JP6834165B2 - Method for treating radioactive cesium-containing inorganic substances - Google Patents
Method for treating radioactive cesium-containing inorganic substances Download PDFInfo
- Publication number
- JP6834165B2 JP6834165B2 JP2016070030A JP2016070030A JP6834165B2 JP 6834165 B2 JP6834165 B2 JP 6834165B2 JP 2016070030 A JP2016070030 A JP 2016070030A JP 2016070030 A JP2016070030 A JP 2016070030A JP 6834165 B2 JP6834165 B2 JP 6834165B2
- Authority
- JP
- Japan
- Prior art keywords
- radioactive cesium
- containing inorganic
- inorganic substance
- chlorine
- equivalent
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Gasification And Melting Of Waste (AREA)
Description
本発明は、放射性セシウムを含有する焼却灰や土壌や浄水汚泥や下水汚泥などから放射性セシウムを除去する方法に関するものである。 The present invention relates to a method for removing radioactive cesium from incineration ash containing radioactive cesium, soil, purified water sludge, sewage sludge, and the like.
原子力発電所等の放射性物質を取扱う施設から排出される廃棄物のうち可燃性のものは焼却処理されるが、その焼却の際に発生する焼却灰には放射性物質が含まれており、そのなかで放射性セシウムは半減期が134Csで約2年、137Csで約30年と長いので、その保管には細心の注意を払う必要がある。特に、最近では福島県の原子力発電所の事故により多量の放射性物質が放出されて広範囲にわたって汚染を引起し、その汚染地域から出される汚染土壌や可燃物の焼却灰の処理も問題になっている。 Of the waste discharged from facilities that handle radioactive substances such as nuclear power plants, combustible waste is incinerated, but the incineration ash generated during the incineration contains radioactive substances. Radioactive cesium has a long half-life of 134 Cs for about 2 years and 137 Cs for about 30 years, so great care must be taken when storing it. In particular, recently, a large amount of radioactive substances have been released due to an accident at a nuclear power plant in Fukushima Prefecture, causing widespread pollution, and the treatment of contaminated soil and incineration ash of combustibles from the contaminated area has become a problem. ..
大規模な原子力発電所事故によって放射性物質が大量に飛散した場合には処理すべき放射性汚染物質が大量になり、これらは無機物の形で埋立処理されるが、埋め立てる場所や施設の確保が容易でない。ところで、放射性物質には種々あり、原子力発電所等から排出される放射性物質としては、主にセシウムとヨウ素であるがヨウ素は半減期が非常に短いため、問題になるのはセシウムである。 If a large amount of radioactive material is scattered due to a large-scale nuclear power plant accident, a large amount of radioactive contaminants to be treated will be required, and these will be landfilled in the form of inorganic substances, but it is not easy to secure a place or facility for landfill. .. By the way, there are various kinds of radioactive substances, and the radioactive substances emitted from nuclear power plants and the like are mainly cesium and iodine, but iodine has a very short half-life, so the problem is cesium.
そこで、本発明者は、焼却灰や土壌に含まれている放射性セシウムは主に酸化物等の形態で存在していることを見出し、これらの無機物を塩素の存在下で還元ガス雰囲気で溶融することによって、放射性セシウムを塩化物の形態に変えて飛灰側に濃縮することができ、残ったスラグは放射性セシウムのほとんど含有しない無害なものになることを見出し、これを特許出願し、既に、特許を受けている(特許文献1)。 Therefore, the present inventor has found that radioactive cesium contained in fly ash and soil mainly exists in the form of oxides and the like, and melts these inorganic substances in a reducing gas atmosphere in the presence of chlorine. By doing so, it was found that radioactive cesium could be converted into a chloride form and concentrated on the fly ash side, and the remaining slag would be harmless with almost no radioactive cesium, and a patent application was filed for this. It has been patented (Patent Document 1).
また、土壌や焼却残渣等の被処理物に融点降下剤を添加することによって溶融スラグからの放射性セシウムの分離効率を向上させることも知られている(特許文献2)。この融点降下剤には、カルシウム化合物、アルカリ金属塩、アルカリ土類金属塩、ホウ素化合物、鉄化合物などが含まれている。 It is also known that the efficiency of separating radioactive cesium from molten slag is improved by adding a melting point lowering agent to an object to be treated such as soil and incineration residue (Patent Document 2). The melting point lowering agent includes calcium compounds, alkali metal salts, alkaline earth metal salts, boron compounds, iron compounds and the like.
特許文献1の方法は、放射性セシウムのほとんどを飛灰に濃縮させ、残ったスラグは放射性セシウムをほとんど含まないものであったが、焼却灰や土壌の種類によってはスラグの残存放射能が100Bq/kgを越えてしまう場合があった。特許文献2の方法は、これを改善するものであったが、まだ不充分であった。 In the method of Patent Document 1, most of the radioactive cesium was concentrated in fly ash, and the remaining slag contained almost no radioactive cesium, but the residual radioactivity of the slag was 100 Bq / depending on the type of incineration ash and soil. In some cases, it exceeded kg. The method of Patent Document 2 improved this, but it was still insufficient.
本発明の目的は、放射性セシウムを含有する焼却灰や土壌等の無機物を、塩素の存在下で還元ガス雰囲気で溶融して、減容化し放射性セシウムを飛灰に濃縮して、低濃度の放射性セシウムを含むスラグを得る方法において、放射性セシウムを安定して低下させることができる方法を提供することにある。 An object of the present invention is to melt an inorganic substance such as incineration ash or soil containing radioactive cesium in a reducing gas atmosphere in the presence of chlorine to reduce the volume and concentrate the radioactive cesium into flying ash to have a low concentration of radioactivity. An object of the present invention is to provide a method capable of stably reducing radioactive cesium in a method for obtaining slag containing cesium.
本発明者は、上記課題を解決するべく鋭意検討し、塩素の存在下で還元ガス雰囲気で溶融して放射性セシウムを塩化し揮発させる際に、溶融させる融点を低下させるよりも粘性を改善して流動性を向上させれば、還元材、塩化物とスラグとの接触効率を高めてセシウムを塩化揮発させることができることを見出した。そして、この粘性低下剤としてアルカリが有効であるが、このアルカリは最初から無機物に添加しておくと、加熱溶融の際に揮発してしまって、その効果が充分に得られないためほぼ溶融した後に加えることが有効であることを見出した。 The present inventor has diligently studied to solve the above problems, and when melting in a reducing gas atmosphere in the presence of chlorine to chloride and volatilize radioactive cesium, the viscosity is improved rather than lowering the melting point. It has been found that if the fluidity is improved, the contact efficiency between the reducing agent, chloride and slag can be improved and cesium can be chlorinated and volatilized. Alkali is effective as this viscosity lowering agent, but if this alkali is added to an inorganic substance from the beginning, it volatilizes during heating and melting, and the effect cannot be sufficiently obtained, so that the alkali is almost melted. We found that it was effective to add it later.
本発明は、これらの知見に基づいてなされたものであり、
放射性セシウムを含有する無機物を塩素の存在下で還元ガス雰囲気で溶融し、ガス排出口から排出される飛灰を捕集する放射性セシウム含有無機物の処理方法であって、
前記放射性セシウムを含有する無機物中の塩素成分の当量が、無機物に含まれる鉛の当量と亜鉛の当量との合計以上であり、溶融状態での粘性を低下させるナトリウム化合物又はカリウム化合物であるアルカリを溶融後に添加することを特徴とする放射性セシウム含有無機物の処理方法と、
放射性セシウムを含有する無機物を塩素の存在下で還元ガス雰囲気で溶融し、ガス排出口から排出される飛灰を捕集する放射性セシウム含有無機物の処理方法であって、
前記放射性セシウムを含有する無機物に塩素源を添加して、塩素の当量を無機物に含まれる鉛の当量と亜鉛の当量との合計以上にし、溶融状態での粘性を低下させるナトリウム化合物又はカリウム化合物であるアルカリを溶融後に添加することを特徴とする放射性セシウム含有無機物の処理方法を提供するものである。
The present invention has been made based on these findings.
A method for treating radioactive cesium-containing inorganic substances by melting radioactive cesium-containing inorganic substances in a reducing gas atmosphere in the presence of chlorine and collecting fly ash discharged from the gas outlet.
The equivalent of the chlorine component in the inorganic substance containing radioactive cesium is equal to or more than the sum of the equivalent of lead and the equivalent of zinc contained in the inorganic substance, and an alkali which is a sodium compound or a potassium compound that lowers the viscosity in a molten state is used. A method for treating radioactive cesium-containing inorganic substances, which is characterized by being added after melting, and
A method for treating radioactive cesium-containing inorganic substances by melting radioactive cesium-containing inorganic substances in a reducing gas atmosphere in the presence of chlorine and collecting fly ash discharged from the gas outlet.
A sodium compound or potassium compound that reduces the viscosity in the molten state by adding a chlorine source to the radioactive cesium-containing inorganic substance to make the equivalent of chlorine equal to or greater than the sum of the equivalent of lead and the equivalent of zinc contained in the inorganic substance. It provides a method for treating a radioactive cesium-containing inorganic substance, which comprises adding a certain alkali after melting.
本発明により、放射性セシウムを含有する無機物を放射性セシウムをほとんど含有しないスラグに変えることができ、その際発生する飛灰のみを埋立処理すればよいので埋立量を大幅に減少させることができる。 According to the present invention, an inorganic substance containing radioactive cesium can be changed to slag containing almost no radioactive cesium, and only the fly ash generated at that time needs to be landfilled, so that the amount of landfill can be significantly reduced.
無機物は放射性セシウムを含有するものであれば特に制限されないが、放射性セシウムを含有する可燃物を焼却した際に発生する焼却灰、放射性セシウムを含有する下水汚泥を焼却した際に発生する焼却灰、放射性セシウムで汚染された土壌、瓦礫、コンクリートなどを例に挙げることができる。特に、放射性セシウムを含有する可燃物を焼却した際に発生する焼却灰には、焼却炉の炉底に溜まる炉底灰である主灰と、燃焼排ガスに含まれてバグフィルター等の集塵機で捕集される飛灰とがある。 The inorganic substance is not particularly limited as long as it contains radioactive cesium, but incineration ash generated when combustible substances containing radioactive cesium are incinerated, incineration ash generated when sewage sludge containing radioactive cesium is incinerated, Examples include soil, rubble, and concrete contaminated with radioactive cesium. In particular, the incineration ash generated when combustibles containing radioactive cesium are incinerated includes the main ash, which is the bottom ash that collects at the bottom of the incinerator, and the main ash, which is contained in the combustion exhaust gas and is collected by a dust collector such as a bag filter. There is fly ash to be collected.
放射性セシウムの含有量は特に限定されないが、通常、大規模な原子力発電所事故によって影響を受けた地域では、不検出〜6,000Bq/kg程度、特に発電所から100km圏内では、3,000Bq/kg程度である。 The content of radioactive cesium is not particularly limited, but it is usually not detected in areas affected by a large-scale nuclear power plant accident, about 6,000 Bq / kg, and especially within 100 km from the power plant, 3,000 Bq / kg. It is about kg.
塩素は、溶融時にセシウム化合物を塩化セシウムの形態に変えるものであり、多種多様のものを用いることができる。放射性セシウムを含有する可燃物を焼却した際に発生する焼却灰中には、0.4〜2重量%の塩素成分を含むことが多く、塩素成分の含有量が0.4重量%未満の場合には塩素源を添加する必要がある。 Chlorine changes a cesium compound into a form of cesium chloride when melted, and a wide variety of chlorine can be used. Incineration ash generated when combustibles containing radioactive cesium is incinerated often contains 0.4 to 2% by weight of chlorine component, and the content of chlorine component is less than 0.4% by weight. Needs to add a chlorine source.
塩素源として、例示すれば、塩化ビニル樹脂、アルカリ金属の塩化物、アルカリ土類金属の塩化物等が挙げられる。アルカリ金属の塩化物として、塩化ナトリウム、塩化カリウムなどがあり、アルカリ土類金属の塩化物として、塩化カルシウム、塩化マグネシウムなどがある。 Examples of the chlorine source include vinyl chloride resin, alkali metal chloride, alkaline earth metal chloride and the like. Alkaline metal chlorides include sodium chloride and potassium chloride, and alkaline earth metal chlorides include calcium chloride and magnesium chloride.
塩素の含有量としては、無機物に含まれる鉛の当量と亜鉛の当量との合計以上であることが好ましい。これは、鉛および亜鉛は塩化し易く、しかもセシウムよりも揮発し易い元素であるためである。なお、鉛および亜鉛の各当量は、鉛および亜鉛の各物質量(モル数)の2倍で計算することができ、無機物中に塩素成分が含まれていれば、これも塩素の含有量として含んで計算してもよい。 The chlorine content is preferably equal to or greater than the sum of the equivalent of lead and the equivalent of zinc contained in the inorganic substance. This is because lead and zinc are easily chlorinated and more easily volatilized than cesium. The equivalents of lead and zinc can be calculated by doubling the amount of each substance (number of moles) of lead and zinc, and if the inorganic substance contains a chlorine component, this is also used as the chlorine content. It may be included in the calculation.
また、塩素の含有量が10重量%以上の場合、スラグの品質劣化をもたらすため、塩素の含有量は10重量%未満であることが好ましい。 Further, when the chlorine content is 10% by weight or more, the quality of the slag is deteriorated, so that the chlorine content is preferably less than 10% by weight.
無機物の溶融に用いる溶融炉は特に限定されないが、一般廃棄物の処理に用いられているシャフト式ガス化溶融炉や電気抵抗式灰溶融炉等を例示することができる。 The melting furnace used for melting inorganic substances is not particularly limited, and examples thereof include a shaft type gasification melting furnace and an electric resistance type ash melting furnace used for treating general waste.
図1は、電気抵抗式灰溶融炉を用いて放射性セシウム含有無機物を処理する装置の概略構造を示す図である。 FIG. 1 is a diagram showing a schematic structure of an apparatus for treating radioactive cesium-containing inorganic substances using an electric resistance type ash melting furnace.
図1において、1は無機物の投入口、2は電極、3はガス排出口、5は溶融スラグ排出口、6は溶融メタル排出口である。灰溶融炉10内に投入された無機物は、電極2間の通電により生じる電気抵抗熱によって千数百度の高温に加熱された溶融スラグ4上で溶融し、溶融スラグとなって炉底に溜まる。炉底の溶融スラグ4は、溶融スラグ排出口5から適宜炉外に排出される。無機物の投入口1から投入された放射性セシウム含有無機物は炉内で加熱溶融され、発生するスラグ4は溶融スラグ排出口5から、その下に集まる溶融メタルは溶融メタル排出口6から連続的あるいは間欠的に排出される。一方、飛灰を含む排出ガスはガス出口3から出されて、冷却塔7で冷却され、バグフィルルター8で飛灰が捕集されて煙突9から排出される。
In FIG. 1, 1 is an inlet for an inorganic substance, 2 is an electrode, 3 is a gas discharge port, 5 is a molten slag discharge port, and 6 is a molten metal discharge port. The inorganic substance charged into the ash melting
溶融は還元ガス雰囲気で行う。この還元ガス雰囲気は、水素ガスや一酸化炭素ガスを存在させることによって形成することができる。炉内を還元ガス雰囲気に保つためには、外からの空気が可及的少量しか炉内に進入しないように、炉を密閉構造とする必要がある。 Melting is performed in a reducing gas atmosphere. This reducing gas atmosphere can be formed by the presence of hydrogen gas or carbon monoxide gas. In order to maintain the atmosphere of the reducing gas in the furnace, it is necessary to make the furnace a closed structure so that only a small amount of air from the outside enters the furnace.
さらに、一酸化炭素ガスを還元ガスとする雰囲気は、コークスを熱源とする場合にはコークス中の炭素が一酸化炭素に変化するのに必要な空気量、すなわち概ね4.44Nm3−空気/kg−炭素の空気量を添加することで形成され、電気により加熱する場合には電極の黒鉛と投入した無機物中の酸化物との反応により形成される。 Further, the atmosphere in which carbon monoxide gas is used as a reducing gas is the amount of air required for the carbon in coke to be converted to carbon monoxide when coke is used as a heat source, that is, approximately 4.44 Nm 3 -air / kg. -It is formed by adding the amount of carbon air, and when heated by electricity, it is formed by the reaction between the graphite of the electrode and the oxide in the charged inorganic material.
一酸化炭素ガスの濃度としては、5〜40体積%程度であることが好ましく、特に20〜30体積%程度であることがより好ましい。さらに、一酸化炭素ガスと二酸化炭素ガスとの濃度比(CO/CO2)は、0.1〜100程度であることが好ましく、特に0.5〜20程度であることがより好ましい。 The concentration of carbon monoxide gas is preferably about 5 to 40% by volume, and more preferably about 20 to 30% by volume. Further, the concentration ratio (CO / CO 2 ) of carbon monoxide gas to carbon dioxide gas is preferably about 0.1 to 100, and more preferably about 0.5 to 20.
一酸化炭素ガスの濃度が5体積%未満の場合、酸化性が強まるため、セシウムの塩化が進行しなくなる。一方、一酸化炭素ガスの濃度が40体積%を超えた場合ではセシウムが塩化する効果はほとんど変わらない。 When the concentration of carbon monoxide gas is less than 5% by volume, the oxidative property is enhanced, so that cesium chloride does not proceed. On the other hand, when the concentration of carbon monoxide gas exceeds 40% by volume, the effect of cesium chloride is almost unchanged.
また、一酸化炭素ガスと二酸化炭素ガスとの濃度比(CO/CO2)が0.1未満の場合、酸化性が強まるため、セシウムの塩化が進行しなくなる。一方、一酸化炭素ガスと二酸化炭素ガスとの濃度比(CO/CO2)が100を超えた場合ではセシウムが塩化する効果はほとんど変わらない。 Further, when the concentration ratio (CO / CO 2 ) of carbon monoxide gas and carbon dioxide gas is less than 0.1, the oxidizing property is strengthened, so that cesium chloride does not proceed. On the other hand, when the concentration ratio (CO / CO 2 ) of carbon monoxide gas to carbon dioxide gas exceeds 100, the effect of cesium chloride is almost unchanged.
溶融温度は、無機物を溶融できればよいが、通常1200〜1600℃程度でよく、1〜2時間程度溶融を続ければよい。 The melting temperature may be about 1200 to 1600 ° C., as long as the inorganic substance can be melted, and the melting may be continued for about 1 to 2 hours.
この還元ガス雰囲気では、塩素源としてCaCl2を用いた場合、総括反応として、Cs2O+CaCl2→2CsCl+CaOとなり、炭素が入るとCs2O+C→2Cs+COなどの反応でOが離れやすくなり、2Cs+CaCl2+CO2→2CsCl+CaOの反応が進むと考えられる。 In this reducing gas atmosphere, when CaCl 2 is used as the chlorine source, the overall reaction is Cs 2 O + CaCl 2 → 2 CsCl + CaO, and when carbon is added, O is easily separated by a reaction such as Cs 2 O + C → 2 Cs + CO, and 2 Cs + CaCl 2 + CO. It is considered that the reaction of 2 → 2CsCl + CaO proceeds.
ここでアルカリを添加することにより、スラグの粘性が低下してスラグの流動性を向上させ、炭材、塩化物およびセシウムの接触効率を高めてセシウムの塩化揮発を促進させることができる。 By adding an alkali here, the viscosity of the slag is lowered, the fluidity of the slag is improved, the contact efficiency of the carbonaceous material, chloride and cesium is increased, and the chloride volatilization of cesium can be promoted.
アルカリは、塩基性酸化物であり、主にナトリウム化合物やカリウム化合物が用いられる。具体例としては、炭酸ソーダ、重曹、水酸化ナトリウム、水酸化カリウム、硼砂、ほう酸などを挙げることができる。アルカリの添加量はスラグに対して1〜80重量%が適当である。このアルカリは、放射性セシウムを含有する無機物がほぼ溶融してから加えるのがよく、溶融後はなるべく早く添加するのがよい。添加は上から降り掛ける、もしくはランスを用いて吹き込むなどの方法で行えばよい。 Alkali is a basic oxide, and sodium compounds and potassium compounds are mainly used. Specific examples include sodium carbonate, baking soda, sodium hydroxide, potassium hydroxide, and borax, boric acid and the like. The appropriate amount of alkali added is 1 to 80% by weight based on the slag. This alkali should be added after the inorganic substance containing radioactive cesium has been substantially melted, and should be added as soon as possible after melting. Addition may be done by dropping from above or blowing with a lance.
この溶融処理によって、無機物はスラグ化され、このスラグには放射性セシウムがほとんど除去されているので、そのまま廃棄処理し、あるいは有効利用できる。 By this melting treatment, the inorganic substance is slagged, and since most of the radioactive cesium is removed from this slag, it can be disposed of as it is or can be effectively used.
一方、無機物に含まれていた放射性セシウムの大部分は溶融処理中に炉から発生する飛灰に移行するため、この飛灰は、例えば、環境省環廃対発第110831001号、環廃産発第110831001号、平成23年8月31日の指針に従って、埋立処分することになるが、飛灰の量は無機物より大幅に少ない量になっているので埋立地の確保が容易である。 On the other hand, most of the radioactive cesium contained in the inorganic material is transferred to the fly ash generated from the furnace during the melting process. Therefore, this fly ash is produced, for example, by the Ministry of the Environment, Ring Abolition No. 110831001, The landfill will be disposed of in accordance with the guidelines of No. 110831001 and August 31, 2011, but the amount of fly ash is much smaller than that of inorganic substances, so it is easy to secure a landfill site.
原子力発電所から排出された焼却灰(主灰)を使用して、図1に示されるような電気抵抗式灰溶融炉を用いて溶融処理した。 The incineration ash (main ash) discharged from the nuclear power plant was melted using an electric resistance type ash melting furnace as shown in FIG.
用いた焼却灰の組成は、Si:13.2重量%、Al:5.8重量%、Fe:2.8重量%、Ca:16.0重量%、Na:1.8重量%、K:1.3重量%、Cl:0.1重量%、Pb:0.1重量%、Zn:0.4重量%であり、放射性セシウムの濃度(134Csと137Csの合計)は610Bq/kgである。 The composition of the incineration ash used was Si: 13.2% by weight, Al: 5.8% by weight, Fe: 2.8% by weight, Ca: 16.0% by weight, Na: 1.8% by weight, K :. It was 1.3% by weight, Cl: 0.1% by weight, Pb: 0.1% by weight, Zn: 0.4% by weight, and the concentration of radioactive cesium ( total of 134 Cs and 137 Cs) was 610 Bq / kg. is there.
上記の焼却灰100kgと塩素源である塩化カルシウム1.15kgとを混合して電気抵抗式灰溶融炉に投入した。ここで、塩化カルシウムの量を1.15kgに設定した理由は次のとおりである。 100 kg of the above incineration ash and 1.15 kg of calcium chloride as a chlorine source were mixed and put into an electric resistance type ash melting furnace. Here, the reason why the amount of calcium chloride was set to 1.15 kg is as follows.
焼却灰100kg中の鉛および亜鉛の含有量を基に、必要な塩素当量を求めると、
必要塩素当量=(0.1/[Pb原子量]+0.4/[Zn原子量])×2
=0.013[kmol]
ここで、Pb原子量は207.13、Zn原子量は65.37である。
When the required chlorine equivalent is determined based on the content of lead and zinc in 100 kg of incineration ash,
Required chlorine equivalent = (0.1 / [Pb atomic weight] + 0.4 / [Zn atomic weight]) x 2
= 0.013 [kmol]
Here, the Pb atomic weight is 207.13 and the Zn atomic weight is 65.37.
次に、焼却灰中には塩素成分が0.1重量%含まれているため、この塩素成分の当量は、
塩素成分当量=0.1/[Cl原子量]=0.0028[kmol]
ここで、Cl原子量は35.453である。
したがって、添加すべき塩素当量は、0.013−0.0028=0.0104[kmol]となり、添加する塩化カルシウムの量を計算すると、
塩化カルシウム量=([Ca原子量]+[Cl原子量]×2)×0.0104
=1.15[kg]
ここで、Ca原子量は40.08である。
Next, since the incineration ash contains 0.1% by weight of the chlorine component, the equivalent of this chlorine component is
Chlorine component equivalent = 0.1 / [Cl atomic weight] = 0.0028 [kmol]
Here, the Cl atomic weight is 35.453.
Therefore, the chlorine equivalent to be added is 0.013-0.0028 = 0.0104 [kmol], and when the amount of calcium chloride to be added is calculated,
Calcium chloride amount = ([Ca atomic weight] + [Cl atomic weight] x 2) x 0.0104
= 1.15 [kg]
Here, the Ca atomic weight is 40.08.
このようにして、塩素源としての塩化カルシウムを電気抵抗式灰溶融炉に投入し、1200℃で焼却灰が溶融してから炭酸ナトリウムを10kg上方からホッパーを経由して投入してから炉内から排出されるCOガスの濃度が5〜40体積%で、(CO/CO2)が0.6〜1.0の範囲で炉内を還元ガス雰囲気に保ちながら、1500℃で1時間溶融処理した。 In this way, calcium chloride as a chlorine source is charged into an electric resistance type ash melting furnace, and after the incineration ash is melted at 1200 ° C., sodium carbonate is charged from above 10 kg via a hopper and then from inside the furnace. The concentration of CO gas discharged was 5 to 40% by volume, and the inside of the furnace was kept in a reducing gas atmosphere in the range of (CO / CO 2 ) of 0.6 to 1.0, and melted at 1500 ° C. for 1 hour. ..
その結果、炉からは52kgのスラグが得られ、スラグ中に含まれる放射性セシウム濃度は180Bq/kgであった。一方、炉から排出されて捕集された飛灰量は1.1kgであり、飛灰中に含まれる放射性セシウム濃度は27,000Bq/kgであった。その外、メタル(主に鉄)1.3kgが得られ、その放射能は5Bq/kg未満であった。 As a result, 52 kg of slag was obtained from the furnace, and the concentration of radioactive cesium contained in the slag was 180 Bq / kg. On the other hand, the amount of fly ash discharged from the furnace and collected was 1.1 kg, and the concentration of radioactive cesium contained in the fly ash was 27,000 Bq / kg. In addition, 1.3 kg of metal (mainly iron) was obtained, and its radioactivity was less than 5 Bq / kg.
なお、処理の最初からアルカリを投入すると、アルカリは融点が低く蒸気圧が高いため、セシウムが揮発する前に、アルカリが蒸発してしまうため、処理後のスラグ中放射性セシウム濃度が300Bq/kgと高くなってしまった。 If the alkali is added from the beginning of the treatment, the alkali has a low melting point and a high vapor pressure, and the alkali evaporates before the cesium volatilizes. Therefore, the concentration of radioactive cesium in the slag after the treatment is 300 Bq / kg. It has become expensive.
本発明の方法によれば、放射性セシウム含有無機物から放射性セシウムを分離して飛灰に濃縮できるので埋立量を大幅に節減でき、従って、各種の放射性セシウム含有廃棄物の処理に利用できる。 According to the method of the present invention, radioactive cesium can be separated from the radioactive cesium-containing inorganic substance and concentrated in fly ash, so that the amount of landfill can be significantly reduced, and therefore, it can be used for the treatment of various radioactive cesium-containing wastes.
1 無機物の投入口
2 電極
3 ガス排出口
4 溶融スラグ
5 溶融スラグ排出口
6 溶融メタル排出口
7 冷却塔
8 バグフィルター
9 煙突
1 Inorganic material inlet 2 Electrode 3 Gas outlet 4 Molten slag 5 Molten slag outlet 6 Molten metal outlet 7
Claims (4)
前記放射性セシウムを含有する無機物中の塩素成分の当量が、無機物に含まれる鉛の当量と亜鉛の当量との合計以上であり、溶融状態での粘性を低下させるナトリウム化合物又はカリウム化合物であるアルカリを溶融後に添加することを特徴とする放射性セシウム含有無機物の処理方法。 A method for treating radioactive cesium-containing inorganic substances by melting radioactive cesium-containing inorganic substances in a reducing gas atmosphere in the presence of chlorine and collecting fly ash discharged from the gas outlet.
The equivalent of the chlorine component in the inorganic substance containing radioactive cesium is equal to or more than the sum of the equivalent of lead and the equivalent of zinc contained in the inorganic substance, and an alkali which is a sodium compound or a potassium compound that lowers the viscosity in a molten state is used. A method for treating a radioactive cesium-containing inorganic substance, which comprises adding it after melting.
前記放射性セシウムを含有する無機物に塩素源を添加して、塩素の当量を無機物に含まれる鉛の当量と亜鉛の当量との合計以上にし、溶融状態での粘性を低下させるナトリウム化合物又はカリウム化合物であるアルカリを溶融後に添加することを特徴とする放射性セシウム含有無機物の処理方法。 A method for treating radioactive cesium-containing inorganic substances by melting the radioactive cesium-containing inorganic substances in a reducing gas atmosphere in the presence of chlorine and collecting fly ash discharged from the gas outlet.
A sodium compound or potassium compound that reduces the viscosity in the molten state by adding a chlorine source to the radioactive cesium-containing inorganic substance to make the equivalent of chlorine equal to or greater than the sum of the equivalent of lead and the equivalent of zinc contained in the inorganic substance. A method for treating a radioactive cesium-containing inorganic substance, which comprises adding a certain alkali after melting.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016070030A JP6834165B2 (en) | 2016-03-31 | 2016-03-31 | Method for treating radioactive cesium-containing inorganic substances |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016070030A JP6834165B2 (en) | 2016-03-31 | 2016-03-31 | Method for treating radioactive cesium-containing inorganic substances |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2017181336A JP2017181336A (en) | 2017-10-05 |
JP6834165B2 true JP6834165B2 (en) | 2021-02-24 |
Family
ID=60004443
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016070030A Active JP6834165B2 (en) | 2016-03-31 | 2016-03-31 | Method for treating radioactive cesium-containing inorganic substances |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6834165B2 (en) |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004294308A (en) * | 2003-03-27 | 2004-10-21 | Ngk Insulators Ltd | Melting processing method of miscellaneous solid waste |
JP5850494B2 (en) * | 2011-11-18 | 2016-02-03 | 太平洋セメント株式会社 | Method and apparatus for removing radioactive cesium |
JP5772556B2 (en) * | 2011-12-08 | 2015-09-02 | Jfeエンジニアリング株式会社 | Method for treating radioactive cesium-containing inorganic substances |
JP6349167B2 (en) * | 2014-06-30 | 2018-06-27 | 株式会社クボタ | Radiocesium separation and concentration method |
-
2016
- 2016-03-31 JP JP2016070030A patent/JP6834165B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2017181336A (en) | 2017-10-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5772556B2 (en) | Method for treating radioactive cesium-containing inorganic substances | |
JP6266201B2 (en) | Radiocesium separation and concentration method and radioactive cesium separation and concentration apparatus | |
JP5767938B2 (en) | Volume reduction method for low-level radioactive waste | |
JP5175995B1 (en) | Method for removing radioactive cesium from soil | |
JP5716656B2 (en) | Method for treating ash containing oxide of radioactive cesium | |
JP2014174090A (en) | Method for removing radioactive cesium from incineration ash | |
JP6834165B2 (en) | Method for treating radioactive cesium-containing inorganic substances | |
CN1966743B (en) | Method for reclaiming heavy metal in fly ash or secondary fly ash | |
JP6215390B2 (en) | Radiocesium separation and concentration method and radioactive cesium separation and concentration apparatus | |
JP6349167B2 (en) | Radiocesium separation and concentration method | |
JP2014174089A (en) | Method for incinerating combustible waste containing radioactive cesium | |
JP6335463B2 (en) | Radioactive cesium separation and concentration method, radioactive cesium separation and concentration device, radioactive cesium removal method, and radioactive cesium removal device | |
CN100485057C (en) | Device for reclaiming heavy metal from fly ash or secondary fly ash | |
JP6070970B2 (en) | Ash processing equipment containing radioactive cesium oxide | |
JP6780084B2 (en) | Radioactive cesium separation and concentration method | |
JP6865091B2 (en) | Radioactive cesium volatilization promotion method | |
JP6754341B2 (en) | Radioactive cesium separation and concentration method and radioactive cesium separation and concentration device | |
JP2000051819A (en) | Method for detoxifying fly ash | |
JP6410058B2 (en) | Ash processing equipment containing radioactive cesium oxide | |
JP2014174051A (en) | Method for removing radioactive cesium from soil | |
JP5928761B2 (en) | Ash processing equipment containing radioactive cesium oxide | |
JP6349166B2 (en) | Operation method of radioactive cesium separation and concentration equipment | |
JP2019020242A (en) | Removal method of radioactive cesium and treatment facility | |
JP6511503B1 (en) | Method for treating objects to be treated containing organic halides and heavy metals | |
JPH07163966A (en) | Method for concentrating heavy metal compound in the case of thermally inactivating residue containing heavy metal |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20190326 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20200109 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20200205 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200311 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20200512 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20200702 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20210105 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20210118 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6834165 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |