JP2016148599A - Method and system for removing radioactive cesium - Google Patents

Method and system for removing radioactive cesium Download PDF

Info

Publication number
JP2016148599A
JP2016148599A JP2015025991A JP2015025991A JP2016148599A JP 2016148599 A JP2016148599 A JP 2016148599A JP 2015025991 A JP2015025991 A JP 2015025991A JP 2015025991 A JP2015025991 A JP 2015025991A JP 2016148599 A JP2016148599 A JP 2016148599A
Authority
JP
Japan
Prior art keywords
ash
cesium
incineration
crystallization
incineration ash
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015025991A
Other languages
Japanese (ja)
Other versions
JP6050848B2 (en
Inventor
大 藤原
Masaru Fujiwara
大 藤原
尚弘 竹田
Hisahiro Takeda
尚弘 竹田
小倉 正裕
Masahiro Ogura
正裕 小倉
井出 昇明
Noriaki Ide
昇明 井出
政浩 大迫
Masahiro Osako
政浩 大迫
秀敏 倉持
Hidetoshi Kuramochi
秀敏 倉持
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinko Pantec Co Ltd
Original Assignee
Kobelco Eco Solutions Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobelco Eco Solutions Co Ltd filed Critical Kobelco Eco Solutions Co Ltd
Priority to JP2015025991A priority Critical patent/JP6050848B2/en
Publication of JP2016148599A publication Critical patent/JP2016148599A/en
Application granted granted Critical
Publication of JP6050848B2 publication Critical patent/JP6050848B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Gasification And Melting Of Waste (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a technique capable of efficiently removing radioactive cesium by volatilization from incineration ash while suppressing an increase in energy consumption, in a radioactive cesium removing technique for removing radioactive cesium by volatilization from incineration ash by adding a cesium volatilization accelerator to the incineration ash and heating the incineration ash.SOLUTION: When executing addition processing for adding a cesium volatilization accelerator to incineration ash generated in association with incineration of waste and heat processing for heating the incineration ash to which the cesium volatilization accelerator has been added, a method for removing radioactive cesium executes crystallization processing for holding the incineration ash in a crystallization temperature range to crystallize an amorphous component before the addition processing of the cesium volatilization accelerator.SELECTED DRAWING: Figure 1

Description

本発明は、廃棄物の焼却に伴って発生する焼却灰にセシウム揮発促進剤を添加する添加処理と、当該セシウム揮発促進剤が添加された焼却灰を加熱する加熱処理とを実行する放射性セシウム除去方法及び放射性セシウム除去システムに関する。   The present invention is a radioactive cesium removal that performs an addition process of adding a cesium volatilization accelerator to incineration ash generated with incineration of waste and a heating process of heating the incineration ash to which the cesium volatilization accelerator is added. The present invention relates to a method and a radioactive cesium removal system.

「福島県内の災害廃棄物の処理の方針」(平成23年6月23日、環境省)では、放射性物質を含む災害廃棄物の焼却に伴って発生する焼却灰の取り扱いについて、放射性セシウム濃度(セシウム134とセシウム137の合計値。以下「放射能濃度」という。)が8,000Bq/kgの基準値を超える場合には中間貯蔵施設等での保管が必要であるが、上記基準値以下である場合には一般廃棄物最終処分場(管理型最終処分場)で埋め立て可能という方針が示されている。しかしながら、埋め立て処分を促進させるためには、このような焼却灰から放射性セシウムを除去して、焼却灰の放射能濃度を一層低減させることが求められる。   In "Fukushima Prefecture's Policy on Disposal of Disaster Waste" (June 23, 2011, Ministry of the Environment), regarding the handling of incineration ash generated by incineration of disaster waste containing radioactive materials, the concentration of radioactive cesium ( If the total value of cesium 134 and cesium 137 (hereinafter referred to as “radioactivity concentration”) exceeds the standard value of 8,000 Bq / kg, storage in an intermediate storage facility is required. There is a policy that in some cases landfill is possible at a general waste final disposal site (managed final disposal site). However, in order to promote landfill disposal, it is required to remove radioactive cesium from such incinerated ash to further reduce the radioactive concentration of the incinerated ash.

また、廃棄物の焼却過程において、廃棄物中の放射性セシウムの多くは排ガスへ移行して飛灰に付着するため、主灰の放射能濃度は、飛灰と比べて小さくなり、上記基準値以下となることが多い。しかしながら、今後、除染特別地域などの高線量地域における除染廃棄物の焼却による減容化が進められるにあたり、上記基準値を超える主灰の量が増加する可能性がある。そこで、貯蔵容量に制限がある中間貯蔵施設等への主灰の搬入量を減らすためにも、このような主灰から放射性セシウムを除去して、主灰の放射能濃度を低減させることが求められる。   In addition, in the process of incineration of waste, most of the radioactive cesium in the waste moves to the exhaust gas and adheres to the fly ash, so the radioactivity concentration of the main ash is lower than that of the fly ash and is below the above standard value. Often. However, there is a possibility that the amount of main ash exceeding the above-mentioned standard value will increase in the future as volume reduction by incineration of decontamination waste in high-dose areas such as special decontamination areas is promoted. Therefore, in order to reduce the amount of main ash brought into intermediate storage facilities with limited storage capacity, it is necessary to remove radioactive cesium from such main ash and reduce the radioactivity concentration of main ash. It is done.

焼却灰から放射性セシウムを除去する従来の放射性セシウム除去技術として、焼却灰を塩化化合物などのセシウム揮発促進剤を添加した上で高温且つ長時間加熱することで、焼却灰から放射性セシウムを揮発除去するものが知られている(例えば、特許文献1〜3を参照。)。   As a conventional radioactive cesium removal technology that removes radioactive cesium from incineration ash, incineration ash is volatilized and removed from incineration ash by adding cesium volatilization accelerators such as chloride compounds and heating for a long time. The thing is known (for example, refer patent documents 1-3).

また、主灰中の放射性セシウムは、その95%が非晶質中に取り込まれているとの報告がある(例えば、非特許文献1を参照。)。   In addition, there is a report that 95% of the radioactive cesium in the main ash is incorporated in the amorphous material (see, for example, Non-Patent Document 1).

特開2014−174090号公報JP 2014-174090 A 特開2013−120146号公報JP 2013-120146 A 特開2013−122440号公報JP2013-122440A

東條安匡,石井三香子,松尾孝之,松藤敏彦,島岡隆行、「焼却主灰中難溶解性セシウムの存在形態とその長期安定性に関する研究」、第25回廃棄物資源循環学会研究発表会 講演原稿集 D6−3、2014年9月16日〜9月17日、第477頁−第478頁Anjo Tojo, Mikako Ishii, Takayuki Matsuo, Toshihiko Matsufuji, Takayuki Shimaoka, "Study on the existence and long-term stability of insoluble cesium in incinerator main ash", 25th Annual Conference of Japan Society for Waste Recycling Vol. D6-3, September 16-17, 2014, pp. 477-478

上述のように非晶質中に取り込まれた放射性セシウムはそのほとんどが非晶質中に取り込まれているため難溶性であり、除去するのが困難である。これに対し、従来の放射性セシウム除去技術では、焼却灰を非常に高温(例えば1200℃超)に加熱する必要があったが、この場合、大量のエネルギが必要となり、更には、焼却灰がスラグ化して元の性状とは大きく変化して取り扱い難いものとなるという問題もあった。   As described above, most of the radioactive cesium incorporated into the amorphous material is hardly soluble because it is incorporated into the amorphous material, and is difficult to remove. On the other hand, in the conventional radioactive cesium removal technology, it was necessary to heat the incineration ash to a very high temperature (for example, more than 1200 ° C.). In this case, a large amount of energy is required. There is also a problem that the original properties are greatly changed and difficult to handle.

この実情に鑑み、本発明の主たる課題は、焼却灰に対しセシウム揮発促進剤を添加した上で加熱することで、焼却灰から放射性セシウムを揮発除去する放射性セシウム除去技術において、エネルギ消費量の増加を抑制しながら、焼却灰から効率良く放射性セシウムを揮発除去することができる技術を提供する点にある。   In view of this situation, the main problem of the present invention is to increase the energy consumption in the radioactive cesium removal technology that volatilizes and removes radioactive cesium from the incinerated ash by adding a cesium volatilization accelerator to the incinerated ash and heating it. It is in the point of providing the technique which can volatilize and remove radioactive cesium from incineration ash efficiently.

本発明の第1特徴構成は、廃棄物の焼却に伴って発生する焼却灰にセシウム揮発促進剤を添加する添加処理と、当該セシウム揮発促進剤が添加された焼却灰を加熱する加熱処理とを実行する放射性セシウム除去方法であって、
前記添加処理の前に、焼却灰を結晶化温度域に保持して非晶質成分を結晶化させる結晶化処理を実行する点にある。
The first characteristic configuration of the present invention includes an addition process for adding a cesium volatilization accelerator to the incineration ash generated with incineration of waste, and a heating process for heating the incineration ash to which the cesium volatilization accelerator is added. A method of removing radioactive cesium,
Before the addition process, a crystallization process is performed in which the incinerated ash is maintained in the crystallization temperature range and the amorphous component is crystallized.

本特徴構成によれば、結晶化処理により焼却灰の大部分を占める非晶質を結晶構造に変化させることで、エネルギ消費量の増加を抑制しながら、焼却灰から効率良く放射性セシウムを揮発除去できる。   According to this feature configuration, the amorphous occupying most of the incinerated ash is changed to a crystal structure by crystallization treatment, and the radioactive cesium is efficiently volatilized and removed from the incinerated ash while suppressing an increase in energy consumption. it can.

即ち、焼却灰中の放射性セシウムの多くは焼却灰の大部分を占める非晶質中に取り込まれていると考えられている。そこで、セシウム促進剤を添加する前の焼却灰を結晶化温度域に保持することで、焼却灰の結晶化を促進させ、結晶化度の高い焼却灰を得ることができる。すると、その焼却灰において、放射性セシウムの多くは、難溶性の非晶質に取り込まれた状態ではなく、結晶化処理により生成された結晶構造中に取り込まれた状態で存在することになる。このように放射性セシウムを取り込んだ結晶構造については、非晶質とは異なり、セシウム揮発促進剤を添加した上で加熱処理を施すことで破壊され易くなる。このことから、結晶化処理を施した焼却灰を加熱処理するにあたり、比較的低温又は短時間で加熱してエネルギ消費量の増加を抑制した場合であっても、放射性セシウムを効率良く焼却灰から揮発除去することができる。   That is, it is considered that most of the radioactive cesium in the incineration ash is taken into the amorphous material that occupies most of the incineration ash. Therefore, by maintaining the incineration ash before adding the cesium accelerator in the crystallization temperature range, crystallization of the incineration ash can be promoted, and incineration ash with a high degree of crystallinity can be obtained. Then, in the incinerated ash, most of the radioactive cesium exists not in the state of being taken into the hardly soluble amorphous material but in the state taken into the crystal structure generated by the crystallization treatment. Thus, unlike the amorphous structure, the crystal structure incorporating radioactive cesium is easily destroyed by adding a cesium volatilization accelerator and then performing a heat treatment. From this, in the heat treatment of the incinerated ash subjected to crystallization treatment, even when it is heated at a relatively low temperature or in a short time to suppress an increase in energy consumption, radioactive cesium is efficiently removed from the incinerated ash. Volatilization can be removed.

本発明の第2特徴構成は、上述の第1特徴構成を備えた放射性セシウム除去方法において、廃棄物を焼却する焼却炉から結晶化温度域以上の焼却灰を受け入れ、
前記結晶化処理において、前記受け入れた焼却灰を結晶化温度域に保持して非晶質成分を結晶化させる点にある。
The second feature configuration of the present invention is the method for removing radioactive cesium provided with the first feature configuration described above, receiving incineration ash above the crystallization temperature range from an incinerator for incinerating waste,
In the crystallization treatment, the received incineration ash is maintained in a crystallization temperature range to crystallize an amorphous component.

本特徴構成によれば、焼却炉から排出された結晶化温度域以上の焼却灰を受け入れる場合においては、結晶化処理において、受け入れた高温の焼却灰をそのまま緩慢に冷却するなどして結晶化温度域に保持し非晶質成分を結晶化させることができる。したがって、焼却灰を結晶化温度域に保持するための再加熱の必要がないので、大幅なエネルギ消費量の削減を実現することができる。   According to this characteristic configuration, when receiving incineration ash discharged from the incinerator at a temperature higher than the crystallization temperature range, the crystallization temperature is reduced by slowly cooling the received high-temperature incineration ash as it is in the crystallization process. The amorphous component can be crystallized while being held in the region. Therefore, there is no need for reheating to keep the incinerated ash in the crystallization temperature range, so that a significant reduction in energy consumption can be realized.

本発明の第3特徴構成は、上述の第1特徴構成を備えた放射性セシウム除去方法において、結晶化温度域未満の焼却灰を受け入れ、
前記結晶化処理において、前記受け入れた焼却灰を再加熱して結晶化温度域に保持する点にある。
The third feature configuration of the present invention is the method for removing radioactive cesium having the first feature configuration described above, and accepts incinerated ash having a temperature lower than the crystallization temperature range,
In the crystallization process, the received incinerated ash is reheated and maintained in the crystallization temperature range.

本特徴構成によれば、結晶化温度域未満の焼却灰を受け入れる場合でも、結晶化処理における焼却灰の再加熱によって、当該焼却灰を結晶化温度域に保持して非晶質成分を結晶化させることができる。このように再加熱が必要な場合であっても、その再加熱の目標温度である結晶化温度域が、非晶質を多く含む焼却灰を溶融して放射性セシウムを揮発除去するための溶融温度よりも低温域であるため、全体としてエネルギ消費量の増加を抑制することができる。   According to this characteristic configuration, even when incineration ash having a temperature lower than the crystallization temperature range is accepted, recrystallization of the incineration ash in the crystallization process keeps the incineration ash in the crystallization temperature range and crystallizes the amorphous component. Can be made. Even when reheating is necessary in this way, the crystallization temperature range, which is the target temperature for the reheating, is a melting temperature for melting incineration ash containing a large amount of amorphous material to volatilize and remove radioactive cesium. Therefore, the increase in energy consumption can be suppressed as a whole.

本発明の第4特徴構成は、廃棄物の焼却に伴って発生する焼却灰にセシウム揮発促進剤を添加する添加処理を実行する添加処理部と、当該セシウム揮発促進剤が添加された焼却灰を加熱する加熱処理を実行する加熱処理部とを備えた放射性セシウム除去システムであって、
前記添加処理部による添加処理の前に、焼却灰を結晶化温度域に保持して非晶質成分を結晶化させる結晶化処理を実行する結晶化処理部を備えた点にある。
A fourth characteristic configuration of the present invention includes an addition processing unit that performs an addition process for adding a cesium volatilization accelerator to incineration ash generated incineration of waste, and an incineration ash to which the cesium volatilization accelerator is added. A radioactive cesium removal system including a heat treatment unit that performs heat treatment to heat,
Before the addition processing by the addition processing unit, a crystallization processing unit for performing a crystallization process for crystallizing an amorphous component while maintaining the incineration ash in a crystallization temperature range is provided.

本特徴構成によれば、前述の第1特徴構成を有する放射性セシウム除去方法が有する各処理を実行するための各処理部を備えているので、当該放射性セシウム除去方法と同様の作用効果を奏し、エネルギ消費量の増加を抑制しながら、主灰の大部分を占める非晶質中に取り込まれた放射性セシウムであっても、焼却灰から効率良く揮発除去することができる。   According to this characteristic configuration, since each processing unit for executing each process included in the radioactive cesium removal method having the first characteristic configuration described above is provided, the same operational effects as the radioactive cesium removal method are achieved, Even if the radioactive cesium taken in the amorphous which occupies most of the main ash can be volatilized and removed from the incinerated ash while suppressing an increase in energy consumption.

本発明の第5特徴構成は、上述の第1特徴構成を備えた放射性セシウム除去システムにおいて、廃棄物を焼却する焼却処理を実行する焼却炉を備えて廃棄物焼却設備として構成され、
前記結晶化処理部が、前記焼却炉から結晶化温度域以上の焼却灰を受け入れ、当該受け入れた焼却灰を結晶化温度域に保持して非晶質成分を結晶化させる点にある。
The fifth characteristic configuration of the present invention is configured as a waste incineration facility including an incinerator for performing an incineration process for incinerating waste in the radioactive cesium removal system having the first characteristic configuration described above.
The crystallization processing unit is configured to receive incineration ash having a temperature equal to or higher than the crystallization temperature range from the incinerator, and hold the received incineration ash in the crystallization temperature range to crystallize the amorphous component.

本特徴構成によれば、焼却炉を備えて廃棄物焼却設備として構成すると共に、結晶化処理部がその焼却炉から排出された結晶化温度域以上の焼却灰を受け入れる場合においては、前述の第2特徴構成を有する放射性セシウム除去方法と同様に、結晶化処理部が実行する結晶化処理において、受け入れた高温の焼却灰をそのまま緩慢に冷却するなどして結晶化温度域に保持し非晶質成分を結晶化させることができる。したがって、焼却灰を結晶化温度域に保持するための再加熱の必要がないので、大幅なエネルギ消費量の削減を実現することができる。   According to this characteristic configuration, an incinerator is provided and configured as a waste incineration facility, and when the crystallization processing unit accepts incineration ash that is discharged from the incinerator or higher than the crystallization temperature range, the above-described first Similar to the method of removing radioactive cesium having two characteristic configurations, in the crystallization process executed by the crystallization process unit, the received high-temperature incineration ash is kept in the crystallization temperature range by slowly cooling it as it is, so that it is amorphous. The component can be crystallized. Therefore, there is no need for reheating to keep the incinerated ash in the crystallization temperature range, so that a significant reduction in energy consumption can be realized.

本実施形態の処理システムの概略構成図Schematic configuration diagram of the processing system of this embodiment 本実施形態の処理システムにおける焼却炉及び結晶化処理部の構成図The block diagram of the incinerator and crystallization process part in the processing system of this embodiment 主灰の結晶構造の加熱処理前及び加熱処理後のX線回析結果を示すグラフ図Graph showing the X-ray diffraction results of the main ash crystal structure before and after heat treatment

本発明の実施形態について、図面に基づいて説明する。
図1に示す本実施形態の焼却灰の処理システム10(放射性セシウム除去システムの一例)は、廃棄物を焼却する焼却炉1(焼却炉の一例)を備えた廃棄物焼却設備として構成されており、更には、この焼却炉1における放射性物質を含む廃棄物の焼却に伴って発生する主灰(焼却灰の一例)から放射性セシウムを除去するものとして構成されている。このため、この処理システム10には、主灰にセシウム揮発促進剤を添加する添加処理を実行する添加処理部4と、当該セシウム揮発促進剤が添加された主灰を加熱する加熱処理を実行する加熱処理部5とが設けられている。
Embodiments of the present invention will be described with reference to the drawings.
The incineration ash treatment system 10 (an example of a radioactive cesium removal system) of the present embodiment shown in FIG. 1 is configured as a waste incineration facility including an incinerator 1 (an example of an incinerator) that incinerates waste. Furthermore, it is configured to remove radioactive cesium from the main ash (an example of the incineration ash) generated with the incineration of the waste containing the radioactive substance in the incinerator 1. For this reason, in this processing system 10, the addition process part 4 which performs the addition process which adds a cesium volatilization promoter to main ash, and the heat processing which heat the main ash to which the said cesium volatilization promoter was added are performed. A heat treatment unit 5 is provided.

ここで、「焼却灰」とは、都市ごみ、農林業系副産物(例えば、稲藁又は麦藁)、製材廃材、下水汚泥の脱水ケーキ、剪定枝、枯葉、草、紙類、プラスチック類、除染作業に用いられたタイベック又は衣類のような可燃性廃棄物、災害がれき等の災害廃棄物等の各種廃棄物の焼却によって生じる灰を意味する。   Here, “incinerated ash” means municipal waste, agricultural and forestry by-products (for example, rice straw or wheat straw), sawmill waste, dewatered sewage sludge cake, pruned branches, dead leaves, grass, paper, plastics, decontamination It means ash generated by incineration of various types of waste such as combustible waste such as tyvek or clothing used for work, disaster waste such as disaster debris, etc.

セシウム揮発促進剤の種類や加熱条件等については、公知技術を採用できるが、例えば、主灰に無機カルシウム化合物又は有機カルシウム化合物と塩化化合物をセシウム揮発促進剤として添加すれば、加熱処理において比較的低温の900℃〜1200℃且つ比較的短時間の120分以下、好ましくは10分以上60分以下の加熱により、主灰中の放射性セシウムを良好に揮発させることができる。   Known types of cesium volatilization accelerators and heating conditions can be used. For example, if an inorganic calcium compound or an organic calcium compound and a chloride compound are added as cesium volatilization accelerators to the main ash, the heat treatment is relatively easy. By heating at a low temperature of 900 ° C. to 1200 ° C. and a relatively short time of 120 minutes or less, preferably 10 minutes or more and 60 minutes or less, radioactive cesium in the main ash can be volatilized well.

尚、無機カルシウム化合物としては、酸化カルシウム、炭酸カルシウム、水酸化カルシウム、リン酸カルシウム、ケイ酸カルシウム、カルシウムシアナミド、硫酸カルシウム及び硝酸カルシウムからなる群より選択される少なくとも1種類の無機カルシウム化合物を利用することができる。また、有機カルシウム化合物としては、500℃以上の酸化雰囲気下で酸化カルシウムを生成する有機カルシウム化合物を利用することができる。また、塩化化合物としては、塩化ナトリウムが好適に利用可能であるが、塩化カルシウムや塩化カリウムなども利用することができる。   As the inorganic calcium compound, use at least one inorganic calcium compound selected from the group consisting of calcium oxide, calcium carbonate, calcium hydroxide, calcium phosphate, calcium silicate, calcium cyanamide, calcium sulfate and calcium nitrate. Can do. Moreover, as an organic calcium compound, the organic calcium compound which produces | generates a calcium oxide in the oxidation atmosphere of 500 degreeC or more can be utilized. Moreover, as a chlorinated compound, although sodium chloride can be utilized suitably, calcium chloride, potassium chloride, etc. can also be utilized.

主灰に対しセシウム揮発促進剤を添加する添加処理部4は、特に限定されないが公知のブレンダーやスクリューフィーダ等で構成されている。そして、この添加処理部4は、主灰を加熱処理部5側へ搬送しながら、その主灰に対してセシウム揮発促進剤を散布する形態で、主灰に対してセシウム揮発促進剤を添加する。尚、主灰とセシウム揮発促進剤を混合機等で事前に混合することも可能である。また、セシウム揮発促進剤については、固体状(粉体)で添加してもよいが、液体状(溶液)で供給することもでき、液体状で供給した場合には、主灰中の微粉の飛散を抑制する効果を得ることができる。   Although the addition process part 4 which adds a cesium volatilization promoter with respect to main ash is not specifically limited, It is comprised with a well-known blender, a screw feeder, etc. FIG. And this addition process part 4 adds a cesium volatilization promoter with respect to main ash in the form which sprinkles a cesium volatilization promoter with respect to the main ash, conveying main ash to the heat processing part 5 side. . The main ash and the cesium volatilization accelerator can be mixed in advance with a mixer or the like. The cesium volatilization accelerator may be added in a solid state (powder), but can also be supplied in a liquid state (solution). When supplied in a liquid state, the fine powder in the main ash The effect which suppresses scattering can be acquired.

主灰を加熱する加熱処理部5は、特に限定されないがロータリーキルンなどの公知の加熱炉で構成されている。そして、この加熱処理部5は、加熱処理により放射性セシウムが揮発除去された主灰を処理済主灰として排出すると共に、揮発した放射性セシウムを含む燃焼排ガスを排出する。   Although the heat processing part 5 which heats main ash is not specifically limited, It is comprised with well-known heating furnaces, such as a rotary kiln. And this heat processing part 5 discharges | emits the combustion exhaust gas containing the volatilized radioactive cesium while discharging | emitting the main ash from which radioactive cesium was volatilized and removed by heat processing as a processed main ash.

このように加熱処理部5から排出された処理済主灰は、放射線濃度が十分に低減されたものとなるため、放射性セシウムで汚染された汚染主灰の大幅な減容化が可能となると考えられる。   Thus, since the processed main ash discharged | emitted from the heat processing part 5 becomes a thing by which the radiation concentration was fully reduced, it thinks that the volume reduction of the contaminated main ash contaminated with radioactive cesium is attained. It is done.

一方、加熱処理部5から排出された燃焼排ガスには、主灰から飛散した微粉が飛灰として含まれており、揮発した放射性セシウムがその飛灰に付着する。このように放射性セシウムが付着して放射性濃度が高い飛灰はバグフィルタ6により回収され、中間貯蔵施設などで保管されることになる。   On the other hand, the combustion exhaust gas discharged from the heat treatment unit 5 contains fine powder scattered from the main ash as fly ash, and volatilized radioactive cesium adheres to the fly ash. As described above, fly ash having radioactive cesium attached thereto and having a high radioactive concentration is collected by the bag filter 6 and stored in an intermediate storage facility or the like.

以上が焼却灰の処理システム10の基本構成であるが、本実施形態の焼却灰の処理システム10及びそれにより実行される放射性セシウム除去方法は、エネルギ消費量の増加を抑制しながら、主灰の非晶質中に取り込まれた大部分の放射性セシウムであっても、焼却灰から効率良く揮発除去することができものとして構成されており、その詳細構成について以下に説明を加える。   The above is the basic configuration of the incineration ash processing system 10. However, the incineration ash processing system 10 and the radioactive cesium removal method executed by the incineration ash processing system 10 of the present embodiment suppress the increase in energy consumption and Even most of the radioactive cesium incorporated in the amorphous material is configured so that it can be efficiently volatilized and removed from the incinerated ash, and the detailed configuration will be described below.

添加処理部4による添加処理の前に、主灰を結晶化温度域に保持して非晶質成分を結晶化させる結晶化処理を実行する結晶化処理部2が設けられている。この結晶化処理部2は、詳細については後述するが、焼却炉1から結晶化温度域以上の主灰を受け入れ、当該受け入れた高温の焼却灰を緩慢冷却するなどして結晶化温度域に保持して非晶質成分を結晶化させる。以下、焼却炉1及び結晶化処理部2の具体的構成について説明を加える。   Prior to the addition processing by the addition processing unit 4, a crystallization processing unit 2 is provided that performs a crystallization process for crystallizing an amorphous component while maintaining the main ash in the crystallization temperature range. As will be described in detail later, this crystallization processing unit 2 accepts main ash having a temperature higher than the crystallization temperature range from the incinerator 1 and keeps the received high-temperature incineration ash in the crystallization temperature range by slowly cooling it. Thus, the amorphous component is crystallized. Hereinafter, specific configurations of the incinerator 1 and the crystallization processing unit 2 will be described.

図2に示すように、焼却炉1は、公知のストーカ炉として構成されており、投入された廃棄物を火格子1a上で撹拌・搬送しながら焼却し、その焼却の燃え残りである主灰を火格子1aの後端側にある主灰排出部1bから落下させ排出する。そして、この主灰排出部1bに排出される主灰は、高温の焼却時に形成された非晶質を多く含んでおり、廃棄物に含まれる放射性セシウムが、この非晶質中に取り込まれていると考えられる。   As shown in FIG. 2, the incinerator 1 is configured as a well-known stoker furnace, and incinerates the input waste while stirring and transporting it on the grate 1a, and the main ash which is the unburned residue of the incineration Are dropped from the main ash discharge part 1b on the rear end side of the grate 1a and discharged. And the main ash discharged | emitted by this main ash discharge part 1b contains many amorphous | non-crystalline forms formed at the time of high temperature incineration, and the radioactive cesium contained in waste is taken in in this amorphous | non-crystalline substance. It is thought that there is.

主灰排出部1bの下方には、主灰排出部1bから排出された結晶化温度域以上の主灰を収容する主灰収容部2aが設けられており、更に、その主灰収容部2aに収容された主灰を灰ピット3に搬送する主灰コンベア2bが設けられている。そして、これら主灰収容部2a及び主灰コンベア2bが、主灰を結晶化温度域に保持して非晶質成分を結晶化させる結晶化処理部2として機能する。   Below the main ash discharge part 1b, there is provided a main ash storage part 2a for storing the main ash discharged from the main ash discharge part 1b above the crystallization temperature range. A main ash conveyor 2 b is provided for conveying the stored main ash to the ash pit 3. And these main ash accommodating part 2a and main ash conveyor 2b function as the crystallization process part 2 which hold | maintains main ash in the crystallization temperature range, and crystallizes an amorphous component.

即ち、この主灰収容部2a及び主灰コンベア2bは、主灰を収容及び搬送すると共に、図示は省略するが外壁が断熱材で覆われていることにより、例えば800℃前後で受け入れた主灰を3時間以上24時間未満の時間をかけて冷却するというように、高温状態で受け入れた主灰の冷却を緩慢なものとする。更に、主灰コンベア2bには、主灰の搬送速度を調整可能な駆動モータ2dと、搬送される主灰の温度を検出する温度センサ2cと、温度センサ2cの検出結果に基づいて駆動モータ2dを制御することにより主灰の温度が結晶化温度域に保持されるよう主灰の搬送速度を制御するコンピュータ等からなる制御部2eとが設けられている。具体的に、この制御部2eは、温度センサ2cで検出された主灰の温度が結晶化温度域より高い場合は、駆動モータ2dの回転速度を上昇させて主灰の搬送速度を上げ、温度センサ2cで検出された主灰の温度が結晶化温度域よりも低い場合は、駆動モータ2dの回転速度を低下させて主灰の搬送速度を下げ、そして、主灰の温度が低い場合には、主灰コンベア2bにおいて、主灰の再加熱を焼却炉1から発生する排熱若しくは新たな熱源を用いて実施する。また、主灰コンベア2b上における温度センサ2cの配置箇所及び個数は適宜設定することができる。尚、主灰コンベア2bは主灰を搬送する形態であればコンベアに限らず、ロータリーキルンなどの装置でも構わない。   That is, the main ash container 2a and the main ash conveyor 2b store and convey main ash, and although not shown, the outer wall is covered with a heat insulating material, so that the main ash received at, for example, about 800 ° C. The cooling of the main ash received at a high temperature is made slow, such as cooling over 3 hours to less than 24 hours. Further, the main ash conveyor 2b includes a drive motor 2d capable of adjusting the transport speed of the main ash, a temperature sensor 2c for detecting the temperature of the transported main ash, and a drive motor 2d based on the detection result of the temperature sensor 2c. And a control unit 2e including a computer or the like for controlling the conveying speed of the main ash so that the temperature of the main ash is maintained in the crystallization temperature range. Specifically, when the temperature of the main ash detected by the temperature sensor 2c is higher than the crystallization temperature range, the control unit 2e increases the rotation speed of the drive motor 2d to increase the main ash conveyance speed, When the temperature of the main ash detected by the sensor 2c is lower than the crystallization temperature range, the rotational speed of the drive motor 2d is decreased to lower the main ash transport speed, and when the temperature of the main ash is low In the main ash conveyor 2b, the main ash is reheated using exhaust heat generated from the incinerator 1 or a new heat source. Moreover, the arrangement | positioning location and number of the temperature sensors 2c on the main ash conveyor 2b can be set suitably. The main ash conveyor 2b is not limited to a conveyor as long as it transports the main ash, and may be a device such as a rotary kiln.

尚、結晶化処理部2において、主灰の非晶質成分を結晶化させるためには、主灰を900〜1200℃の範囲内(例えば1100℃程度)の結晶化温度域に保持することが必要であるが、例えば、これに加えて、硫化鉄や硫酸ナトリウムなどの結晶核形成剤を添加し、更には、結晶化温度域に保持する前にその結晶化温度域よりも若干低めの700〜900℃の範囲内(例えば800℃程度)の結晶核形成温度域に保持して、主灰の結晶化を一層促進させることができると考えられる。   In the crystallization treatment unit 2, in order to crystallize the amorphous component of the main ash, the main ash is held in a crystallization temperature range within a range of 900 to 1200 ° C. (for example, about 1100 ° C.). Although necessary, for example, in addition to this, a crystal nucleating agent such as iron sulfide or sodium sulfate is added, and before being held in the crystallization temperature range, it is 700 slightly lower than the crystallization temperature range. It is considered that the crystallization of main ash can be further promoted by maintaining the crystal nucleation temperature range within a range of ˜900 ° C. (for example, about 800 ° C.).

これらの構成により、焼却炉1から排出された高温の主灰は、主灰収容部2aに排出されてから主灰コンベア2bで灰ピット3に搬送されるまでの間の所望の時間に亘って、所望の結晶化温度域に保持される。このことにより、主灰に含まれている非晶質の多くが結晶構造に変化することになる。よって、灰ピット3に排出された主灰に含まれる放射性セシウムの多くは、難溶性の非晶質に取り込まれた状態ではなく、結晶化処理により生成された結晶構造中に取り込まれた状態で存在することになる。   With these configurations, the high-temperature main ash discharged from the incinerator 1 is discharged for a desired time from when it is discharged to the main ash accommodating portion 2a until it is conveyed to the ash pit 3 by the main ash conveyor 2b. , And maintained in a desired crystallization temperature range. As a result, most of the amorphous contained in the main ash changes to a crystal structure. Therefore, most of the radioactive cesium contained in the main ash discharged into the ash pit 3 is not in a state in which it is incorporated into a hardly soluble amorphous material, but in a state in which it is incorporated into the crystal structure generated by the crystallization process. Will exist.

例えば、焼却炉1から排出され、セシウム揮発促進剤の添加及び加熱処理を施す前の主灰と、同処理を施した後の主灰との夫々について、結晶構造を確認するためにX線回析を行ったところ、図3に示すような結果となった。即ち、矢印Aで示される斜長石(NaAlSi−CaAlSi)の結晶構造については、セシウム揮発促進剤の添加及び加熱処理前の主灰では多く含まれているが、同処理後の主灰では殆ど含まれていないことが確認できた。 For example, in order to confirm the crystal structure of the main ash discharged from the incinerator 1 before the addition of cesium volatilization accelerator and heat treatment, and the main ash after the treatment, As a result of analysis, the results shown in FIG. 3 were obtained. That is, the crystal structure of plagioclase (NaAlSi 3 O 8 —CaAl 2 Si 2 O 8 ) indicated by the arrow A is mostly contained in the main ash before addition of the cesium volatilization accelerator and heat treatment. It was confirmed that the main ash after treatment was hardly contained.

セシウムの濃度は非常に低いためX線回析でセシウムを含む結晶構造を直接確認することはできない。しかし、斜長石に含まれるナトリウムは、同じアルカリ金属であるセシウムと化学的特性が似ていることから、セシウムを含む結晶構造であるポルサイト(CsAlSi)と置換する可能性があることが知られており、斜長石の挙動はポルサイトの挙動と近似することができる。したがって、セシウム揮発促進剤の添加及び加熱処理により斜長石の結晶構造が消失したことからセシウムを含むポルサイト結晶構造も消失したと推定される。 Since the concentration of cesium is very low, the crystal structure containing cesium cannot be directly confirmed by X-ray diffraction. However, the sodium contained in plagioclase has similar chemical characteristics to cesium, which is the same alkali metal, and therefore may be replaced with porcite (CsAlSi 2 O 6 ), which is a crystal structure containing cesium. Is known, and plagioclase behavior can be approximated to that of porcite. Therefore, it is presumed that the porcite crystal structure containing cesium also disappeared because the plagioclase crystal structure disappeared by the addition of the cesium volatilization accelerator and the heat treatment.

一方、矢印Bで示される結晶構造のゲーレン石(CaAl(AlSi)O)や、矢印Cで示される結晶構造のラルン石(CaSiO)については、セシウム揮発促進剤の添加及び加熱処理前の主灰では少量であったが、同処理後の主灰では大幅に増加していることが確認できた。このことから、焼却炉1から排出された主灰に含まれていた斜長石が、セシウム揮発促進剤の添加及び加熱処理により、ゲーレン石やラルン石に構造変化したと考えられる。 On the other hand, for the galenite (Ca 2 Al (AlSi) O 7 ) having the crystal structure indicated by arrow B and the larnite (Ca 2 SiO 4 ) having the crystal structure indicated by arrow C, the addition of a cesium volatilization accelerator and Although the amount of main ash before heat treatment was small, it was confirmed that the amount of main ash after the heat treatment increased significantly. From this, it is considered that the plagioclase contained in the main ash discharged from the incinerator 1 has undergone a structural change to gehlenite or larnite by the addition of a cesium volatilization accelerator and heat treatment.

以上により、セシウムを含むポルサイトはセシウム揮発促進剤の添加及び加熱処理により結晶構造が変化し、構造変化が起こる際にセシウムが揮発したものと考えられる。   As described above, it is considered that the cesium-containing porsite is changed in crystal structure by addition of a cesium volatilization accelerator and heat treatment, and cesium is volatilized when the structural change occurs.

そして、灰ピット3から払い出された主灰は、図1に示すように、添加処理部4に供給されてセシウム揮発促進剤が添加された後に、加熱処理部5に供給されて加熱処理が施されることになる。この主灰に含まれている放射性セシウムを取り込んだ結晶構造については、非晶質とは異なり、セシウム揮発促進剤を添加した上で加熱処理を施すことで破壊され易くなる。このことから、結晶化処理を施した主灰を加熱処理するにあたり、比較的低温又は短時間で加熱してエネルギ消費量の増加を抑制した場合であっても、放射性セシウムが効率良く主灰から揮発除去されると考えられる。   Then, as shown in FIG. 1, the main ash discharged from the ash pit 3 is supplied to the addition processing unit 4 and added with the cesium volatilization accelerator, and then supplied to the heat processing unit 5 to be subjected to the heat treatment. Will be given. Unlike the amorphous structure, the crystal structure incorporating the radioactive cesium contained in the main ash is easily destroyed by adding a cesium volatilization accelerator and then performing a heat treatment. From this, in the heat treatment of the main ash subjected to the crystallization treatment, even when the increase in energy consumption is suppressed by heating at a relatively low temperature or in a short time, radioactive cesium is efficiently removed from the main ash. It is thought that it is volatilized and removed.

〔別実施形態〕
(1)上記実施形態では、焼却灰の処理システム10を、焼却炉1を含む廃棄物焼却設備として構成し、結晶化処理部2において、焼却炉1から結晶化温度域以上の主灰を受け入れて結晶化処理を施すように構成したが、焼却炉を含む廃棄物焼却設備とは別の処理設備として構成して、保管場に保管されている結晶化温度域未満の主灰を受け入れて結晶化処理を施すように構成しても構わない。この場合には、結晶化処理において、廃棄物焼却設備から受け入れた低温の主灰を再加熱した上で結晶化温度域に保持することができる。
[Another embodiment]
(1) In the above embodiment, the incineration ash treatment system 10 is configured as a waste incineration facility including the incinerator 1, and the crystallization processing unit 2 accepts main ash from the incinerator 1 over the crystallization temperature range. However, it is configured as a separate treatment facility from the waste incineration facility including the incinerator and accepts the main ash stored in the storage area below the crystallization temperature range and crystallizes. You may comprise so that a process may be performed. In this case, in the crystallization process, the low-temperature main ash received from the waste incineration facility can be reheated and held in the crystallization temperature range.

(2)上記実施形態では、放射性セシウムの揮発除去処理の対象となる焼却灰を主灰(燃え殻)とした例を説明したが、主灰以外の飛灰(煤塵)などの焼却灰を処理対象としても構わない。また、本願において、焼却灰の元となる廃棄物の種類(都市ごみ、農林業系副産物等)や当該焼却炉の種類(ストーカ炉、流動床炉、キルン炉等)については、特に限定されるものではない。 (2) In the above embodiment, the example in which the incineration ash that is the target of the volatilization removal processing of radioactive cesium is the main ash (burning husk) has been described, but the incineration ash such as fly ash (dust) other than the main ash is the processing target It does not matter. In addition, in the present application, the types of wastes that are the source of incineration ash (city waste, agricultural and forestry by-products, etc.) and the types of incinerators (stoker furnace, fluidized bed furnace, kiln furnace, etc.) are particularly limited. It is not a thing.

1 焼却炉
2 結晶化処理部
4 添加処理部
5 加熱処理部
10 処理システム(放射性セシウム除去システム)
DESCRIPTION OF SYMBOLS 1 Incinerator 2 Crystallization processing part 4 Addition processing part 5 Heat processing part 10 Processing system (radioactive cesium removal system)

本発明の第1特徴構成は、廃棄物を焼却する焼却処理を実行する焼却炉から排出された焼却灰にセシウム揮発促進剤を添加する添加処理と、当該セシウム揮発促進剤が添加された焼却灰を加熱する加熱処理とを実行する放射性セシウム除去方法であって、
前記添加処理の前に、前記焼却炉から排出された前記焼却処理後の焼却灰を結晶化温度域に保持して非晶質成分を結晶化させる結晶化処理を実行する点にある。
1st characteristic structure of this invention is the incineration ash which added the cesium volatilization promoter to the incineration ash discharged | emitted from the incinerator which incinerates a waste, and the said cesium volatilization promoter was added A method for removing radioactive cesium, comprising:
Before the addition treatment, a crystallization treatment is performed in which the incinerated ash discharged from the incinerator is kept in a crystallization temperature range to crystallize an amorphous component.

本発明の第4特徴構成は、廃棄物を焼却する焼却処理を実行する焼却炉から排出された焼却灰にセシウム揮発促進剤を添加する添加処理を実行する添加処理部と、当該セシウム揮発促進剤が添加された焼却灰を加熱する加熱処理を実行する加熱処理部とを備えた放射性セシウム除去システムであって、
前記添加処理部による添加処理の前に、前記焼却炉から排出された前記焼却処理後の焼却灰を結晶化温度域に保持して非晶質成分を結晶化させる結晶化処理を実行する結晶化処理部を備えた点にある。
A fourth characteristic configuration of the present invention includes an addition processing unit that performs an addition process for adding a cesium volatilization accelerator to incineration ash discharged from an incinerator that performs an incineration process for incinerating waste, and the cesium volatilization accelerator. A radioactive cesium removal system comprising a heat treatment unit for performing a heat treatment for heating the incinerated ash to which is added,
Before the addition treatment by the addition treatment unit, a crystallization process is performed in which the incinerated ash discharged from the incinerator is kept in the crystallization temperature range and the amorphous component is crystallized. The processing unit is provided.

Claims (5)

廃棄物の焼却に伴って発生する焼却灰にセシウム揮発促進剤を添加する添加処理と、当該セシウム揮発促進剤が添加された焼却灰を加熱する加熱処理とを実行する放射性セシウム除去方法であって、
前記添加処理の前に、焼却灰を結晶化温度域に保持して非晶質成分を結晶化させる結晶化処理を実行する放射性セシウム除去方法。
A radioactive cesium removal method that performs an addition process of adding a cesium volatilization accelerator to incineration ash generated by incineration of waste and a heating process of heating the incineration ash to which the cesium volatilization accelerator is added. ,
A method for removing radioactive cesium, wherein a crystallization process is performed to crystallize an amorphous component while maintaining the incineration ash in a crystallization temperature range before the addition process.
廃棄物を焼却する焼却炉から結晶化温度域以上の焼却灰を受け入れ、
前記結晶化処理において、前記受け入れた焼却灰を結晶化温度域に保持して非晶質成分を結晶化させる請求項1に記載の放射性セシウム除去方法。
Accept incineration ash above the crystallization temperature range from an incinerator that incinerates waste,
The method for removing radioactive cesium according to claim 1, wherein in the crystallization treatment, the received incinerated ash is held in a crystallization temperature range to crystallize an amorphous component.
結晶化温度域未満の焼却灰を受け入れ、
前記結晶化処理において、前記受け入れた焼却灰を再加熱して結晶化温度域に保持する請求項1に記載の放射性セシウム除去方法。
Accept incineration ash below the crystallization temperature range,
The method for removing radioactive cesium according to claim 1, wherein in the crystallization treatment, the received incinerated ash is reheated and maintained in a crystallization temperature range.
廃棄物の焼却に伴って発生する焼却灰にセシウム揮発促進剤を添加する添加処理を実行する添加処理部と、当該セシウム揮発促進剤が添加された焼却灰を加熱する加熱処理を実行する加熱処理部とを備えた放射性セシウム除去システムであって、
前記添加処理部による添加処理の前に、焼却灰を結晶化温度域に保持して非晶質成分を結晶化させる結晶化処理を実行する結晶化処理部を備えた放射性セシウム除去システム。
Heat treatment for performing an addition treatment unit for performing an addition process for adding a cesium volatilization accelerator to incineration ash generated by incineration of waste, and a heating process for heating the incineration ash to which the cesium volatilization accelerator is added A radioactive cesium removal system comprising:
The radioactive cesium removal system provided with the crystallization process part which performs the crystallization process which hold | maintains incineration ash in the crystallization temperature range and crystallizes an amorphous component before the addition process by the said addition process part.
廃棄物を焼却する焼却処理を実行する焼却炉を備えて廃棄物焼却設備として構成され、
前記結晶化処理部が、前記焼却炉から結晶化温度域以上の焼却灰を受け入れ、当該受け入れた焼却灰を結晶化温度域に保持して非晶質成分を結晶化させる請求項4に記載の放射性セシウム除去システム。
It is configured as a waste incineration facility with an incinerator that performs incineration processing to incinerate waste,
The said crystallization process part receives incineration ash more than a crystallization temperature range from the said incinerator, hold | maintains the received incineration ash in a crystallization temperature range, and crystallizes an amorphous component. Radiocesium removal system.
JP2015025991A 2015-02-13 2015-02-13 Radiocesium removal method and radioactive cesium removal system Active JP6050848B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015025991A JP6050848B2 (en) 2015-02-13 2015-02-13 Radiocesium removal method and radioactive cesium removal system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015025991A JP6050848B2 (en) 2015-02-13 2015-02-13 Radiocesium removal method and radioactive cesium removal system

Publications (2)

Publication Number Publication Date
JP2016148599A true JP2016148599A (en) 2016-08-18
JP6050848B2 JP6050848B2 (en) 2016-12-21

Family

ID=56688330

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015025991A Active JP6050848B2 (en) 2015-02-13 2015-02-13 Radiocesium removal method and radioactive cesium removal system

Country Status (1)

Country Link
JP (1) JP6050848B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006205156A (en) * 2005-12-28 2006-08-10 Mitsubishi Heavy Ind Ltd Method of manufacturing high-quality aggregate from incinerated ash produced by circulating flow furnace
JP2013120146A (en) * 2011-12-08 2013-06-17 Ngk Insulators Ltd Method for treating radioactive cesium contaminated materials
JP2013134085A (en) * 2011-12-26 2013-07-08 Jfe Engineering Corp Processing method for ash containing oxide of radioactive cesium
JP2013152175A (en) * 2012-01-26 2013-08-08 Jfe Engineering Corp Incineration method for combustibles including radioactive cesium
JP2014174090A (en) * 2013-03-12 2014-09-22 Kobelco Eco-Solutions Co Ltd Method for removing radioactive cesium from incineration ash

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006205156A (en) * 2005-12-28 2006-08-10 Mitsubishi Heavy Ind Ltd Method of manufacturing high-quality aggregate from incinerated ash produced by circulating flow furnace
JP2013120146A (en) * 2011-12-08 2013-06-17 Ngk Insulators Ltd Method for treating radioactive cesium contaminated materials
JP2013134085A (en) * 2011-12-26 2013-07-08 Jfe Engineering Corp Processing method for ash containing oxide of radioactive cesium
JP2013152175A (en) * 2012-01-26 2013-08-08 Jfe Engineering Corp Incineration method for combustibles including radioactive cesium
JP2014174090A (en) * 2013-03-12 2014-09-22 Kobelco Eco-Solutions Co Ltd Method for removing radioactive cesium from incineration ash

Also Published As

Publication number Publication date
JP6050848B2 (en) 2016-12-21

Similar Documents

Publication Publication Date Title
JP5973157B2 (en) Treatment method for radioactive cesium contaminants
JP5175995B1 (en) Method for removing radioactive cesium from soil
JP6050848B2 (en) Radiocesium removal method and radioactive cesium removal system
JP2014174090A (en) Method for removing radioactive cesium from incineration ash
JP2006513396A (en) Infectious waste incineration / melting integrated processing system (burning and melting system)
JP2014014802A (en) Method for removing cesium from soil
Pellerin Alternatives to Incineration: There's More Than One Way to Remediate.
JP4350485B2 (en) Method and apparatus for firing and detoxifying multiple / mixed contaminants
JP5872093B1 (en) Radioactive substance removal method and radioactive substance removal system
Taghilou et al. Incineration of medical waste: Emission of pollutants into the environment
JP2009034591A (en) Detoxification treatment apparatus and method for ash to be treated
JP6606132B2 (en) Radiocesium removal method and treatment facility
JP6268514B2 (en) Incineration method for combustible materials containing radioactive materials
JP6280621B1 (en) Radioactive material removal method
JP6602822B2 (en) Radiocesium removal method and treatment facility
JP2016011924A (en) Radioactive cesium separation enrichment method and radioactive cesium separation enrichment device
JP6400382B2 (en) Heavy metal solidifying agent and waste treatment method
JP2015068692A (en) Radioactive cesium separation enrichment method and radioactive cesium separation enrichment device
JP6185100B2 (en) Treatment method for radioactive cesium contaminants
JPH11197629A (en) Treating method for incinerated fly ash
JP5872092B1 (en) Radioactive substance removal method and radioactive substance removal system
JP5999861B1 (en) Radioactive substance removal method and radioactive substance removal system
JP5937258B1 (en) Radioactive material removal method
JP6834165B2 (en) Method for treating radioactive cesium-containing inorganic substances
JP6062464B2 (en) Radiocesium removal method and radioactive cesium removal system

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160627

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161125

R150 Certificate of patent or registration of utility model

Ref document number: 6050848

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250