下に切り替わったときに開放状態に切り替わることで前記調圧弁を作動状態にする他方の切替弁と、
前記高圧側の油圧室と前記他方の切替弁との間に接続され、前記高圧側の油圧室からの圧油を蓄積し、前記高圧側の油圧室の圧力が上昇して最大圧力に達した後、降下に切り替わった際、前記最大圧力を維持することで、閉鎖状態にある前記他方の切替弁を開放状態に切り替えるバッファと、
前記バッファと前記低圧側の油圧室との間に接続され、前記バッファ内の前記最大圧力を規定するリリーフ弁とを備え、
前記ハードニング油圧回路の前記調圧弁及び付加油圧弁の上流側と各油圧室との間に、高圧側になったときの油圧室からの圧油の前記調圧弁及び付加油圧弁への移動を許容する、互いに逆向きの、一対の逆止弁が接続され、前記調圧弁及び付加油圧弁の下流側と各油圧室との間に、前記調圧弁及び付加油圧弁からの圧油の、低圧側になったときの油圧室への移動を許容する、互いに逆向きの、一対の逆止弁が接続されていることを特徴とするハードニング油圧回路を搭載した速度制限機能付き油圧ダンパ。
In a hydraulic damper including a cylinder, a piston that reciprocates in the cylinder, and a hydraulic chamber that is provided on both sides of the piston and is filled with pressure oil,
Between the hydraulic chambers, a set of hardened hydraulic circuits that exhibit a damping characteristic in which a damping coefficient increases as the speed generated in the hydraulic damper itself increases are connected.
The hardening hydraulic circuit is connected between the hydraulic chambers, the operating state is switched according to the pressure of the hydraulic chamber on either high pressure side, and exhibits a unique damping coefficient during operation, and the both hydraulic pressure circuits An additional hydraulic valve connected between the chambers in parallel with the pressure regulating valve, constantly maintaining an operating state and exhibiting a specific damping coefficient;
It is connected between the spring chamber of the pressure regulating valve and one of the low pressure side hydraulic chambers, receives the restoring force of the prestressed spring, keeps the pressure regulating valve in an operating state while maintaining an open state in normal times. A switching valve that switches to a closed state when a pressure exceeding the restoring force of the spring is applied from any one of the hydraulic chambers on the high pressure side, and closes the pressure regulating valve;
When it is connected between the spring chamber of the pressure regulating valve and one of the low pressure side hydraulic chambers, and is normally closed by the restoring force of the spring, and the pressure of the high pressure side hydraulic chamber is switched from rising to falling The other switching valve that activates the pressure regulating valve by switching to the open state,
Connected between the high pressure side hydraulic chamber and the other switching valve, the pressure oil from the high pressure side hydraulic chamber is accumulated, and the pressure in the high pressure side hydraulic chamber rises to reach the maximum pressure. After that, when switching to lowering, by maintaining the maximum pressure, the buffer that switches the other switching valve in the closed state to the open state,
A relief valve connected between the buffer and the hydraulic chamber on the low pressure side and defining the maximum pressure in the buffer;
Between the upstream side of the pressure adjusting valve and the additional hydraulic valve of the hardening hydraulic circuit and each hydraulic chamber, the pressure oil from the hydraulic chamber when it becomes a high pressure side is moved to the pressure adjusting valve and the additional hydraulic valve. Allowed, a pair of check valves, which are opposite to each other, are connected, and the low pressure of the pressure oil from the pressure regulating valve and the additional hydraulic valve between the downstream side of the pressure regulating valve and the additional hydraulic valve and each hydraulic chamber. A hydraulic damper with a speed limiting function equipped with a hardened hydraulic circuit, characterized in that a pair of check valves, which are opposite to each other, are allowed to move to the hydraulic chamber when they are on the side.
前記付加油圧弁は付加調圧弁であり、前記調圧弁と前記付加調圧弁は共に、作動しているときに前記油圧ダンパ自体に生じた速度に比例した減衰係数を発揮する状態にばねの復元力により弁体の圧力が調整されていることを特徴とする請求項1、もしくは請求項2に記載のハードニング油圧回路を搭載した速度制限機能付き油圧ダンパ。   The additional hydraulic valve is an additional pressure regulating valve, and both the pressure regulating valve and the additional pressure regulating valve exhibit a damping coefficient proportional to the speed generated in the hydraulic damper when the pressure regulating valve and the additional pressure regulating valve are operating. 3. A hydraulic damper with a speed limiting function, wherein the pressure of the valve body is adjusted by means of the hardened hydraulic circuit according to claim 1 or 2. 前記付加油圧弁はオリフィスであることを特徴とする請求項1、もしくは請求項2に記載のハードニング油圧回路を搭載した速度制限機能付き油圧ダンパ。
3. The hydraulic damper with a speed limiting function equipped with the hardening hydraulic circuit according to claim 1, wherein the additional hydraulic valve is an orifice.
JP2014045852A 2014-03-10 2014-03-10 Hydraulic damper with speed limiting function with hardened hydraulic circuit Active JP5870138B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014045852A JP5870138B2 (en) 2014-03-10 2014-03-10 Hydraulic damper with speed limiting function with hardened hydraulic circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014045852A JP5870138B2 (en) 2014-03-10 2014-03-10 Hydraulic damper with speed limiting function with hardened hydraulic circuit

Publications (2)

Publication Number Publication Date
JP2015169294A JP2015169294A (en) 2015-09-28
JP5870138B2 true JP5870138B2 (en) 2016-02-24

Family

ID=54202214

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014045852A Active JP5870138B2 (en) 2014-03-10 2014-03-10 Hydraulic damper with speed limiting function with hardened hydraulic circuit

Country Status (1)

Country Link
JP (1) JP5870138B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180009169A (en) * 2016-07-18 2018-01-26 주식회사 만도 Damper and control method for the damper in active suspension system

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6613182B2 (en) * 2016-03-17 2019-11-27 鹿島建設株式会社 Hydraulic equipment, hydraulic damper, damping structure and seismic isolation structure
JP6738528B2 (en) * 2016-03-22 2020-08-12 清水建設株式会社 Vibration reduction device
JP7370789B2 (en) * 2019-09-26 2023-10-30 鹿島建設株式会社 Seismic control structure, control method of seismic control structure, and design method of seismic control structure

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0337448A (en) * 1989-07-03 1991-02-18 Mitsubishi Heavy Ind Ltd Damping device
JP4042366B2 (en) * 2001-08-10 2008-02-06 鹿島建設株式会社 Damping coefficient switching type hydraulic damper
JP4048162B2 (en) * 2003-08-27 2008-02-13 豊興工業株式会社 On-off valve for hydraulic damper for vibration control
JP2006010015A (en) * 2004-06-29 2006-01-12 Kayaba Ind Co Ltd Fluid pressure circuit
JP4358091B2 (en) * 2004-11-26 2009-11-04 鹿島建設株式会社 Damping coefficient switching type hydraulic damper
JP5132583B2 (en) * 2009-01-09 2013-01-30 カヤバ システム マシナリー株式会社 Switching valve structure
JP2011080535A (en) * 2009-10-07 2011-04-21 Kyb Co Ltd Base isolating device
JP5831979B2 (en) * 2011-12-20 2015-12-16 カヤバ システム マシナリー株式会社 Hydraulic circuit and damper

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180009169A (en) * 2016-07-18 2018-01-26 주식회사 만도 Damper and control method for the damper in active suspension system

Also Published As

Publication number Publication date
JP2015169294A (en) 2015-09-28

Similar Documents

Publication Publication Date Title
JP5870138B2 (en) Hydraulic damper with speed limiting function with hardened hydraulic circuit
KR101653475B1 (en) Damper
JP2017053135A (en) Vibration control structure of building
JP2017053135A5 (en)
JP6385121B2 (en) Rotating mass damper
US20190323183A1 (en) Multipurpose viscous damper
JP4901896B2 (en) Hydraulic damper
JP4182200B2 (en) Hydraulic damper
JP6774234B2 (en) Seismic isolation damper
JP7268973B2 (en) seismic isolation damper
JP5356563B2 (en) Shock absorber filled with viscoelastic fluid
JPH11270175A (en) Vibration damping method of connected structure
JP2011032849A (en) Brake damper for base isolator
JP5008035B2 (en) Shock absorber
Shih et al. Development of accumulated semi-active hydraulic damper
JP2005248989A (en) Vibration control damper
RU2465495C1 (en) Shock absorber for shock protection systems
JP6738528B2 (en) Vibration reduction device
Tabeshpour et al. Seismic performance of a variable stiffness system
JPH01230834A (en) Earthquake-proof equipment
JP6613182B2 (en) Hydraulic equipment, hydraulic damper, damping structure and seismic isolation structure
JP6632201B2 (en) Existing seismic isolation building reinforcement method
JP7499087B2 (en) Damper system and seismic isolation structure equipped with same
JP4100547B2 (en) Hydraulic damper
JP5743432B2 (en) Expansion joint structure

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160108

R150 Certificate of patent or registration of utility model

Ref document number: 5870138

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350