JP2016149363A - 絶縁性粒子付き導電性粒子、異方性導電材料及び接続構造体 - Google Patents

絶縁性粒子付き導電性粒子、異方性導電材料及び接続構造体 Download PDF

Info

Publication number
JP2016149363A
JP2016149363A JP2016030764A JP2016030764A JP2016149363A JP 2016149363 A JP2016149363 A JP 2016149363A JP 2016030764 A JP2016030764 A JP 2016030764A JP 2016030764 A JP2016030764 A JP 2016030764A JP 2016149363 A JP2016149363 A JP 2016149363A
Authority
JP
Japan
Prior art keywords
particles
conductive
insulating
conductive particles
insulating particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016030764A
Other languages
English (en)
Other versions
JP6205004B2 (ja
Inventor
茂雄 真原
Shigeo Mahara
茂雄 真原
石澤 英亮
Hideaki Ishizawa
英亮 石澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Publication of JP2016149363A publication Critical patent/JP2016149363A/ja
Application granted granted Critical
Publication of JP6205004B2 publication Critical patent/JP6205004B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Adhesives Or Adhesive Processes (AREA)
  • Powder Metallurgy (AREA)
  • Conductive Materials (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

【課題】電極間の接続に用いた場合に、導通信頼性及び絶縁信頼性を高めることができる絶縁性粒子付き導電性粒子及び異方性導電材料を提供する。【解決手段】本発明に係る絶縁性粒子付き導電性粒子1は、導電部12を少なくとも表面に有する導電性粒子2と、導電性粒子2の表面に付着している複数の絶縁性粒子3とを備える。絶縁性粒子付き導電性粒子1の比重の導電性粒子2の比重に対する比重比は、0.97未満である。導電性粒子2の比重は2.0以上、3.5以下である。本発明に係る絶縁性粒子付き導電性粒子1では、超音波処理したときに、絶縁性粒子3の残存率が60%以上、95%以下であるか、又は、絶縁性粒子付き導電性粒子1における導電性粒子2の表面積全体に占める絶縁性粒子3により被覆されている部分の面積である被覆率が40%以上である。【選択図】図1

Description

本発明は、導電性粒子の表面に複数の絶縁性粒子が付着している絶縁性粒子付き導電性粒子に関し、例えば、電極間の電気的な接続に用いることができる絶縁性粒子付き導電性粒子、並びに該絶縁性粒子付き導電性粒子を用いた異方性導電材料及び接続構造体に関する。
異方性導電ペースト及び異方性導電フィルム等の異方性導電材料が広く知られている。該異方性導電材料では、バインダー樹脂中に導電性粒子が分散されている。
上記異方性導電材料は、ICチップとフレキシブルプリント回路基板との接続、及びICチップとITO電極を有する回路基板との接続等に使用されている。例えば、ICチップの電極と回路基板の電極との間に異方性導電材料を配置した後、加熱及び加圧することにより、これらの電極を導電性粒子により電気的に接続できる。
上記導電性粒子の一例として、下記の特許文献1,2には、導電性粒子と、該導電性粒子の表面を被覆している絶縁性粒子とを備える絶縁性粒子付き導電性粒子が開示されている。
特許文献1に記載の絶縁性粒子付き導電性粒子では、該絶縁性粒子付き導電性粒子の比重が上記導電性粒子の比重の97/100〜99/100である。特許文献2に記載の絶縁性粒子付き導電性粒子では、絶縁性粒子は1〜3kg/cmGの外圧により外れ得るように、導電性粒子に結合されている。
下記の特許文献3には、導電性粒子と、該導電性粒子の表面に固定化されており、固着性を有する絶縁性粒子とを有する絶縁性粒子付き導電性粒子が開示されている。上記絶縁性粒子は、硬質粒子と、該硬質粒子の表面を被覆している高分子樹脂層とを有する。ここでは、導電性粒子の表面に絶縁性粒子を固定化させるために、固定化方法として物理的/機械的ハイブリダイゼーション法を用いている。
特許第4386148号公報 特許第2895872号公報 特表2007−537570号公報
特許文献1〜3に記載のような従来の絶縁性粒子付き導電性粒子とバインダー樹脂と混合して異方性導電材料を作製すると、絶縁性粒子付き導電性粒子の分散性が低いことがある。
さらに、異方性導電材料中において、絶縁性粒子付き導電性粒子が沈降することがある。このため、導電接続の際に、異方性導電材料を均一に塗工できず、上下の電極間に導電性粒子が配置されないことがある。さらに、凝集した導電性粒子によって、横方向に隣り合う電極間の短絡が生じることがある。すなわち、接続されるべき上下の電極間の導通信頼性及び接続されてはならない横方向に隣接する電極間の絶縁信頼性が低いことがある。
さらに、従来の絶縁性粒子付き導電性粒子では、絶縁性粒子が導電性粒子の表面から脱離しやすい。例えば、絶縁性粒子付き導電性粒子をバインダー樹脂中に分散させる際に、導電性粒子の表面から、絶縁性粒子が容易に脱離することがある。
特に、特許文献3に記載のように、導電性粒子の表面に絶縁性粒子を固定化させるために、物理的/機械的ハイブリダイゼーション法を用いた場合には、絶縁性粒子が導電性粒子の表面から脱離しやすい。さらに、物理的/機械的ハイブリダイゼーション法を用いた場合には、絶縁性粒子の上記高分子樹脂層が、導電性粒子の表面の絶縁性粒子が付着している部分以外の部分にも付着し、電極間の接続後に導電性が損なわれるという問題もある。
さらに、従来の絶縁性粒子付き導電性粒子では、導電層の少なくとも一部の領域が露出している。このため、大気中の腐食性ガス又は異方性導電材料中の腐食性物質などによって、導電層の表面に錆が生じやすい。このため、長期間に渡って、高い導電性を十分に維持できないことがある。また、導電層に錆が生じた絶縁性粒子付き導電性粒子を用いて電極間を接続すると、電極間が電気的に確実に接続されなかったり、電極間の接続抵抗が高くなったりすることがある。
本発明の目的は、電極間の接続に用いた場合に、導通信頼性及び絶縁信頼性を高めることができる絶縁性粒子付き導電性粒子、並びに該絶縁性粒子付き導電性粒子を用いた異方性導電材料及び接続構造体を提供することである。
本発明の限定的な目的は、導電性粒子の表面から絶縁性粒子が意図せずに脱離し難く、従って電極間の接続に用いた場合に、絶縁信頼性を高めることができる絶縁性粒子付き導電性粒子、並びに該絶縁性粒子付き導電性粒子を用いた異方性導電材料及び接続構造体を提供することである。
本発明のさらに限定的な目的は、導電部に錆が生じ難く、長期間にわたり高い導電性を維持でき、従って電極間の接続に用いた場合に、導通信頼性を高めることができる絶縁性粒子付き導電性粒子、並びに該絶縁性粒子付き導電性粒子を用いた異方性導電材料及び接続構造体を提供することである。
本発明の広い局面によれば、導電部を少なくとも表面に有する導電性粒子と、該導電性粒子の表面に付着している複数の絶縁性粒子とを備え、絶縁性粒子付き導電性粒子の比重の上記導電性粒子の比重に対する比重比が0.97未満であり、上記導電性粒子の比重が2.0以上、3.5以下である、絶縁性粒子付き導電性粒子が提供される。
本発明に係る絶縁性粒子付き導電性粒子のある特定の局面では、絶縁性粒子付き導電性粒子の比重の上記導電性粒子の比重に対する比重比は0.95未満である。
本発明に係る絶縁性粒子付き導電性粒子のある特定の局面では、上記導電性粒子の表面積全体に占める上記絶縁性粒子により被覆されている部分の面積である被覆率は40%以上である。
本発明に係る絶縁性粒子付き導電性粒子の他の特定の局面では、上記導電性粒子の表面積全体に占める上記絶縁性粒子により被覆されている部分の面積である上記被覆率は60%以上である。
本発明に係る絶縁性粒子付き導電性粒子のさらに他の特定の局面では、エタノール100重量部に、絶縁性粒子付き導電性粒子3重量部を添加した絶縁性粒子付き導電性粒子含有液を20℃及び40kHzの条件で5分間超音波処理したときに、下記式(1)により求められる絶縁性粒子の残存率が60%以上、95%以下である。
絶縁性粒子の残存率(%)=(超音波処理後の被覆率/超音波処理前の被覆率)×100 ・・・式(1)
本発明に係る絶縁性粒子付き導電性粒子の別の特定の局面では、上記絶縁性粒子の比重は1.0以上、2.0以下である。
本発明に係る絶縁性粒子付き導電性粒子の他の特定の局面では、上記導電性粒子の表面を被覆している被膜がさらに備えられる。
本発明に係る絶縁性粒子付き導電性粒子のさらに他の特定の局面では、上記被膜は、上記導電性粒子の表面と上記絶縁性粒子の表面とを被覆している。
本発明に係る絶縁性粒子付き導電性粒子の別の特定の局面では、上記被膜は、炭素数6〜22のアルキル基を有する化合物により形成されている。
本発明に係る絶縁性粒子付き導電性粒子は、ペースト状の異方性導電ペーストに用いられる絶縁性粒子付き導電性粒子であることが好ましい。
本発明に係る絶縁性粒子付き導電性粒子の他の特定の局面では、上記導電性粒子が、基材粒子と、該基材粒子の表面上に配置された導電層を有する。
本発明に係る異方性導電材料は、上述した絶縁性粒子付き導電性粒子と、バインダー樹脂とを含む。本発明に係る異方性導電材料は、ペースト状の異方性導電ペーストであることが好ましい。
本発明に係る接続構造体は、第1の接続対象部材と、第2の接続対象部材と、該第1,第2の接続対象部材を接続している接続部とを備え、該接続部が、上述した絶縁性粒子付き導電性粒子により形成されているか、又は該絶縁性粒子付き導電性粒子とバインダー樹脂とを含む異方性導電材料により形成されている。
本発明に係る絶縁性粒子付き導電性粒子では、導電部を少なくとも表面に有する導電性粒子の表面に複数の絶縁性粒子が付着しており、更に絶縁性粒子付き導電性粒子の比重の上記導電性粒子の比重に対する比重比が0.97未満であり、上記導電性粒子の比重が2.0以上、3.5以下であるので、電極間の接続に用いた場合に、導通信頼性及び絶縁信頼性を高めることができる。
図1は、本発明の第1の実施形態に係る絶縁性粒子付き導電性粒子を示す断面図である。 図2は、本発明の第2の実施形態に係る絶縁性粒子付き導電性粒子を示す断面図である。 図3は、本発明の第3の実施形態に係る絶縁性粒子付き導電性粒子を示す断面図である。 図4は、本発明の第4の実施形態に係る絶縁性粒子付き導電性粒子を示す断面図である。 図5は、本発明の第1の実施形態に係る絶縁性粒子付き導電性粒子を用いた接続構造体を模式的に示す正面断面図である。 図6は、被覆率の評価方法を説明するための模式図である。 図7は、ハイブリダイゼーション法を用いた従来の絶縁性粒子付き導電性粒子を示す断面図である。
以下、本発明の詳細を説明する。
本発明に係る絶縁性粒子付き導電性粒子は、導電部を少なくとも表面に有する導電性粒子と、該導電性粒子の表面に付着している複数の絶縁性粒子とを備える。本発明に係る絶縁性粒子付き導電性粒子の比重Aの上記導電性粒子の比重Bに対する比重比(A/B)は、0.97未満である。上記導電性粒子の比重Bは、2.0以上、3.5以下である。
本発明に係る絶縁性粒子付き導電性粒子における上記構成の採用により、異方性導電材料における導電性粒子の分散性が高くなる。特にペースト状の異方性導電材料において、導電性粒子の沈降を顕著に抑制できる。また、導電性粒子の沈降を抑制することによって、均質な異方性導電接着剤層を得ることができる。このため、接続対象部材上に異方性導電材料を均一に塗工又は配置でき、上下の電極間に導電性粒子をより一層確実に配置できる。さらに、凝集した導電性粒子によって、接続されてはならない横方向に隣り合う電極間が接続され難く、隣り合う電極間の短絡が生じるのを抑制できる。このため、接続されるべき上下の電極間の導通信頼性及び接続されてはならない横方向に隣接する電極間の絶縁信頼性を高めることができる。
導通信頼性及び絶縁信頼性をより一層高める観点からは、上記比重比(A/B)は、好ましくは0.5以上、より好ましくは0.8以上、好ましくは0.95未満である。電極間の導通信頼性及び絶縁信頼性をより一層高める観点からは、上記導電性粒子の比重Bは好ましくは2.5以上、より好ましくは2.7以上、好ましくは3.0以下である。
導通信頼性及び絶縁信頼性をより一層高める観点からは、上記絶縁性粒子の比重Cは好ましくは1.0以上、好ましくは2.0以下、より好ましくは1.3以下である。導通信頼性及び絶縁信頼性をより一層高める観点からは、上記絶縁性粒子付き導電性粒子と併用されるバインダー樹脂の比重Dは好ましくは0.9以上、より好ましくは1.0以上、好ましくは2.0以下、より好ましくは1.3以下である。
上記導電性粒子の表面積全体に占める上記絶縁性粒子により被覆されている部分の面積である被覆率は好ましくは40%以上、より好ましくは50%を超え、更に好ましくは60%以上である。上記被覆率が上記下限以上であると、隣接する導電性粒子がより一層接触し難くなる。上記被覆率は好ましくは95%以下、より好ましくは90%以下、更に好ましくは80%以下、特に好ましくは70%以下である。上記被覆率が上記上限以下であると、電極の接続の際に、熱及び圧力を必要以上に付与しなくても、絶縁性粒子を充分に排除できる。
上記導電性粒子の表面積全体に占める上記絶縁性粒子により被覆されている部分の面積である被覆率は、60%以上、95%以下であることが好ましい。この場合に、複数の絶縁性粒子付き導電性粒子における複数の導電性粒子同士が接触するのをより一層効果的に抑制できる。特に上記絶縁性粒子付き導電性粒子とバインダー樹脂とを含む異方性導電材料を用いて電極間を電気的に接続する際に、複数の導電性粒子が接触するのをより一層効果的に抑制できる。また、ペースト状の異方性導電材料を用いて電極間を電気的に接続する際に、複数の導電性粒子が接触するのを更に一層効果的に抑制できる。このため、接続されてはならない横方向に隣り合う電極間がより一層接続され難く、隣り合う電極間の短絡が生じるのをより一層抑制できる。一方で、上記被覆率が95%以下である場合には、絶縁性粒子付き導電性粒子における絶縁性粒子は、電極と導電性粒子との間から圧着時に効果的に排除できる。このため、接続されるべき上下の電極間の導通信頼性をかなり高めることができる。上記被覆率が60%以上、95%以下である絶縁性粒子付き導電性粒子を用いた場合には、異方性導電材料の25℃及び2.5rpmでの粘度が200Pa・sを超え、1000Pa・s以下であるときに、導通信頼性及び絶縁信頼性を高める効果が顕著に得られる。
電極間の導通信頼性及び絶縁信頼性を更に一層高める観点からは、上記被覆率はより好ましくは70%を超え、好ましくは90%以下である。上記被覆率が上記90%以下であると、電極の接続の際に、熱及び圧力を必要以上に付与しなくても、絶縁性粒子を充分に排除できる。
導電性粒子の表面から絶縁性粒子が意図せずに脱離するのをより一層抑制する観点からは、エタノール100重量部に、絶縁性粒子付き導電性粒子3重量部を添加した絶縁性粒子付き導電性粒子含有液を20℃及び40kHzの条件で5分間超音波処理したときに、下記式(1)により求められる絶縁性粒子の残存率は好ましくは50%以上、より好ましくは60%以上、更に好ましくは70%以上、好ましくは95%以下である。上記絶縁性粒子の残存率が上記下限以上であると、絶縁性粒子付き導電性粒子をバインダー樹脂中に添加し、混練する際に、導電性粒子の表面から絶縁性粒子がより一層脱離し難くなる。この結果、絶縁性粒子付き導電性粒子を用いて電極間を接続したときに、接続されてはならない隣り合う電極間で短絡がより一層生じ難くなる。絶縁性粒子の残存率が上記上限以下であると、接続されるべき上下の電極間の導通性を十分に確保できる。上記被覆率は、45%を超えていてもよく、50%を超えていてもよく、55%を超えていてもよく、60%を超えていてもよい。
上記「絶縁性粒子の残存率」は、具体的には、以下のようにして求められる。
下記の超音波処理前に、走査電子顕微鏡(SEM)での観察により100個の絶縁性粒子付き導電性粒子を観察し、絶縁性粒子付き導電性粒子における導電性粒子の被覆率X1(%)(付着率X1(%)ともいう)を求める。上記被覆率X1は、導電性粒子の表面積全体に占める絶縁性粒子により被覆されている部分の面積(投影面積)である。
具体的には、図6に示すように、上記被覆率は、絶縁性粒子付き導電性粒子Aを一方向から走査型電子顕微鏡(SEM)で観察した場合、絶縁性粒子付き導電性粒子Aの導電部の外表面(外周縁)の円内に存在する絶縁性粒子B1を1個、絶縁性粒子付き導電性粒子Aの導電部の外表面(外周縁)の円周上に存在する絶縁性粒子B2を0.5個とカウントし、絶縁性粒子付き導電性粒子Aの投影面積に対する絶縁性粒子の投影面積の割合で示す。
すなわち、上記被覆率は下記式(2)で表される。
被覆率(%)=(((円内の絶縁性粒子の数)×1+(円周上の絶縁性粒子の数)×0.5)×絶縁性粒子の投影面積)/(絶縁性粒子付き導電性粒子の投影面積))×100 ・・・式(2)
次に、エタノール100重量部に、絶縁性粒子付き導電性粒子3重量部を添加し、絶縁性粒子付き導電性粒子含有液を得る。この絶縁性粒子付き導電性粒子含有液を超音波洗浄機で20℃及び40kHzの条件で5分間撹拌しながら、超音波処理する。超音波処理後に、SEMでの観察により100個の絶縁性粒子付き導電性粒子を観察し、絶縁性粒子付き導電性粒子における導電性粒子の表面積全体に占める絶縁性粒子により被覆されている部分の面積である被覆率X2(%)(付着率X2(%)ともいう)を求める。絶縁性粒子の残存率は、被覆率X1と被覆率X2とから、下記式(1)により表される値である。
絶縁性粒子の残存率(%)=(超音波処理後の被覆率X2/超音波処理前の被覆率X1)×100 ・・・式(1)
本発明に係る絶縁性粒子付き導電性粒子では、絶縁性粒子が、絶縁性粒子本体と、該絶縁性粒子本体の表面の少なくとも一部の領域を覆っている層とを有することが好ましい。これにより、異方性導電材料の作製の際の混練により、導電性粒子の表面から絶縁性粒子がより一層脱離し難くなる。さらに、複数の絶縁性粒子付き導電性粒子が接触したときに、導電性粒子の表面から絶縁性粒子が脱離し難くなる。絶縁性粒子の意図しない脱離を効果的に抑制するために、上記絶縁性粒子又は上記絶縁性粒子本体の材料は、無機化合物であることが好ましく、上記絶縁性粒子又は上記絶縁性粒子本体は無機粒子であることが好ましい。絶縁性粒子の意図しない脱離を効果的に抑制するために、上記絶縁性粒子本体の表面の少なくとも一部の領域を覆っている層は、有機化合物により形成されていることが好ましく、該有機化合物は高分子化合物であることが好ましい。
上記絶縁性粒子付き導電性粒子は、絶縁性粒子本体の表面の少なくとも一部の領域を覆うように、高分子化合物又は高分子化合物となる化合物を用いて、高分子化合物により形成された層を形成し、絶縁性粒子を得る工程と、導電部を少なくとも表面に有する導電性粒子の表面に、上記絶縁性粒子を付着させ、絶縁性粒子付き導電性粒子を得る工程を経て得られることが好ましい。
本発明に係る絶縁性粒子付き導電性粒子は、上記導電性粒子の表面を被覆している被膜をさらに備えることが好ましい。該被膜は上記導電性粒子の表面と上記絶縁性粒子の表面とを被覆していることが好ましい。上記被膜によって、導電部の表面が露出しなくなるか、又は導電部の表面の露出面積が少なくなり、導電部に錆が生じ難くなる。このため、長期間にわたり高い導電性を維持でき、電極間の導通信頼性を高めることができる。
導電部に錆をより一層生じ難くする観点からは、上記被膜は、炭素数6〜22のアルキル基を有する化合物により形成されていることが好ましい。
本発明に係る絶縁性粒子付き導電性粒子は、ペースト状の異方性導電ペーストに用いられる絶縁性粒子付き導電性粒子であることが好ましい。
絶縁性粒子付き導電性粒子を用いて電極間を接続したときに、接続されてはならない隣り合う電極間で短絡をより一層生じ難くし、かつ接続されるべき上下の電極間の導通性を十分に確保する観点からは、本発明に係る絶縁性粒子付き導電性粒子は、25℃及び2.5rpmでの粘度が200Pa・sを超え、1000Pa・s以下である異方性導電ペーストに用いられることが好ましく、異方導電ペーストの25℃及び2.5rpmでの粘度は、200Pa・sを超え、1000Pa・s以下であることが好ましい。
電極間の導通信頼性及び絶縁信頼性をより一層高める観点からは、上記絶縁性粒子付き導電性粒子の粒子径の変動係数は、好ましくは8%以下、より好ましくは5%以下である。
上記変動係数(CV値)は下記式で表される。
CV値(%)=(ρ/Dn)×100
ρ:絶縁性粒子付き導電性粒子の粒子径の標準偏差
Dn:絶縁性粒子付き導電性粒子の粒子径の平均値
上記絶縁性粒子付き導電性粒子の圧縮弾性率は、好ましくは1GPa以上、より好ましくは2GPa以上、好ましくは7GPa以下、より好ましくは5GPa以下である。
上記絶縁性粒子付き導電性粒子の圧縮回復率は、好ましくは20%以上、より好ましくは30%以上、好ましくは60%以下、より好ましくは50%以下である。
上記絶縁性粒子付き導電性粒子の20℃での圧縮弾性率(10%K値)は、以下のようにして測定される。
微小圧縮試験機を用いて、直径50μmのダイアモンド製円柱の平滑圧子端面で、圧縮速度0.33mN/秒、及び最大試験荷重20mNの条件下で絶縁性粒子付き導電性粒子を圧縮する。このときの荷重値(N)及び圧縮変位(mm)を測定する。得られた測定値から、上記圧縮弾性率を下記式により求めることができる。上記微小圧縮試験機として、例えば、フィッシャー社製「フィッシャースコープH−100」等が用いられる。
10%K値(N/mm)=(3/21/2)・F・S−3/2・R−1/2
F:絶縁性粒子付き導電性粒子が10%圧縮変形したときの荷重値(N)
S:絶縁性粒子付き導電性粒子が10%圧縮変形したときの圧縮変位(mm)
R:絶縁性粒子付き導電性粒子の半径(mm)
上記圧縮弾性率は、絶縁性粒子付き導電性粒子の硬さを普遍的かつ定量的に表す。上記圧縮弾性率の使用により、絶縁性粒子付き導電性粒子の硬さを定量的かつ一義的に表すことができる。
上記圧縮回復率は、以下のようにして測定できる。
試料台上に絶縁性粒子付き導電性粒子を散布する。散布された絶縁性粒子付き導電性粒子1個について、微小圧縮試験機を用いて、絶縁性粒子付き導電性粒子の中心方向に、反転荷重値(5.00mN)まで負荷を与える。その後、原点用荷重値(0.40mN)まで除荷を行う。この間の荷重−圧縮変位を測定し、下記式から圧縮回復率を求めることができる。なお、負荷速度は0.33mN/秒とする。上記微小圧縮試験機として、例えば、フィッシャー社製「フィッシャースコープH−100」等が用いられる。
圧縮回復率(%)=[(L1−L2)/L1]×100
L1:負荷を与えるときの原点用荷重値から反転荷重値に至るまでのまでの圧縮変位
L2:負荷を解放するときの反転荷重値から原点用荷重値に至るまでの圧縮変位
以下、図面を参照しつつ、本発明の具体的な実施形態及び実施例を説明することにより本発明を明らかにする。
(絶縁性粒子付き導電性粒子)
図1に、本発明の第1の実施形態に係る絶縁性粒子付き導電性粒子を断面図で示す。
図1に示す絶縁性粒子付き導電性粒子1は、導電性粒子2と、導電性粒子2の表面に付着している複数の絶縁性粒子3とを備える。絶縁性粒子3にかえて後述する絶縁性粒子43を用いてもよい。
絶縁性粒子3は、絶縁性粒子本体5と、絶縁性粒子本体5の表面を覆っている層6とを有する。層6は、有機化合物により形成されていることが好ましく、高分子化合物により形成されていることが好ましい。絶縁性粒子3は、絶縁性を有する材料により形成されている。絶縁性粒子3は被覆粒子である。
層6は、絶縁性粒子本体5の表面全体を被覆している。従って、導電性粒子2と絶縁性粒子本体5との間に層6が配置されている。層6は、絶縁性粒子本体の表面の少なくとも一部の領域を覆うように存在していればよく、絶縁性粒子本体の表面全体を覆っていなくてもよい。層6は、導電性粒子と絶縁性粒子本体との間に配置されていることが好ましい。
導電性粒子2は、基材粒子11と、基材粒子11の表面上に配置された導電部12とを有する。導電部12は導電層である。導電部12は、基材粒子11の表面を覆っている。導電性粒子2は、基材粒子11の表面が導電部12により被覆された被覆粒子である。導電性粒子2は表面に導電部12を有する。
図2に、本発明の第2の実施形態に係る絶縁性粒子付き導電性粒子を断面図で示す。
図2に示す絶縁性粒子付き導電性粒子21は、導電性粒子22と、導電性粒子22の表面に付着している複数の絶縁性粒子3とを備える。絶縁性粒子3にかえて後述する絶縁性粒子43を用いてもよい。
導電性粒子22は、基材粒子11と、基材粒子11の表面上に配置された導電部31とを有する。導電部31は導電層である。導電性粒子22は、基材粒子11の表面上に複数の芯物質32を有する。導電部31は、基材粒子11と芯物質32とを被覆している。芯物質32を導電部31が被覆していることにより、導電性粒子22は表面に、複数の突起33を有する。芯物質32により導電部31の表面が隆起されており、複数の突起33が形成されている。
図3に、本発明の第3の実施形態に係る絶縁性粒子付き導電性粒子を断面図で示す。
図3に示す絶縁性粒子付き導電性粒子41は、導電性粒子42と、導電性粒子42の表面に付着している複数の絶縁性粒子43とを備える。絶縁性粒子43にかえて絶縁性粒子3を用いてもよい。
導電性粒子42は、基材粒子11と、基材粒子11の表面上に配置された導電部51とを有する。導電部51は導電層である。導電性粒子42は、導電性粒子22のように芯物質を有さない。導電部51は、第1の部分と、該第1の部分よりも厚みが厚い第2の部分とを有する。導電性粒子42は表面に、複数の突起52を有する。複数の突起52を除く部分が、導電部51の上記第1の部分である。複数の突起52は、導電部51の厚みが厚い上記第2の部分である。絶縁性粒子43は、被覆粒子ではない。
図4に、本発明の第4の実施形態に係る絶縁性粒子付き導電性粒子を断面図で示す。
図4に示す絶縁性粒子付き導電性粒子61は、導電性粒子2と、導電性粒子2の表面に付着している複数の絶縁性粒子43と、導電性粒子2と絶縁性粒子43との表面を被覆している被膜62とを備える。導電性粒子2にかえて導電性粒子22,42を用いてもよい。絶縁性粒子43にかえて絶縁性粒子3を用いてもよい。
なお、被膜62は、導電性粒子2、及び絶縁性粒子43の表面全体を必ずしも被覆している必要はない。被膜62は、導電性粒子2、導電部12、及び絶縁性粒子43の表面全体を被覆していることが好ましい。被膜62により、導電性粒子2、導電部12及び絶縁性粒子43の表面が露出していないことが好ましい。導電部12の表面の少なくとも一部の領域を被膜62が被覆していることにより、被膜62が形成されている部分において、導電部12の錆を抑制できる。
導電部12に錆をより一層生じ難くする観点からは、絶縁性粒子付き導電性粒子61を5重量%クエン酸水溶液で処理して被膜62を剥離することにより、剥離した被膜62を含む処理液を得た後、該処理液をろ過することにより得られたろ過液は、リン元素を50ppm以上、10000ppm以下含むことが好ましい。導電部12に錆をより一層生じ難くする観点からは、絶縁性粒子付き導電性粒子61を5重量%クエン酸水溶液で処理して被膜62を剥離することにより、剥離した被膜62を含む処理液を得た後、該処理液をろ過することにより得られたろ過液は、珪素元素を50ppm以上、10000ppm以下含むことが好ましい。上記ろ過液中の珪素元素又はリン元素の含有量は、より好ましくは100ppm以上、より好ましくは5000ppm以下、更に好ましくは1000ppm以下である。
上記リン元素及び珪素元素の含有量は、ICP発光分析装置を用いて測定できる。ICP発光分析装置の市販品としては、堀場製作所社製「ULTIMA2」等が挙げられる。
被膜62を有する絶縁性粒子付き導電性粒子61の場合には、上記リン元素及び上記珪素元素の含有量は、通常、被膜62により決まる。すなわち、上記リン元素及び上記珪素元素の含有量は、被膜62におけるリン元素及び珪素元素の割合を示す。
絶縁性粒子付き導電性粒子1,21,41,61では、絶縁性粒子付き導電性粒子1,21,41,61の比重Aの導電性粒子2,22,42の比重Bに対する比重比(A/B)は、0.97未満である。導電性粒子2,22,42の比重は、2.0以上、3.5以下である。このような絶縁性粒子付き導電性粒子1,21,41,61をバインダー樹脂と混合して異方性導電材料を作製することで、異方性導電材料における絶縁性粒子付き導電性粒子1,21,41,61の沈降を顕著に抑制できる。このため、上下の電極間の接続抵抗を効果的に低くすることができ、電極間をより一層確実に導通させることができる。さらに、接続されてはならない隣り合う電極間で短絡が生じ難くなる。
以下、導電性粒子、絶縁性粒子及び被膜の詳細を説明する。
[導電性粒子]
導電部を少なくとも表面に有する導電性粒子の表面に、上記絶縁性粒子を付着させることにより、絶縁性粒子付き導電性粒子を得ることができる。上記導電性粒子における上記導電部は導電層であることが好ましい。
上記導電性粒子は、少なくとも表面に導電部を有していればよい。該導電性粒子は、基材粒子と、該基材粒子の表面上に配置された導電部とを有する導電性粒子であってもよい。該導電性粒子は、全体が導電部である金属粒子であってもよい。なかでも、コストを低減したり、導電性粒子の柔軟性を高くして、電極間の導通信頼性を高めたりする観点からは、基材粒子と、該基材粒子の表面上に設けられた導電部とを有する導電性粒子が好ましい。
上記基材粒子としては、樹脂粒子、金属を除く無機粒子、有機無機ハイブリッド粒子及び金属粒子等が挙げられる。上記基材粒子は、樹脂粒子、金属を除く無機粒子又は有機無機ハイブリッド粒子であることが好ましい。
上記基材粒子は、樹脂により形成された樹脂粒子であることが好ましい。絶縁性粒子付き導電性粒子を用いて電極間を接続する際には、絶縁性粒子付き導電性粒子を電極間に配置した後、圧着することにより絶縁性粒子付き導電性粒子を圧縮させる。基材粒子が樹脂粒子であると、上記圧着の際に導電性粒子が変形しやすく、導電性粒子と電極との接触面積が大きくなる。このため、電極間の導通信頼性が高くなる。
上記樹脂粒子を形成するための樹脂としては、例えば、ポリオレフィン樹脂、アクリル樹脂、フェノール樹脂、メラミン樹脂、ベンゾグアナミン樹脂、尿素樹脂、エポキシ樹脂、不飽和ポリエステル樹脂、飽和ポリエステル樹脂、ポリエチレンテレフタレート、ポリスルホン、ポリフェニレンオキサイド、ポリアセタール、ポリイミド、ポリアミドイミド、ポリエーテルエーテルケトン、ポリエーテルスルホン、ジビニルベンゼン重合体、並びにジビニルベンゼン系共重合体等が挙げられる。上記ジビニルベンゼン系共重合体等としては、ジビニルベンゼン−スチレン共重合体及びジビニルベンゼン−(メタ)アクリル酸エステル共重合体等が挙げられる。上記樹脂粒子の硬度を好適な範囲に容易に制御できるので、上記樹脂粒子を形成するための樹脂は、エチレン性不飽和基を有する重合性単量体を1種又は2種以上重合させた重合体であることが好ましい。
上記無機粒子を形成するための無機物としては、シリカ及びカーボンブラック等が挙げられる。上記有機無機ハイブリッド粒子としては、例えば、架橋したアルコキシシリルポリマーとアクリル樹脂とにより形成された有機無機ハイブリッド粒子等が挙げられる。
上記基材粒子が金属粒子である場合に、該金属粒子を形成するための金属としては、銀、銅、ニッケル、ケイ素、金及びチタン等が挙げられる。上記基材粒子が金属粒子である場合に、該金属粒子は銅粒子であることが好ましい。
上記導電部を形成するための金属は特に限定されない。さらに、導電性粒子が、全体が導電部である金属粒子である場合、該金属粒子を形成するための金属は特に限定されない。該金属としては、例えば、金、銀、銅、パラジウム、白金、亜鉛、鉄、錫、鉛、アルミニウム、コバルト、インジウム、ニッケル、クロム、チタン、アンチモン、ビスマス、タリウム、ゲルマニウム、カドミウム、ケイ素及びこれらの合金等が挙げられる。また、上記金属としては、錫ドープ酸化インジウム(ITO)及びはんだ等が挙げられる。なかでも、電極間の接続抵抗がより一層低くなるので、錫を含む合金、ニッケル、パラジウム、銅又は金が好ましく、ニッケル又はパラジウムがより好ましい。
なお、導電部の表面には、酸化により水酸基が存在することが多い。一般的に、ニッケルにより形成された導電部の表面には、酸化により水酸基が存在する。このような水酸基を有する導電部は絶縁性粒子と化学結合しやすく、例えば水酸基を有する絶縁性粒子と化学結合する。
上記導電層は、1つの層により形成されていてもよい。導電層は、複数の層により形成されていてもよい。すなわち、導電層は、2層以上の積層構造を有していてもよい。導電層が複数の層により形成されている場合には、最外層は、金層、ニッケル層、パラジウム層、銅層又は錫と銀とを含む合金層であることが好ましく、金層又はパラジウム層であることがより好ましく、金層であることが特に好ましい。最外層がこれらの好ましい導電層である場合には、電極間の接続抵抗がより一層低くなる。また、最外層が金層である場合には、耐腐食性がより一層高くなる。
上記基材粒子の表面上に導電層を形成する方法は特に限定されない。導電層を形成する方法としては、例えば、無電解めっきによる方法、電気めっきによる方法、物理的蒸着による方法、並びに金属粉末もしくは金属粉末とバインダーとを含むペーストを基材粒子の表面にコーティングする方法等が挙げられる。なかでも、導電層の形成が簡便であるので、無電解めっきによる方法が好ましい。上記物理的蒸着による方法としては、真空蒸着、イオンプレーティング及びイオンスパッタリング等の方法が挙げられる。
上記基材粒子の表面上に導電層を形成する方法として物理的な衝突による方法も、生産性を高める観点で有効である。物理的な衝突により形成する方法としては、例えばシータコンポーザ(徳寿工作所社製)を用いてコーティングする方法がある。
上記導電性粒子の平均粒子径は、好ましくは0.5μm以上、より好ましくは1μm以上、好ましくは100μm以下、より好ましくは20μm以下、更に好ましくは5μm以下である。導電性粒子の平均粒子径が上記下限以上及び上記上限以下であると、絶縁性粒子付き導電性粒子を用いて電極間を接続した場合に、導電性粒子と電極との接触面積が充分に大きくなり、かつ導電層を形成する際に凝集した導電性粒子が形成されにくくなる。また、導電性粒子を介して接続された電極間の間隔が大きくなりすぎず、かつ導電層が基材粒子の表面から剥離し難くなる。
上記導電性粒子の「平均粒子径」は、数平均粒子径を示す。導電性粒子の平均粒子径は、任意の導電性粒子50個を電子顕微鏡又は光学顕微鏡にて観察し、平均値を算出することにより求められる。
上記導電層の厚みは好ましくは0.005μm以上、より好ましくは0.01μm以上、好ましくは1μm以下、より好ましくは0.3μm以下である。導電層の厚みが上記下限以上及び上記上限以下であると、充分な導電性が得られ、かつ導電性粒子が硬くなりすぎずに、電極間の接続の際に導電性粒子が充分に変形する。
上記導電層が複数の層により形成されている場合に、最外層の導電層の厚みは、特に最外層が金層である場合の金層の厚みは、好ましくは0.001μm以上、より好ましくは0.01μm以上、好ましくは0.5μm以下、より好ましくは0.1μm以下である。上記最外層の導電層の厚みが上記下限以上及び上記上限以下であると、最外層の導電層による被覆を均一にでき、耐腐食性が充分に高くなり、かつ電極間の接続抵抗が充分に低くなる。
上記導電層の厚みは、例えば透過型電子顕微鏡(TEM)を用いて、導電性粒子又は絶縁性粒子付き導電性粒子の断面を観察することにより測定できる。
上記導電性粒子は表面に突起を有することが好ましい。上記導電性粒子は、導電部の表面に複数の突起を有することが好ましい。該突起は複数であることが好ましい。絶縁性粒子付き導電性粒子により接続される電極の表面には、酸化被膜が形成されていることが多い。さらに、上記導電性粒子の導電部の表面には、酸化被膜が形成されていることが多い。突起を有する導電性粒子の使用により、電極間に絶縁性粒子付き導電性粒子を配置した後、圧着させることにより、突起により上記酸化被膜が効果的に排除される。このため、電極と導電性粒子とがより一層確実に接触し、電極間の接続抵抗が低くなる。さらに、導電性粒子の突起によって、導電性粒子と電極との間の絶縁性粒子を効果的に排除できる。このため、電極間の導通信頼性がより一層高くなる。
導電性粒子の表面に突起を形成する方法としては、基材粒子の表面に芯物質を付着させた後、無電解めっきにより導電層を形成する方法、並びに基材粒子の表面に無電解めっきにより導電層を形成した後、芯物質を付着させ、更に無電解めっきにより導電層を形成する方法等が挙げられる。また、無電解めっき等により導電層を形成する際に、導電層の厚みを部分的に異ならせることによっても、上記突起を形成できる。
上記基材粒子の表面に芯物質を付着させる方法としては、例えば、基材粒子の分散液中に、芯物質となる導電性物質を添加し、基材粒子の表面に芯物質を、例えば、ファンデルワールス力により集積させ、付着させる方法、並びに基材粒子を入れた容器に、芯物質となる導電性物質を添加し、容器の回転等による機械的な作用により基材粒子の表面に芯物質を付着させる方法等が挙げられる。なかでも、付着させる芯物質の量を制御しやすいため、分散液中の基材粒子の表面に芯物質を集積させ、付着させる方法が好ましい。
上記導電性粒子は、基材粒子の表面上に第1の導電層を有し、かつ該第1の導電層上に第2の導電層を有していてもよい。この場合に、第1の導電層の表面に芯物質を付着させてもよい。芯物質は第2の導電層により被覆されていること好ましい。上記第1の導電層の厚みは、0.05〜0.5μmの範囲内であることが好ましい。導電性粒子は、基材粒子の表面上に第1の導電層を形成し、次に該第1の導電層の表面上に芯物質を付着させた後、第1の導電層及び芯物質の表面上に第2の導電層を形成することにより得られていることが好ましい。
上記芯物質を構成する導電性物質としては、例えば、金属、金属の酸化物、黒鉛等の導電性非金属及び導電性ポリマー等が挙げられる。導電性ポリマーとしては、ポリアセチレン等が挙げられる。なかでも、導電性を高めることができるので、金属が好ましい。
上記金属としては、例えば、金、銀、銅、白金、亜鉛、鉄、鉛、錫、アルミニウム、コバルト、インジウム、ニッケル、クロム、チタン、アンチモン、ビスマス、ゲルマニウム及びカドミウム等の金属、並びに錫−鉛合金、錫−銅合金、錫−銀合金及び錫−鉛−銀合金等の2種類以上の金属で構成される合金等が挙げられる。なかでも、ニッケル、銅、銀又は金が好ましい。上記芯物質を構成する金属は、上記導電部(導電層)を構成する金属と同じであってもよく、異なっていてもよい。
上記芯物質の形状は特に限定されない。芯物質の形状は塊状であることが好ましい。芯物質としては、例えば、粒子状の塊、複数の微小粒子が凝集した凝集塊、及び不定形の塊等が挙げられる。
[絶縁性粒子]
上記絶縁性粒子は、絶縁性を有する粒子である。絶縁性粒子は導電性粒子よりも小さい。絶縁性粒子付き導電性粒子を用いて電極間を接続すると、絶縁性粒子により、隣接する電極間の短絡を防止できる。具体的には、複数の絶縁性粒子付き導電性粒子が接触したときに、複数の絶縁性粒子付き導電性粒子における導電性粒子間には絶縁性粒子が存在するので、上下の電極間ではなく、横方向に隣り合う電極間の短絡を防止できる。なお、電極間の接続の際に、2つの電極で絶縁性粒子付き導電性粒子を加圧することにより、導電部と電極との間の絶縁性粒子を容易に排除できる。導電性粒子の表面に突起が設けられている場合には、導電部と電極との間の絶縁性粒子を容易に排除できる。さらに突起部分が電極との接触を容易にするため接続信頼性が向上する。
上記絶縁性粒子を構成する材料としては、絶縁性の樹脂、及び絶縁性の無機物等が挙げられる。上記絶縁性の樹脂としては、基材粒子として用いることが可能な樹脂粒子を形成するための樹脂として挙げた上記樹脂が挙げられる。上記絶縁性の無機物としては、基材粒子として用いることが可能な無機粒子を形成するための無機物として挙げた上記無機物が挙げられる。
上記絶縁性粒子の材料である絶縁性樹脂の具体例としては、ポリオレフィン類、(メタ)アクリレート重合体、(メタ)アクリレート共重合体、ブロックポリマー、熱可塑性樹脂、熱可塑性樹脂の架橋物、熱硬化性樹脂及び水溶性樹脂等が挙げられる。
上記ポリオレフィン類としては、ポリエチレン、エチレン−酢酸ビニル共重合体及びエチレン−アクリル酸エステル共重合体等が挙げられる。上記(メタ)アクリレート重合体としては、ポリメチル(メタ)アクリレート、ポリエチル(メタ)アクリレート及びポリブチル(メタ)アクリレート等が挙げられる。上記ブロックポリマーとしては、ポリスチレン、スチレン−アクリル酸エステル共重合体、SB型スチレン−ブタジエンブロック共重合体、及びSBS型スチレン−ブタジエンブロック共重合体、並びにこれらの水素添加物等が挙げられる。上記熱可塑性樹脂としては、ビニル重合体及びビニル共重合体等が挙げられる。上記熱硬化性樹脂としては、エポキシ樹脂、フェノール樹脂及びメラミン樹脂等が挙げられる。上記水溶性樹脂としては、ポリビニルアルコール、ポリアクリル酸、ポリアクリルアミド、ポリビニルピロリドン、ポリエチレンオキシド及びメチルセルロース等が挙げられる。なかでも、水溶性樹脂が好ましく、ポリビニルアルコールがより好ましい。
熱圧着時の絶縁性粒子の脱離性をより一層高める観点からは、絶縁性粒子又は絶縁性粒子本体は、無機粒子であることが好ましく、シリカ粒子であることが好ましい。上記無機粒子としては、シラス粒子、ハイドロキシアパタイト粒子、マグネシア粒子、酸化ジルコニウム粒子及びシリカ粒子等が挙げられる。シリカ粒子としては、粉砕シリカ、球状シリカが挙げられ、球状シリカを用いることが好ましい。また、シリカ粒子は表面に、例えばカルボキシル基、水酸基等の化学結合可能な官能基を有することが好ましく、水酸基を有することがより好ましい。無機粒子は比較的硬く、特にシリカ粒子は比較的硬い。このような硬い絶縁性粒子をそのまま絶縁性粒子として用いた絶縁性粒子付き導電性粒子をバインダー樹脂中に添加して混練すると、絶縁性粒子が硬いので、導電性粒子の表面から絶縁性粒子が脱離しやすい傾向がある。絶縁性粒子が上記高分子化合物により形成された層を有する場合には、硬い絶縁性粒子を用いたとしても、上記混練の際に、硬い絶縁性粒子が脱離するのを抑制できる。
上記有機化合物により形成された層及び上記高分子化合物により形成された層は、例えば柔軟層としての役割を果たす。上記高分子化合物により形成された層における高分子化合物又は重合等により該高分子化合物となる化合物としては、重合可能な反応性官能基を有する化合物であることが好ましい。該重合可能な反応性官能基は、不飽和二重結合であることが好ましい。例えば、絶縁性粒子本体の表面上で不飽和二重結合を有する化合物(高分子化合物となる化合物)を重合反応させてもよく、また高分子化合物と絶縁性粒子本体の表面の反応性官能基とを反応させてもよい。上記高分子化合物としては、(メタ)アクリロイル基を有する化合物、エポキシ基を有する化合物及びビニル基を有する化合物等が挙げられる。絶縁性粒子付き導電性粒子を分散する際などに、導電性粒子の表面から絶縁性粒子の脱離を抑制する観点からは、上記高分子化合物又は該高分子化合物となる化合物は、(メタ)アクリロイル基、グリシジル基及びビニル基からなる群から選択された少なくとも1種の反応性官能基を有することが好ましい。なかでも、絶縁性粒子の脱離をより一層抑制する観点からは、上記高分子化合物又は該高分子化合物となる化合物は、(メタ)アクリロイル基を有することが好ましい。
上記(メタ)アクリロイル基を有する化合物の具体例としては、メタクリル酸、ヒドロキシエチルアクリレート及びジメタクリル酸エチレングリコール等が挙げられる。
上記エポキシ化合物の具体例としては、ビスフェノールA型エポキシ樹脂及びレゾルシノールグリシジルエーテル等が挙げられる。
上記ビニル基を有する化合物の具体例としては、スチレン及び酢酸ビニル等が挙げられる。
上記高分子化合物の重量平均分子量は、1000以上であることが好ましい。上記高分子化合物の重量平均分子量の上限は特に限定されないが、上記高分子化合物の重量平均分子量は20000以下であることが好ましい。該重量平均分子量はゲルパーミエーションクロマトグラフィー(GPC)により測定されたポリスチレン換算での値を示す。
上記絶縁性粒子本体の表面に上記高分子化合物により形成された層を形成する方法は特に限定されない。絶縁性粒子本体の表面の少なくとも一部の領域を覆うように、高分子化合物又は高分子化合物となる化合物を用いて、高分子化合物により形成された層を形成し、絶縁性粒子を得ることが好ましい。上記高分子化合物により形成された層の形成方法の一例としては、ビニル基などの反応性官能基を表面に有する絶縁性粒子本体に反応性二重結合と水酸基とを有する化合物を絶縁性粒子本体の表面上で重合させる方法等が挙げられる。ただし、この形成方法以外の方法を用いてもよい。
上記絶縁性粒子本体と上記層とは化学的に結合していることが好ましい。この化学的結合には、共有結合、水素結合、イオン結合及び配位結合等が含まれる。なかでも、共有結合が好ましく、反応性官能基を用いた化学的結合が好ましい。
上記化学的結合を形成する反応性官能基としては、例えば、ビニル基、(メタ)アクリロイル基、シラン基、シラノール基、カルボキシル基、アミノ基、アンモニウム基、ニトロ基、水酸基、カルボニル基、チオール基、スルホン酸基、スルホニウム基、ホウ酸基、オキサゾリン基、ピロリドン基、燐酸基及びニトリル基等が挙げられる。中でも、ビニル基、(メタ)アクリロイル基が好ましい。
絶縁性粒子の脱離をより一層抑制し、接続構造体における絶縁信頼性をより一層高める観点からは、上記絶縁性粒子本体として、反応性官能基を表面に有する絶縁性粒子本体を用いることが好ましい。絶縁性粒子の脱離をより一層抑制し、接続構造体における絶縁信頼性をより一層高める観点からは、上記絶縁性粒子本体として、反応性官能基を有する化合物を用いて表面処理された絶縁性粒子本体を用いることが好ましい。絶縁性粒子の脱離をより一層抑制し、接続構造体における絶縁信頼性をより一層高める観点からは、反応性官能基を表面に有する上記絶縁性粒子本体と、高分子化合物又は該高分子化合物となる化合物とを用いて、上記絶縁性粒子本体の表面の反応性官能基に、上記高分子化合物により形成された層を化学的に結合させることにより、上記絶縁性粒子本体と上記層とが化学的に結合している上記絶縁性粒子が得られていることが好ましい。
上記絶縁性粒子本体が表面に有する上記反応性官能基としては、(メタ)アクリロイル基、グリシジル基、水酸基、ビニル基及びアミノ基等が挙げられる。上記絶縁性粒子本体が表面に有する上記反応性官能基は、(メタ)アクリロイル基、グリシジル基、水酸基、ビニル基及びアミノ基からなる群から選択された少なくとも1種の反応性官能基であることが好ましい。
上記絶縁性粒子本体の表面に上記反応性官能基を導入するための化合物(表面処理物質)としては、(メタ)アクリロイル基を有する化合物、エポキシ基を有する化合物及びビニル基を有する化合物等が挙げられる。
上記絶縁性粒子本体の表面に上記反応性官能基であるビニル基を導入するための化合物(表面処理物質)としては、ビニル基を有するシラン化合物、及びビニル基を有するチタン化合物、及びビニル基を有するリン酸化合物等が挙げられる。上記表面処理物質は、ビニル基を有するシラン化合物であることが好ましい。上記ビニル基を有するシラン化合物としては、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリアセトキシシラン及びビニルトリイソプロポキシシラン等が挙げられる。
上記絶縁性粒子本体の表面に上記反応性官能基である(メタ)アクリロイル基を導入するための化合物(表面処理物質)としては、(メタ)アクリロイル基を有するシラン化合物、及び(メタ)アクリロイル基を有するチタン化合物、及び(メタ)アクリロイル基を有するリン酸化合物等が挙げられる。上記表面処理物質は、(メタ)アクリロイル基を有するシラン化合物であることも好ましい。上記(メタ)アクリロイル基を有するシラン化合物としては、(メタ)アクリロキシプロピルトリエトキシシラン、(メタ)アクリロキシプロピルトリメトキシシラン及び(メタ)アクリロキシプロピルトリジメトキシシラン等が挙げられる。
上記絶縁性粒子は、上記絶縁性粒子本体と高分子化合物又は該高分子化合物となる化合物とを用いた混合による摩擦で形成されていないことが好ましい。また、上記絶縁性粒子本体の表面が上記層によりハイブリダイゼーション法を用いて被覆されていないことが好ましい。混合による摩擦やハイブリダイゼーション法を用いて絶縁性粒子が形成されている場合には、絶縁性粒子本体の表面上から層が脱離しやすくなる。また、絶縁性粒子の表面に、混練時に形成された層の破片が付着しやすくなる。このため、絶縁性粒子付き導電性粒子の導電層の表面上で脱離した層や層の破片が付着し、接続構造体における導通信頼性が低下しやすい傾向がある。従って、絶縁性粒子の脱離をより一層抑制し、接続構造体における絶縁信頼性及び導通信頼性をより一層高める観点からは、混合による摩擦で絶縁性粒子は形成されていないことが好ましく、ハイブリダイゼーション法を用いないことが好ましい。
上記絶縁性粒子を得る際に、上記絶縁性粒子本体100重量部に対する上記高分子化合物又は該高分子となる化合物の使用量は、好ましくは30重量部以上、より好ましくは50重量部以上、好ましくは500重量部以下、より好ましくは300重量部以下である。上記高分子化合物の使用量が上記下限以上及び上記上限以下であると、良好な層を形成できる。
上記高分子化合物により形成された層の具体的な製造条件の一例としては、以下の製造条件が挙げられる。
先ず、水などの溶媒100〜500重量部中に、反応性官能基を表面に有する絶縁性粒子本体1〜3重量部、反応性二重結合と水酸基とを有する化合物0.1〜20重量部(好ましくは0.1〜1重量部)、架橋剤0.01〜5重量部(好ましくは0.01〜1重量部)、分散剤0.1〜5重量部(好ましくは0.1〜3重量部)及び熱重合開始剤0.1〜5重量部(好ましくは0.1〜3重量部)を加える。次に、スリーワンモーターで撹拌しながらオイルバスで熱重合開始剤の反応温度以上まで昇温し、重合を開始し、その状態を5時間以上保持して反応させる。その後、遠心分離機を用いて、未反応の化合物を除去して、絶縁性粒子本体の表面が上記層により覆われている絶縁性粒子を得る。
上記絶縁性粒子の表面と上記導電性粒子の表面とに水酸基がある場合には、脱水反応により絶縁性粒子と導電性粒子との付着力が適度に高くなる。
水酸基を導入するための水酸基を有する化合物としては、P−OH基含有化合物及びSi−OH基含有化合物等が挙げられる。
上記P−OH基含有化合物の具体例としては、アシッドホスホオキシエチルメタクリレート、アシッドホスホオキシプロピルメタクリレート、アシッドホスホオキシポリオキシエチレングリコールモノメタクリレート及びアシッドホスホオキシポリオキシプロピレングリコールモノメタクリレート等が挙げられる。上記P−OH基含有化合物は1種のみが用いられてもよく、2種以上が併用されてもよい。
上記Si−OH基含有化合物の具体例としては、ビニルトリヒドロキシシラン、及び3−メタクリロキシプロピルトリヒドロキシシラン等が挙げられる。上記Si−OH基含有化合物は1種のみが用いられてもよく、2種以上が併用されてもよい。
例えば、水酸基を表面に有する絶縁性粒子は、シランカップリング剤を用いた処理により得ることができる。上記シランカップリング剤としては、例えば、ヒドロキシトリメトキシシラン等が挙げられる。
上記絶縁性粒子の粒子径は、導電性粒子の粒子径及び絶縁性粒子付き導電性粒子の用途等によって適宜選択できる。上記絶縁性粒子の平均粒子径は好ましくは0.005μm以上、より好ましくは0.01μm以上、好ましくは5μm以下、より好ましくは2.5μm以下、更に好ましくは1μm以下、特に好ましくは0.5μm以下である。絶縁性粒子の平均粒子径が上記下限以上であると、絶縁性粒子付き導電性粒子がバインダー樹脂に分散されたときに、複数の絶縁性粒子付き導電性粒子における導電性粒子同士が接触し難くなる。絶縁性粒子の平均粒子径が上記上限以下であると、電極間の接続の際に、電極と導電性粒子との間の絶縁性粒子を排除するために、圧力を高くしすぎる必要がなくなり、高温に加熱する必要もなくなる。
上記絶縁性粒子の「平均粒子径」は、数平均粒子径を示す。絶縁性粒子の平均粒子径は、粒度分布測定装置等を用いて求められる。
上記絶縁性粒子の平均粒子径は、導電性粒子の粒子径の1/2以下であることが好ましく、1/3以下であることがより好ましく、1/4以下であることが更に好ましく、1/5以下であることが特に好ましい。絶縁性粒子の粒子径は、導電性粒子の粒子径の1/1000以上であることが好ましく、1/10以上であることがより好ましく、1/10を超えることがより一層好ましい。絶縁性粒子の平均粒子径が導電性粒子の粒子径の1/5以下であると、例えば、絶縁性粒子付き導電性粒子を製造する際に、絶縁性粒子が導電性粒子の表面により一層効率的に付着する。
上記絶縁性粒子の平均粒子径は、導電性粒子の粒子径の1/10を超え、1/3以下であることが好ましい。この場合には、複数の絶縁性粒子付き導電性粒子における複数の導電性粒子同士が接触するのをより一層効果的に抑制できる。特に上記絶縁性粒子付き導電性粒子とバインダー樹脂とを含む異方性導電材料を用いて電極間を電気的に接続する際に、複数の導電性粒子が接触するのをより一層効果的に抑制できる。また、ペースト状の異方性導電材料を用いて電極間を電気的に接続する際に、複数の導電性粒子が接触するのをより一層効果的に抑制できる。このため、接続されてはならない横方向に隣り合う電極間がより一層接続され難く、隣り合う電極間の短絡が生じるのをより一層抑制できる。一方で、絶縁性粒子付き導電性粒子における絶縁性粒子は、電極と導電性粒子との間から圧着時により一層効果的に排除できる。このため、接続されるべき上下の電極間の導通信頼性をかなり高めることができる。
また、導電性粒子の粒子径が小さいほど、上記絶縁性粒子の平均粒子径が上記導電性粒子の粒子径の1/10を超え、1/3以下であることによる絶縁信頼性の向上効果がかなり大きくなる。特に、導電性粒子の粒子径が1μm以上、5μm以下である場合に、上記絶縁性粒子の平均粒子径が上記導電性粒子の粒子径の1/10を超え、1/3以下であると、電極間の絶縁信頼性が更に一層効果的に高くなる。これは、導電性粒子の粒子径が小さいと、曲率が大きくなるので、絶縁性粒子間の距離が同じ場合、導電層部分の飛び出しが大きくなり絶縁性を確保するためには絶縁性粒子の粒子径を大きくする必要があるためである。
電極間の導通信頼性及び絶縁信頼性を更に一層高める観点からは、上記絶縁性粒子の平均粒子径は上記導電性粒子の粒子径の1/8を超えることが好ましく、1/7.5以上であることがより好ましく、1/3.5以下であることが好ましく、1/4以下であることが更に好ましい。上記絶縁性粒子の平均粒子径は上記導電性粒子の粒子径の1/5を超えていてもよく、1/4.5以上であってもよい。
上記絶縁性粒子の平均粒子径は、上記導電性粒子における上記導電層の厚みの0.5倍以上であることが好ましく、1倍以上であることが更に好ましい。上記絶縁性粒子の平均粒子径は、上記導電性粒子における上記導電層の厚みの20倍以下であることが好ましく、10倍以下であることが更に好ましい。絶縁性粒子の平均粒子径と導電層の厚みとがこのような好ましい関係を満足すると、複数の絶縁性粒子付き導電性粒子における導電性粒子同士が接触し難くなり、導電層と電極との間の絶縁性粒子を容易に排除できる。
上記絶縁性粒子の平均粒子径は、芯物質の平均粒子径の0.5倍以上であることが好ましく、1倍以上であることが更に好ましい。上記絶縁性粒子の平均粒子径は、芯物質の平均粒子径の20倍以下であることが好ましく、10倍以下であることが更に好ましい。上記絶縁性粒子の平均粒子径と上記芯物質の平均粒子径とがこのような好ましい関係を満足すると、複数の絶縁性粒子付き導電性粒子における導電性粒子同士が接触し難くなり、導電層と電極との間の絶縁性粒子を容易に排除できる。
上記芯物質の「平均粒子径」は、数平均粒子径を示す。芯物質の平均粒子径は、粒度分布測定装置等を用いて求められる。
上記絶縁性粒子本体の弾性率は、上記導電性粒子における上記導電層の弾性率の1/1以下であることが好ましく、1/2以下であることが更に好ましい。上記絶縁性粒子本体の弾性率は、上記導電性粒子における上記導電層の弾性率の1/100以上であることが好ましく、1/50以上であることが更に好ましい。上記絶縁性粒子の弾性率と上記導電層の弾性率とがこのような好ましい関係を満足すると、複数の絶縁性粒子付き導電性粒子における導電性粒子同士が接触し難くなり、導電層と電極との間の絶縁性粒子を容易に排除できる。
上記弾性率は、精密万能試験機を用いて、JIS K7208に準拠して測定される。
絶縁性粒子の平均粒子径が200nmの場合、上記絶縁性粒子の真球度は好ましくは50nm以下である。
上記絶縁性粒子の変動係数(CV値)は、好ましくは1%以上、好ましくは10%以下、より好ましくは8%以下である。
粒子径の異なる2種以上の絶縁性粒子を用いてもよい。この場合には、導電性粒子の表面の大きな絶縁性粒子の間に、小さな絶縁性粒子を存在させることができるので、導電性粒子の露出面積を小さくすることができる。従って、複数の絶縁性粒子付き導電性粒子が接触したとしても、隣接する導電性粒子は接触し難いため、隣接する電極間の短絡を抑制できる。小さな絶縁性粒子の平均粒子径は、大きな絶縁性粒子の平均粒子径の1/2以下であることが好ましい。小さな絶縁性粒子の数は、大きな絶縁性粒子の数の1/4以下であることが好ましい。
上記高分子化合物により形成された層は上記絶縁性粒子本体よりも、柔軟性が高いことが好ましい。一般的に有機化合物により形成された高分子化合物により形成された層は、無機粒子よりも柔軟性が高い。上記層と上記絶縁性粒子本体との柔軟性は、例えば圧縮回復率を測定することにより評価可能である。また、絶縁性粒子本体の圧縮回復率及び層の圧縮回復率ではなく絶縁性粒子の圧縮回復率を測定し、絶縁性粒子の圧縮回復率の値から、差分を計算することにより、上記層と上記絶縁性粒子本体との柔軟性が判定できる。
上記圧縮回復率は、例えば、上記絶縁性粒子に一定加重をかけた時の粒径の変化量に対する、加重を開放した時の粒径の変化量の割合を計算して算出できる。
例えばシリカ粒子の表面を高分子化合物により形成された層で被覆した絶縁性粒子を、微小圧縮試験機(島津製作所社製)を使用して、20℃にて、1Nの力で圧縮した後、加重を開放した時の粒子の変形を計測することで圧縮回復率を測定できる。
測定に際しては1cm(内径縦1cm×横1cm×高さ1cm)のステンレス製カップに絶縁性粒子を最密充填になるように入れた後、0.90cm(縦0.95cm×横0.95cm)のステンレス製の蓋を移動可能なように設置して、蓋の上部から圧縮試験を実施して、蓋の移動範囲から圧縮回復率を測定してもよい。
[被膜]
上記被膜は、炭素数6〜22のアルキル基を有する化合物(以下、化合物Aともいう)により形成されていることが好ましい。上記アルキル基の炭素数が6以上であると、導電部の表面に錆がより一層生じ難くなる。上記アルキル基の炭素数が22以下であると、絶縁性粒子付き導電性粒子の導電性が高くなる。絶縁性粒子付き導電性粒子の導電性をより一層高める観点からは、上記化合物Aにおける上記アルキル基の炭素数は16以下であることが好ましい。上記アルキル基は直鎖構造を有していてもよく、分岐構造を有していてもよい。上記アルキル基は、直鎖構造を有することが好ましい。
上記化合物Aは、炭素数6〜22のアルキル基を有していれば特に限定されない。上記化合物Aは、炭素数6〜22のアルキル基を有するリン酸エステル又はその塩、炭素数6〜22のアルキル基を有する亜リン酸エステル又はその塩、炭素数6〜22のアルキル基を有するアルコキシシラン、炭素数6〜22のアルキル基を有するアルキルチオール、及び炭素数6〜22のアルキル基を有するジアルキルジスルフィドからなる群より選択される少なくとも1種であることが好ましい。すなわち、上記炭素数6〜22のアルキル基を有する化合物Aは、リン酸エステル又はその塩、亜リン酸エステル又はその塩、アルコキシシラン、アルキルチオール及びジアルキルジスルフィドからなる群より選択される少なくとも1種であることが好ましい。これらの好ましい化合物Aの使用により、導電部に錆をより一層生じ難くすることができる。錆をより一層生じ難くする観点からは、上記化合物Aは、上記リン酸エステル又はその塩、亜リン酸エステル又はその塩及びアルコキシシランからなる群から選択された少なくとも1種であることが好ましく、上記リン酸エステル又はその塩及び亜リン酸エステル又はその塩の内の少なくとも1種であることがより好ましい。上記化合物Aは、1種のみが用いられてもよく、2種以上が併用されてもよい。
上記化合物Aは、導電性粒子と反応可能な反応性官能基を有することが好ましく、導電部と反応可能な反応性官能基を有することが好ましい。上記化合物Aは、絶縁性粒子と反応可能な反応性官能基を有することが好ましい。被膜は、被膜を除く絶縁性粒子付き導電性粒子部分(導電性粒子又は絶縁性粒子)と化学結合していることが好ましい。被膜は、導電性粒子と化学結合していることが好ましく、導電部と化学結合していることが好ましい。被膜は、絶縁性粒子と化学結合していることが好ましい。被膜は、導電性粒子及び絶縁性粒子と化学結合していることがより好ましく、導電部及び絶縁性粒子と化学結合していることがより好ましい。上記反応性官能基の存在により、及び上記化学結合により、被膜の剥離が生じ難くなり、この結果導電部に錆がより一層生じ難くなり、かつ導電性粒子の表面から絶縁性粒子が意図せずにより一層脱離し難くなる。
上記炭素数6〜22のアルキル基を有するリン酸エステル又はその塩としては、例えば、リン酸ヘキシルエステル、リン酸ヘプチルエステル、リン酸モノオクチルエステル、リン酸モノノニルエステル、リン酸モノデシルエステル、リン酸モノウンデシルエステル、リン酸モノドデシルエステル、リン酸モノトリデシルエステル、リン酸モノテトラデシルエステル、リン酸モノペンタデシルエステル、リン酸モノヘキシルエステルモノナトリウム塩、リン酸モノヘプチルエステルモノナトリウム塩、リン酸モノオクチルエステルモノナトリウム塩、リン酸モノノニルエステルモノナトリウム塩、リン酸モノデシルエステルモノナトリウム塩、リン酸モノウンデシルエステルモノナトリウム塩、リン酸モノドデシルエステルモノナトリウム塩、リン酸モノトリデシルエステルモノナトリウム塩、リン酸モノテトラデシルエステルモノナトリウム塩及びリン酸モノペンタデシルエステルモノナトリウム塩等が挙げられる。上記リン酸エステルのカリウム塩を用いてもよい。
上記炭素数6〜22のアルキル基を有する亜リン酸エステル又はその塩としては、例えば、亜リン酸ヘキシルエステル、亜リン酸ヘプチルエステル、亜リン酸モノオクチルエステル、亜リン酸モノノニルエステル、亜リン酸モノデシルエステル、亜リン酸モノウンデシルエステル、亜リン酸モノドデシルエステル、亜リン酸モノトリデシルエステル、亜リン酸モノテトラデシルエステル、亜リン酸モノペンタデシルエステル、亜リン酸モノヘキシルエステルモノナトリウム塩、亜リン酸モノヘプチルエステルモノナトリウム塩、亜リン酸モノオクチルエステルモノナトリウム塩、亜リン酸モノノニルエステルモノナトリウム塩、亜リン酸モノデシルエステルモノナトリウム塩、亜リン酸モノウンデシルエステルモノナトリウム塩、亜リン酸モノドデシルエステルモノナトリウム塩、亜リン酸モノトリデシルエステルモノナトリウム塩、亜リン酸モノテトラデシルエステルモノナトリウム塩及び亜リン酸モノペンタデシルエステルモノナトリウム塩等が挙げられる。上記亜リン酸エステルのカリウム塩を用いてもよい。
上記炭素数6〜22のアルキル基を有するアルコキシシランとしては、例えば、ヘキシルトリメトキシシラン、ヘキシルトリエトキシシラン、ヘプチルトリメトキシシラン、ヘプチルトリエトキシシラン、オクチルトリメトキシシラン、オクチルトリエトキシシラン、ノニルトリメトキシシラン、ノニルトリエトキシシラン、デシルトリメトキシシラン、デシルトリエトキシシラン、ウンデシルトリメトキシシラン、ウンデシルトリエトキシシラン、ドデシルトリメトキシシラン、ドデシルトリエトキシシラン、トリデシルトリメトキシシラン、トリデシルトリエトキシシラン、テトラデシルトリメトキシシラン、テトラデシルトリエトキシシラン、ペンタデシルトリメトキシシラン及びペンタデシルトリエトキシシラン等が挙げられる。
上記炭素数6〜22のアルキル基を有するアルキルチオールとしては、例えば、ヘキシルチオール、ヘプチルチオール、オクチルチオール、ノニルチオール、デシルチオール、ウンデシルチオール、ドデシルチオール、トリデシルチオール、テトラデシルチオール、ペンタデシルチオール及びヘキサデシルチオール等が挙げられる。上記アルキルチオールは、アルキル鎖の末端にチオール基を有することが好ましい。
上記炭素数6〜22のアルキル基を有するジアルキルジスルフィドとしては、例えば、ジヘキシルジスルフィド、ジヘプチルジスルフィド、ジオクチルジスルフィド、ジノニルジスルフィド、ジデシルジスルフィド、ジウンデシルジスルフィド、ジドデシルジスルフィド、ジトリデシルジスルフィド、ジテトラデシルジスルフィド、ジペンタデシルジスルフィド及びジヘキサデシルジスルフィド等が挙げられる。
(絶縁性粒子付き導電性粒子の他の詳細)
上記導電性粒子の表面及び上記導電部の表面に絶縁性粒子を付着させる方法としては、化学的方法、及び物理的もしくは機械的方法等が挙げられる。上記化学的方法としては、例えば、界面重合法、粒子存在下での懸濁重合法及び乳化重合法等が挙げられる。上記物理的もしくは機械的方法としては、スプレードライ、ハイブリダイゼーション、静電付着法、噴霧法、ディッピング及び真空蒸着による方法等が挙げられる。ただし、ハイブリダイゼーション法では、絶縁性粒子の脱離が生じやすい傾向がある。このため、上記導電性粒子及び上記導電部の表面に絶縁性粒子を付着させる方法は、ハイブリダイゼーション法以外の方法であることが好ましい。なかでも、絶縁性粒子が脱離し難いことから、導電部の表面に、化学結合を介して絶縁性粒子を付着させる方法が好ましい。
本発明に係る絶縁性粒子付き導電性粒子において、絶縁性粒子はハイブリダイゼーション法により付着されていないことが好ましい。導電性粒子の表面の絶縁性粒子が付着している部分以外の部分には、高分子化合物は付着していないことが好ましい。このような絶縁性粒子付き導電性粒子は、ハイブリダイゼーション法を使用しないことで得ることができる。
なお、図7に示すように、ハイブリダイゼーション法を用いた従来の絶縁性粒子付き導電性粒子101では、導電性粒子102の表面の絶縁性粒子103が付着している部分102a以外の部分102bにも高分子化合物104が付着する。これは、ハイブリダイゼーション法では、圧縮剪断力がかかり、絶縁性粒子の付着と脱離とが繰り返し起こり、徐々に絶縁性粒子が付着するためである。圧縮剪断力により、絶縁性粒子の高分子化合物により形成された層が剥がれて、剥がれた高分子化合物が、導電性粒子の表面の絶縁性粒子が付着している部分以外の部分に付着する。導電性粒子の表面の絶縁性粒子が付着している部分以外の部分に付着した高分子化合物は、導電性粒子の体積抵抗率を高くしたり、電極間の接続抵抗を低下させたりする。
上記導電性粒子の表面及び上記導電部の表面に絶縁性粒子を付着させる方法の一例としては、以下の方法が挙げられる。
先ず、水などの溶媒中に、導電性粒子を入れ、撹拌しながら、絶縁性粒子を徐々に添加する。十分に撹拌した後、絶縁性粒子付き導電性粒子を分離し、真空乾燥機などにより乾燥して、絶縁性粒子付き導電性粒子を得る。
上記導電部は表面に、絶縁性粒子と反応可能な反応性官能基を有することが好ましく、被膜と反応可能な反応性官能基を有することが好ましい。上記被膜は表面に、導電部と反応可能な反応性官能基を有することが好ましく、絶縁性粒子と反応可能な官能基を有することが好ましい。絶縁性粒子は表面に、導電部と反応可能な反応性官能基を有することが好ましい。これらの反応性官能基により、導電性粒子の表面から絶縁性粒子が意図せずに脱離し難くなる。さらに、導電部の表面を被膜により充分に被覆でき、更に絶縁性粒子の表面を被膜により充分に被覆できる。
上記反応性官能基として、反応性を考慮して適宜の基が選択される。上記反応性官能基としては、水酸基、ビニル基及びアミノ基等が挙げられる。反応性に優れているので、上記反応性官能基は水酸基であることが好ましい。上記導電性粒子は表面に、水酸基を有することが好ましい。上記絶縁性粒子は表面に、水酸基を有することが好ましい。
絶縁性粒子の表面と導電性粒子の表面とに水酸基がある場合には、脱水反応により絶縁性粒子と導電性粒子との付着力が適度に高くなる。
上記水酸基を有する化合物としては、P−OH基含有化合物及びSi−OH基含有化合物等が挙げられる。絶縁性粒子の表面に水酸基を導入するための水酸基を有する化合物としては、P−OH基含有化合物及びSi−OH基含有化合物等が挙げられる。
上記P−OH基含有化合物の具体例としては、アシッドホスホオキシエチルメタクリレート、アシッドホスホオキシプロピルメタクリレート、アシッドホスホオキシポリオキシエチレングリコールモノメタクリレート及びアシッドホスホオキシポリオキシプロピレングリコールモノメタクリレート等が挙げられる。上記P−OH基含有化合物は1種のみが用いられてもよく、2種以上が併用されてもよい。
上記Si−OH基含有化合物の具体例としては、ビニルトリヒドロキシシラン、及び3−メタクリロキシプロピルトリヒドロキシシラン等が挙げられる。上記Si−OH基含有化合物は1種のみが用いられてもよく、2種以上が併用されてもよい。
例えば、水酸基を表面に有する絶縁性粒子は、シランカップリング剤を用いた処理により得ることができる。上記シランカップリング剤としては、例えば、ヒドロキシトリメトキシシラン等が挙げられる。
(被膜を備える絶縁性粒子付き導電性粒子の製造方法)
導電部を少なくとも表面に有する導電性粒子の表面に絶縁性粒子が付着した粒子を、絶縁性粒子付き導電性粒子本体と呼ぶ。上記絶縁性粒子付き導電性粒子の製造方法に関しては、絶縁性粒子付き導電性粒子本体の表面に、炭素数6〜22のアルキル基を有する化合物(化合物A)を用いて、上記絶縁性粒子付き導電性粒子本体の表面を被覆するように被膜を形成することが好ましい。
上記化合物Aを用いて、絶縁性粒子付き導電性粒子本体の表面に被膜を形成する方法としては特に限定されず、絶縁性粒子付き導電性粒子本体の表面に、上記化合物Aを含む溶液を付着させる方法等が挙げられる。
上記化合物Aを含む溶液における溶媒は、水であることが好ましい。上記化合物Aを含む溶液における溶媒は、テトラヒドロフラン、並びにメタノール、エタノール及びプロパノール等のアルコール等の有機溶剤を含んでいてもよい。絶縁性粒子付き導電性粒子本体の表面に上記溶液を付着させた後、溶媒は必要に応じて除去される。
上記化合物Aを含む溶液における上記化合物Aの含有量は、所望の被膜が得られるように適宜調整される。上記化合物Aを含む溶液100重量%中、上記化合物Aの含有量は0.5〜3重量%の範囲内であることが好ましい。
例えば、導電部の表面又は絶縁性粒子の表面に、上記化合物Aと反応可能な反応性官能基が存在する場合には、該反応性官能基と、上記化合物Aとを反応させ、上記導電部の表面及び絶縁性粒子の表面に上記化合物Aを化学結合させることができる。
絶縁性粒子付き導電性粒子本体が表面の少なくとも一部の領域に水酸基を有し、絶縁性粒子付き導電性粒子本体の表面の水酸基に、水酸基を有する炭素数6〜22のアルキル基を有する化合物(以下、化合物A1ともいう)を反応させて、絶縁性粒子付き導電性粒子本体の表面を被覆するように被膜を形成することが好ましい。また、導電性粒子が表面に水酸基を有し、該導電性粒子の表面の水酸基に、上記化合物A1を反応させて、絶縁性粒子付き導電性粒子本体の表面を被覆するように被膜を形成することが好ましい。絶縁性粒子が表面に水酸基を有し、絶縁性粒子の表面の水酸基に、上記化合物A1を反応させて、絶縁性粒子付き導電性粒子本体の表面を被覆するように被膜を形成することが好ましい。さらに、導電性粒子の表面及び絶縁性粒子の表面がそれぞれ水酸基を有し、導電性粒子の表面及び絶縁性粒子の表面の水酸基に、上記化合物A1を反応させて、絶縁性粒子付き導電性粒子本体の表面を被覆するように被膜を形成することが好ましい。これらの好ましい態様で被膜を形成することにより、導電部の表面を被膜により充分に被覆でき、更に絶縁性粒子の表面を被膜により充分に被覆できる。従って、導電部に錆がより一層生じ難くなり、被膜が剥離し難くなり、更に絶縁性粒子が意図せずに脱離し難くなる。
(異方性導電材料)
本発明に係る異方性導電材料は、上述した絶縁性粒子付き導電性粒子と、バインダー樹脂とを含む。上記絶縁性粒子付き導電性粒子を用いた場合には、絶縁性粒子付き導電性粒子をバインダー樹脂中に分散させる際などに、導電性粒子の表面から絶縁性粒子が脱離し難い。
上記バインダー樹脂は特に限定されない。上記バインダー樹脂としては、一般的には絶縁性の樹脂が用いられる。上記バインダー樹脂としては、例えば、ビニル樹脂、熱可塑性樹脂、硬化性樹脂、熱可塑性ブロック共重合体又はエラストマー等が挙げられる。上記バインダー樹脂は、1種のみが用いられてもよく、2種以上が併用されてもよい。
上記ビニル樹脂としては、例えば、酢酸ビニル樹脂、アクリル樹脂及びスチレン樹脂等が挙げられる。上記熱可塑性樹脂としては、例えば、ポリオレフィン樹脂、エチレン−酢酸ビニル共重合体及びポリアミド樹脂等が挙げられる。上記硬化性樹脂としては、例えば、エポキシ樹脂、ウレタン樹脂、ポリイミド樹脂及び不飽和ポリエステル樹脂等が挙げられる。なお、上記硬化性樹脂は、常温硬化型樹脂、熱硬化型樹脂、光硬化型樹脂又は湿気硬化型樹脂であってもよい。上記硬化性樹脂は、硬化剤と併用されてもよい。上記熱可塑性ブロック共重合体としては、例えば、スチレン−ブタジエン−スチレンブロック共重合体、スチレン−イソプレン−スチレンブロック共重合体、スチレン−ブタジエン−スチレンブロック共重合体の水素添加物、及びスチレン−イソプレン−スチレンブロック共重合体の水素添加物等が挙げられる。上記エラストマーとしては、例えば、スチレン−ブタジエン共重合ゴム、及びアクリロニトリル−スチレンブロック共重合ゴム等が挙げられる。
上記異方性導電材料は、上記絶縁性粒子付き導電性粒子及び上記バインダー樹脂の他に、例えば、充填剤、増量剤、軟化剤、可塑剤、重合触媒、硬化触媒、着色剤、酸化防止剤、熱安定剤、光安定剤、紫外線吸収剤、滑剤、帯電防止剤及び難燃剤等の各種添加剤を含んでいてもよい。
上記バインダー樹脂中に上記絶縁性粒子付き導電性粒子を分散させる方法は、従来公知の分散方法を用いることができ特に限定されない。上記バインダー樹脂中に上記絶縁性粒子付き導電性粒子を分散させる方法としては、例えば、上記バインダー樹脂中に上記絶縁性粒子付き導電性粒子を添加した後、プラネタリーミキサー等で混練して分散させる方法、上記絶縁性粒子付き導電性粒子を水又は有機溶剤中にホモジナイザー等を用いて均一に分散させた後、上記バインダー樹脂中に添加し、プラネタリーミキサー等で混練して分散させる方法、並びに上記バインダー樹脂を水又は有機溶剤等で希釈した後、上記絶縁性粒子付き導電性粒子を添加し、プラネタリーミキサー等で混練して分散させる方法等が挙げられる。
本発明に係る異方性導電材料は、異方性導電ペースト及び異方性導電フィルム等として使用され得る。上記異方性導電ペーストは、異方性導電インク又は異方性導電粘接着剤であってもよい。また、上記異方性導電フィルムには、異方性導電シートが含まれる。本発明の導電性粒子を含む異方性導電材料が、異方性導電フィルム等のフィルム状の接着剤として使用される場合には、絶縁性粒子付き導電性粒子を含むフィルム状の接着剤に、絶縁性粒子付き導電性粒子を含まないフィルム状の接着剤が積層されていてもよい。ただし、上述のように、本発明に係る異方性導電材料は、ペースト状であることが好ましく、異方性導電ペーストであることが好ましい。ペースト状には液状が含まれる。
異方性導電材料100重量%中、上記バインダー樹脂の含有量は好ましくは10重量%以上、より好ましくは30重量%以上、更に好ましくは50重量%以上、特に好ましくは70重量%以上、好ましくは99.99重量%以下、より好ましくは99.9重量%以下である。上記バインダー樹脂の含有量が上記下限以上及び上記上限以下であると、電極間に絶縁性粒子付き導電性粒子が効率的に配置され、異方性導電材料により接続された接続対象部材の接続信頼性がより一層高くなる。
異方性導電材料100重量%中、上記絶縁性粒子付き導電性粒子の含有量は好ましくは0.01重量%以上、より好ましくは0.1重量%以上、好ましくは40重量%以下、より好ましくは20重量%以下、更に好ましくは10重量%以下である。上記絶縁性粒子付き導電性粒子の含有量が上記下限以上及び上記上限以下であると、電極間の導通信頼性がより一層高くなる。
(接続構造体)
本発明に係る絶縁性粒子付き導電性粒子を用いて、又は本発明に係る絶縁性粒子付き導電性粒子とバインダー樹脂とを含む異方性導電材料を用いて、接続対象部材を接続することにより、接続構造体を得ることができる。
上記接続構造体は、第1の接続対象部材と、第2の接続対象部材と、第1,第2の接続対象部材を接続している接続部とを備え、該接続部が本発明の絶縁性粒子付き導電性粒子により形成されているか、又は該絶縁性粒子付き導電性粒子とバインダー樹脂とを含む異方性導電材料により形成されている接続構造体であることが好ましい。絶縁性粒子付き導電性粒子を用いた場合には、接続部自体が絶縁性粒子付き導電性粒子である。すなわち、第1,第2の接続対象部材が絶縁性粒子付き導電性粒子により接続される。
図5に、本発明の第1の実施形態に係る絶縁性粒子付き導電性粒子を用いた接続構造体を模式的に正面断面図で示す。
図5に示す接続構造体81は、第1の接続対象部材82と、第2の接続対象部材83と、第1,第2の接続対象部材82,83を接続している接続部84とを備える。接続部84は、絶縁性粒子付き導電性粒子1を含む異方性導電材料により形成されている。具体的には、絶縁性粒子付き導電性粒子1を複数含む異方性導電材料を硬化させることにより形成されている。なお、図5では、絶縁性粒子付き導電性粒子1は、図示の便宜上、略図的に示されている。絶縁性粒子付き導電性粒子1にかえて、絶縁性粒子付き導電性粒子21,41,61などを用いてもよい。
第1の接続対象部材82は上面82a(表面)に、複数の電極82bを有する。第2の接続対象部材83は下面83a(表面)に、複数の電極83bを有する。電極82bと電極83bとが、1つ又は複数の絶縁性粒子付き導電性粒子1により電気的に接続されている。従って、第1,第2の接続対象部材82,83が絶縁性粒子付き導電性粒子1により電気的に接続されている。
上記接続構造体の製造方法は特に限定されない。接続構造体の製造方法の一例としては、第1の接続対象部材と第2の接続対象部材との間に上記異方性導電材料を配置し、積層体を得た後、該積層体を加熱及び加圧する方法等が挙げられる。上記加圧の圧力は9.8×10〜4.9×10Pa程度である。上記加熱の温度は、120〜220℃程度である。
上記積層体を加熱及び加圧する際に、導電性粒子2と電極82b,83bとの間に存在していた絶縁性粒子3を排除できる。例えば、上記加熱及び加圧の際には、導電性粒子2と電極82b,83bとの間に存在していた絶縁性粒子3が溶融したり、変形したりして、導電性粒子2の表面が部分的に露出する。なお、上記加熱及び加圧の際には、大きな力が付与されるので、導電性粒子2の表面から一部の絶縁性粒子3が剥離して、導電性粒子2の表面が部分的に露出することもある。導電性粒子2の表面が露出した部分が、電極82b,83bに接触することにより、導電性粒子2を介して電極82b,83bを電気的に接続できる。
上記接続対象部材としては、具体的には、半導体チップ、コンデンサ及びダイオード等の電子部品、並びにプリント基板、フレキシブルプリント基板及びガラス基板等の回路基板などの電子部品等が挙げられる。上記異方性導電材料は、電子部品を接続するための異方性導電材料であることが好ましい。上記異方性導電材料はペースト状の異方性導電ペーストであり、ペースト状の状態で接続対象部材上に塗工されることが好ましい。
本発明に係る絶縁性粒子付き導電性粒子は、特にガラス基板と半導体チップとを接続対象部材とするCOG、又はガラス基板とフレキシブルプリント基板(FPC)とを接続対象部材とするFOGに好適に使用される。本発明に係る絶縁性粒子付き導電性粒子は、COGに用いられてもよく、FOGに用いられてもよい。本発明に係る接続構造体では、上記第1,第2の接続対象部材が、ガラス基板と半導体チップとであるか、又はガラス基板とフレキシブルプリント基板とであることが好ましい。上記第1,第2の接続対象部材は、ガラス基板と半導体チップとであってもよく、ガラス基板とフレキシブルプリント基板とであってもよい。
ガラス基板と半導体チップとを接続対象部材とするCOGで使用される半導体チップには、バンプが設けられていることが好ましい。該バンプサイズは1000μm以上、10000μm以下の電極面積であることが好ましい。該バンプ(電極)が設けられた半導体チップにおける電極スペースは好ましくは30μm以下、より好ましくは20μm以下、更に好ましくは10μm以下である。このようなCOG用途に、本発明に係る絶縁性粒子付き導電性粒子は好適に用いられる。ガラス基板とフレキシブルプリント基板とを接続対象部材とするFOGで使用されるFPCでは、電極スペースは好ましくは30μm以下、より好ましくは20μm以下である。
上記接続対象部材に設けられている電極としては、金電極、ニッケル電極、錫電極、アルミニウム電極、銅電極、モリブデン電極及びタングステン電極等の金属電極が挙げられる。上記接続対象部材がフレキシブルプリント基板である場合には、上記電極は金電極、ニッケル電極、錫電極又は銅電極であることが好ましい。上記接続対象部材がガラス基板である場合には、上記電極はアルミニウム電極、銅電極、モリブデン電極又はタングステン電極であることが好ましい。なお、上記電極がアルミニウム電極である場合には、アルミニウムのみで形成された電極であってもよく、金属酸化物層の表面にアルミニウム層が積層された電極であってもよい。上記金属酸化物層の材料としては、3価の金属元素がドープされた酸化インジウム及び3価の金属元素がドープされた酸化亜鉛等が挙げられる。上記3価の金属元素としては、Sn、Al及びGa等が挙げられる。
以下、実施例及び比較例を挙げて、本発明を具体的に説明する。本発明は、以下の実施例のみに限定されない。
(実施例1)
ジビニルベンゼン樹脂粒子の表面上にニッケルめっき層(導電層)が形成されている導電性粒子(平均粒子径3.01μm、導電層の厚み0.12μm)を用意した。
また、ゾルゲル法を使用して作製したシリカ粒子(平均粒子径200nm)の表面をビニルトリエトキシシランで被覆し、ビニル基を表面に有する絶縁性粒子を絶縁性粒子本体として得た。
水200mL中に、上記絶縁性粒子本体1重量部と、高分子化合物となる化合物であるメタクリル酸0.22重量部と、高分子化合物となる化合物であるジメタクリル酸エチレングリコール0.05重量部と、開始剤(和光純薬工業社製「V−50」)0.5重量部とをスリーワンモーターで十分に攪拌しながら70℃まで昇温し、70℃で6時間保持して、上記モノマーを重合させた。
その後、冷却し、遠心分離機で固液分離を2回行い、余分なモノマーを洗浄により除去し、高分子化合物により表面全体が被覆された絶縁性粒子を得た。次に、得られた絶縁性粒子を純水30mLに分散して、絶縁性粒子の分散液を得た。
1Lのセパラブルフラスコに純水250mLと、エタノール50mLと、上記導電性粒子15重量部とを入れ、十分に攪拌し、導電性粒子を含む液を得た。この導電性粒子を含む液に、超音波を当てながら上記絶縁性粒子の分散液を10分間かけて滴下した後、40℃に昇温し1時間攪拌した。その後、ろ過し、真空乾燥機により100℃で8時間乾燥させ、絶縁性粒子付き導電性粒子を得た。
(実施例2)
高分子化合物により表面全体が被覆された絶縁性粒子を得る際に、高分子化合物となる化合物を、メタクリル酸0.33重量部と、ジビニルベンゼン0.05重量部とに変更したこと以外は実施例1と同様にして、絶縁性粒子付き導電性粒子を得た。
(実施例3)
シリカ粒子の表面をメタクリロキシプロピルトリエトキシシランで被覆し、メタクリロイル基を表面に有する絶縁性粒子を絶縁性粒子本体として得たこと、並びに該絶縁性粒子本体を用いて高分子化合物により表面全体が被覆された絶縁性粒子を得る際に、高分子化合物となる化合物を、酢酸ビニル0.28重量部と、N,N−メチレンビスアクリルアミド0.05重量部とに変更したこと以外は実施例1と同様にして、絶縁性粒子付き導電性粒子を得た。
(実施例4)
ジビニルベンゼン樹脂粒子の表面に芯物質としてニッケル粉体(100nm)が付着しており、かつニッケル粉体が付着したジビニルベンゼン粒子の表面上にニッケルめっき層(導電層)が形成されている導電性粒子(平均粒子径3.03μm、導電層の厚み0.12μm)を用いたこと以外は実施例1と同様にして、絶縁性粒子付き導電性粒子を得た。
(実施例5)
物理的/機械的ハイブリダイゼーション法を使用して、実施例1で作製した絶縁性粒子を、実施例1で用意した導電性粒子に付着させて、絶縁性粒子付き導電性粒子を得た。
(比較例1)
絶縁性粒子本体の表面を高分子化合物により被覆しなかったこと以外は実施例1と同様にして、絶縁性粒子付き導電性粒子を得た。
すなわち、導電性粒子の表面に絶縁性粒子を付着させる際に、上記絶縁性粒子の分散液として、上記ビニル基を表面に有する絶縁性粒子(高分子化合物により被覆されていない)を、純水30mLに分散した分散液を用いた。
(比較例2)
導電性粒子の導電層の厚みを0.25μmにしたこと以外は実施例1と同様にして絶縁性粒子付き導電性粒子を得た。
(比較例3)
導電性粒子の導電層の厚みを0.06μmにしたこと以外は実施例1と同様にして絶縁性粒子付き導電性粒子を得た。
(実施例1〜5及び比較例1〜3の評価)
(1)比重測定
絶縁性粒子付き導電性粒子の比重A、上記導電性粒子の比重B、上記絶縁性粒子の比重Cを測定した。なお比重A及び比重Bについては比重測定機(アキュピック:島津製作所社製)によって測定した。また、比重CについてはTEMによりコア粒径と高分子層の膜厚とを測定し、そこから計算される計算比重を採用した。
(2)絶縁性粒子付き導電性粒子における被覆率及び絶縁性粒子の残存率
超音波処理前に、SEMでの観察により100個の実施例及び比較例の絶縁性粒子付き導電性粒子を観察した。絶縁性粒子付き導電性粒子における導電性粒子の表面積全体に占める絶縁性粒子により被覆されている部分の面積である被覆率X1を求めた。
次に、エタノール100重量部に、絶縁性粒子付き導電性粒子3重量部を添加し、絶縁性粒子付き導電性粒子含有液を得た。この絶縁性粒子付き導電性粒子含有液を超音波洗浄機で20℃及び40kHzの条件で5分間撹拌しながら、超音波処理した。超音波処理後に、SEMでの観察により100個の絶縁性粒子付き導電性粒子を観察し、絶縁性粒子付き導電性粒子における導電性粒子の表面積全体に占める絶縁性粒子により被覆されている部分の面積である被覆率X2を求めた。絶縁性粒子の残存率は、被覆率X1と被覆率X2とから、下記式(1)により求めた。
絶縁性粒子の残存率(%)=(超音波処理後の被覆率X2/超音波処理前の被覆率X1)×100 ・・・式(1)
(3)接続構造体の作製
実施例及び比較例の絶縁性粒子付き導電性粒子を含有量が10重量%となるように、三井化学社製「ストラクトボンドXN−5A」に添加し、分散させ、異方性導電ペーストを得た。
L/Sが30μm/30μmであるITO電極パターンが上面に形成された透明ガラス基板を用意した。また、L/Sが30μm/30μmである銅電極パターンが下面に形成された半導体チップを用意した。
上記透明ガラス基板上に、得られた異方性導電ペーストを厚さ30μmとなるように塗工し、異方性導電ペースト層を形成した。次に、異方性導電ペースト層上に上記半導体チップを、電極同士が対向するように積層した。その後、異方性導電ペースト層の温度が185℃となるようにヘッドの温度を調整しながら、半導体チップの上面に加圧加熱ヘッドを載せ、1MPaの圧力をかけて異方性導電ペースト層を185℃で完全硬化させ、接続構造体を得た。
(4)導通評価(上下の電極間)
得られた接続構造体の上下の電極間の接続抵抗をそれぞれ、4端子法により測定した。2つの接続抵抗の平均値を算出した。なお、電圧=電流×抵抗の関係から、一定の電流を流した時の電圧を測定することにより接続抵抗を求めることができる。接続抵抗の平均値が2.0Ω以下である場合を「○」、接続抵抗の平均値は2.0Ω以下であるが、導電性粒子の表面の絶縁性粒子が付着している部分以外の部分に、高分子化合物が付着している箇所がある場合を「△」、接続抵抗の平均値が2.0Ωを超える場合を「×」と判定した。
(5)絶縁評価(横方向に隣り合う電極間)
得られた接続構造体において、隣接する電極間のリークの有無を、テスターで抵抗を測定することにより評価した。抵抗が500MΩを超える場合にリーク無しと判断して結果を「○」と判定し、抵抗が500MΩ以下の場合にリーク有りと判断して結果を「×」と判定した。
結果を下記の表1に示す。
Figure 2016149363
なお、実施例1〜4で得られた絶縁性粒子において、絶縁性粒子の圧縮回復率を測定することにより、高分子化合物により形成された層は、シリカ粒子よりも柔軟性が高いことを確認した。
また、実施例1〜4の絶縁性粒子付き導電性粒子では、導電性粒子の表面の絶縁性粒子が付着している部分以外の部分には、高分子化合物は付着していないことを確認した。実施例5では、物理的/機械的ハイブリダイゼーション法を用いているので、導電性粒子の表面の絶縁性粒子が付着している部分以外の部分に、高分子化合物が付着している箇所があった。
(実施例6)
純水25gとエタノール25gとの混合液中に実施例1で得られた上記被膜を形成する前の絶縁性粒子付き導電性粒子10重量部とリン酸モノヘキシルエステル0.5重量部とを入れ、50℃で1時間攪拌した。その後、ろ過し、真空乾燥機により100℃で8時間乾燥させ、上記リン酸モノヘキシルエステルにより形成された被膜を備える絶縁性粒子付き導電性粒子を得た。上記被膜は、導電性粒子の表面と絶縁性粒子の表面とを被覆していた。導電性粒子の表面を被覆している被膜部分と、絶縁性粒子の表面を被覆している被膜部分とは、連なっていた。
(実施例7)
リン酸モノヘキシルエステルを、リン酸モノオクチルエステルに変更したこと以外は、実施例6と同様にして、被膜を備える絶縁性粒子付き導電性粒子を得た。
(実施例8)
リン酸モノヘキシルエステルを、ヘキシルトリエトキシシランに変更したこと以外は、実施例6と同様にして、被膜を備える絶縁性粒子付き導電性粒子を得た。
(実施例6〜8の評価)
(1)絶縁性粒子付き導電性粒子におけるリン元素又は珪素元素の含有量の評価
実施例6〜8の絶縁性粒子付き導電性粒子1重量部を5重量%のクエン酸水溶液(5重量%のクエン酸を水95重量%に溶かした液)100重量部に入れ、40℃にして30分間攪拌して処理液を得た後、該処理液をろ紙によりろ過することによりろ過液を得た。実施例6〜8の絶縁性粒子付き導電性粒子では、クエン酸水溶液による処理の後、被膜を除く絶縁性粒子付き導電性粒子部分(導電性粒子又は絶縁性粒子)の表面に付着していた被膜は剥離していた。
ICP発光分析装置(堀場製作所社製「ULTIMA2」)を用いて、得られたろ過液におけるリン元素又は珪素元素の含有量を測定した。
(2)接続構造体の作製
実施例1〜5及び比較例1〜3の評価と同様にして、接続構造体を得た。
(3)導通評価(上下の電極間)
実施例1〜5及び比較例1〜3の評価と同様にして、導通評価を行った。
(4)絶縁評価(横方向に隣り合う電極間)
実施例1〜5及び比較例1〜3の評価と同様にして、絶縁評価を行った。
(5)防錆評価
上記絶縁評価で作製した接続構造体を、85℃及び相対湿度85%の条件で放置した。放置開始から、100時間後に上記同様に電極間の接続抵抗を4端子法により測定した。上記の導通評価時の接続抵抗(放置前)の平均値に比べ、接続抵抗(放置後)の平均値が150%未満であった場合を「○」、接続抵抗(放置後)の平均値が150%以上上昇した場合を「×」と判定した。
結果を下記の表2に示す。また、下記の表2に、絶縁性粒子付き導電性粒子の比重A、上記導電性粒子の比重B、上記絶縁性粒子の比重Cを示した。
Figure 2016149363
なお、E型粘度計(東機産業社製)を用いて、25℃及び2.5rpmの条件で、実施例1〜8で得られた異方性導電ペーストの粘度を測定した結果、実施例1〜8の異方性導電ペーストの粘度はいずれも、200Pa・sを超え、1000Pa・s以下であった。
1…絶縁性粒子付き導電性粒子
2…導電性粒子
3…絶縁性粒子
5…絶縁性粒子本体
6…層
11…基材粒子
12…導電部
21…絶縁性粒子付き導電性粒子
22…導電性粒子
31…導電部
32…芯物質
33…突起
41…絶縁性粒子付き導電性粒子
42…導電性粒子
43…絶縁性粒子
51…導電部
52…突起
61…絶縁性粒子付き導電性粒子
62…被膜
81…接続構造体
82…第1の接続対象部材
82a…上面
82b…電極
83…第2の接続対象部材
83a…下面
83b…電極
84…接続部

Claims (14)

  1. 導電部を少なくとも表面に有する導電性粒子と、
    前記導電性粒子の表面に付着している複数の絶縁性粒子とを備え、
    絶縁性粒子付き導電性粒子の比重の前記導電性粒子の比重に対する比重比が0.97未満であり、
    前記導電性粒子の比重が2.0以上、3.5以下であり、
    エタノール100重量部に、絶縁性粒子付き導電性粒子3重量部を添加した絶縁性粒子付き導電性粒子含有液を20℃及び40kHzの条件で5分間超音波処理したときに、下記式(1)により求められる絶縁性粒子の残存率が60%以上、95%以下である、絶縁性粒子付き導電性粒子。 (式(1)において、前記被覆率は、絶縁性粒子付き導電性粒子における前記導電性粒子の表面積全体に占める前記絶縁性粒子により被覆されている部分の面積である。)
  2. 導電部を少なくとも表面に有する導電性粒子と、
    前記導電性粒子の表面に付着している複数の絶縁性粒子とを備え、
    絶縁性粒子付き導電性粒子の比重の前記導電性粒子の比重に対する比重比が0.97未満であり、
    前記導電性粒子の比重が2.0以上、3.5以下であり、
    絶縁性粒子付き導電性粒子における前記導電性粒子の表面積全体に占める前記絶縁性粒子により被覆されている部分の面積である被覆率が40%以上である、絶縁性粒子付き導電性粒子。
  3. 絶縁性粒子付き導電性粒子における前記導電性粒子の表面積全体に占める前記絶縁性粒子により被覆されている部分の面積である被覆率が40%以上である、請求項1に記載の絶縁性粒子付き導電性粒子。
  4. 絶縁性粒子付き導電性粒子における前記導電性粒子の表面積全体に占める前記絶縁性粒子により被覆されている部分の面積である前記被覆率が60%以上である、請求項2又は3に記載の絶縁性粒子付き導電性粒子。
  5. 絶縁性粒子付き導電性粒子の比重の前記導電性粒子の比重に対する比重比が、0.95未満である、請求項1〜4のいずれか1項に記載の絶縁性粒子付き導電性粒子。
  6. 前記絶縁性粒子の比重が1.0以上、2.0以下である、請求項1〜5のいずれか1項に記載の絶縁性粒子付き導電性粒子。
  7. 前記導電性粒子の表面を被覆している被膜をさらに備える、請求項1〜6のいずれか1項に記載の絶縁性粒子付き導電性粒子。
  8. 前記被膜が、前記導電性粒子の表面と前記絶縁性粒子の表面とを被覆している、請求項7に記載の絶縁性粒子付き導電性粒子。
  9. 前記被膜が、炭素数6〜22のアルキル基を有する化合物により形成されている、請求項7又は8に記載の絶縁性粒子付き導電性粒子。
  10. ペースト状の異方性導電ペーストに用いられる絶縁性粒子付き導電性粒子である、請求項1〜9のいずれか1項に記載の絶縁性粒子付き導電性粒子。
  11. 前記導電性粒子が、基材粒子と、前記基材粒子の表面上に配置された導電層を有する、請求項1〜10のいずれか1項に記載の絶縁性粒子付き導電性粒子。
  12. 請求項1〜11のいずれか1項に記載の絶縁性粒子付き導電性粒子と、バインダー樹脂とを含む、異方性導電材料。
  13. ペースト状の異方性導電ペーストである、請求項12に記載の異方性導電材料。
  14. 第1の接続対象部材と、第2の接続対象部材と、該第1,第2の接続対象部材を接続している接続部とを備え、
    前記接続部が、請求項1〜11のいずれか1項に記載の絶縁性粒子付き導電性粒子により形成されているか、又は該絶縁性粒子付き導電性粒子とバインダー樹脂とを含む異方性導電材料により形成されている、接続構造体。
JP2016030764A 2011-06-22 2016-02-22 絶縁性粒子付き導電性粒子、異方性導電材料及び接続構造体 Active JP6205004B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011138547 2011-06-22
JP2011138547 2011-06-22

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2012141244A Division JP5899063B2 (ja) 2011-06-22 2012-06-22 絶縁性粒子付き導電性粒子、異方性導電材料及び接続構造体

Publications (2)

Publication Number Publication Date
JP2016149363A true JP2016149363A (ja) 2016-08-18
JP6205004B2 JP6205004B2 (ja) 2017-09-27

Family

ID=47787291

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2012141244A Active JP5899063B2 (ja) 2011-06-22 2012-06-22 絶縁性粒子付き導電性粒子、異方性導電材料及び接続構造体
JP2016030764A Active JP6205004B2 (ja) 2011-06-22 2016-02-22 絶縁性粒子付き導電性粒子、異方性導電材料及び接続構造体

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2012141244A Active JP5899063B2 (ja) 2011-06-22 2012-06-22 絶縁性粒子付き導電性粒子、異方性導電材料及び接続構造体

Country Status (1)

Country Link
JP (2) JP5899063B2 (ja)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5821551B2 (ja) * 2011-11-10 2015-11-24 日立化成株式会社 導電粒子、異方導電材料及び導電接続構造体
JP5821552B2 (ja) * 2011-11-10 2015-11-24 日立化成株式会社 撥水性導電粒子、異方導電材料及び導電接続構造体
JP6609092B2 (ja) * 2013-03-21 2019-11-20 積水化学工業株式会社 接続構造体の製造方法及び接続構造体
JP6317997B2 (ja) * 2013-05-13 2018-04-25 積水化学工業株式会社 導電性粒子、導電材料及び接続構造体
JP6457743B2 (ja) * 2013-05-22 2019-01-23 積水化学工業株式会社 接続構造体
JP6357348B2 (ja) * 2013-05-22 2018-07-11 積水化学工業株式会社 絶縁性粒子付き導電性粒子、導電材料及び接続構造体
JP6267067B2 (ja) * 2013-06-26 2018-01-24 積水化学工業株式会社 接続構造体
WO2015105119A1 (ja) * 2014-01-08 2015-07-16 積水化学工業株式会社 バックコンタクト方式の太陽電池モジュール用導電性粒子、導電材料及び太陽電池モジュール
CN105917418B (zh) * 2014-01-08 2018-02-13 积水化学工业株式会社 背接触式太阳能电池模块用导电性粒子、导电材料及太阳能电池模块
JP6798509B2 (ja) * 2016-02-10 2020-12-09 昭和電工マテリアルズ株式会社 絶縁被覆導電粒子、異方導電性接着剤、及び接続構造体
JP7130411B2 (ja) * 2018-04-03 2022-09-05 キヤノン株式会社 発光装置、表示装置および撮像装置
WO2019194133A1 (ja) * 2018-04-04 2019-10-10 積水化学工業株式会社 絶縁性粒子付き導電性粒子、絶縁性粒子付き導電性粒子の製造方法、導電材料及び接続構造体
TWI807064B (zh) * 2018-07-06 2023-07-01 日商積水化學工業股份有限公司 附絕緣性粒子之導電性粒子、導電材料及連接構造體
JP7062555B2 (ja) * 2018-08-27 2022-05-06 日本化学工業株式会社 被覆粒子
WO2022044913A1 (ja) * 2020-08-24 2022-03-03 日本化学工業株式会社 被覆粒子及びその製造方法
JP7430610B2 (ja) 2020-08-31 2024-02-13 日本化学工業株式会社 被覆粒子及びその製造方法
WO2022260158A1 (ja) * 2021-06-11 2022-12-15 積水化学工業株式会社 被覆粒子、樹脂組成物及び接続構造体
KR20240019751A (ko) * 2021-06-11 2024-02-14 세키스이가가쿠 고교가부시키가이샤 피복 입자, 피복 입자의 제조 방법, 수지 조성물 및 접속 구조체

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04149237A (ja) * 1990-10-12 1992-05-22 Soken Kagaku Kk 金属含有樹脂粒子およびその用途
JP2005197091A (ja) * 2004-01-07 2005-07-21 Hitachi Chem Co Ltd 回路接続材料、これを用いたフィルム状回路接続材料、回路部材の接続構造及びその製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04149237A (ja) * 1990-10-12 1992-05-22 Soken Kagaku Kk 金属含有樹脂粒子およびその用途
JP2005197091A (ja) * 2004-01-07 2005-07-21 Hitachi Chem Co Ltd 回路接続材料、これを用いたフィルム状回路接続材料、回路部材の接続構造及びその製造方法

Also Published As

Publication number Publication date
JP5899063B2 (ja) 2016-04-06
JP2013030479A (ja) 2013-02-07
JP6205004B2 (ja) 2017-09-27

Similar Documents

Publication Publication Date Title
JP6205004B2 (ja) 絶縁性粒子付き導電性粒子、異方性導電材料及び接続構造体
JP4977276B2 (ja) 絶縁性粒子付き導電性粒子の製造方法、異方性導電材料及び接続構造体
JP5060655B2 (ja) 絶縁性粒子付き導電性粒子、異方性導電材料及び接続構造体
JP6188456B2 (ja) 絶縁性粒子付き導電性粒子、導電材料及び接続構造体
JP5548053B2 (ja) 絶縁性粒子付き導電性粒子、絶縁性粒子付き導電性粒子の製造方法、異方性導電材料及び接続構造体
JP6084850B2 (ja) 絶縁性粒子付き導電性粒子、導電材料及び接続構造体
JP6453032B2 (ja) 導電性粒子、導電材料及び接続構造体
JP6212374B2 (ja) 絶縁性粒子付き導電性粒子、絶縁性粒子付き導電性粒子の製造方法、導電材料及び接続構造体
JP5703149B2 (ja) 絶縁性粒子付き導電性粒子、異方性導電材料及び接続構造体
JP6438186B2 (ja) 絶縁性粒子付き導電性粒子、導電材料及び接続構造体
JP6397736B2 (ja) 導電性粒子、導電材料及び接続構造体
JP6084866B2 (ja) 導電性粒子、導電材料及び接続構造体
JP6564302B2 (ja) 絶縁性粒子付き導電性粒子、絶縁性粒子付き導電性粒子の製造方法、導電材料及び接続構造体
JP5620342B2 (ja) 絶縁性粒子付き導電性粒子、異方性導電材料及び接続構造体
JP6357347B2 (ja) 導電性粒子、導電材料及び接続構造体
JP6397316B2 (ja) 導電性粒子、導電材料及び接続構造体
JP6596137B2 (ja) 導電性粒子、導電材料及び接続構造体

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170221

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20170417

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170518

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170808

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170901

R151 Written notification of patent or utility model registration

Ref document number: 6205004

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250