JP5872093B1 - Radioactive substance removal method and radioactive substance removal system - Google Patents

Radioactive substance removal method and radioactive substance removal system Download PDF

Info

Publication number
JP5872093B1
JP5872093B1 JP2015125558A JP2015125558A JP5872093B1 JP 5872093 B1 JP5872093 B1 JP 5872093B1 JP 2015125558 A JP2015125558 A JP 2015125558A JP 2015125558 A JP2015125558 A JP 2015125558A JP 5872093 B1 JP5872093 B1 JP 5872093B1
Authority
JP
Japan
Prior art keywords
processing
heat treatment
radioactivity
measurement
radioactive substance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015125558A
Other languages
Japanese (ja)
Other versions
JP2017009454A (en
Inventor
尚弘 竹田
尚弘 竹田
小倉 正裕
正裕 小倉
大 藤原
大 藤原
井出 昇明
昇明 井出
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinko Pantec Co Ltd
Original Assignee
Kobelco Eco Solutions Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobelco Eco Solutions Co Ltd filed Critical Kobelco Eco Solutions Co Ltd
Priority to JP2015125558A priority Critical patent/JP5872093B1/en
Application granted granted Critical
Publication of JP5872093B1 publication Critical patent/JP5872093B1/en
Publication of JP2017009454A publication Critical patent/JP2017009454A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Gasification And Melting Of Waste (AREA)
  • Incineration Of Waste (AREA)

Abstract

【課題】消費エネルギー、及び処理不良物の発生を効果的に抑制し、処理対象物からの放射性物質の適切な除去を効率的且つ安定的に行うことのできる放射性物質除去方法及び放射性物質除去システムを提供する。【解決手段】放射性物質除去方法を実行する放射性物質除去システムには、処理対象物を加熱する加熱処理を実行する加熱処理部10と、加熱処理部10での加熱処理の途中の処理対象物の放射能量を測定する放射能量測定処理部20と、放射能量測定処理部20での測定結果に基づいて加熱処理部20での加熱処理の条件を調整する処理条件調整処理部30とが備えられ、処理条件調整処理部30は、放射能量測定処理で放射能量を測定した処理対象物に対する加熱処理が終了する前に処理条件調整処理を実行するように構成されている。【選択図】図1A radioactive substance removal method and a radioactive substance removal system capable of effectively and stably performing effective removal of radioactive substances from an object to be treated by effectively suppressing energy consumption and generation of defective treatments. I will provide a. A radioactive substance removal system for executing a radioactive substance removal method includes a heat treatment unit (10) for performing a heat treatment for heating a treatment object, and a treatment object in the middle of the heat treatment in the heat treatment part (10). A radioactivity measurement processing unit 20 that measures the radioactivity, and a processing condition adjustment processing unit 30 that adjusts the conditions of the heat treatment in the heat treatment unit 20 based on the measurement results in the radioactivity measurement processing unit 20; The process condition adjustment processing unit 30 is configured to execute the process condition adjustment process before the heating process for the processing object whose radioactivity is measured in the radioactivity measurement process is completed. [Selection] Figure 1

Description

本発明は、放射性物質を含む処理対象物から放射性物質を除去する技術に関する。   The present invention relates to a technique for removing a radioactive substance from a processing object containing the radioactive substance.

「福島県内の災害廃棄物の処理の方針」(平成23年6月23日、環境省)では、放射性物質を含む災害廃棄物の焼却に伴って発生する焼却灰(処理対象物の一例)の取り扱いについて、放射能濃度の一例である放射性セシウム濃度(セシウム134とセシウム137の合計値。)が8,000Bq/kgの基準値を超える場合には中間貯蔵施設等での保管が必要であるが、上記基準値以下である場合には一般廃棄物最終処分場(管理型最終処分場)で埋め立て可能という方針が示されている。しかしながら、埋め立て処分を促進させるためには、このような焼却灰から放射性物質を更に除去して、焼却灰の放射能濃度を一層低減させることが求められる。   According to “Fukushima Prefecture's Policy on Disposal of Disposal Waste” (June 23, 2011, Ministry of the Environment) of incineration ash (an example of processing target) generated by incineration of disaster waste containing radioactive materials About handling, when radioactive cesium concentration (total value of cesium 134 and cesium 137) which is an example of radioactive concentration exceeds standard value of 8,000Bq / kg, storage in intermediate storage facilities is necessary If the value is below the above-mentioned standard value, the policy is that it can be landfilled at a general waste final disposal site (managed final disposal site). However, in order to promote landfill disposal, it is required to further remove radioactive substances from such incineration ash to further reduce the radioactive concentration of the incineration ash.

また、廃棄物の焼却過程において廃棄物中の放射性物質の多くは排ガスへ移行して飛灰に付着するため、主灰の放射能濃度は、飛灰と比べて小さくなり、上記基準値以下となることが多い。しかしながら、今後、除染特別地域などの高線量地域における除染廃棄物の焼却による減容化が進められるにあたり、上記基準値を超える主灰の量が増加する可能性がある。そこで、貯蔵容量に制限がある中間貯蔵施設等への主灰の搬入量を減らすためにも、このような主灰から放射性物質を更に除去して、主灰の放射能濃度を低減させることが求められる。   In addition, since most of the radioactive materials in the waste migrate to the exhaust gas and adhere to the fly ash during the incineration process of the waste, the radioactivity concentration of the main ash is smaller than that of the fly ash and is below the above reference value. Often becomes. However, there is a possibility that the amount of main ash exceeding the above-mentioned standard value will increase in the future as volume reduction by incineration of decontamination waste in high-dose areas such as special decontamination areas is promoted. Therefore, in order to reduce the amount of main ash brought into intermediate storage facilities with limited storage capacity, it is possible to further remove radioactive substances from such main ash and reduce the radioactivity concentration of main ash. Desired.

そこで、特許文献1〜3に示すように、放射性物質を含む災害廃棄物の焼却に伴って発生する焼却灰を、塩化化合物などの揮発促進剤を添加した上で加熱する処理(加熱処理の一例)を実行することで、焼却灰から放射性物質を揮発除去する技術が多数提案されている。   Therefore, as shown in Patent Documents 1 to 3, the incineration ash generated along with the incineration of disaster waste containing radioactive substances is heated after adding a volatilization accelerator such as a chloride compound (an example of heat treatment) Many techniques have been proposed to volatilize and remove radioactive materials from incinerated ash.

特開2014−174090号公報JP 2014-174090 A 特開2013−120146号公報JP 2013-120146 A 特開2013−122440号公報JP2013-122440A

ところが、上述の何れの技術においても、加熱処理中の焼却灰からの放射性物質の揮発除去状況は把握できない。よって、加熱領域内での放射性物質の揮発除去が十分でない状態であっても認識できず、放射性物質の除去が不十分な処理不良物が発生する場合がある。
このような処理不良物の発生を抑制するため、従来技術では、加熱領域内の温度を指標にして加熱処理の制御(条件の調整)を行っている。しかしながら、温度は、焼却灰からの放射性物質の揮発除去状況を示す直接的な指標ではないため、温度制御のみで安定した焼却灰の放射性物質の揮発除去を行うには、放射性物質の除去が不十分な処理不良物を発生させないよう余裕を考慮して過剰気味に加熱する必要があり、消費エネルギーの増大を招くことになる。
また、これとは別に、加熱処理後の焼却灰の放射能濃度等の放射能量から放射性物質の揮発除去結果を把握し、加熱処理を制御することも考えられる。しかしながら、この場合は、加熱処理の制御が遅くなり易く、しかも、多数の処理対象物を連続的に加熱処理する場合には、放射性物質の揮発結果を把握した時点で、既に、不良化が予測される後続の処理対象物が多数存在しているので、十分な処理不良物の発生抑制効果が得られない。
However, in any of the above-described techniques, it is impossible to grasp the volatilization and removal status of the radioactive material from the incinerated ash during the heat treatment. Therefore, even if the radioactive material is not sufficiently volatilized and removed in the heating region, it may not be recognized, and there may be a processing defect in which the radioactive material is not sufficiently removed.
In order to suppress the occurrence of such processing defects, the conventional technology controls the heating process (condition adjustment) using the temperature in the heating region as an index. However, temperature is not a direct indicator of the volatilization and removal status of radioactive materials from incineration ash. Therefore, in order to remove volatilization of radioactive materials from incineration ash that is stable only by temperature control, removal of radioactive materials is not possible. It is necessary to heat in an excessive manner in consideration of a margin so as not to generate a sufficient processing defect, leading to an increase in energy consumption.
Separately from this, it is also conceivable to control the heat treatment by grasping the volatilization removal result of the radioactive substance from the radioactivity such as the radioactivity concentration of the incinerated ash after the heat treatment. However, in this case, the control of the heat treatment tends to be slow, and when a large number of objects to be processed are continuously heat-treated, the deterioration is already predicted at the time when the volatilization result of the radioactive material is grasped. Since there are many subsequent processing objects to be processed, it is not possible to obtain a sufficient effect of suppressing the generation of processing defects.

この実情に鑑み、本発明の主たる課題は、加熱処理中の放射性物質の揮発除去状況を把握し、加熱処理の条件を適切化することで、消費エネルギー、及び処理不良物の発生を効果的に抑制し、処理対象物からの放射性物質の適切な除去を効率的且つ安定的に行うことのできる放射性物質除去方法及び放射性物質除去システムを提供する点にある。   In view of this situation, the main problem of the present invention is to grasp the state of volatilization and removal of radioactive substances during heat treatment, and to optimize the heat treatment conditions, thereby effectively reducing energy consumption and generation of processing defects. The object of the present invention is to provide a radioactive substance removal method and a radioactive substance removal system that can suppress and appropriately remove radioactive substances from a processing object efficiently and stably.

本発明の第1特徴構成は、放射性物質を含む処理対象物を加熱する加熱処理を実行する放射性物質除去方法であって、
前記加熱処理の途中の処理対象物の放射能量を測定する放射能量測定処理と、この放射能量測定処理での前記加熱処理の途中の処理対象物の放射能量の測定結果に基づいて前記加熱処理の条件を調整する処理条件調整処理とを実行するとともに、前記放射能量測定処理で放射能量を測定した前記加熱処理の途中の処理対象物に対する前記加熱処理が終了する前に前記処理条件調整処理を実行し、前記放射能量測定処理で放射能量を測定した前記加熱処理の途中の処理対象物に対して前記処理条件調整処理による調整後の条件で残りの前記加熱処理を実行し、
前記加熱処理が、処理対象物を搬送式の加熱炉の内部にて搬送しながら加熱する処理であり、
前記加熱処理の途中の処理対象物が、前記搬送式の加熱炉の内部における搬送方向の途中の箇所にある処理対象物である点にある。
1st characteristic structure of this invention is a radioactive substance removal method which performs the heat processing which heats the process target object containing a radioactive substance,
Based on the measurement result of the radioactivity amount of the treatment object in the middle of the heat treatment, and the measurement result of the radioactivity amount of the treatment object in the middle of the heat treatment in the radioactivity measurement processing A processing condition adjustment process for adjusting the conditions, and the processing condition adjustment process is performed before the heating process for the object to be processed in the middle of the heating process in which the radioactivity is measured in the radioactivity measurement process is completed. Then, the remaining heat treatment is performed under the conditions after the adjustment by the treatment condition adjustment processing on the processing object in the middle of the heat treatment in which the radioactivity amount is measured by the radiation amount measurement processing,
The heat treatment is a treatment for heating the object to be treated while being conveyed inside a conveying heating furnace,
The processing target object in the middle of the heat treatment is that it is a processing target object located in the middle of the transport direction inside the transport-type heating furnace .

この構成によれば、放射性物質を含む処理対象物を加熱する加熱処理を実行するにあたり、放射能量測定処理により加熱処理の途中の処理対象物の放射能量を測定することで、当該加熱処理中の放射性物質の揮発除去状況を直接的に把握することができる。   According to this configuration, in performing the heat treatment for heating the processing object including the radioactive substance, by measuring the radioactivity amount of the processing object in the middle of the heat treatment by the radioactivity measurement process, It is possible to directly grasp the volatilization removal status of radioactive materials.

そして、この放射能量測定処理での測定結果に基づき、処理条件調整処理により前記加熱処理の条件を放射性物質の揮発除去状況に応じた適切なものに調整することで、当該加熱処理において処理対象物から放射性物質を適切に揮発除去できるようになる。しかも、この処理条件調整処理を、放射能量測定処理で放射能量を測定した処理対象物に対する加熱処理が終了する前に実行するので、放射能量測定処理で放射能量を測定した処理対象物に対する残りの加熱処理を適切化し、この適切化した残りの加熱処理によって当該処理対象物が不良化するのを抑制することができる。また、加熱処理において処理対象物を搬送しながら加熱するので、多数の処理対象物を順次且つ連続的に加熱する効率的な加熱処理形態を採ることができる。 Then, based on the measurement result in the radioactivity measurement process, the processing condition adjustment process adjusts the heat treatment condition to an appropriate one according to the volatilization removal status of the radioactive substance, so that the object to be treated in the heat treatment The radioactive material can be appropriately volatilized and removed from the water. Moreover, since the processing condition adjustment process is executed before the heating process for the processing object whose radioactivity is measured by the radioactivity measurement process is completed, the remaining processing target for the processing object whose radioactivity is measured by the radioactivity measurement process is processed. It is possible to optimize the heat treatment and suppress the processing target from being deteriorated by the remaining heat treatment that has been optimized. Moreover, since it heats, conveying a process target object in heat processing, the efficient heat processing form which heats many process target objects sequentially and continuously can be taken.

従って、消費エネルギー、及び処理不良物の発生を効果的に抑制し、処理対象物からの放射性物質の適切な除去を効率的且つ安定的に行うことができる。
本発明の第2特徴構成は、前記処理条件調整処理として、前記搬送式の加熱炉の内部における処理対象物の搬送速度、又は、前記搬送式の加熱炉の内部における処理対象物の温度を調整する点にある。
Therefore, it is possible to effectively suppress energy consumption and generation of defective processing, and to efficiently and stably perform appropriate removal of radioactive substances from the processing target.
In the second feature configuration of the present invention, as the processing condition adjustment processing, the transport speed of the processing object inside the transport-type heating furnace or the temperature of the processing object inside the transport-type heating furnace is adjusted. There is in point to do.

記放射能量測定処理を、前記加熱処理の進度の異なる複数時点で実行してもよい。 The pre-Symbol radioactivity measurement processing may be performed at multiple time points different of the progress the heat treatment.

上記構成によれば、放射能量測定処理において加熱処理の進度の異なる複数時点での放射能量の測定情報が得られるので、この複数時点の測定情報により、放射性物質の揮発除去状況として放射性物質の揮発除去の進み具合(差や傾向)を把握することが可能になり、加熱処理中の放射性物質の揮発除去状況を一層正確に把握することができる。従って、処理条件調整処理において加熱処理の条件を一層適切なものに調整し、消費エネルギー、及び処理不良物の発生を更に抑制することができる。   According to the above configuration, since the measurement information of the radioactivity amount at a plurality of time points with different degrees of progress of the heat treatment is obtained in the radioactivity measurement process, the volatilization of the radioactive material as the volatilization removal status of the radioactive material is obtained from the measurement information at the plurality of time points. It is possible to grasp the progress (difference and tendency) of the removal, and it is possible to grasp the volatilization removal state of the radioactive substance during the heat treatment more accurately. Therefore, the heat treatment conditions can be adjusted to a more appropriate condition in the treatment condition adjustment process, and the generation of energy consumption and processing defects can be further suppressed.

記放射能量測定処理を、前記加熱処理の搬送方向の複数箇所で実行してもよい。 The pre-Symbol radioactivity measurement processing may be performed at a plurality of locations in the conveying direction of the heat treatment.

上記構成によれば、放射能量測定処理において加熱処理の搬送方向の複数箇所(複数地点)で放射能量を測定するので、放射能量の測定箇所が一義的に加熱処理の進度を示すものとなり、加熱処理の進度の異なる複数時点での放射能量測定を簡単・確実に行うことができる。 According to the above arrangement, since the measured amount of radioactivity at a plurality of positions in the conveying direction of the heat treatment in Ino amount measurement processing release (multiple locations), it is assumed that the measurement points of radioactivity indicates the progress of uniquely heat treatment, It is possible to easily and reliably measure the amount of radioactivity at a plurality of time points with different degrees of heat treatment.

本発明の第特徴構成は、放射性物質を含む処理対象物を加熱する加熱処理を実行する放射性物質除去システムであって、
前記加熱処理を実行する加熱処理部と、前記加熱処理の途中の処理対象物の放射能量を測定する放射能量測定処理を実行する放射能量測定処理部と、前記放射能量測定処理での前記加熱処理の途中の処理対象物の放射能量の測定結果に基づいて前記加熱処理の条件を調整する処理条件調整処理を実行する処理条件調整処理部とが備えられ、前記処理条件調整処理部は、前記放射能量測定処理で放射能量を測定した前記加熱処理の途中の処理対象物に対する前記加熱処理が終了する前に前記処理条件調整処理を実行し、前記加熱処理部は、前記放射能量測定処理で放射能量を測定した前記加熱処理の途中の処理対象物に対して前記処理条件調整処理による調整後の条件で残りの前記加熱処理を実行するように構成され、
前記加熱処理部が、内部で処理対象物を搬送しながら加熱する搬送式の加熱炉から構成され、
前記加熱処理の途中の処理対象物が、前記搬送式の加熱炉の内部における搬送方向の途中の箇所にある処理対象物である点にある。
A third characteristic configuration of the present invention is a radioactive substance removal system that performs a heat treatment for heating a processing object containing a radioactive substance,
A heat treatment unit that performs the heat treatment, a radioactivity measurement processing unit that performs a radioactivity measurement process that measures a radioactivity amount of a processing object in the middle of the heat treatment, and the heat treatment in the radioactivity measurement process A processing condition adjustment processing unit that executes a processing condition adjustment process that adjusts the condition of the heat treatment based on the measurement result of the amount of radioactivity of the processing object in the middle of the processing condition adjustment unit, the processing condition adjustment processing unit The processing condition adjustment process is executed before the heating process for the object to be processed in the middle of the heating process in which the radioactivity amount is measured by the capacity measuring process, and the heating processing unit performs the radioactivity amount in the radioactivity measuring process. Is configured to execute the remaining heat treatment under the condition after the adjustment by the treatment condition adjustment process on the object to be processed in the middle of the heat treatment,
The heat treatment unit is composed of a conveyance type heating furnace that heats the object to be treated while conveying the object inside,
The processing target object in the middle of the heat treatment is that it is a processing target object located in the middle of the transport direction inside the transport-type heating furnace .

上記構成によれば、前述の第1特徴構成で説明した各処理を実行する各処理部が備えられているので、当該第1特徴構成と同様、処理不良物が発生するのを効果的に抑制して、放射性物質の適切な除去を安定的に行うことができる。   According to the above configuration, since each processing unit that executes each process described in the first feature configuration described above is provided, it is possible to effectively suppress the occurrence of processing defects as in the first feature configuration. Thus, it is possible to stably remove the radioactive substance stably.

記放射能量測定処理部が、前記加熱炉の搬送方向の複数箇所に設置した複数の放射能量測定装置から構成されていてもよい。 Before SL radioactivity measurement processing section may include a plurality of radioactivity measuring apparatus installed in a plurality of locations in the transport direction of the furnace.

上記構成によれば、放射能量測定処理において搬送式の加熱炉の搬送方向の複数箇所に予め設置した放射能量測定装置で処理対象物の放射能量を測定するので、複数の設定処理進度での放射能量測定を簡単・確実に行うことができる。
According to the above arrangement, since the measured amount of radioactivity radioactivity measuring process previously installed radioactivity measuring apparatus in the processing object at a plurality of positions in the conveying direction of the heating furnace of the transport formula, at a plurality of setting processing progress Radioactivity can be measured easily and reliably.

放射性物質除去システムの概略構成図Schematic configuration diagram of radioactive material removal system 加熱処理中の処理対象物の状態を示すグラフGraph showing the state of the processing object during heat treatment 放射能量測定処理部の設置形態を示す加熱処理部の横断面模式図Cross-sectional schematic diagram of the heat treatment unit showing the installation form of the radioactivity measurement processing unit

図1は、放射性物質を含む処理対象物から放射性物質を除去する放射性物質除去方法を実行する放射性物質除去システムを示している。
本実施形態では、この放射性物質除去システムは、放射性物質を含む廃棄物の焼却に伴って発生する焼却灰を処理対象物とし、当該焼却灰から放射性セシウム(放射性物質の一例)を揮発除去するように構成されている。
なお、処理対象物としては、焼却灰に限らず、焼却前の放射性物質を含む廃棄物や土壌等の放射性物質を含む各種のものとすることができる。
FIG. 1 shows a radioactive substance removing system that executes a radioactive substance removing method for removing radioactive substances from a processing object containing radioactive substances.
In this embodiment, this radioactive substance removal system uses incineration ash generated along with incineration of waste containing radioactive substances as a processing target, and volatilizes and removes radioactive cesium (an example of a radioactive substance) from the incineration ash. It is configured.
In addition, as a process target object, it can be set as not only incineration ash but the various things containing radioactive materials, such as a waste containing the radioactive material before incineration, and soil.

ここで、「焼却灰」とは、都市ごみ、農林業系副産物(例えば、稲藁又は麦藁)、製材廃材、下水汚泥の脱水ケーキ、剪定枝、枯葉、草、紙類、プラスチック類、除染作業に用いられたタイベック又は衣類のような可燃性廃棄物、災害がれき等の災害廃棄物等の各種廃棄物の焼却によって生じる灰を意味する。   Here, “incinerated ash” means municipal waste, agricultural and forestry by-products (for example, rice straw or wheat straw), sawmill waste, dewatered sewage sludge cake, pruned branches, dead leaves, grass, paper, plastics, decontamination It means ash generated by incineration of various types of waste such as combustible waste such as tyvek or clothing used for work, disaster waste such as disaster debris, etc.

この放射性物質除去システムには、図1に示すように、焼却灰を加熱する加熱処理を実行する加熱処理部10と、加熱処理の途中の焼却灰の放射能量を測定する放射能量測定処理を実行する放射能量測定処理部20と、放射能量測定処理での測定結果に基づいて加熱処理の条件を調整する処理条件調整処理を実行する処理条件調整処理部30とが備えられ、放射能量測定処理と処理条件調整処理とを実行することで加熱処理の条件を適切化しながら、焼却灰に対する加熱処理を適切な条件で実行するように構成されている。   In this radioactive substance removal system, as shown in FIG. 1, a heat treatment unit 10 for performing a heat treatment for heating the incineration ash and a radioactivity measurement process for measuring the radioactivity amount of the incineration ash during the heat treatment are performed. A radioactivity measurement processing unit 20 and a processing condition adjustment processing unit 30 for executing a processing condition adjustment process for adjusting the conditions of the heating process based on the measurement result in the radioactivity measurement process. The heat treatment for the incinerated ash is performed under an appropriate condition while optimizing the heat treatment condition by executing the treatment condition adjustment process.

なお、この放射性物質除去システムでは、加熱処理部10による加熱処理の前処理として、添加剤の一例である揮発促進剤を焼却灰に添加する添加処理を実行する。添加処理で添加する揮発促進剤の種類や加熱処理での加熱温度等は、公知の技術を採用できるが、例えば、焼却灰に無機カルシウム化合物又は有機カルシウム化合物と塩化化合物を揮発促進剤として添加すれば、加熱処理において比較的低温の900℃以上1200℃以下、好ましくは950℃以上1100℃以下、且つ、比較的短時間の30分以上120分以下、好ましくは30分以上60分以下の加熱により、焼却灰中の放射性セシウムを良好に揮発させることができる。   In addition, in this radioactive substance removal system, the addition process which adds the volatilization promoter which is an example of an additive to incineration ash as pre-processing of the heat processing by the heat processing part 10 is performed. Known types of volatilization accelerators to be added in the addition treatment, heating temperature in the heat treatment, etc. can be used. For example, inorganic calcium compounds or organic calcium compounds and chloride compounds can be added to the incineration ash as volatilization accelerators. For example, the heat treatment is performed at a relatively low temperature of 900 ° C. or more and 1200 ° C. or less, preferably 950 ° C. or more and 1100 ° C. or less, and a relatively short time of 30 minutes or more and 120 minutes or less, preferably 30 minutes or more and 60 minutes or less. The radioactive cesium in the incineration ash can be volatilized well.

前記加熱処理部10は、焼却灰を搬送しながら加熱する搬送式の加熱炉の一例であるロータリーキルン11から構成されている。なお、加熱処理部10は、搬送式の加熱炉に限らず、バッチ式の加熱炉等の各種のものを採用することができる。このロータリーキルン11には、略円筒状のキルン本体12と、回転駆動部13と、焼却灰供給部14と、焼却灰排出部15と、バーナ16と、排気チャンバ17等が備えられている。   The said heat processing part 10 is comprised from the rotary kiln 11 which is an example of the conveyance heating furnace heated while conveying incineration ash. The heat treatment unit 10 is not limited to a conveyance type heating furnace, and various types such as a batch type heating furnace can be adopted. The rotary kiln 11 includes a substantially cylindrical kiln main body 12, a rotation drive unit 13, an incineration ash supply unit 14, an incineration ash discharge unit 15, a burner 16, an exhaust chamber 17, and the like.

そして、このロータリーキルン11は、加熱処理において、焼却灰供給部14からキルン本体12内の上流側に供給された焼却灰をキルン本体12の回転に連れて下流側に搬送しながらバーナ16の燃焼ガスにより加熱することで、焼却灰から放射性セシウムを揮発除去するとともに、放射性セシウムが揮発除去された焼却灰を処理済焼却灰としてキルン本体12の下流側の焼却灰排出部15から排出し、併せて、揮発した放射性セシウムを含む排ガスを排気チャンバ17から排出するように構成されている。   In the heat treatment, the rotary kiln 11 conveys the incineration ash supplied from the incineration ash supply unit 14 to the upstream side in the kiln main body 12 to the downstream side as the kiln main body 12 rotates. The incinerated ash from the incinerated ash is volatilized and removed, and the incinerated ash from which the radioactive cesium has been volatilized and removed is discharged from the incinerated ash discharge unit 15 on the downstream side of the kiln body 12 as a treated incinerated ash. The exhaust gas containing the volatilized radioactive cesium is discharged from the exhaust chamber 17.

前記キルン本体12は、下流側端が上流側端よりも僅かに下方に位置する下流下がりの傾斜姿勢とされ、回転駆動部13の駆動力で軸回転しながら焼却灰を下流側に向かって搬送するように構成されている。前記回転駆動部13には、例えば、モータ等の回転駆動装置(図示省略)の駆動力で回転してキルン本体12を軸回転させるギアやローラ等の回転操作部13aと、回転駆動装置の動力を制御してキルン本体12の回転速度や回転数を制御する回転制御部13bとが備えられている。   The kiln main body 12 has a downstream downward inclined posture in which the downstream end is positioned slightly below the upstream end, and conveys the incineration ash toward the downstream side while rotating the shaft with the driving force of the rotation driving unit 13. Is configured to do. The rotation drive unit 13 includes, for example, a rotation operation unit 13a such as a gear or a roller that rotates the kiln main body 12 by a driving force of a rotation drive device (not shown) such as a motor, and power of the rotation drive device. And a rotation control unit 13b for controlling the rotation speed and the number of rotations of the kiln main body 12.

前記バーナ16は、キルン本体12の下流端側に設置され、キルン本体12内に下流側端から上流に向かう高温の燃焼ガス流を発生させる。前記排気チャンバ17は、キルン本体12の上流端側に設置され、排気ファン18aの動力で排気ダクト18bを通じて排ガスを排出する。本実施形態では、燃焼ガスの流れが処理対象物の流れに対して向流になっているが、並流としてもよい。   The burner 16 is installed on the downstream end side of the kiln main body 12 and generates a high-temperature combustion gas flow in the kiln main body 12 from the downstream end to the upstream. The exhaust chamber 17 is installed on the upstream end side of the kiln main body 12, and exhausts exhaust gas through the exhaust duct 18b with the power of the exhaust fan 18a. In the present embodiment, the flow of the combustion gas is countercurrent to the flow of the object to be processed, but may be a cocurrent flow.

前記焼却灰供給部14は、例えば、スクリューフィーダ等の定量供給手段を備えて構成され、キルン本体12の上流端側からキルン本体12の内部に定量の焼却灰を連続的に供給する。前記焼却灰排出部15は、例えば、下面に排出口を形成したホッパー等から構成され、キルン本体12の上流側から搬送されてくる処理済の焼却灰をキルン本体12の下流端側から下方に排出する。   The incineration ash supply unit 14 includes, for example, a fixed amount supply means such as a screw feeder, and continuously supplies a fixed amount of incineration ash from the upstream end side of the kiln main body 12 to the inside of the kiln main body 12. The incineration ash discharge part 15 is composed of, for example, a hopper having a discharge port formed on the lower surface, and the processed incineration ash conveyed from the upstream side of the kiln main body 12 is moved downward from the downstream end side of the kiln main body 12. Discharge.

16aはバーナ16への燃料や空気の供給量等を制御する燃焼制御部、14aは焼却灰供給部14による焼却灰の供給量等を制御する供給制御部である。   Reference numeral 16a denotes a combustion control unit that controls the amount of fuel and air supplied to the burner 16, and 14a denotes a supply control unit that controls the amount of incineration ash supplied by the incineration ash supply unit 14.

なお、加熱処理後にロータリーキルン11から排出された排ガスには、主灰から飛散した微粉が含まれており、この微粉に揮発した放射性セシウムが付着している。そのため、このように放射性セシウムが付着して放射性濃度が高い微粉は、次工程においてバグフィルタ等で回収し、中間貯蔵施設等で保管するようにする。   The exhaust gas discharged from the rotary kiln 11 after the heat treatment includes fine powder scattered from the main ash, and radioactive cesium volatilized in the fine powder is attached. Therefore, the fine powder having high radioactive concentration due to the attachment of radioactive cesium is collected by a bag filter or the like in the next process and stored in an intermediate storage facility or the like.

図2は、加熱処理の時間と、焼却灰の温度と、焼却灰の放射能量との一般的な関係を模式的に示すグラフ図である。同図2に示されるように、この加熱処理では、処理の進行に伴い、焼却灰の温度が所定温度Tを超えた付近から放射性物質の揮発除去が始まり、その後、放射性物質の揮発除去が継続的に進むことになる。   FIG. 2 is a graph schematically showing a general relationship between the heat treatment time, the temperature of the incinerated ash, and the amount of radioactivity of the incinerated ash. As shown in FIG. 2, in this heat treatment, with the progress of the treatment, the removal of the radioactive material starts to evaporate from the vicinity where the temperature of the incinerated ash exceeds the predetermined temperature T, and then the removal of the radioactive material is continued. Will proceed.

前記放射能量測定処理部20は、放射能量測定処理として、加熱処理の途中にある一部の焼却灰を測定対象とし、加熱処理の途中のある時点での放射能量を測定するように構成されている。そして、この放射能量測定処理部20は、図1、図2に示すように、焼却灰の放射能量を測定する放射能量測定処理を、加熱処理部10による加熱処理の途中の時点として、加熱処理の進度の異なる複数時点t1、t2で実行するように構成されている。
具体的には、放射能量測定処理部20は、加熱処理部10が搬送式のロータリーキルン11で構成されていることに対し、加熱処理の進度の異なる複数時点t1、t2として搬送方向(キルン本体12の軸心方向)の複数箇所(複数地点)で放射能量測定処理を実行するように構成されている。
なお、この放射能量測定処理は、加熱処理の複数時点に限らず、1つの時点で実行するようにしてもよい。
The radioactivity measurement processing unit 20 is configured to measure a radioactivity amount at a certain point in the middle of the heat treatment as a measurement target for a part of the incinerated ash in the middle of the heat treatment as the radioactivity measurement processing. Yes. Then, as shown in FIG. 1 and FIG. 2, the radioactivity amount measurement processing unit 20 uses the radioactivity amount measurement processing for measuring the radioactivity amount of the incinerated ash as a time point during the heat treatment by the heat treatment unit 10. Are executed at a plurality of points in time t1 and t2.
Specifically, the radioactivity measurement processing unit 20 is configured such that the heat processing unit 10 is configured by a transport-type rotary kiln 11, while the heat treatment unit 10 is configured as a plurality of time points t <b> 1 and t <b> 2 having different degrees of progress of the heat processing. The axial amount measurement process is performed at a plurality of locations (a plurality of locations).
Note that this radioactivity measurement process is not limited to a plurality of time points of the heat treatment, and may be executed at one time point.

放射能量測定処理部20が放射能量測定処理を実行する具体的な時点は、種々の時点に設定することができるが、例えば、放射性セシウムの揮発除去の開始予定時点から僅かに遅れた時点(図2中のt1)に設定することができる。このように測定時点を設定すれば、放射性セシウムの揮発除去状況として、当該測定時点における放射性セシウム揮発除去の有無を把握することができる。   The specific time point at which the radioactivity measurement processing unit 20 executes the radioactivity measurement processing can be set at various times. For example, the time point slightly delayed from the scheduled start time of the cesium volatilization removal (see FIG. 2 can be set to t1). If the measurement time point is set in this manner, the presence or absence of radioactive cesium volatilization removal at the measurement time point can be grasped as the state of volatilization removal of radioactive cesium.

また、例えば、放射能量測定処理を実行する時点として、放射性セシウムの揮発除去の進行段階における前段側の時点(図2中のt1)と後段側の時点(図2中のt2)とを設定することもできる。このように測定時点を設定すれば、放射性セシウムの揮発除去状況として、複数時点の測定結果から放射性セシウムの揮発除去の進み具合(差や傾向)を把握することができる。   In addition, for example, the time point on the front stage (t1 in FIG. 2) and the time point on the rear stage (t2 in FIG. 2) in the progressing stage of volatilization and removal of radioactive cesium are set as the time points when the radioactivity measurement process is executed. You can also. If the measurement time point is set in this way, the progress (difference or tendency) of the volatilization removal of radioactive cesium can be grasped from the measurement results at a plurality of time points as the state of volatilization removal of radioactive cesium.

更に、例えば、放射能量測定処理を実行する時点として、測定後に加熱処理の条件を調整した場合に条件調整後の加熱処理によって当該焼却灰からの放射性セシウムの除去を適切に行える範囲の極力後ろ側の時点に設定することもできる。このように測定時点を設定すれば、当該焼却灰からの放射性セシウムの除去を適切に行える範囲で、処理不良が発生するか否かを極めて正確に予測することができる。   Furthermore, for example, when the radioactivity measurement process is performed, as far as possible in the range where radiocesium can be appropriately removed from the incinerated ash by the heat treatment after adjusting the conditions when the heat treatment conditions are adjusted after the measurement. It is also possible to set at the point of time. By setting the measurement time point in this way, it is possible to predict very accurately whether or not a processing failure occurs within a range in which radioactive cesium can be appropriately removed from the incinerated ash.

この放射能量測定処理部20は、図1に示すように、有線式や無線式の送受信部(図示省略)を備えた複数の放射能量測定装置21をキルン本体12の長手方向の複数箇所に設置して構成されている。各放射能量測定装置21は、放射能量測定処理として、予め設定された測定スケジュールや後述する制御部31からの制御指令等に基づき、当該設置箇所での放射能量(例えば、放射能濃度Bq/kgや空間放射線量率μSv/hや計数率cpm)を測定し、測定結果を制御部31に送信するように構成されている。   As shown in FIG. 1, the radioactivity measurement processing unit 20 is provided with a plurality of radioactivity measurement devices 21 having wired and wireless transmission / reception units (not shown) at a plurality of locations in the longitudinal direction of the kiln body 12. Configured. Each radioactivity measuring device 21 performs the radioactivity at the installation location (for example, radioactivity concentration Bq / kg) based on a preset measurement schedule, a control command from the control unit 31 described later, or the like as the radioactivity measurement processing. Or the space radiation dose rate μSv / h or the count rate cpm), and the measurement result is transmitted to the control unit 31.

放射能量測定装置21は、本実施形態では、放射能量の一例である空間放射線量率を簡易且つ迅速に測定できるNaIシンチレーション検出装置を用いている。なお、放射能量測定装置21としては、ゲルマニウム半導体検出装置等の放射能量の一例である放射能濃度を測定可能な装置、GM式サーベイメータ等の放射能量の一例である計数率を測定可能な装置等、放射能量を測定可能な各種の装置を適用することができる。空間放射線量率と計数率は放射能濃度へ換算可能であり、測定した空間放射線量率、計数率を手動または自動で濃度に換算し、その値で加熱処理の条件を調整してもよく、測定した空間線量率または計数率で加熱処理の条件を調整してもよい。   In the present embodiment, the radioactivity measuring device 21 uses a NaI scintillation detection device that can easily and quickly measure the space radiation dose rate, which is an example of the radioactivity. In addition, as the radioactive quantity measuring apparatus 21, the apparatus which can measure the radioactive concentration which is an example of radioactive quantity, such as a germanium semiconductor detection apparatus, the apparatus which can measure the count rate which is an example of radioactive quantity, such as GM type survey meter, etc. Various devices capable of measuring the amount of radioactivity can be applied. Space radiation dose rate and counting rate can be converted to radioactivity concentration, the measured space radiation dose rate, counting rate can be converted manually or automatically into concentration, and the heat treatment conditions can be adjusted with that value, You may adjust the conditions of heat processing with the measured air dose rate or the count rate.

放射能量測定装置21の具体的な設置形態としては、各種の設置形態を採用することができ、例えば、図3(a)に示すように、軸回転するキルン本体12の耐火構造の周壁部12aに放射能量測定装置21を取り付ける第1設置形態や、図3(b)に示すように、キルン本体12の軸回転の影響のない床面側の設置部22に放射能量測定装置21を取り付ける第2設置形態等を採用することができる。   As a specific installation form of the radioactive quantity measuring device 21, various installation forms can be adopted. For example, as shown in FIG. 3A, the peripheral wall portion 12a of the fireproof structure of the kiln main body 12 rotating on the axis. As shown in FIG. 3B, the first installation mode in which the radioactive quantity measuring device 21 is attached to the floor, and the radioactive quantity measuring device 21 is attached to the installation portion 22 on the floor surface side that is not affected by the axial rotation of the kiln main body 12. Two installation forms can be adopted.

ここで、第1設置形態と第2設置形態のいずれの形態でも、放射能量測定装置21は、装置先端側の検出部の周囲を鉛等からなる遮蔽部で囲う等によって放射能量の測定エリアを絞って放射能量測定に指向性を持たせるようにする。   Here, in any of the first installation mode and the second installation mode, the radioactivity measuring device 21 has a radioactivity measurement area by surrounding the detection unit on the front end side of the device with a shielding unit made of lead or the like. Reduce the amount of radioactivity so that it has directivity.

図3(a)に示す第1設置形態では、キルン本体12の周壁部12aに取り付けた放射能量測定装置21がキルン本体12の軸回転に連れて周方向に回転移動することに対し、焼却灰は軸回転するキルン本体12内で重力によりある程度定まった下方側の特定部位に位置することになる。そのため、キルン本体12の軸回転の速度や放射能量測定装置21の測定スケジュールや応答速度等に起因する測定タイミングによっては、指向性を持たせた放射能量測定装置21の測定エリアから焼却灰が位置ズレし、放射能量を適切に測定できない不都合が起こり得る。   In the first installation mode shown in FIG. 3 (a), the radioactivity measuring device 21 attached to the peripheral wall portion 12a of the kiln main body 12 rotates in the circumferential direction as the kiln main body 12 rotates. Is located in a specific part on the lower side determined to some extent by gravity in the kiln main body 12 rotating on the axis. Therefore, depending on the measurement timing caused by the axial rotation speed of the kiln main body 12, the measurement schedule of the radioactivity measuring device 21, the response speed, etc., the incineration ash is positioned from the measurement area of the radioactivity measuring device 21 with directivity. There may be a problem that the amount of radioactivity is not properly measured.

そこで、このような事態が予想される場合には、複数の放射能量測定装置21をキルン本体12の周壁部12aの周方向複数箇所、特に周方向で180度以外の角度差を有する複数箇所に取り付けるのが好ましい。このようにすれば、各測定時点において、複数の放射能量測定装置21による複数の測定エリアのいずれかで放射能量を測定することができるので、上述の不都合が生じるのを効果的に抑制することができる。   Therefore, when such a situation is expected, the plurality of radioactive quantity measuring devices 21 are arranged at a plurality of locations in the circumferential direction of the peripheral wall portion 12a of the kiln body 12, particularly at a plurality of locations having an angular difference other than 180 degrees in the circumferential direction. It is preferable to attach. In this way, at each measurement time point, the amount of radioactivity can be measured in any one of a plurality of measurement areas by the plurality of radioactivity amount measuring devices 21, so that the above-described inconvenience is effectively suppressed. Can do.

他方、図3(b)に示す第2設置形態では、焼却灰が軸回転するキルン本体12内で重力によりある程度定まった下方側の特定部位に位置することを想定し、指向性を持たせた放射能量測定装置21の測定エリアに当該特定部位が納まるように、放射能量測定装置21を設置するのが好ましい。このようにすれば、焼却灰の放射能量を極めて高い確率で適切に測定することができる。   On the other hand, in the second installation mode shown in FIG. 3 (b), the incineration ash is assumed to be located at a specific portion on the lower side determined to some extent by gravity in the kiln main body 12 that rotates the shaft, and has directivity. It is preferable to install the radioactivity measuring device 21 so that the specific part is contained in the measurement area of the radioactivity measuring device 21. If it does in this way, the amount of radioactivity of incineration ash can be measured appropriately with a very high probability.

前記処理条件調整処理部30は、処理条件調整処理として、放射能量測定処理での測定結果に基づいて、加熱処理の温度や時間、加熱処理に供する焼却灰の量等の加熱処理の条件を調整するように構成されている。この処理条件調整処理部30は、図1に示すように、当該放射性物質除去システムの動作を制御する制御部31から構成されている。   The processing condition adjustment processing unit 30 adjusts the conditions of the heat treatment such as the temperature and time of the heat treatment, the amount of incinerated ash used for the heat treatment, based on the measurement result of the radioactivity measurement process as the treatment condition adjustment processing. Is configured to do. As shown in FIG. 1, the processing condition adjustment processing unit 30 includes a control unit 31 that controls the operation of the radioactive substance removal system.

この制御部31は、記憶部やデータ処理部や送受信部(出入力部)等を備えており、各種のデータを送受信部で受信してデータ処理部で処理し、燃焼制御部16aや供給制御部14a、回転制御部13b、排気ファン18a等に対して送受信部から動作指令を送信することで、当該放射性物質除去システムの動作を制御するものである。   The control unit 31 includes a storage unit, a data processing unit, a transmission / reception unit (input / output unit), etc., receives various data by the transmission / reception unit, processes the data by the data processing unit, and controls the combustion control unit 16a and supply control. The operation of the radioactive substance removal system is controlled by transmitting an operation command from the transmission / reception unit to the unit 14a, the rotation control unit 13b, the exhaust fan 18a, and the like.

制御部31は、放射能量測定処理による放射能量の測定データを放射能量測定装置21から受信すると、処理条件調整処理として、まず、当該測定データをデータ処理部で処理して記憶部に記憶されたデータと比較する等により、測定時点の加熱処理の条件の適否を判定する判定処理を行う。なお、測定データが空間放射線量率である場合には、この判定処理において、記憶部に記憶された放射能濃度と空間放射線量率の相関から放射能濃度に換算するようにしてもよい。   When the control unit 31 receives the radioactivity measurement data from the radioactivity measurement process from the radioactivity measurement device 21, as the processing condition adjustment process, first, the measurement data is processed by the data processing unit and stored in the storage unit. A determination process for determining suitability of the heat treatment condition at the time of measurement is performed by comparing with data. In the case where the measurement data is the space radiation dose rate, in this determination process, the radioactivity concentration may be converted from the correlation between the radioactivity concentration stored in the storage unit and the space radiation dose rate.

そして、制御部31は、この判定処理において測定時点の加熱処理の条件が不適切と判定すると、放射能の揮発除去が一層進行する側に加熱処理の条件を変更する動作指令を送信する変更処理を行う。このように判定処理と変更処理とを行うことで、制御部31は、焼却灰に対する加熱処理の条件を適切化し、加熱処理後に処理不良物が発生するのを抑制する。   And if the control part 31 determines with the conditions of the heat processing at the time of a measurement being unsuitable in this determination process, the change process which transmits the operation | movement command which changes the conditions of heat processing to the side which volatilization removal of a radioactivity will progress further. I do. By performing the determination process and the change process in this manner, the control unit 31 optimizes the conditions of the heat treatment for the incinerated ash and suppresses the generation of defective processing after the heat treatment.

この制御部31が行う加熱処理の条件に対する変更処理としては、放射性セシウムの揮発除去を適切化できる各種のものであってよいが、具体例として、以下の(イ)〜(ハ)を挙げることができる。   The change process for the heat treatment condition performed by the control unit 31 may be various processes that can optimize the volatilization and removal of radioactive cesium. Specific examples include the following (A) to (C). Can do.

(イ)制御部31は、加熱処理の条件に対する変更処理として、回転制御部13bに対して、キルン本体12の回転速度を低下させる動作指令を行う。この動作指令によるキルン本体12の回転速度の低下により、焼却灰の搬送速度が低下し、結果として焼却灰の加熱時間が延長される。この焼却灰の加熱時間の延長により放射性セシウムの揮発除去が一層進行するようになる。   (A) The control unit 31 issues an operation command for reducing the rotation speed of the kiln body 12 to the rotation control unit 13b as a change process for the heat treatment condition. Due to the decrease in the rotational speed of the kiln main body 12 due to this operation command, the conveying speed of the incineration ash decreases, and as a result, the heating time of the incineration ash is extended. By extending the heating time of the incineration ash, volatilization and removal of radioactive cesium further proceeds.

(ロ)制御部31は、加熱処理の条件を変更する変更処理として、供給制御部14aに対して、キルン本体12に供給する焼却灰の量を低減する動作指令を行う。この動作指令によるキルン本体12への供給焼却灰量の低減により、キルン本体12内で加熱される焼却灰の量が低減してキルン本体12内の熱容量が小さくなり、結果として焼却灰が高温化される。この焼却灰の高温化により放射性セシウムの揮発除去が一層進行するようになる。   (B) The control unit 31 performs an operation command to reduce the amount of incinerated ash supplied to the kiln body 12 to the supply control unit 14a as a change process for changing the heat treatment condition. By reducing the amount of incinerated ash supplied to the kiln main body 12 by this operation command, the amount of incinerated ash heated in the kiln main body 12 is reduced, the heat capacity in the kiln main body 12 is reduced, and as a result, the temperature of the incinerated ash increases. Is done. Due to the high temperature of the incineration ash, the volatilization and removal of radioactive cesium further proceeds.

(ハ)制御部31は、加熱処理の条件を変更する変更処理として、燃焼制御部16aに対して、バーナ16の出力を増加させる動作指令を行う。この動作指令によるバーナ16の出力増加により、焼却灰が高温化される。この焼却灰の高温化により放射性セシウムの揮発除去が一層進行するようになる。   (C) The control unit 31 issues an operation command to increase the output of the burner 16 to the combustion control unit 16a as a change process for changing the heat treatment condition. As the output of the burner 16 is increased by this operation command, the incineration ash is heated to a high temperature. Due to the high temperature of the incineration ash, the volatilization and removal of radioactive cesium further proceeds.

上述の(イ)〜(ハ)の各処理は、いずれか1つの処理のみを選択して行うようにしてもよく、或いは、優先順位を設けて3つの処理を適宜に行うようにしてもよく、これらのいずれの場合にも、選択順位や優先順位は(イ)、(ロ)、(ハ)の順とするのが好ましい。   Each of the processes (a) to (c) may be performed by selecting only one of the processes, or may be performed by appropriately setting three processes. In any of these cases, the selection order and the priority order are preferably in the order of (A), (B), and (C).

また、これらの(イ)〜(ハ)の各処理を複合的に行うようにしてよく、更には、放射能量の測定データ以外の焼却灰の温度等の別の測定データ等を加味し、(イ)〜(ハ)の各処理から適切なものを多角的に判定して行うようにしてもよい。   In addition, these treatments (a) to (c) may be performed in a composite manner, and in addition to other measurement data such as the temperature of the incinerated ash other than the measurement data of the radioactivity, Appropriate ones from the processes (a) to (c) may be determined in a multifaceted manner.

制御部31による処理条件調整処理の実行タイミングは、当該放射性物質除去システムの稼働環境等に応じて適宜に設定することができるが、本実施形態では、例えば、放射能量測定処理と略同時のリアルタイム形式で処理条件調整処理を実行することで、放射能量測定処理で放射能量を測定した焼却灰に対する加熱処理が終了する前に処理条件調整処理を実行するようにしている。   The execution timing of the processing condition adjustment processing by the control unit 31 can be set as appropriate according to the operating environment of the radioactive substance removal system, but in this embodiment, for example, real-time substantially simultaneously with the radioactivity measurement processing By executing the process condition adjustment process in the form, the process condition adjustment process is executed before the heating process for the incinerated ash whose radioactivity is measured in the radioactivity measurement process is completed.

このように処理条件調整処理を放射能量測定処理で放射能量を測定した焼却灰に対する加熱処理が終了する前に実行することで、放射能量測定処理で放射能量を測定した処理対象物に対する残りの加熱処理を適切化することができ、この残りの加熱処理によって放射能量を測定した焼却灰が不良化することを抑制することができる。   By performing the process condition adjustment process before the heat treatment for the incinerated ash whose radioactivity has been measured by the radioactivity measurement process, the remaining heating for the processing object whose radioactivity has been measured by the radioactivity measurement process is completed. The treatment can be made appropriate, and the incineration ash whose amount of radioactivity has been measured by the remaining heat treatment can be prevented from becoming defective.

なお、この処理条件調整処理での加熱処理の条件の具体的な調整内容は、放射能の揮発除去が適切になる側に加熱処理の条件を変更するものであれば如何なるものであってもよいが、例えば、放射能量測定処理の実行時点の加熱処理の進度から当該焼却灰に対する加熱処理の残り分を算出し、この加熱処理の残り分で当該焼却灰の放射能量が所定値以下になるように加熱処理の条件を調整することができる。また、これとは別に、放射能量測定処理の実行後に新たに加熱処理部10に供給された焼却灰に対して加熱処理を最初から最後まで行ったときに当該焼却灰の放射能量が所定値以下になるように加熱処理の条件を調整することもできる。   It should be noted that the specific adjustment contents of the heat treatment conditions in this treatment condition adjustment processing may be any as long as the heat treatment conditions are changed to the side where the volatilization removal of radioactivity becomes appropriate. However, for example, the remaining amount of the heat treatment for the incinerated ash is calculated from the progress of the heat treatment at the time of execution of the radioactive amount measurement processing, and the amount of radioactivity of the incinerated ash becomes a predetermined value or less with the remaining amount of the heat treatment. The heat treatment conditions can be adjusted. Separately from this, when the incineration ash newly supplied to the heat treatment unit 10 after the execution of the radioactivity measurement process is performed from the beginning to the end, the radioactivity amount of the incineration ash is below a predetermined value. It is also possible to adjust the heat treatment conditions so that

〔別実施形態〕
(1)前述の実施形態では、加熱処理後に放射性物質の除去が不十分なものを処理不良物とし、処理条件調整処理の実行により放射能の揮発除去が一層進行する側に加熱処理の条件を調整する場合を例に示したが、消費エネルギーの削減を目的として、加熱処理後に放射性物質の除去が過剰なものを処理不良物とし、処理条件調整処理の実行により放射能の揮発除去の進行が鈍化する側に加熱処理の条件を調整して過剰な加熱処理による消費エネルギーの増大を回避するようにしてもよい。また、もし放射性物質の除去が不十分な処理不良物が発生した場合は、そのまま放射性物質除去システムから排出せずに再加熱を行ってもよく、放射性物質の除去が不十分な処理不良物を加熱処理部10の上流側に搬送して再度加熱処理を行ってもよい。
[Another embodiment]
(1) In the above-described embodiment, the defective radioactive material after the heat treatment is treated as a defective treatment, and the heat treatment conditions are set so that the volatilization and removal of the radioactivity further proceeds by executing the treatment condition adjustment processing. Although the example of adjustment is shown as an example, for the purpose of reducing energy consumption, the removal of radioactive material after heat treatment is regarded as defective processing, and the progress of removal of radioactivity by progress of processing condition adjustment processing Heat treatment conditions may be adjusted on the slowing side to avoid an increase in energy consumption due to excessive heat treatment. In addition, if a defective treatment with insufficient removal of radioactive material occurs, it may be reheated without discharging from the radioactive material removal system as it is, and a defective treatment with insufficient removal of radioactive material may be removed. You may convey to the upstream of the heat processing part 10, and may perform heat processing again.

(2)前述の実施形態では、放射能量測定処理を加熱処理の進度の異なる複数時点で実施するのに、加熱処理部10を搬送式の加熱炉とし、その搬送方向の複数箇所で放射能量測定処理を実行する場合を例に示したが、例えば、加熱処理部10をバッチ式の加熱炉とする場合には、放射能量測定処理を同じ箇所で時間間隔を空けて複数回実行すればよい。   (2) In the above-described embodiment, in order to carry out the radioactivity measurement process at a plurality of time points with different degrees of progress of the heat treatment, the heat treatment unit 10 is a transfer-type heating furnace, and the radioactivity measurement is performed at a plurality of locations in the transfer direction. Although the case where the process is executed is shown as an example, for example, when the heat processing unit 10 is a batch-type heating furnace, the radioactivity measurement process may be executed a plurality of times at the same location with a time interval.

(3)前述の実施形態では、加熱炉の搬送方向の複数箇所に予め設置した複数の放射能量測定装置21で複数時点の放射能量測定処理を実行する場合を例に示したが、例えば、1つの放射能量測定装置21を加熱炉の搬送方向に移動自在に設置し、この1つの放射能量測定装置21を搬送方向の複数箇所に移動させながら複数時点の放射能量測定処理を実行するようにしてもよい。   (3) In the above-described embodiment, the case where the radioactivity amount measurement processing at a plurality of points in time is executed by the plurality of radioactivity amount measurement devices 21 installed in advance in a plurality of locations in the conveyance direction of the heating furnace is described as an example. Two radioactivity measuring devices 21 are installed so as to be movable in the conveying direction of the heating furnace, and the radioactivity measuring processing at a plurality of time points is executed while moving this one radioactivity measuring device 21 to a plurality of locations in the conveying direction. Also good.

(4)放射能量測定処理は、前述の実施形態で示した放射能量測定処理部20で自動的に実行する場合に限らず、作業員が可搬式の放射能量測定装置を用いて実行するようにしてもよい。また、同様に、処理条件調整処理も、前述の実施形態で示した処理条件調整処理部30で自動的に実行する場合に限らず、作業員による手動のスイッチ操作等で実行するようにしてもよい。   (4) The radioactivity measurement process is not limited to being automatically executed by the radioactivity measurement processing unit 20 shown in the above-described embodiment, but may be performed by a worker using a portable radioactivity measurement apparatus. May be. Similarly, the processing condition adjustment processing is not limited to being automatically executed by the processing condition adjustment processing unit 30 shown in the above-described embodiment, but may be executed by a manual switch operation by an operator. Good.

(5)前述の実施形態では、処理条件調整処理において、加熱処理の条件の調整として、焼却灰の加熱時間や焼却灰の温度を調整する場合を例に示したが、加熱処理の前工程で添加する添加剤の添加量を調整するようにしてもよい。   (5) In the above-described embodiment, the case where the heating time of the incineration ash and the temperature of the incineration ash are adjusted as an example of the adjustment of the heat treatment conditions in the processing condition adjustment processing. You may make it adjust the addition amount of the additive to add.

10 加熱処理部
11 搬送式の加熱炉(ロータリーキルン)
20 放射能量測定処理部
21 放射能量測定装置
30 処理条件調整処理部

10 Heat treatment section 11 Conveying heating furnace (rotary kiln)
20 Radioactivity measurement processing unit 21 Radioactivity measurement device 30 Processing condition adjustment processing unit

Claims (3)

放射性物質を含む処理対象物を加熱する加熱処理を実行する放射性物質除去方法であって、
前記加熱処理の途中の処理対象物の放射能量を測定する放射能量測定処理と、この放射能量測定処理での前記加熱処理の途中の処理対象物の放射能量の測定結果に基づいて前記加熱処理の条件を調整する処理条件調整処理とを実行するとともに、前記放射能量測定処理で放射能量を測定した前記加熱処理の途中の処理対象物に対する前記加熱処理が終了する前に前記処理条件調整処理を実行し、前記放射能量測定処理で放射能量を測定した前記加熱処理の途中の処理対象物に対して前記処理条件調整処理による調整後の条件で残りの前記加熱処理を実行し、
前記加熱処理が、処理対象物を搬送式の加熱炉の内部にて搬送しながら加熱する処理であり、
前記加熱処理の途中の処理対象物が、前記搬送式の加熱炉の内部における搬送方向の途中の箇所にある処理対象物である放射性物質除去方法。
A radioactive substance removing method for performing a heat treatment for heating a processing object containing a radioactive substance,
Based on the measurement result of the radioactivity amount of the treatment object in the middle of the heat treatment, and the measurement result of the radioactivity amount of the treatment object in the middle of the heat treatment in the radioactivity measurement processing A processing condition adjustment process for adjusting the conditions, and the processing condition adjustment process is performed before the heating process for the object to be processed in the middle of the heating process in which the radioactivity is measured in the radioactivity measurement process is completed. Then, the remaining heat treatment is performed under the conditions after the adjustment by the treatment condition adjustment processing on the processing object in the middle of the heat treatment in which the radioactivity amount is measured by the radiation amount measurement processing,
The heat treatment is a treatment for heating the object to be treated while being conveyed inside a conveying heating furnace,
The radioactive substance removal method which is the process target object in the middle of the conveyance direction in the inside of the said conveyance type heating furnace in the middle of the said heat processing .
前記処理条件調整処理として、前記搬送式の加熱炉の内部における処理対象物の搬送速度、又は、前記搬送式の加熱炉の内部における処理対象物の温度を調整する請求項1記載の放射性物質除去方法。 The radioactive substance removal according to claim 1 , wherein, as the processing condition adjustment processing, the transport speed of the processing object inside the transport-type heating furnace or the temperature of the processing object inside the transport-type heating furnace is adjusted. Method. 放射性物質を含む処理対象物を加熱する加熱処理を実行する放射性物質除去システムであって、
前記加熱処理を実行する加熱処理部と、前記加熱処理の途中の処理対象物の放射能量を測定する放射能量測定処理を実行する放射能量測定処理部と、前記放射能量測定処理での前記加熱処理の途中の処理対象物の放射能量の測定結果に基づいて前記加熱処理の条件を調整する処理条件調整処理を実行する処理条件調整処理部とが備えられ、前記処理条件調整処理部は、前記放射能量測定処理で放射能量を測定した前記加熱処理の途中の処理対象物に対する前記加熱処理が終了する前に前記処理条件調整処理を実行し、前記加熱処理部は、前記放射能量測定処理で放射能量を測定した前記加熱処理の途中の処理対象物に対して前記処理条件調整処理による調整後の条件で残りの前記加熱処理を実行するように構成され、
前記加熱処理部が、内部で処理対象物を搬送しながら加熱する搬送式の加熱炉から構成され、
前記加熱処理の途中の処理対象物が、前記搬送式の加熱炉の内部における搬送方向の途中の箇所にある処理対象物である放射性物質除去システム。
A radioactive substance removal system for performing a heat treatment for heating a processing object containing a radioactive substance,
A heat treatment unit that performs the heat treatment, a radioactivity measurement processing unit that performs a radioactivity measurement process that measures a radioactivity amount of a processing object in the middle of the heat treatment, and the heat treatment in the radioactivity measurement process A processing condition adjustment processing unit that executes a processing condition adjustment process that adjusts the condition of the heat treatment based on the measurement result of the amount of radioactivity of the processing object in the middle of the processing condition adjustment unit, the processing condition adjustment processing unit The processing condition adjustment process is executed before the heating process for the object to be processed in the middle of the heating process in which the radioactivity amount is measured by the capacity measuring process, and the heating processing unit performs the radioactivity amount in the radioactivity measuring process. Is configured to execute the remaining heat treatment under the condition after the adjustment by the treatment condition adjustment process on the object to be processed in the middle of the heat treatment,
The heat treatment unit is composed of a conveyance type heating furnace that heats the object to be treated while conveying the object inside,
The radioactive substance removal system which is a process target object in the location in the middle of the conveyance direction in the inside of the said conveyance type heating furnace in the middle of the said heat processing .
JP2015125558A 2015-06-23 2015-06-23 Radioactive substance removal method and radioactive substance removal system Active JP5872093B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015125558A JP5872093B1 (en) 2015-06-23 2015-06-23 Radioactive substance removal method and radioactive substance removal system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015125558A JP5872093B1 (en) 2015-06-23 2015-06-23 Radioactive substance removal method and radioactive substance removal system

Publications (2)

Publication Number Publication Date
JP5872093B1 true JP5872093B1 (en) 2016-03-01
JP2017009454A JP2017009454A (en) 2017-01-12

Family

ID=55362164

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015125558A Active JP5872093B1 (en) 2015-06-23 2015-06-23 Radioactive substance removal method and radioactive substance removal system

Country Status (1)

Country Link
JP (1) JP5872093B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017173192A (en) * 2016-03-25 2017-09-28 太平洋セメント株式会社 Method and device of processing waste contaminated with radioactive cesium

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60398A (en) * 1983-04-19 1985-01-05 ゼネラル・エレクトリック・カンパニイ Incinerator
JPS63186196A (en) * 1987-01-29 1988-08-01 株式会社東芝 Radioactive waste incinerator
JPH06230186A (en) * 1993-02-08 1994-08-19 Hitachi Ltd Processing system and method of radioactive waste
JPH06273586A (en) * 1993-03-19 1994-09-30 Ngk Insulators Ltd Compression processsing method for radioactive waste
JP2005127718A (en) * 2003-10-21 2005-05-19 Hitachi Eng Co Ltd Device and method for decontaminating tritium
WO2012111463A1 (en) * 2011-02-15 2012-08-23 富士電機株式会社 Resin volume reduction treatment system and resin volume reduction treatment method
JP2013047623A (en) * 2011-08-29 2013-03-07 Hitachi-Ge Nuclear Energy Ltd Volume reduction processing method of radioactive waste
JP2014052243A (en) * 2012-09-06 2014-03-20 Kawasaki Heavy Ind Ltd Treatment system and treatment method for incineration ash
JP2015021856A (en) * 2013-07-19 2015-02-02 株式会社タクマ System and method for removing cesium contained in waste
JP5677608B1 (en) * 2014-06-23 2015-02-25 宇部興産株式会社 Removal method of radioactive cesium
JP2015068692A (en) * 2013-09-27 2015-04-13 株式会社クボタ Radioactive cesium separation enrichment method and radioactive cesium separation enrichment device

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60398A (en) * 1983-04-19 1985-01-05 ゼネラル・エレクトリック・カンパニイ Incinerator
JPS63186196A (en) * 1987-01-29 1988-08-01 株式会社東芝 Radioactive waste incinerator
JPH06230186A (en) * 1993-02-08 1994-08-19 Hitachi Ltd Processing system and method of radioactive waste
JPH06273586A (en) * 1993-03-19 1994-09-30 Ngk Insulators Ltd Compression processsing method for radioactive waste
JP2005127718A (en) * 2003-10-21 2005-05-19 Hitachi Eng Co Ltd Device and method for decontaminating tritium
WO2012111463A1 (en) * 2011-02-15 2012-08-23 富士電機株式会社 Resin volume reduction treatment system and resin volume reduction treatment method
JP2013047623A (en) * 2011-08-29 2013-03-07 Hitachi-Ge Nuclear Energy Ltd Volume reduction processing method of radioactive waste
JP2014052243A (en) * 2012-09-06 2014-03-20 Kawasaki Heavy Ind Ltd Treatment system and treatment method for incineration ash
JP2015021856A (en) * 2013-07-19 2015-02-02 株式会社タクマ System and method for removing cesium contained in waste
JP2015068692A (en) * 2013-09-27 2015-04-13 株式会社クボタ Radioactive cesium separation enrichment method and radioactive cesium separation enrichment device
JP5677608B1 (en) * 2014-06-23 2015-02-25 宇部興産株式会社 Removal method of radioactive cesium

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017173192A (en) * 2016-03-25 2017-09-28 太平洋セメント株式会社 Method and device of processing waste contaminated with radioactive cesium

Also Published As

Publication number Publication date
JP2017009454A (en) 2017-01-12

Similar Documents

Publication Publication Date Title
JP4833093B2 (en) Waste incineration fly ash treatment method
JP2010075897A (en) Apparatus for fly ash treatment, method for fly ash treatment, waste disposal system, and operation method for waste disposal system
CA2818503A1 (en) Sludge processing system and storage medium storing a program for controlling an operation of a sludge processing system thereon
JP5872093B1 (en) Radioactive substance removal method and radioactive substance removal system
JP4230371B2 (en) Method for treating exhaust gas from cement production equipment
JP2004244308A5 (en)
JP2011079890A (en) Multi-stage screw carbonization furnace
JP2011156501A (en) Method for thermally treating contaminated soil
JP6439207B1 (en) Exhaust gas mercury removal system
JP2017225958A (en) Water content controlling method of dry sludge and carbonization treatment facility of sludge
JP6187363B2 (en) Cement manufacturing method and cement manufacturing equipment
JP2014048097A (en) Method for treating radioactive cesium-containing soil
JP6113595B2 (en) Method and apparatus for avoiding overload of granular material transport equipment
JP6050848B2 (en) Radiocesium removal method and radioactive cesium removal system
CN1534234A (en) Automatic combustion controlling method for charging device type refuse incinerator
JP2010048488A (en) Rotary kiln for heating treatment, and heating treatment method using the same
JP2020001030A (en) Exhaust gas mercury removal system
JP5872092B1 (en) Radioactive substance removal method and radioactive substance removal system
JP6628667B2 (en) Automatic combustion control method for incineration facilities
JP2005069630A (en) Device for detecting property of substance to be treated for waste treatment furnace
JP2018077181A (en) Radioactive matter removal method
JP2017138261A (en) Method and system for removing radioactive substance
JP5937259B1 (en) Radioactive material removal method
JP5937258B1 (en) Radioactive material removal method
JP2008272595A (en) Heating/crushing device, and system and method for treating harmful substance

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160112

R150 Certificate of patent or registration of utility model

Ref document number: 5872093

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250