JP2016153700A - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP2016153700A
JP2016153700A JP2015031273A JP2015031273A JP2016153700A JP 2016153700 A JP2016153700 A JP 2016153700A JP 2015031273 A JP2015031273 A JP 2015031273A JP 2015031273 A JP2015031273 A JP 2015031273A JP 2016153700 A JP2016153700 A JP 2016153700A
Authority
JP
Japan
Prior art keywords
heat storage
heat
storage material
compressor
heater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015031273A
Other languages
Japanese (ja)
Other versions
JP6286675B2 (en
Inventor
司 石曽根
Tsukasa Ishizone
司 石曽根
廣和 加守田
Hirokazu Kamota
廣和 加守田
雅也 太田
Masaya Ota
雅也 太田
慶明 松原
Yoshiaki Matsubara
慶明 松原
雄次 武田
Yuji Takeda
雄次 武田
輝夫 藤社
Teruo Tosha
輝夫 藤社
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2015031273A priority Critical patent/JP6286675B2/en
Priority to CN201610094468.0A priority patent/CN105910354B/en
Publication of JP2016153700A publication Critical patent/JP2016153700A/en
Application granted granted Critical
Publication of JP6286675B2 publication Critical patent/JP6286675B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/02Defrosting cycles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/24Storage receiver heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2111Temperatures of a heat storage receiver

Abstract

PROBLEM TO BE SOLVED: To provide an air conditioner that can enhance heat transfer efficiency to thermal storage heat exchange pipes and thus enhance defrosting effects.SOLUTION: An air conditioner includes a thermal storage device 35 for storing heat from a compressor 6. The thermal storage device includes: a thermal storage medium 36 arranged on the outer periphery of the compressor; and thermal storage heat exchange pipes 37 penetrated through the thermal storage medium. The thermal storage medium is made of an aluminum block and is configured to have a heater 41 embedded therein. The heater 41 is provided so that the thermal storage heat exchange pipes 37 are located between the heater 41 and the outer periphery of the compressor 6. Thus, even in cold winder, etc. that causes shortage of heat quantity required for defrosting, the thermal storage medium is replenished with heat from the heater so as to efficiently continue supply of heat to a refrigerant in the thermal storage heat exchange pipes via the thermal storage medium. Since heat is supplied from the outer periphery of the compressor and the heater to the heat exchange pipes, the heat exchange pipes can be heated efficiently, so as to improve defrosting effects.SELECTED DRAWING: Figure 6

Description

本発明は、蓄熱装置を備えた空気調和機に関する。   The present invention relates to an air conditioner including a heat storage device.

従来、ヒートポンプ式空気調和機による暖房運転時、室外熱交換器に着霜した場合には、暖房サイクルから冷房サイクルに四方弁を切り替えて除霜を行っている。この除霜方式では、室内ファンは停止するものの、室内機から冷気が徐々に放出されることから暖房感が失われるという欠点がある。   Conventionally, when the outdoor heat exchanger is frosted during the heating operation by the heat pump air conditioner, defrosting is performed by switching the four-way valve from the heating cycle to the cooling cycle. In this defrosting method, although the indoor fan is stopped, there is a disadvantage that a feeling of heating is lost because cold air is gradually discharged from the indoor unit.

そこで、室外機に設けられた圧縮機に蓄熱装置を設け、暖房運転中に蓄熱装置の蓄熱材に蓄えられた圧縮機の廃熱を利用して除霜するようにしたものが提案されている(例えば、特許文献1参照)。   Therefore, a heat storage device is provided in the compressor provided in the outdoor unit, and defrosting is performed using waste heat of the compressor stored in the heat storage material of the heat storage device during heating operation. (For example, refer to Patent Document 1).

しかしながら従来の蓄熱装置において、蓄熱材を液体材料としているため熱量容量の高い一方で、蓄熱した熱量を蓄熱熱交換器で取り出す際に、液体の蓄熱材から金属の蓄熱熱交換器への熱の移動には大きな熱抵抗があり、短時間で熱の取出しができないという課題を有していた。   However, in the conventional heat storage device, since the heat storage material is a liquid material, the heat capacity is high. On the other hand, when the stored heat amount is taken out by the heat storage heat exchanger, the heat from the liquid heat storage material to the metal heat storage heat exchanger is reduced. The movement has a large thermal resistance and has a problem that heat cannot be taken out in a short time.

そこで本出願人はさらに検討を進め、蓄熱材を金属、特に熱伝導率の良いアルミニュウム塊で構成することにより、蓄熱材で蓄えた熱を蓄熱熱交換器へ効率よく迅速に熱移動させることができるようにしたものを提案している(例えば、特許文献2参照)。   Therefore, the applicant further studied, and by configuring the heat storage material with a metal, particularly an aluminum lump with good thermal conductivity, the heat stored in the heat storage material can be efficiently and quickly transferred to the heat storage heat exchanger. The thing which made it possible is proposed (for example, refer patent document 2).

図12は特許文献2記載の蓄熱装置を示し、この蓄熱装置100は圧縮機101の外周に装着固定した蓄熱材102をアルミニュウム塊で形成し、このアルミ製蓄熱材102に冷媒が流れる蓄熱熱交換器のパイプ103を圧入して構成してある。   FIG. 12 shows a heat storage device described in Patent Document 2. This heat storage device 100 forms a heat storage material 102 mounted and fixed on the outer periphery of the compressor 101 in an aluminum lump, and heat storage heat exchange in which refrigerant flows through the aluminum heat storage material 102. The pipe 103 is press-fitted.

この蓄熱装置100によれば、蓄熱熱交換器のパイプ103に熱を伝導するアルミ製蓄熱材102が金属塊で、しかもその金属が熱伝導性の良いアルミニュウムであるので、アルミ製蓄熱材102から蓄熱熱交換器のパイプ103への熱伝導が効率よく迅速に行われる。   According to the heat storage device 100, the aluminum heat storage material 102 that conducts heat to the pipe 103 of the heat storage heat exchanger is a metal lump, and the metal is aluminum having good heat conductivity. Heat conduction to the pipe 103 of the heat storage heat exchanger is performed quickly and efficiently.

特開平3−31666号公報JP-A-3-31666 特開2013−120030号公報JP 2013-120030 A

上記特許文献2記載の蓄熱装置は、上記したようにアルミ製蓄熱材102と蓄熱熱交換器のパイプ103との間の熱伝導が効率よく迅速に行われ、アルミ製蓄熱材102に蓄えた熱を効率よく活用できる。しかしながら、アルミ製蓄熱材102は液体材料からなる蓄熱材に比べて、比熱が小さい。このために、アルミ製蓄熱材102自体に蓄熱保持できる熱量が少なく、例えば厳寒時等の除霜時には熱量が不足するという課題があった。   As described above, in the heat storage device described in Patent Document 2, heat conduction between the aluminum heat storage material 102 and the pipe 103 of the heat storage heat exchanger is performed efficiently and quickly, and the heat stored in the aluminum heat storage material 102 is stored. Can be used efficiently. However, the heat storage material 102 made of aluminum has a smaller specific heat than the heat storage material made of a liquid material. For this reason, there is a problem that the amount of heat that can be stored and retained in the aluminum heat storage material 102 itself is small, for example, the amount of heat is insufficient at the time of defrosting such as during severe cold.

特に、前記蓄熱装置100が、アルミ製蓄熱材102に熱交換パイプ用孔を形成してここに蓄熱熱交換器のパイプ103を貫設することにより形成したような場合には、この熱交換用パイプ孔と蓄熱熱交換器のパイプ103との間に隙間が生じることがあって両者間
の熱伝導自体も悪くなり、前記した熱量不足による影響が生じやすい、という課題があった。
In particular, when the heat storage device 100 is formed by forming a hole for heat exchange pipe in the aluminum heat storage material 102 and penetrating the pipe 103 of the heat storage heat exchanger here, this heat exchange device 100 is used. There is a problem that a gap may be formed between the pipe hole and the pipe 103 of the heat storage heat exchanger, the heat conduction between the two is also deteriorated, and the above-described effect of insufficient heat is likely to occur.

その結果、液体材料からなる蓄熱材の場合に比べ、未だ改善の余地が残る、というものであった。   As a result, there is still room for improvement as compared with the case of a heat storage material made of a liquid material.

本発明は、このような点に鑑みてなしたもので、厳寒時等であっても熱量不足を起こすことなく効率よく蓄熱熱交換器のパイプへ熱伝導させることができる蓄熱装置付き空気調和機の提供を目的としたものである。   The present invention has been made in view of such points, and an air conditioner with a heat storage device that can efficiently conduct heat to a pipe of a heat storage heat exchanger without causing a shortage of heat even in severe cold conditions or the like. It is intended to provide.

上記目的を達成するために、本発明の空気調和機は、圧縮機と、圧縮機からの熱を蓄熱する蓄熱装置とを備え、前記蓄熱装置は、圧縮機の外周に配置した蓄熱材と、前記蓄熱材に貫設し蓄熱材に蓄えられた熱量を内部に流れる冷媒に伝熱する蓄熱熱交換パイプとからなり、前記蓄熱材はアルミニュウム塊で形成するとともにヒータを埋設して構成し、かつ、前記ヒータは前記蓄熱熱交換パイプが当該ヒータと前記圧縮機の外周との間に位置するように設けた構成としてある。   In order to achieve the above object, an air conditioner of the present invention includes a compressor and a heat storage device that stores heat from the compressor, and the heat storage device includes a heat storage material disposed on an outer periphery of the compressor, and A heat storage heat exchange pipe that penetrates the heat storage material and transfers the amount of heat stored in the heat storage material to the refrigerant flowing inside, and the heat storage material is formed of an aluminum lump and embedded with a heater; and The heater is configured such that the heat storage heat exchange pipe is provided between the heater and the outer periphery of the compressor.

これにより、除霜に必要な熱量が不足する厳寒時等であっても、ヒータからの熱を蓄熱材に補充して当該蓄熱材を介し蓄熱熱交換パイプ内の冷媒に熱を供給し続けることができる。しかも熱交換パイプは圧縮機の外周とヒータとの間に位置しているので、内外両方向、すなわち圧縮機外周とヒータとから熱を供給されるようになり、効率の良い熱供給が可能となる。   As a result, even when the amount of heat necessary for defrosting is extremely cold or the like, the heat storage material is supplemented with heat from the heater, and the heat is continuously supplied to the refrigerant in the heat storage heat exchange pipe via the heat storage material. Can do. Moreover, since the heat exchange pipe is located between the outer periphery of the compressor and the heater, heat can be supplied from both the inner and outer sides, that is, from the outer periphery of the compressor and the heater, so that efficient heat supply can be achieved. .

本発明によれば、厳寒時等であっても熱量不足を起こすことなく効率よく蓄熱熱交換パイプ内の冷媒へ熱伝導させることができ、除霜効果の高い空気調和機を提供することができる。   According to the present invention, it is possible to efficiently conduct heat to the refrigerant in the heat storage heat exchange pipe without causing a shortage of heat even in severe cold, and it is possible to provide an air conditioner with a high defrosting effect. .

本発明の実施の形態1に係る冷凍サイクル装置を備えた空気調和機の構成図The block diagram of the air conditioner provided with the refrigeration cycle apparatus which concerns on Embodiment 1 of this invention. 同空気調和機の冷凍サイクル装置おける通常暖房時の冷媒の流れを示す模式図Schematic showing the refrigerant flow during normal heating in the refrigeration cycle apparatus of the same air conditioner 同空気調和機の冷凍サイクル装置おける除霜・暖房時の冷媒の流れを示す模式図Schematic diagram showing the refrigerant flow during defrosting and heating in the refrigeration cycle apparatus of the same air conditioner 同空気調和機の冷凍サイクル装置おける除霜・暖房運転を開始する手順を示すフローチャートThe flowchart which shows the procedure which starts the defrost and heating operation in the refrigeration cycle apparatus of the air conditioner 同空気調和機の圧縮機に蓄熱装置を装着した状態を示す正面図Front view showing a state in which a heat storage device is mounted on the compressor of the air conditioner 同空気調和機の圧縮機に蓄熱装置を装着した状態を示す斜視図The perspective view which shows the state which mounted | wore the heat storage apparatus with the compressor of the air conditioner 同空気調和機の圧縮機に蓄熱装置を装着した状態を示す平面図The top view which shows the state which mounted | wore the heat storage apparatus with the compressor of the air conditioner 同空気調和機の蓄熱装置を外側から見た斜視図The perspective view which looked at the heat storage device of the air conditioner from the outside 同空気調和機の蓄熱装置を内側から見た斜視図The perspective view which looked at the heat storage device of the air conditioner from the inside 同空気調和機の蓄熱装置の平面図Plan view of the heat storage device of the air conditioner 同空気調和機の蓄熱装置の主体をなす蓄熱材の上端面に位置する面状端板の平面図The top view of the planar endplate located in the upper end surface of the thermal storage material which makes the main body of the thermal storage apparatus of the air conditioner 従来の空気調和機における蓄熱装置の斜視図A perspective view of a heat storage device in a conventional air conditioner

第1の発明の空気調和機は、圧縮機と、圧縮機からの熱を蓄熱する蓄熱装置とを備え、前記蓄熱装置は、圧縮機の外周に配置した蓄熱材と、前記蓄熱材に貫設し蓄熱材に蓄えら
れた熱量を内部に流れる冷媒に伝熱する蓄熱熱交換パイプとからなり、前記蓄熱材はアルミニュウム塊で形成するとともにヒータを埋設して構成し、かつ、前記ヒータは前記蓄熱熱交換パイプが当該ヒータと前記圧縮機の外周との間に位置するように設けた構成としてある。
An air conditioner according to a first aspect of the present invention includes a compressor and a heat storage device that stores heat from the compressor, and the heat storage device is provided through the heat storage material disposed on the outer periphery of the compressor and the heat storage material. A heat storage heat exchange pipe that transfers heat stored in the heat storage material to the refrigerant flowing inside, the heat storage material is formed of an aluminum lump and a heater is embedded, and the heater is configured to store the heat storage The heat exchange pipe is provided so as to be positioned between the heater and the outer periphery of the compressor.

これにより、除霜に必要な熱量が不足する厳寒時等であっても、ヒータからの熱を蓄熱材に補充して当該蓄熱材を介し蓄熱熱交換パイプ内の冷媒に熱を供給し続けることができる。しかも熱交換パイプは圧縮機の外周とヒータとの間に位置しているので、内外両方向、すなわち圧縮機外周とヒータとから熱を供給されるようになり、効率の良い熱供給が可能となる。その結果、除霜効果を高いものとすることができる。   As a result, even when the amount of heat necessary for defrosting is extremely cold or the like, the heat storage material is supplemented with heat from the heater, and the heat is continuously supplied to the refrigerant in the heat storage heat exchange pipe via the heat storage material. Can do. Moreover, since the heat exchange pipe is located between the outer periphery of the compressor and the heater, heat can be supplied from both the inner and outer sides, that is, from the outer periphery of the compressor and the heater, so that efficient heat supply can be achieved. . As a result, the defrosting effect can be increased.

第2の発明の空気調和機は、第1の発明において、前記蓄熱材はその両側部にフランジ部を有するとともに、前記蓄熱材を圧縮機外周に固定する蓄熱材取付けバンドを更に備え、前記蓄熱材取付けバンドは、一端に係合部、他端にビス止め部を備え、前記蓄熱材取付けバンドの係合部を前記蓄熱材のフランジ部の一方に係合させるとともに、他端のビス止め部を前記蓄熱材のフランジ部の他方にビス止めして蓄熱材を圧縮機外周面に圧着固定した構成としてある。   The air conditioner according to a second aspect of the present invention is the air conditioner according to the first aspect, further comprising a heat storage material mounting band for fixing the heat storage material to an outer periphery of the compressor while the heat storage material has flange portions on both sides thereof. The material attachment band includes an engagement portion at one end and a screw fixing portion at the other end, and engages the engagement portion of the heat storage material attachment band with one of the flange portions of the heat storage material, and a screw fixing portion at the other end. Is fixed to the other flange portion of the heat storage material by screwing the heat storage material to the compressor outer peripheral surface.

これにより、蓄熱材を圧縮機の外周に確実に密着固定することができ、圧縮機から蓄熱材への伝熱量が増大するとともに、フランジ部を有する分だけ蓄熱材の圧縮機外周面への接触面積が拡大して更に圧縮機外周からの伝熱量が増大する。その結果、圧縮機から蓄熱材に伝導する伝熱量が増大して蓄熱材が熱量不足を起こし難いかたちとすることができ、その分ヒータ通電による熱供給を少なくできて省エネ化を促進することができる。   As a result, the heat storage material can be securely adhered and fixed to the outer periphery of the compressor, the amount of heat transfer from the compressor to the heat storage material is increased, and the heat storage material is brought into contact with the outer peripheral surface of the compressor by the amount of the flange portion. The area is increased and the amount of heat transfer from the outer periphery of the compressor is further increased. As a result, the amount of heat transferred from the compressor to the heat storage material increases, making it difficult for the heat storage material to cause a shortage of heat, thereby reducing the heat supply by energizing the heater and promoting energy saving. it can.

第3の発明の空気調和機は、第1または第2の発明において、前記蓄熱材はヒータを略U字状に屈曲させて当該略U字状部分の間部分に凹所を形成し、この凹所に前記ヒータへの通電を制御する温度センサを設けた構成としてある。   The air conditioner according to a third aspect of the present invention is the air conditioner according to the first or second aspect, wherein the heat storage material bends the heater in a substantially U shape to form a recess in a portion between the substantially U-shaped portions. A temperature sensor for controlling energization to the heater is provided in the recess.

これにより、蓄熱材の略U字状部分の間部分に設けた凹所は薄肉で熱容量が小さいことから蓄熱材のヒータ及び蓄熱熱交換パイプ埋設部分の温度に近似したものとなり、ヒータ制御の精度を向上させることができるとともに、温度検知遅れによる過昇等のない安全性の高いものとすることができる。   As a result, since the recess provided in the portion between the substantially U-shaped portions of the heat storage material is thin and has a small heat capacity, it approximates the temperature of the heater of the heat storage material and the heat storage heat exchange pipe embedded portion, and the accuracy of heater control Can be improved, and it can be made highly safe without excessive rise due to a delay in temperature detection.

第4の発明の空気調和機は、第3の発明において、前記凹所はヒータとともに上下方向に設け、その少なくとも上方は開放状態として当該開放部分から温度センサのリード線を引き出した構成としてある。   The air conditioner according to a fourth aspect of the present invention is the air conditioner according to the third aspect, wherein the recess is provided in the vertical direction together with the heater, and at least the upper part thereof is opened so that the lead wire of the temperature sensor is drawn from the open part.

これにより、凹所空間に熱気がこもるのを防止して温度センサを設置した凹所壁部分の温度をより精度よく検知することができ、ヒータ制御精度及び安全性をより一段と向上させることができる。また、温度センサリード線を凹所上部の開放部分を利用して引き出すことができ、リード線貫通孔を穿孔する等の後加工を行う必要がなくなってその分コストダウンを図ることができる。   Thereby, it is possible to detect the temperature of the recess wall portion where the temperature sensor is installed by preventing the hot air from being accumulated in the recess space, and to further improve the heater control accuracy and safety. . Further, the temperature sensor lead wire can be pulled out by utilizing the open portion at the upper part of the recess, and it is not necessary to perform post-processing such as drilling a lead wire through hole, thereby reducing the cost accordingly.

第5の発明の空気調和機は、第4の発明において、前記凹所にはヒータへの通電を物理的に遮断する温度ヒューズをさらに設けた構成としてある。   An air conditioner according to a fifth aspect of the present invention is the air conditioner according to the fourth aspect of the present invention, wherein the recess is further provided with a thermal fuse that physically cuts off power to the heater.

これにより、温度センサが故障等して機能しなくなっても確実にヒータへの通電を遮断することができ、アルミ製蓄熱材にヒータを埋設一体化して構成した蓄熱装置であっても確実に安全性を担保することができる。   As a result, even if the temperature sensor breaks down and stops functioning, it is possible to reliably cut off the power to the heater, and even a heat storage device constructed by integrating the heater embedded in an aluminum heat storage material can be safely ensured. Sexuality can be secured.

第6の発明の空気調和機は、第1〜第5の発明において、蓄熱材は鋳型成形品で構成するとともに、その上下いずれか一方端面に蓄熱材端面と略同形状の面状端板を備えた構成としてある。   The air conditioner according to a sixth aspect of the present invention is the air conditioner according to any one of the first to fifth aspects, wherein the heat storage material is formed by a molded product, and a planar end plate having substantially the same shape as the heat storage material end surface is provided on either upper or lower end surface thereof. It is as a configuration provided.

これにより、蓄熱材と蓄熱熱交換パイプ及びヒータは一体化してこれら両者間に従来のような隙間が生じるようなことがなく、それらの間の熱伝導を良好なものとして更に効率の良い蓄熱熱交換パイプへの熱伝導が可能となる。しかも、蓄熱熱交換パイプ及びヒータを埋設一体化した蓄熱材を安価な砂鋳型を用いて製造することができるとともに、砂鋳型であっても特殊な構造にすることなく蓄熱熱交換パイプやヒータを蓄熱材端面の面状端板で確実に保持することができ、その製造コストを大幅に低減することもできる。   As a result, the heat storage material, the heat storage heat exchange pipe and the heater are integrated so that there is no gap between them, and the heat conduction between them is improved and the heat storage heat is more efficient. Heat conduction to the exchange pipe is possible. Moreover, a heat storage material in which a heat storage heat exchange pipe and a heater are embedded and integrated can be manufactured using an inexpensive sand mold, and even if it is a sand mold, the heat storage heat exchange pipe and heater can be installed without a special structure. It can hold | maintain reliably by the planar end plate of a thermal storage material end surface, The manufacturing cost can also be reduced significantly.

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the embodiments.

(実施の形態1)
図1は本発明の実施の形態1に係る冷凍サイクル装置を備えた空気調和機の構成を示し、空気調和機1は、冷媒配管で互いに接続された室外機2と室内機4とで構成されている。
(Embodiment 1)
FIG. 1 shows a configuration of an air conditioner including a refrigeration cycle apparatus according to Embodiment 1 of the present invention, and the air conditioner 1 is composed of an outdoor unit 2 and an indoor unit 4 that are connected to each other through a refrigerant pipe. ing.

図1に示すように、室外機2の内部には、圧縮機6と四方弁8とストレーナ10と膨張弁12と室外熱交換器14とが設けられ、室内機4の内部には、室内熱交換器16が設けられ、これらは冷媒配管を介して互いに接続されることで冷凍サイクルを構成している。   As shown in FIG. 1, a compressor 6, a four-way valve 8, a strainer 10, an expansion valve 12, and an outdoor heat exchanger 14 are provided inside the outdoor unit 2. An exchanger 16 is provided, and these are connected to each other via a refrigerant pipe to constitute a refrigeration cycle.

詳述すると、圧縮機6と室内熱交換器16は、四方弁8が設けられた第1配管18を介して接続され、室内熱交換器16と膨張弁12は、ストレーナ10が設けられた第2配管20を介して接続されている。また、膨張弁12と室外熱交換器14は第3配管22を介して接続され、室外熱交換器14と圧縮機6は第4配管24および第5配管25を介して接続され、室外熱交換器14と圧縮機6を接続する第4配管24および第5配管25の間には四方弁8が配置されている。また、四方弁8と室外熱交換器14の間には三方弁(切り替え装置)23が第4配管24を介して接続されている。更に、圧縮機冷媒吸入側における第5配管25には、液相冷媒と気相冷媒を分離するためのアキュームレータ26が設けられている。また、室外熱交換器14と室内熱交換器16を結ぶ第3配管22には、第6配管(吐出ガスバイパス機構)28を介して圧縮機6と接続されており、第6配管28には電磁弁(吐出ガスバイパス機構)30が設けられている。   More specifically, the compressor 6 and the indoor heat exchanger 16 are connected via a first pipe 18 provided with a four-way valve 8, and the indoor heat exchanger 16 and the expansion valve 12 are provided with a strainer 10. Two pipes 20 are connected. The expansion valve 12 and the outdoor heat exchanger 14 are connected via a third pipe 22, and the outdoor heat exchanger 14 and the compressor 6 are connected via a fourth pipe 24 and a fifth pipe 25, and outdoor heat exchange is performed. A four-way valve 8 is arranged between the fourth pipe 24 and the fifth pipe 25 connecting the compressor 14 and the compressor 6. A three-way valve (switching device) 23 is connected between the four-way valve 8 and the outdoor heat exchanger 14 via a fourth pipe 24. Further, the fifth pipe 25 on the compressor refrigerant suction side is provided with an accumulator 26 for separating the liquid phase refrigerant and the gas phase refrigerant. The third pipe 22 connecting the outdoor heat exchanger 14 and the indoor heat exchanger 16 is connected to the compressor 6 via a sixth pipe (discharge gas bypass mechanism) 28. A solenoid valve (discharge gas bypass mechanism) 30 is provided.

さらに、圧縮機6の外周には蓄熱装置35が設けられ、蓄熱装置35は、その詳細構造は後述するが前記圧縮機6の熱を蓄熱する蓄熱材36と当該蓄熱材36に貫設した蓄熱熱交換パイプ37とヒータ41からなり、蓄熱熱交換パイプ37内の冷媒は前記蓄熱材36が蓄熱した熱が伝熱されるようになっている。   Further, a heat storage device 35 is provided on the outer periphery of the compressor 6. The heat storage device 35, which will be described in detail later, has a heat storage material 36 that stores heat of the compressor 6 and a heat storage material that penetrates the heat storage material 36. It consists of a heat exchange pipe 37 and a heater 41, and heat stored in the heat storage material 36 is transferred to the refrigerant in the heat storage heat exchange pipe 37.

また、三方弁23と蓄熱熱交換パイプ37はキャピラリチューブ(絞り機構)31を含む第7配管29を介して接続されており、四方弁8と圧縮機6を接続する第5配管25は第8配管32を介して蓄熱熱交換パイプ37と接続されている。   The three-way valve 23 and the heat storage heat exchange pipe 37 are connected via a seventh pipe 29 including a capillary tube (throttle mechanism) 31, and the fifth pipe 25 connecting the four-way valve 8 and the compressor 6 is the eighth. A heat storage heat exchange pipe 37 is connected via a pipe 32.

室内機4の内部には、室内熱交換器16に加えて、送風ファン(図示せず)と上下羽根(図示せず)と左右羽根(図示せず)とが設けられており、室内熱交換器16は、送風ファンにより室内機4の内部に吸込まれた室内空気と、室内熱交換器16の内部を流れる冷媒との熱交換を行い、暖房時には熱交換により暖められた空気を室内に吹き出す一方、冷房時には熱交換により冷却された空気を室内に吹き出す。上下羽根は、室内機4から吹き出される空気の方向を必要に応じて上下に変更し、左右羽根は、室内機4から吹き出され
る空気の方向を必要に応じて左右に変更する。
In addition to the indoor heat exchanger 16, an air blower fan (not shown), upper and lower blades (not shown), and left and right blades (not shown) are provided inside the indoor unit 4, and indoor heat exchange is performed. The unit 16 exchanges heat between the indoor air sucked into the interior of the indoor unit 4 by the blower fan and the refrigerant flowing through the interior of the indoor heat exchanger 16, and blows out the air warmed by heat exchange into the room during heating. On the other hand, air cooled by heat exchange is blown into the room during cooling. The upper and lower blades change the direction of air blown from the indoor unit 4 up and down as necessary, and the left and right blades change the direction of air blown from the indoor unit 4 to right and left as needed.

なお、圧縮機6、送風ファン、上下羽根、左右羽根、四方弁8、膨張弁12、電磁弁30、三方弁23、ヒータ41等は制御装置(図示せず、例えばマイコン)に電気的に接続され、制御装置により制御され動作する。   The compressor 6, the blower fan, the upper and lower blades, the left and right blades, the four-way valve 8, the expansion valve 12, the electromagnetic valve 30, the three-way valve 23, the heater 41, and the like are electrically connected to a control device (not shown, for example, a microcomputer). And controlled and operated by the control device.

上記のように構成された冷凍サイクル装置の動作を、図2の暖房運転時を例にとりその冷媒の流れとともに説明する。   The operation of the refrigeration cycle apparatus configured as described above will be described along with the flow of the refrigerant, taking the heating operation of FIG. 2 as an example.

図2の矢印に示すように圧縮機6の吐出口から吐出された冷媒は、四方弁8から第1配管18を通って室内熱交換器16へと至る。室内熱交換器16で室内空気と熱交換して凝縮した冷媒は、室内熱交換器16を出て第2配管20を通り、膨張弁12への異物侵入を防止するストレーナ10を通って、膨張弁12に至る。膨張弁12で減圧した冷媒は、第3配管22を通って室外熱交換器14に至り、室外熱交換器14で室外空気と熱交換して蒸発した冷媒は、第4配管24と三方弁23と四方弁8と第5配管25とアキュームレータ26を通って圧縮機6の吸入口を介して圧縮機6へと戻る。   As shown by the arrow in FIG. 2, the refrigerant discharged from the discharge port of the compressor 6 reaches the indoor heat exchanger 16 from the four-way valve 8 through the first pipe 18. The refrigerant condensed by exchanging heat with the indoor air in the indoor heat exchanger 16 passes through the second pipe 20 through the indoor heat exchanger 16, expands through the strainer 10 that prevents foreign matter from entering the expansion valve 12. To valve 12. The refrigerant decompressed by the expansion valve 12 reaches the outdoor heat exchanger 14 through the third pipe 22, and the refrigerant evaporated by exchanging heat with the outdoor air in the outdoor heat exchanger 14 is the fourth pipe 24 and the three-way valve 23. And the four-way valve 8, the fifth pipe 25, and the accumulator 26, and then returns to the compressor 6 through the suction port of the compressor 6.

また、第1配管18の圧縮機6の吐出口と四方弁8の間から分岐した第6配管28は、電磁弁30を介して第3配管22の膨張弁12と室外熱交換器14の間に合流している。   The sixth pipe 28 branched from the discharge port of the compressor 6 of the first pipe 18 and the four-way valve 8 is connected between the expansion valve 12 of the third pipe 22 and the outdoor heat exchanger 14 via the electromagnetic valve 30. Have joined.

三方弁23は、一方が室外熱交換器14へと続く第4配管24と接続され、もう一方が四方弁8を介して第5配管25と接続され、更にもう一方が三方弁23と蓄熱熱交換パイプ37とを接続する第7配管29と接続されており、前記制御装置により、室外熱交換器14から第4配管24を通じ四方弁8へ冷媒を導く経路と、室外熱交換器14から第7配管29を通じ蓄熱熱交換パイプ37を経て圧縮機6の吸入口へ冷媒を導く経路とを切り替えることが可能である。   One side of the three-way valve 23 is connected to the fourth pipe 24 leading to the outdoor heat exchanger 14, the other side is connected to the fifth pipe 25 via the four-way valve 8, and the other side is connected to the three-way valve 23 and the heat storage heat. The control pipe is connected to a seventh pipe 29 that connects to the exchange pipe 37, and the controller guides the refrigerant from the outdoor heat exchanger 14 to the four-way valve 8 through the fourth pipe 24, and the outdoor heat exchanger 14 It is possible to switch the path through which the refrigerant is guided to the suction port of the compressor 6 through the heat storage heat exchange pipe 37 through the seven piping 29.

通常暖房運転時、電磁弁30は閉制御されており、上述したように圧縮機6の吐出口から吐出された冷媒は、第1配管18を通って四方弁8から室内熱交換器16に至る。室内熱交換器16で室内空気と熱交換して凝縮した冷媒は、室内熱交換器16を出て、第2配管20を通り膨張弁12に至り、膨張弁12で減圧した冷媒は、第3配管22を通って室外熱交換器14に至る。通常暖房運転時、三方弁23は、室外熱交換器14から四方弁8へ冷媒を導く経路になるように制御されており、室外熱交換器14で室外空気と熱交換して蒸発した冷媒は、第4配管24を通って四方弁8にいたる。その後、四方弁8を通った冷媒は第5配管25を通り、圧縮機6の吸入口へと戻る。   During normal heating operation, the solenoid valve 30 is controlled to be closed, and the refrigerant discharged from the discharge port of the compressor 6 as described above passes through the first pipe 18 and reaches the indoor heat exchanger 16 from the four-way valve 8. . The refrigerant condensed by exchanging heat with the indoor air in the indoor heat exchanger 16 exits the indoor heat exchanger 16, passes through the second pipe 20, reaches the expansion valve 12, and the refrigerant decompressed by the expansion valve 12 is the third refrigerant. It reaches the outdoor heat exchanger 14 through the pipe 22. During normal heating operation, the three-way valve 23 is controlled to be a path for leading the refrigerant from the outdoor heat exchanger 14 to the four-way valve 8, and the refrigerant evaporated by exchanging heat with outdoor air in the outdoor heat exchanger 14 is Then, the fourth pipe 24 is passed to the four-way valve 8. Thereafter, the refrigerant that has passed through the four-way valve 8 passes through the fifth pipe 25 and returns to the suction port of the compressor 6.

また、圧縮機6で発生した熱は、圧縮機6の外壁から蓄熱装置35の蓄熱材36に蓄熱される。   Further, the heat generated in the compressor 6 is stored in the heat storage material 36 of the heat storage device 35 from the outer wall of the compressor 6.

次に、図3を参照しながら除霜・暖房時の動作を説明する。図中、実線矢印は暖房に供する冷媒の流れを示しており、破線矢印は除霜に供する冷媒の流れを示している。   Next, the operation during defrosting / heating will be described with reference to FIG. In the figure, the solid line arrows indicate the flow of the refrigerant used for heating, and the broken line arrows indicate the flow of the refrigerant used for defrosting.

上述した通常暖房運転中に室外熱交換器14に着霜し、着霜した霜が成長すると、室外熱交換器14の通風抵抗が増加して風量が減少し、室外熱交換器14内の蒸発温度が低下する。本発明に係る空気調和機には、図3に示すように、室外熱交換器14の配管温度を検出する配管温度センサ15が設けられており、非着霜時に比べて、蒸発温度が低下したことを配管温度センサ15で検出すると、制御装置より通常暖房運転から除霜・暖房運転へ切り替える指示が出力される。   When the outdoor heat exchanger 14 is frosted during the above-described normal heating operation and the frosted frost grows, the ventilation resistance of the outdoor heat exchanger 14 increases and the air flow decreases, and the evaporation in the outdoor heat exchanger 14 increases. The temperature drops. As shown in FIG. 3, the air conditioner according to the present invention is provided with a pipe temperature sensor 15 that detects the pipe temperature of the outdoor heat exchanger 14, and the evaporation temperature is lower than that during non-frosting. When this is detected by the pipe temperature sensor 15, an instruction to switch from the normal heating operation to the defrosting / heating operation is output from the control device.

除霜・暖房運転を開始する手順について、図4に示すフローチャートを用いて説明する
。なお、図4のフローチャートにおけるそれぞれのステップは、冷凍サイクル装置の各構成部が制御装置により制御されて動作することにより実施される。
The procedure for starting the defrosting / heating operation will be described with reference to the flowchart shown in FIG. In addition, each step in the flowchart of FIG. 4 is implemented when each component of the refrigeration cycle apparatus is controlled and operated by the control device.

まず、図4のフローチャートのステップS1において、室外熱交換器14の除霜運転(除霜・暖房運転)を実施する必要があるかどうかが、制御装置により判断される。具体的には、室外熱交換器14の配管温度(蒸発温度)が配管温度センサ15により検出されて、この検出温度が予め設定された所定温度より低下した場合に、制御装置が除霜・暖房運転の実施が必要と判断する。   First, in step S1 of the flowchart of FIG. 4, it is determined by the control device whether it is necessary to perform a defrosting operation (defrosting / heating operation) of the outdoor heat exchanger 14. Specifically, when the pipe temperature (evaporation temperature) of the outdoor heat exchanger 14 is detected by the pipe temperature sensor 15 and the detected temperature falls below a predetermined temperature set in advance, the control device performs defrosting / heating. Judged that driving is necessary.

ステップS1において、除霜・暖房運転の実施が必要と判断された場合には、ステップS2において、蓄熱装置35の蓄熱材36の蓄熱量が、除霜運転を行うための必要な熱量に不足していいないかどうかが、制御装置により判断される。具体的には、蓄熱材36の温度が後述する温度センサ42により検出されて、この検出温度に基づいて、蓄熱材36に蓄積されている熱量(蓄熱量)が制御装置により算出される。また、制御装置では、除霜運転の実施に必要な熱量の情報が記憶されており、蓄熱量と除霜運転の実施に必要な熱量とが比較されて、不足する熱量が算出されるとともに、不足する熱量を補うための蓄熱材36の加熱温度が設定される。   If it is determined in step S1 that the defrosting / heating operation needs to be performed, in step S2, the heat storage amount of the heat storage material 36 of the heat storage device 35 is insufficient for the heat amount necessary for performing the defrosting operation. It is judged by the control apparatus whether it is not. Specifically, the temperature of the heat storage material 36 is detected by a temperature sensor 42 described later, and the amount of heat accumulated in the heat storage material 36 (heat storage amount) is calculated based on this detected temperature. Further, in the control device, information on the amount of heat necessary for carrying out the defrosting operation is stored, and the amount of heat stored and the amount of heat necessary for carrying out the defrosting operation are compared to calculate the insufficient amount of heat, The heating temperature of the heat storage material 36 for supplementing the shortage of heat is set.

なお、制御装置では、このように熱量を算出するような場合に代えて、検出された蓄熱材36の温度を、除霜運転を行うために必要な熱量が確保できる予め設定された温度と比較することにより、蓄熱材36の加熱温度を決定するようにしても良い。   In the control device, instead of calculating the amount of heat in this way, the detected temperature of the heat storage material 36 is compared with a preset temperature at which the amount of heat necessary for performing the defrosting operation can be secured. By doing so, you may make it determine the heating temperature of the thermal storage material 36. FIG.

ステップS2において、蓄熱材36の蓄熱量が不足していると判断された場合には、ステップS3にてヒータ41による蓄熱材36の加熱運転が行われる。この加熱運転の実施中に、温度センサ42により蓄熱材36の温度が検出され、制御装置にて設定された加熱温度に到達するまで、ヒータ41による加熱運転が継続される(ステップS4)。   If it is determined in step S2 that the heat storage amount of the heat storage material 36 is insufficient, the heater 41 is operated to heat the heat storage material 36 in step S3. During the execution of the heating operation, the temperature of the heat storage material 36 is detected by the temperature sensor 42, and the heating operation by the heater 41 is continued until the heating temperature set by the control device is reached (step S4).

その後、ステップS4にて、蓄熱材36の温度が設定温度に到達したことが確認されると、ステップS5にて除霜・暖房運転が開始され、蓄熱材36に蓄積された熱が利用されながら圧縮機6の吐出口から吐出される気相冷媒により室外熱交換器14の除霜が行われる。なお、除霜・暖房運転を開始する際には、ヒータ41は停止されるが、さらなる蓄熱材36の加熱が必要な場合にはヒータ41を運転しても良い。   Thereafter, when it is confirmed in step S4 that the temperature of the heat storage material 36 has reached the set temperature, the defrosting / heating operation is started in step S5, and the heat accumulated in the heat storage material 36 is being used. The outdoor heat exchanger 14 is defrosted by the gas-phase refrigerant discharged from the discharge port of the compressor 6. The heater 41 is stopped when the defrosting / heating operation is started, but the heater 41 may be operated when further heating of the heat storage material 36 is necessary.

なお、ステップS2において、除霜運転を行うために必要な熱量が蓄熱材36に蓄積されていると判断された場合には、ヒータ41の加熱運転を行うことなく、ステップS5の除霜・暖房運転が行われる。なお、図4のフローチャートにおけるそれぞれのステップは、冷凍サイクル装置の各構成部が制御装置により制御されて動作することにより実施される。   If it is determined in step S2 that the amount of heat necessary for performing the defrosting operation is accumulated in the heat storage material 36, the defrosting / heating in step S5 is performed without performing the heating operation of the heater 41. Driving is performed. In addition, each step in the flowchart of FIG. 4 is implemented when each component of the refrigeration cycle apparatus is controlled and operated by the control device.

通常暖房運転から除霜・暖房運転に移行すると、電磁弁30は開制御され、上述した通常暖房運転時の冷媒の流れに加え、圧縮機6の吐出口から出た気相冷媒の一部は第6配管28と電磁弁30を通り、第3配管22を通る冷媒に合流して、室外熱交換器14を加熱し、除霜を行う。そして、凝縮して液相化した後、三方弁23へ至る。   When the normal heating operation is shifted to the defrosting / heating operation, the solenoid valve 30 is controlled to open, and in addition to the refrigerant flow during the normal heating operation described above, a part of the gas-phase refrigerant discharged from the discharge port of the compressor 6 is The refrigerant passes through the sixth pipe 28 and the electromagnetic valve 30 and merges with the refrigerant passing through the third pipe 22 to heat the outdoor heat exchanger 14 to perform defrosting. And after condensing and making it into a liquid phase, it reaches the three-way valve 23.

除霜・暖房運転時、三方弁23は、室外熱交換器14から蓄熱熱交換パイプ37へ冷媒を導く経路、即ち第4配管24と第7配管29が連通するように制御される。三方弁23を通った冷媒はキャピラリチューブ31で減圧され低温となり、蓄熱熱交換パイプ37で蓄熱材36の熱を吸熱し、気相、もしくは高クオリティー状態で、アキュームレータ26に至り、圧縮機6の吸入口へと戻る。   During the defrosting / heating operation, the three-way valve 23 is controlled so that the path leading the refrigerant from the outdoor heat exchanger 14 to the heat storage heat exchange pipe 37, that is, the fourth pipe 24 and the seventh pipe 29 communicate with each other. The refrigerant passing through the three-way valve 23 is depressurized by the capillary tube 31 to become low temperature, absorbs the heat of the heat storage material 36 through the heat storage heat exchange pipe 37, reaches the accumulator 26 in the gas phase or high quality state, and reaches the compressor 6. Return to inlet.

上記除霜は、圧縮機6の吐出口から出た気相冷媒と室内熱交換器16より戻る液相もしくは気液二相冷媒が混合された冷媒によって室外熱交換器14を加熱し行う。零度付近で霜が融解し、霜の融解が終わると、室外熱交換器14の温度は再び上昇し始める。この室外熱交換器14の温度上昇を配管温度センサ15で検出すると、除霜が完了したと判断し、制御装置から除霜・暖房運転から通常暖房運転へ切り替える指示が出力される。   The defrosting is performed by heating the outdoor heat exchanger 14 with a refrigerant in which a gas phase refrigerant discharged from the discharge port of the compressor 6 and a liquid phase or a gas-liquid two-phase refrigerant returning from the indoor heat exchanger 16 are mixed. When the frost melts near zero and the frost melts, the temperature of the outdoor heat exchanger 14 begins to rise again. When the temperature rise of the outdoor heat exchanger 14 is detected by the pipe temperature sensor 15, it is determined that the defrosting is completed, and an instruction to switch from the defrosting / heating operation to the normal heating operation is output from the control device.

以上のようにして動作する冷凍サイクル装置の圧縮機6に装着した蓄熱装置35の構成について、以下図5〜図11を用いて詳述する。   The configuration of the heat storage device 35 attached to the compressor 6 of the refrigeration cycle apparatus operating as described above will be described in detail below with reference to FIGS.

図5は本実施の形態における圧縮機に蓄熱装置35を装着した状態を示す正面図、図6は同斜視図、図7は同平面図、図8は同熱交換装置を外側から見た斜視図、図9は同熱交換装置を内側から見た斜視図、図10は同蓄熱装置の平面図、図11は同蓄熱装置の主体をなす蓄熱材の上端面に位置する面状端板の平面図である。   5 is a front view showing a state in which the heat storage device 35 is mounted on the compressor according to the present embodiment, FIG. 6 is a perspective view thereof, FIG. 7 is a plan view thereof, and FIG. 8 is a perspective view of the heat exchange device viewed from the outside. FIG. 9 is a perspective view of the heat exchanger as viewed from the inside, FIG. 10 is a plan view of the heat storage device, and FIG. 11 is a plan view of an end plate located on the upper end surface of the heat storage material forming the main body of the heat storage device. It is a top view.

上述したように、本実施の形態における蓄熱装置35は、蓄熱材36と蓄熱熱交換パイプ37とで構成され、圧縮機6の外周の一部に密着させて配置されている。   As described above, the heat storage device 35 in the present embodiment includes the heat storage material 36 and the heat storage heat exchange pipe 37, and is disposed in close contact with a part of the outer periphery of the compressor 6.

蓄熱材36はアルミニュウムの塊で形成してあり、その内周面は圧縮機6外周面に沿うように略円弧状に形成するとともに、外周面はその略中央上下方向に凹所38を設けて両側外周部が外方へと突出する隆起凸状部39となった構成としてある。そしてさらに、前記蓄熱材36の両側部にはその上下方向全長亘って略L字状に屈曲するフランジ部40が設けてある。両側2つのフランジ部40のうち、少なくとも1つは、圧縮機6に対向する面が圧縮機6の外周に沿って突出するように設けてある。   The heat storage material 36 is formed of aluminum lumps, and its inner peripheral surface is formed in a substantially arc shape along the outer peripheral surface of the compressor 6, and the outer peripheral surface is provided with a recess 38 in the substantially central vertical direction. It is set as the structure which became the protruding convex part 39 which both outer peripheral parts protrude outward. Further, flange portions 40 are provided on both side portions of the heat storage material 36 so as to be bent in an approximately L shape over the entire length in the vertical direction. At least one of the two flange portions 40 on both sides is provided such that a surface facing the compressor 6 protrudes along the outer periphery of the compressor 6.

また前記蓄熱材36は前記隆起凸状部39の内側の内周面寄り部分に前記した蓄熱熱交換パイプ37が略W字状(図9参照)に屈曲させた状態で上下方向に埋設一体化してある。更に、前記蓄熱熱交換パイプ37外方部分の隆起凸状部39に、略U字状(図8参照)に屈曲形成したシーズヒータ等からなるヒータ41が蓄熱熱交換パイプ37に沿うような形で埋設一体化してある。すなわち、蓄熱熱交換パイプ37がヒータ41と圧縮機6の外周面との間に位置する形となるように、蓄熱材36にヒータ41が一体化してある。   Further, the heat storage material 36 is embedded and integrated in the vertical direction in a state where the heat storage heat exchange pipe 37 described above is bent in a substantially W shape (see FIG. 9) at a portion near the inner peripheral surface inside the raised convex portion 39. It is. Further, a heater 41 made of a sheathed heater or the like bent in a substantially U shape (see FIG. 8) is formed along the heat storage heat exchange pipe 37 on the raised convex portion 39 of the outer portion of the heat storage heat exchange pipe 37. It is buried and integrated. That is, the heater 41 is integrated with the heat storage material 36 so that the heat storage heat exchange pipe 37 is positioned between the heater 41 and the outer peripheral surface of the compressor 6.

また、前記凹所38は前記ヒータ41の略U字状部分の間部分に位置していて、前記ヒータ41のU字状屈曲部分付近となる下部にはヒータ41への通電を入り切り制御して蓄熱材36の温度を略一定範囲内に維持させる温度センサ42が装着してある。   The recess 38 is located between the substantially U-shaped portions of the heater 41. The lower portion of the heater 41 near the U-shaped bent portion is energized and controlled. A temperature sensor 42 is attached to maintain the temperature of the heat storage material 36 within a substantially constant range.

さらに、前記凹所38の温度センサ42上部には前記蓄熱材36が所定温度以上になるとヒータ41への通電を物理的に遮断する温度ヒューズ43が装着してある。より詳細には、温度ヒューズ43は、2つのリード線間を可溶体で接合したものであって、周囲温度の上昇により可溶体が融点に達し溶融することで、両リード線間を物理的に分断し、電気的接続を切断するものである。   Further, a thermal fuse 43 is mounted on the temperature sensor 42 of the recess 38 to physically cut off the power supply to the heater 41 when the heat storage material 36 reaches a predetermined temperature or higher. More specifically, the thermal fuse 43 is formed by joining two lead wires with a fusible body. When the ambient temperature rises, the fusible body reaches a melting point and melts, so that the two lead wires are physically connected. It is divided and the electrical connection is cut.

なお、上記温度センサ42と温度ヒューズ43は温度センサ42の上部に温度ヒューズ43を配置したものを例示したが、逆に配置してもよいものである。また、温度ヒューズ43は二個設けて二重安全構成としてもよい。   In addition, although the said temperature sensor 42 and the temperature fuse 43 illustrated what has arrange | positioned the temperature fuse 43 on the upper part of the temperature sensor 42, you may arrange | position conversely. Two temperature fuses 43 may be provided to provide a double safety configuration.

また、前記凹所38はその上方部分が開放状態となっていて、前記温度センサ42及び温度ヒューズ43に繋がるリード線44がこの開放部を通して制御装置(図示せず)へと引き出してある。   The recess 38 has an open upper portion, and lead wires 44 connected to the temperature sensor 42 and the temperature fuse 43 are drawn out to a control device (not shown) through the open portion.

上記蓄熱材36は圧縮機6を抱くように横方向から密着させ、その上下部分を蓄熱材取
付けバンド45により圧縮機6外周面に固定してある。
The heat storage material 36 is in close contact with the compressor 6 in the lateral direction, and the upper and lower portions thereof are fixed to the outer peripheral surface of the compressor 6 by a heat storage material mounting band 45.

蓄熱材取付けバンド45は、一端に係合部46(図7参照)、他端にビス止め部47(図7参照)を備え、その係合部46を前記蓄熱材36のフランジ部40の一方に係合させるとともに、他端のビス止め部47を前記蓄熱材36のもう一方のフランジ部40にビス止めして締め上げ、蓄熱材36を圧縮機外周面に圧着固定している。   The heat storage material mounting band 45 includes an engagement portion 46 (see FIG. 7) at one end and a screw stopper 47 (see FIG. 7) at the other end, and the engagement portion 46 is one of the flange portions 40 of the heat storage material 36. The other end of the heat retaining material 36 is screwed to the other flange portion 40 and tightened to fix the heat storing material 36 to the outer peripheral surface of the compressor.

また上記蓄熱材36は、この実施の形態ではアルミのダイキャスト品で形成してあり、蓄熱熱交換パイプ37及びヒータ41を一体に埋設設置した形となっている。そして、上下端面のいずれか一方、この実施の形態では上端面に蓄熱材端面と略同形状の面状端板48(図11参照)を具備している。この面状端板48は例えば蓄熱材36を構成するアルミよりも熱伝導性の悪い金属材料で形成してある。   In addition, the heat storage material 36 is formed of an aluminum die-cast product in this embodiment, and has a shape in which a heat storage heat exchange pipe 37 and a heater 41 are integrally embedded. In this embodiment, a planar end plate 48 (see FIG. 11) having substantially the same shape as the end face of the heat storage material is provided on one of the upper and lower end surfaces, in this embodiment. The planar end plate 48 is made of, for example, a metal material having a lower thermal conductivity than aluminum constituting the heat storage material 36.

なお、上記面状端板48は、前記蓄熱熱交換パイプ37及びヒータ41の下部を蓄熱材36の下端面より突出する形態とした場合にはこの蓄熱材36の下端面側に設けてもよいものである。   The planar end plate 48 may be provided on the lower end surface side of the heat storage material 36 when the lower portion of the heat storage heat exchange pipe 37 and the heater 41 protrudes from the lower end surface of the heat storage material 36. Is.

以上のように構成した蓄熱装置35について、以下その作用、効果を説明する。   About the heat storage apparatus 35 comprised as mentioned above, the effect | action and effect are demonstrated below.

まず、この蓄熱装置35の蓄熱材36は金属塊で形成してあり、しかもその金属がアルミニュウムであるため、圧縮機6からの熱を冷媒に伝えやすく、迅速かつ効率よく蓄熱熱交換パイプ37内の冷媒に熱を伝熱することができる。   First, the heat storage material 36 of the heat storage device 35 is formed of a metal lump, and since the metal is aluminum, heat from the compressor 6 can be easily transferred to the refrigerant, and the heat storage heat exchange pipe 37 can be transferred quickly and efficiently. Heat can be transferred to the refrigerant.

加えてこの発明の蓄熱装置35では、上記蓄熱材36にヒータ41が設けてあるので、厳寒時等の外気温が低くて熱量不足を起こしやすい、換言すると蓄熱材36温度が所定温度よりも低いときには、温度センサ42がこれを検知してヒータ41に通電し、ヒータ41が発熱する。これにより、蓄熱材36は圧縮機6からの熱に加えヒータ41からも熱補充を受けて十分な温度と熱量を維持し、熱量不足を起こすことなく蓄熱熱交換パイプ37内の冷媒に効率よく熱を伝熱供給し続けることができる。   In addition, in the heat storage device 35 of the present invention, since the heater 41 is provided in the heat storage material 36, the outside air temperature is extremely low such as during severe cold and is likely to cause a shortage of heat. Sometimes, the temperature sensor 42 detects this and energizes the heater 41, and the heater 41 generates heat. As a result, the heat storage material 36 is supplied with heat from the heater 41 in addition to the heat from the compressor 6 to maintain a sufficient temperature and heat quantity, and is efficiently used as a refrigerant in the heat storage heat exchange pipe 37 without causing a shortage of heat quantity. Heat can continue to be supplied.

しかも、前記蓄熱熱交換パイプ37は圧縮機6の外周とヒータ41との間に位置させてあるので、内外両方向、すなわち圧縮機6外周とヒータ41の両方から熱を供給されるようになる。したがって、蓄熱熱交換パイプ37内の冷媒は、圧縮機6及びヒータ41からの熱によって効率よく加熱することができる。これにより、除霜に要する時間を短くすることができ、暖房運転時における除霜運転による室温低下を抑制して快適性を向上させることができる。   Moreover, since the heat storage heat exchange pipe 37 is positioned between the outer periphery of the compressor 6 and the heater 41, heat is supplied from both the inner and outer directions, that is, from both the outer periphery of the compressor 6 and the heater 41. Therefore, the refrigerant in the heat storage heat exchange pipe 37 can be efficiently heated by the heat from the compressor 6 and the heater 41. Thereby, the time required for defrosting can be shortened, and the comfort can be improved by suppressing the decrease in room temperature due to the defrosting operation during the heating operation.

また、前記蓄熱材36は蓄熱材取付けバンド45によって圧縮機6の外周面に圧着固定しているので、蓄熱材36を圧縮機6の外周に確実に密着固定することができる。しかも上記蓄熱材取付けバンド45をセットするために設けた両側のフランジ部40が蓄熱材36の圧縮機6外周面への接触面積を拡大させる。その結果、圧縮機6から蓄熱材36への伝熱量が増大し、蓄熱材36が蓄熱量不足を起こすのを少なくすることができる。そしてその分、ヒータ41への通電を抑制でき、ヒータ41による熱供給割合を少なくして省エネ化を促進することができる。   Further, since the heat storage material 36 is pressure-bonded and fixed to the outer peripheral surface of the compressor 6 by the heat storage material mounting band 45, the heat storage material 36 can be securely fixed to the outer periphery of the compressor 6. And the flange part 40 of the both sides provided in order to set the said thermal storage material attachment band 45 expands the contact area to the compressor 6 outer peripheral surface of the thermal storage material 36. FIG. As a result, the amount of heat transfer from the compressor 6 to the heat storage material 36 increases, and the heat storage material 36 can be reduced from causing a shortage of heat storage. Accordingly, the energization to the heater 41 can be suppressed, and the heat supply ratio by the heater 41 can be reduced to promote energy saving.

また、蓄熱材取付けバンド45は、一端係合部46を蓄熱材36のフランジ部40の一方の角部に係合させるとともに、他端のビス止め部47を前記蓄熱材36のフランジ部40の他方にビス止めして蓄熱材36を圧縮機6外周面に圧着固定する方式としてあるから、蓄熱材36の圧縮機6外周への装着が容易に行え、しかも圧縮機6外周面への蓄熱材36の密着度を高めることができる。   Further, the heat storage material mounting band 45 engages one end engaging portion 46 with one corner of the flange portion 40 of the heat storage material 36, and a screw fixing portion 47 at the other end of the flange portion 40 of the heat storage material 36. Since the heat storage material 36 is crimped and fixed to the outer peripheral surface of the compressor 6 by screwing to the other side, the heat storage material 36 can be easily mounted on the outer periphery of the compressor 6, and the heat storage material on the outer peripheral surface of the compressor 6. The degree of adhesion of 36 can be increased.

一方、蓄熱材36にはヒータ41の略U字状部分の間部分となる凹所38に前記ヒータ41への通電を制御する温度センサ42を設けているから、ヒータ制御の精度を向上させることができ、かつ、温度検知遅れによる過昇等のない安全性の高いものとすることができる。すなわち、温度センサ42を設けた凹所38は薄肉で熱容量が小さいものとなっていて、更にヒータ41及び蓄熱熱交換パイプ37のU字状部分に囲まれていることから、ヒータ41及び蓄熱熱交換パイプ37埋設部分の温度に近似したものとなる。そして温度センサ42はこの凹所38の温度を検知するから、蓄熱材36の温度を正確に検知できることになり、精度の高い制御と安全性が確保できるのである。   On the other hand, the heat storage material 36 is provided with a temperature sensor 42 for controlling the energization of the heater 41 in a recess 38 between the substantially U-shaped portions of the heater 41, so that the accuracy of heater control is improved. It is possible to achieve high safety without excessive heating due to temperature detection delay. That is, the recess 38 provided with the temperature sensor 42 is thin and has a small heat capacity, and is further surrounded by the U-shaped portion of the heater 41 and the heat storage heat exchange pipe 37. This is similar to the temperature of the buried portion of the exchange pipe 37. Since the temperature sensor 42 detects the temperature of the recess 38, the temperature of the heat storage material 36 can be detected accurately, and high-precision control and safety can be ensured.

さらに、前記凹所38はその上方部分を開放状態としてあるから、凹所空間に熱気がこもるのを防止することができる。したがって、温度センサ42は凹所壁部分の温度をより精度よく検知することができ、ヒータ制御精度と安全性を一段と向上させることができる。しかも上記開放部分から前記温度センサ42等のリード線44を引き出しているので、凹所38の上方部分を塞ぐ壁がある場合のようにリード線貫通孔を穿孔する等の後加工を行う必要がなく、その分コストダウンを図ることができる。加えて、上記リード線44の引出が蓄熱熱交換パイプ37やヒータ41の引出方向と同じ方向となるから組立時の作業性等も向上し、さらなるコストダウンが可能となる。そして、温度センサ42や温度ヒューズ43やリード線44は凹所38内に収まる形となるので、外力を受けて損傷する等のことも防止できる。   Furthermore, since the upper portion of the recess 38 is open, it is possible to prevent hot air from being trapped in the recess space. Therefore, the temperature sensor 42 can detect the temperature of the recess wall portion with higher accuracy, and the heater control accuracy and safety can be further improved. In addition, since the lead wire 44 such as the temperature sensor 42 is drawn out from the open portion, it is necessary to perform post-processing such as drilling a lead wire through hole as in the case where there is a wall blocking the upper portion of the recess 38. Therefore, the cost can be reduced accordingly. In addition, since the lead wire 44 is drawn out in the same direction as the heat storage heat exchange pipe 37 and the heater 41, the workability at the time of assembly is improved and the cost can be further reduced. Since the temperature sensor 42, the thermal fuse 43, and the lead wire 44 are accommodated in the recess 38, they can be prevented from being damaged by an external force.

また、上記凹所38にはヒータ41への通電を物理的に遮断する温度ヒューズ43も設けてあるから、温度センサ42が故障等して機能しなくなっても確実にヒータ41への通電を遮断することができる。したがって、蓄熱材36をアルミ塊で形成してヒータ41を埋設一体化して構成していても確実に安全性を担保することができる。   The recess 38 is also provided with a temperature fuse 43 that physically cuts off the power supply to the heater 41, so that the power supply to the heater 41 is surely cut off even if the temperature sensor 42 fails to function. can do. Therefore, even if the heat storage material 36 is formed of an aluminum lump and the heater 41 is embedded and integrated, safety can be reliably ensured.

さらにこの実施の形態では、前記蓄熱材36は鋳型成形品(アルミダイキャスト品)で構成してあるから、蓄熱材36と蓄熱熱交換パイプ37及びヒータ41とは完全に一体化してこれら両者の間に従来のような隙間が生じるようなことがない。したがって、これらの間の熱伝導も良好なものとなって更に効率の良い蓄熱熱交換パイプ37への熱伝導が可能となる。   Furthermore, in this embodiment, since the heat storage material 36 is constituted by a molded product (aluminum die-cast product), the heat storage material 36, the heat storage heat exchange pipe 37, and the heater 41 are completely integrated, and both of them. There is no gap between them as in the past. Therefore, the heat conduction between them becomes good, and the heat conduction to the heat storage heat exchange pipe 37 can be performed more efficiently.

また、前記蓄熱材36はその上端面に備わっている面状端板48が鋳造時におけるヒータ41及び蓄熱熱交換パイプ37の位置決め部材となり、簡単な構造の砂鋳型で安価に製造することができる。すなわち、砂鋳型を用いて成形する場合、蓄熱熱交換パイプ37やヒータ41を位置決め保持するため鋳型が複雑な構成となって製造コストが高くなるが、前記した面状端板48が蓄熱熱交換パイプ37やヒータ41を位置決め保持するので、鋳型を簡素化して製造コストを抑制することができる。しかも鋳型を砂鋳型として更に製造コストのダウンを図ることができる。   In addition, the planar end plate 48 provided on the upper end surface of the heat storage material 36 serves as a positioning member for the heater 41 and the heat storage heat exchange pipe 37 at the time of casting, and can be manufactured at low cost with a sand mold having a simple structure. . That is, when molding using a sand mold, the heat storage heat exchange pipe 37 and the heater 41 are positioned and held, so that the mold becomes complicated and the manufacturing cost increases. Since the pipe 37 and the heater 41 are positioned and held, the mold can be simplified and the manufacturing cost can be suppressed. In addition, the production cost can be further reduced by using the mold as a sand mold.

更に、前記面状端板48はこれを蓄熱材36のアルミよりも熱伝導率の悪い材料、例えばステンレスや鉄や亜鉛等の材料で形成しておけば、圧縮機6から蓄熱材36に蓄熱した熱が放散するのを抑制する等のこともでき、蓄熱材36の熱保存効果を高めて、省エネ性や除霜効果を更に向上させることができる。   Furthermore, if the planar end plate 48 is formed of a material having a lower thermal conductivity than the aluminum of the heat storage material 36, for example, a material such as stainless steel, iron, or zinc, the heat storage material 36 stores heat from the compressor 6. The heat storage effect of the heat storage material 36 can be enhanced and the energy saving performance and the defrosting effect can be further improved.

以上のようにこの蓄熱装置35は種々の効果を備えているが、この蓄熱装置35を用いた本実施の形態における空気調和機の冷凍サイクル装置も次のような利点を備えている。   As described above, the heat storage device 35 has various effects, but the refrigeration cycle device of the air conditioner in the present embodiment using the heat storage device 35 also has the following advantages.

すなわち、前述したように、除霜・暖房運転時、三方弁23は、室外熱交換器14から蓄熱熱交換パイプ37へ冷媒を導く経路、即ち第4配管24と第7配管29が連通するよ
うに制御される形としてあるので、三方弁23を通った冷媒はキャピラリチューブ31で減圧され低温となり、蓄熱熱交換パイプ37で蓄熱材36の熱を吸熱する。
That is, as described above, during the defrosting / heating operation, the three-way valve 23 causes the fourth pipe 24 and the seventh pipe 29 to communicate with each other, that is, the path leading the refrigerant from the outdoor heat exchanger 14 to the heat storage heat exchange pipe 37. Therefore, the refrigerant passing through the three-way valve 23 is depressurized by the capillary tube 31 to become a low temperature, and the heat of the heat storage material 36 is absorbed by the heat storage heat exchange pipe 37.

このような構成としたことによって、蓄熱材36と熱交換を行う蓄熱熱交換パイプ37を低温とすることができる。そして、蓄熱材36からの最大吸収熱量は、圧縮機6の温度と蓄熱熱交換パイプ37の温度との温度差に比例するので、蓄熱熱交換パイプ37の温度を低温にできれば、圧縮機6の温度と蓄熱熱交換パイプ37の温度との温度差をより大きくでき、蓄熱材36からの最大吸収熱量を増加させることが可能となり、除霜時間を短縮し、暖房運転時における除霜運転による室温低下を抑制して快適性を向上させることができる。   By setting it as such a structure, the thermal storage heat exchange pipe 37 which heat-exchanges with the thermal storage material 36 can be made into low temperature. Since the maximum amount of heat absorbed from the heat storage material 36 is proportional to the temperature difference between the temperature of the compressor 6 and the temperature of the heat storage heat exchange pipe 37, if the temperature of the heat storage heat exchange pipe 37 can be lowered, the compressor 6 The temperature difference between the temperature and the temperature of the heat storage heat exchange pipe 37 can be further increased, the maximum amount of heat absorbed from the heat storage material 36 can be increased, the defrosting time can be shortened, and the room temperature by the defrosting operation during the heating operation The comfort can be improved by suppressing the decrease.

更に、蓄熱熱交換パイプ37での液冷媒の蒸発が促進されることで、液冷媒が圧縮機6に戻ることがなくなり、圧縮機6の信頼性も向上させることができる。   Furthermore, since the evaporation of the liquid refrigerant in the heat storage heat exchange pipe 37 is promoted, the liquid refrigerant does not return to the compressor 6 and the reliability of the compressor 6 can be improved.

なお、圧縮機6から第6配管28を経て電磁弁30を通り、室外熱交換器14に至る吐出ガスバイパス経路は、必ずしも必要ではなく、極めて大きな除霜能力が必要な場合を除いては無くす構成としても良い。   Note that the discharge gas bypass route from the compressor 6 through the sixth pipe 28 to the outdoor heat exchanger 14 through the electromagnetic valve 30 is not always necessary, and is eliminated unless a very large defrosting capacity is required. It is good also as a structure.

この場合、圧縮機6の吐出口から、第1配管18、室内熱交換器16、第2配管20、第3配管22を経て、室外熱交換器14へと気相冷媒が流れ、室外熱交換器14を除霜する構成となり、除霜能力は少し低下するが、低コストでコンパクトな構成が可能となる。   In this case, the gas phase refrigerant flows from the discharge port of the compressor 6 to the outdoor heat exchanger 14 through the first pipe 18, the indoor heat exchanger 16, the second pipe 20, and the third pipe 22. It becomes the structure which defrosts the container 14, and although a defrosting capability falls a little, a low-cost and compact structure is attained.

また、本構成では、三方弁23から蓄熱熱交換パイプ37に至る第7配管29にキャピラリチューブ31を設けた構成としているが、本構成の変わりに蓄熱熱交換パイプ37に連通する三方弁23の開口部を絞った仕様としてもよく、この場合、キャピラリチューブ31を除くことが可能となり、低コストでコンパクトな構成が可能となる。   Further, in this configuration, the capillary tube 31 is provided in the seventh pipe 29 extending from the three-way valve 23 to the heat storage heat exchange pipe 37, but instead of this configuration, the three-way valve 23 communicating with the heat storage heat exchange pipe 37 is used. The specification may be such that the opening is narrowed. In this case, the capillary tube 31 can be removed, and a low-cost and compact configuration is possible.

以上、本発明に係る空気調和機について、上記実施の形態を用いて説明してきたが、本発明は、これに限定されるものではない。すなわち、今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。つまり、本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味及び範囲内でのすべての変更が含まれることが意図される。   As mentioned above, although the air conditioner concerning this invention has been demonstrated using the said embodiment, this invention is not limited to this. That is, the embodiment disclosed this time should be considered as illustrative in all points and not restrictive. That is, the scope of the present invention is shown not by the above description but by the scope of claims, and is intended to include all modifications within the meaning and scope equivalent to the scope of claims.

本発明は、厳寒時等であっても熱量不足を起こすことなく効率よく蓄熱熱交換パイプ内の冷媒へ熱伝導させることができ、除霜効果の高い空気調和機を提供できる。したがって一般用はもちろん業務用の空気調和にも幅広く適用することができる。   INDUSTRIAL APPLICABILITY The present invention can efficiently conduct heat to the refrigerant in the heat storage heat exchange pipe without causing a shortage of heat even in severe cold, and can provide an air conditioner with a high defrosting effect. Therefore, it can be widely applied to air conditioning for business use as well as general use.

1 空気調和機
2 室外機
4 室内機
6 圧縮機
8 四方弁
10 ストレーナ
12 膨張弁
14 室外熱交換器
15 配管温度センサ
16 室内熱交換器
18 第1配管
20 第2配管
22 第3配管
23 三方弁
24 第4配管
25 第5配管
26 アキュームレータ
28 第6配管
29 第7配管
30 電磁弁
31 キャピラリチューブ
32 第8配管
35 蓄熱装置
36 蓄熱材
37 蓄熱熱交換パイプ
38 凹所
39 隆起凸状部
40 フランジ部
41 ヒータ
42 温度センサ
43 温度ヒューズ
44 リード線
45 蓄熱材取付けバンド
46 係合部
47 ビス止め部
48 面状端板
DESCRIPTION OF SYMBOLS 1 Air conditioner 2 Outdoor unit 4 Indoor unit 6 Compressor 8 Four way valve 10 Strainer 12 Expansion valve 14 Outdoor heat exchanger 15 Piping temperature sensor 16 Indoor heat exchanger 18 1st piping 20 2nd piping 22 3rd piping 23 3 way valve 24 4th piping 25 5th piping 26 Accumulator 28 6th piping 29 7th piping 30 Solenoid valve 31 Capillary tube 32 8th piping 35 Heat storage device 36 Thermal storage material 37 Thermal storage heat exchange pipe 38 Recess 39 Raised convex part 40 Flange part 41 Heater 42 Temperature Sensor 43 Thermal Fuse 44 Lead Wire 45 Heat Storage Material Mounting Band 46 Engaging Portion 47 Screw Stopping Portion 48 Planar End Plate

Claims (6)

圧縮機と、圧縮機からの熱を蓄熱する蓄熱装置とを備え、前記蓄熱装置は、圧縮機の外周に配置した蓄熱材と、前記蓄熱材に貫設し蓄熱材に蓄えられた熱量を内部に流れる冷媒に伝熱する蓄熱熱交換パイプとからなり、前記蓄熱材はアルミニュウム塊で形成するとともにヒータを埋設して構成し、かつ、前記ヒータは前記蓄熱熱交換パイプが当該ヒータと前記圧縮機の外周との間に位置するように設けた空気調和機。 A compressor and a heat storage device for storing heat from the compressor, the heat storage device internally storing the heat storage material disposed on the outer periphery of the compressor and the amount of heat stored in the heat storage material penetrating the heat storage material A heat storage heat exchange pipe that transfers heat to the refrigerant flowing through the heat storage material, the heat storage material is formed of an aluminum lump and a heater is embedded, and the heat storage heat exchange pipe includes the heater and the compressor. Air conditioner provided so as to be located between the outer periphery. 蓄熱材はその両側部にフランジ部を有するとともに、前記蓄熱材を圧縮機外周に固定する蓄熱材取付けバンドを更に備え、前記蓄熱材取付けバンドは、一端に係合部、他端にビス止め部を備え、前記蓄熱材取付けバンドの係合部を前記蓄熱材のフランジ部の一方に係合させるとともに、他端のビス止め部を前記蓄熱材のフランジ部の他方にビス止めして蓄熱材を圧縮機外周面に圧着固定した請求項1に記載の空気調和機。 The heat storage material has flange portions on both sides thereof, and further includes a heat storage material mounting band for fixing the heat storage material to the outer periphery of the compressor. The heat storage material mounting band has an engagement portion at one end and a screw fixing portion at the other end. The heat storage material mounting band is engaged with one of the flange portions of the heat storage material, and the screwing portion at the other end is screwed to the other of the flange portions of the heat storage material. The air conditioner according to claim 1, wherein the air conditioner is fixed to the outer peripheral surface of the compressor by pressure. 蓄熱材はヒータを略U字状に屈曲させて当該略U字状部分の間部分に凹所を形成し、この凹所に前記ヒータへの通電を制御する温度センサを設けた請求項1または2に記載の空気調和機。 The heat storage material is provided with a temperature sensor that controls the energization of the heater by bending the heater into a substantially U shape to form a recess in a portion between the substantially U-shaped portions. 2. The air conditioner according to 2. 凹所はヒータとともに上下方向に設け、その少なくとも上方は開放状態として当該開放部分から温度センサのリード線を引き出した請求項1〜3のいずれか1項に記載の空気調和機。 The air conditioner according to any one of claims 1 to 3, wherein the recess is provided in a vertical direction together with the heater, and at least an upper part thereof is opened, and a lead wire of the temperature sensor is drawn from the open part. 凹所にはさらにヒータへの通電を物理的に遮断する温度ヒューズを設けた請求項1〜4のいずれか1項に記載の空気調和機。 The air conditioner according to any one of claims 1 to 4, further comprising a thermal fuse that physically cuts off power to the heater in the recess. 蓄熱材は鋳型成形品で構成するとともに、その上下いずれか一方端面に蓄熱材端面と略同形状の面状端板を備えた請求項1〜5のいずれか1項に記載の空気調和機。 The air conditioner according to any one of claims 1 to 5, wherein the heat storage material is formed of a molded product, and a planar end plate having substantially the same shape as the end surface of the heat storage material is provided on one of upper and lower end surfaces thereof.
JP2015031273A 2015-02-20 2015-02-20 Air conditioner Active JP6286675B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015031273A JP6286675B2 (en) 2015-02-20 2015-02-20 Air conditioner
CN201610094468.0A CN105910354B (en) 2015-02-20 2016-02-19 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015031273A JP6286675B2 (en) 2015-02-20 2015-02-20 Air conditioner

Publications (2)

Publication Number Publication Date
JP2016153700A true JP2016153700A (en) 2016-08-25
JP6286675B2 JP6286675B2 (en) 2018-03-07

Family

ID=56745036

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015031273A Active JP6286675B2 (en) 2015-02-20 2015-02-20 Air conditioner

Country Status (2)

Country Link
JP (1) JP6286675B2 (en)
CN (1) CN105910354B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110160387A (en) * 2019-06-26 2019-08-23 格力电器(合肥)有限公司 Exothermic storage heater and air-conditioning can be stored
US11175082B2 (en) 2017-04-27 2021-11-16 Mitsubishi Electric Corporation Refrigeration cycle apparatus with heat storage for use during defrost

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106152593A (en) * 2016-09-29 2016-11-23 广东美的制冷设备有限公司 A kind of heat pump type air conditioner does not shut down defrosting system and method
CN106247711B (en) * 2016-09-29 2020-02-04 广东美的制冷设备有限公司 Heat pump type air conditioner defrosting system and method
CN107940677A (en) * 2017-10-31 2018-04-20 青岛海尔空调器有限总公司 A kind of control method and device for slowing down air-conditioner outdoor unit frosting
CN108426394A (en) * 2018-04-17 2018-08-21 珠海格力电器股份有限公司 Refrigerant heating device and air conditioner with it

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01306785A (en) * 1988-06-03 1989-12-11 Daikin Ind Ltd Air-conditioner
JP2002206849A (en) * 2001-12-03 2002-07-26 Matsushita Refrig Co Ltd Refrigerator
JP2002289333A (en) * 2001-03-27 2002-10-04 Corona Corp Electric heating device
JP2012057879A (en) * 2010-09-09 2012-03-22 Panasonic Corp Refrigeration cycle apparatus
JP2012078014A (en) * 2010-10-01 2012-04-19 Panasonic Corp Air conditioner
JP2013120006A (en) * 2011-12-07 2013-06-17 Panasonic Corp Air conditioner

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101398242A (en) * 2007-09-25 2009-04-01 中国科学院理化技术研究所 Thermal storage defrosting or temperature controlling mixed working substance copious cooling throttle refrigeration system
US7861547B2 (en) * 2008-05-28 2011-01-04 Gm Global Technology Operations, Inc. HVAC system control for improved vehicle fuel economy

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01306785A (en) * 1988-06-03 1989-12-11 Daikin Ind Ltd Air-conditioner
JP2002289333A (en) * 2001-03-27 2002-10-04 Corona Corp Electric heating device
JP2002206849A (en) * 2001-12-03 2002-07-26 Matsushita Refrig Co Ltd Refrigerator
JP2012057879A (en) * 2010-09-09 2012-03-22 Panasonic Corp Refrigeration cycle apparatus
JP2012078014A (en) * 2010-10-01 2012-04-19 Panasonic Corp Air conditioner
JP2013120006A (en) * 2011-12-07 2013-06-17 Panasonic Corp Air conditioner

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11175082B2 (en) 2017-04-27 2021-11-16 Mitsubishi Electric Corporation Refrigeration cycle apparatus with heat storage for use during defrost
CN110160387A (en) * 2019-06-26 2019-08-23 格力电器(合肥)有限公司 Exothermic storage heater and air-conditioning can be stored

Also Published As

Publication number Publication date
JP6286675B2 (en) 2018-03-07
CN105910354B (en) 2019-11-19
CN105910354A (en) 2016-08-31

Similar Documents

Publication Publication Date Title
JP6286675B2 (en) Air conditioner
JP5238001B2 (en) Refrigeration cycle equipment
JP5615561B2 (en) Refrigeration cycle equipment
CN102348944B (en) Air conditioner
EP2623897B1 (en) Refrigeration cycle equipment
KR20130041712A (en) Refrigeration cycle device
JP2013104623A (en) Refrigeration cycle device and air conditioner with the same
JP4760996B1 (en) Heat storage device and air conditioner equipped with the heat storage device
WO2013065233A1 (en) Refrigeration cycle apparatus and air conditioner provided with same
WO2012042690A1 (en) Heat storage device and air conditioner comprising the heat storage device
EP2775235B1 (en) Air conditioner with a compressor and a heat storage device
JP4666111B1 (en) Refrigeration cycle equipment
CN101344340A (en) Air conditioner
WO2011099060A1 (en) Heat storage device, and air-conditioner provided with same
JP5083394B2 (en) Heat storage device and air conditioner equipped with the heat storage device
JP5948606B2 (en) Refrigeration cycle equipment
JP5927500B2 (en) Refrigeration cycle apparatus and air conditioner equipped with the same
JP5927502B2 (en) Refrigeration cycle apparatus and air conditioner equipped with the same
JP2011163662A (en) Heat storage device and air conditioner including the same
JP2012037130A (en) Refrigeration cycle device
JP6031673B2 (en) Refrigeration cycle apparatus and air conditioner equipped with the same
JP2012072934A (en) Heat storage device, and air conditioner with the same
JP2013104586A (en) Refrigerating cycle device and air conditioner with the same
WO2013099163A1 (en) Heat storage device, and air conditioner equipped with same
JP2012063076A (en) Heat storage apparatus and air conditioning apparatus

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20160523

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160802

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170411

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170509

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170705

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180108

R151 Written notification of patent or utility model registration

Ref document number: 6286675

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151