JP2016133508A - 大型構造用の自動予測シミングのためのシステム、方法及び装置 - Google Patents

大型構造用の自動予測シミングのためのシステム、方法及び装置 Download PDF

Info

Publication number
JP2016133508A
JP2016133508A JP2015221188A JP2015221188A JP2016133508A JP 2016133508 A JP2016133508 A JP 2016133508A JP 2015221188 A JP2015221188 A JP 2015221188A JP 2015221188 A JP2015221188 A JP 2015221188A JP 2016133508 A JP2016133508 A JP 2016133508A
Authority
JP
Japan
Prior art keywords
measurements
remote device
measurement
path
data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015221188A
Other languages
English (en)
Other versions
JP6737581B2 (ja
Inventor
ダリオ・ヴァレンスエラ
Valenzuela Dario
テオドール・エム・ボイル−デイヴィス
m boyl-davis Theodore
ダレル・ディ・ジョーンズ
Darrell D Jones
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Boeing Co
Original Assignee
Boeing Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Boeing Co filed Critical Boeing Co
Publication of JP2016133508A publication Critical patent/JP2016133508A/ja
Application granted granted Critical
Publication of JP6737581B2 publication Critical patent/JP6737581B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/0011Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots associated with a remote control arrangement
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/14Measuring arrangements characterised by the use of optical techniques for measuring distance or clearance between spaced objects or spaced apertures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64FGROUND OR AIRCRAFT-CARRIER-DECK INSTALLATIONS SPECIALLY ADAPTED FOR USE IN CONNECTION WITH AIRCRAFT; DESIGNING, MANUFACTURING, ASSEMBLING, CLEANING, MAINTAINING OR REPAIRING AIRCRAFT, NOT OTHERWISE PROVIDED FOR; HANDLING, TRANSPORTING, TESTING OR INSPECTING AIRCRAFT COMPONENTS, NOT OTHERWISE PROVIDED FOR
    • B64F5/00Designing, manufacturing, assembling, cleaning, maintaining or repairing aircraft, not otherwise provided for; Handling, transporting, testing or inspecting aircraft components, not otherwise provided for
    • B64F5/10Manufacturing or assembling aircraft, e.g. jigs therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C15/00Surveying instruments or accessories not provided for in groups G01C1/00 - G01C13/00
    • G01C15/002Active optical surveying means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C15/00Surveying instruments or accessories not provided for in groups G01C1/00 - G01C13/00
    • G01C15/02Means for marking measuring points
    • G01C15/06Surveyors' staffs; Movable markers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C7/00Tracing profiles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/66Tracking systems using electromagnetic waves other than radio waves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2101/00UAVs specially adapted for particular uses or applications
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2101/00UAVs specially adapted for particular uses or applications
    • B64U2101/20UAVs specially adapted for particular uses or applications for use as communications relays, e.g. high-altitude platforms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2101/00UAVs specially adapted for particular uses or applications
    • B64U2101/30UAVs specially adapted for particular uses or applications for imaging, photography or videography
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/401Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by control arrangements for measuring, e.g. calibration and initialisation, measuring workpiece for machining purposes

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Transportation (AREA)
  • Automation & Control Theory (AREA)
  • Multimedia (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Human Computer Interaction (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Automatic Assembly (AREA)
  • Measurement Of Optical Distance (AREA)

Abstract

【課題】大型構造用の自動シミングを製造、使用、その他に実施するためのシステム、方法及び装置を提供する。【解決手段】システム、方法及び装置が、大型構造の予測シミングのために開示される。システムは、第1の車両構造に対して第1の経路に沿って移動するように構成されている遠隔装置を含む。遠隔装置は、第1の経路に含まれる複数の測定点に沿ってセンサ装置を移動するように構成される。ベース装置は、各測定点でセンサ装置の位置を識別するように構成される。ベース装置は、第1の車両構造の第1の面の少なくとも1つの構造寸法を識別する第1の複数の測定値を含む測定データを生成するようにされに構成される。コントローラーが、第1の車両構造に関連するエンジニアリングデータに基づいてベース装置及び遠隔装置の操作を制御するように構成される。コントローラーは、第1の面に関連する少なくとも1つのシム寸法を決定するように更に構成される。【選択図】図1A

Description

本開示は、一般的に車両及び機械に関し、より詳細には、そのような車両及び機械と共に実施されるシミングシステムに関する。
製造環境又は組立環境の中で、間隙又は空隙が、互いに結合されるべき2つ以上の構成要素又は構造の間に存在する場合が多い。例えば、航空機翼などの大型構造では、リブなどの内側構造である翼の構成要素と、翼の上面又は底面などの外側又は表面構成要素との間に、様々な大きさの空隙が存在する可能性がある。結合されるべき部品間に適切な機械的結合を保証するために、インターフェースでの構成要素間又は構造間の空隙を埋める目的でシムを使用することができる。シムは、金属などの材料の相対的に薄い部品とすることができ、空隙を埋め、構造間に許容可能な機械的結合を達成するために空隙の中に挿入される。しかし、シムを実施するための従来技術は、大型構造用のシムを生成するために使用することができる寸法を効率的かつ効果的に決定することができないので、依然として制限を受けている。
大型構造用の自動シミングを製造、使用、その他に実施するためのシステム、方法及び装置が本明細書で開示される。本明細書で開示されるシステムは、第1の構造に対して第1の経路に沿って移動するように構成され得る遠隔装置を含むことができ、その遠隔装置は、第1の経路の中に含まれる複数の測定点に沿ってセンサ装置を移動するように更に構成され得る。システムは、遠隔装置に通信可能に接続され、複数の測定点の各測定点における遠隔装置のセンサ装置の位置を識別するように構成されているベース装置を更に備えることができる。ベース装置は、第1の構造の第1の面の少なくとも1つの構造上の寸法を識別する測定データを生成するようにされに構成され得る。システムは、ベース装置及び遠隔装置のそれぞれに通信可能に接続されているコントローラー装置を更に備えることができる。コントローラー装置は、ベース装置及び遠隔装置の操作を制御するように構成され、少なくとも部分的に測定データに基づいて、第1の構造の第1の面に関連する少なくとも1つのシム寸法を決定するように更に構成され得る。
いくつかの実施形態では、センサ装置は、トラッキングボール及びトラッキングボールに接続されている反射装置を含む。ベース装置は、反射装置に光学的に接続されるように構成されているトラッキング装置を含むことができる。更に、いくつかの実施形態によれば、トラッキングボールは、第1の面の指定された距離以内にあることに応答して、第1の面と機械的に結合するように構成され得る。トラッキングボールと第1面との間の機械的結合は、トラッキングボールの位置に少なくとも1つの変化をもたらし、トラッキング装置は、その変化を識別するように構成され得る。いくつかの実施形態によれば、トラッキングボールが、センサ装置の筐体に機械的アームを経て結合されることができ、機械的アームが、トラッキングボールの位置を決定するように構成されている。様々な実施形態では、第1の構造の第1の面が、第2の構造の第2の面とのインターフェースの中に含まれ、測定データが、第1の面に関連する第1の複数の測定値及び第2の面に関連する第2の複数の測定値を更に含むことができる。
いくつかの実施形態では、シム寸法が、少なくとも部分的に、第1の複数の測定値及び第2の複数の測定値に基づいて決定される。様々な実施形態によれば、ベース装置が、第1の構造に対して第2の経路に沿って移動するように構成されており、ベース装置の移動が、少なくとも部分的に、組立環境内で第1の構造の第1の位置及びベース装置の第2の位置を識別する計測データに基づくことができる。いくつかの実施形態では、遠隔装置の移動は、少なくとも部分的に、エンジニアリングデータに基づく。様々な実施形態では、コントローラー装置は、生成された測定データに基づいてエンジニアリングデータを更新するように更に構成されている。いくつかの実施形態によれば、第1の構造は、航空機の翼の構成要素である。
本明細書では、第1の構造に対して第1の経路に沿って遠隔装置を移動するステップであって、第1の経路が、第1の構造の複数の構造寸法を識別するエンジニアリングデータに基づいて識別される、移動するステップを含む方法が更に開示される。方法は更に、第1の経路に沿って第1の複数の測定値を生成するステップであって、第1の複数の測定値が、第1の経路に沿った第1の複数の測定点に関連し、第1の複数の測定値が、第1の構造の第1の面の少なくとも1つの構造寸法を識別する、生成するステップを更に含むことができる。方法は、第1の複数の測定値に基づいて測定データを生成するステップであって、測定データが、遠隔装置に通信可能に接続されているベース装置によって生成される、生成するステップを更に含むことができる。方法は、測定データに基づいて第1の構造の第1の面に関連する少なくとも1つのシム寸法を決定するステップを更に含むことができる。
いくつかの実施形態では、測定データを生成するステップが、ベース装置で、遠隔装置の中に含まれるセンサ装置から第1の複数の測定値を受信するステップであって、遠隔装置が、トラッキングボール及び反射装置を含む、ステップを更に含むことができる。様々な実施形態では、ベース装置が、トラッキング装置を含み、第1の複数の測定値を受信するステップが、トラッキング装置を経てトラッキングボールの少なくとも1つの位置を測定するステップを更に含む。いくつかの実施形態では、方法が、生成された測定データに基づいてエンジニアリングデータを更新するステップを更に含む。様々な実施形態によれば、第1の構造の第1の面が、第2の構造の第2の面とのインターフェース内に含まれる。方法が、第1の構造に対して第2の経路に沿って第2の複数の測定値を生成するステップであって、第2の複数の測定値が、第2の経路に沿った第2の複数の測定点に関連するステップを更に含むことができる。生成された測定データが、第2の構造の第2の面に関連する第2の複数の測定値を含むことができる。更に、シム寸法が、少なくとも部分的に、第1の複数の測定値及び第2の複数の測定値に基づいて決定され得る。いくつかの実施形態では、第1の構造は、航空機の翼の構成要素である。
本明細書では、第1の構造に対して第1の経路に沿って移動するように構成される遠隔装置と通信するように構成されている第1の通信インターフェースを含むことができる装置が更に開示され、その遠隔装置は、第1の経路の中に含まれる第1の複数の測定点に沿ってセンサ装置を移動するように更に構成され得る。装置は、ベース装置と通信するように構成されている第2の通信インターフェースを更に含むことができ、ベース装置は、複数の測定点の各測定点における遠隔装置のセンサ装置の位置を識別するように構成されている。ベース装置は、第1の構造の第1の面の少なくとも1つの構造寸法を識別する測定データを生成するようにされに構成され得る。装置は、第1の通信インターフェース及び第2の通信インターフェースを経てベース装置及び遠隔装置の移動を制御するように構成され、更に、第1の構造の第1の面に関連する少なくとも1つのシム寸法を決定するように構成されているコントローラーを更に含むことができ、少なくとも1つのシム寸法が、測定データに基づいて決定される。
様々な実施形態によれば、第1の構造の第1の面が、第2の構造の第2の面とのインターフェース内に含まれる。更に、測定データは、第1の経路に沿った第1の複数の測定点に関連する第1の複数の測定値及び第2の構造の第2の面に関連する第2の複数の測定値を更に含むことができ、コントローラーは、少なくとも部分的に、第1の複数の測定値及び第2の複数の測定値に基づいてシム寸法を決定するように構成され得る。様々な実施形態では、第1の構造は、航空機の翼の構成要素である。
更に、本開示は、以下の付則よる実施形態を含む。
付則1
第1の構造に対して第1の経路に沿って移動するように構成されている遠隔装置であって、前記遠隔装置が、前記第1の経路の中に含まれる複数の測定点に沿ってセンサ装置を移動するように更に構成されている遠隔装置と、前記遠隔装置に通信可能に接続され、複数の測定点の各測定点で、前記遠隔装置のセンサ装置の位置を識別するように構成されているベース装置であって、前記ベース装置が、前記第1の構造の前記第1の面の少なくとも1つの構造寸法を識別する測定データを生成するように更に構成されている、ベース装置と、前記ベース装置及び前記遠隔装置のそれぞれに通信可能に接続されているコントローラー装置であって、前記コントローラー装置が、前記ベース装置及び前記遠隔装置の操作を制御するように構成され、前記第1の構造の前記第1の面に関連する少なくとも1つのシム寸法を決定するように更に構成されており、前記少なくとも1つのシム寸法が前記測定データに基づく、コントローラー装置とを備えるシステム。
付則2
前記センサ装置が、トラッキングボール及び前記トラッキングボールに接続されている反射装置を備え、前記ベース装置が、前記反射装置に光学的に接続されるように構成されているトラッキング装置を備える、付則1に記載のシステム。
付則3
前記トラッキングボールが、前記第1の面の指定距離以内にあることに応答して前記第1の面と機械的に結合するように構成されており、前記トラッキングボールと前記第1の面との間の機械的結合が、前記トラッキングボールの位置に少なくとも1つの変化をもたらし、前記トラッキング装置が、前記変化を識別するように構成されている、付則2に記載のシステム。
付則4
前記トラッキングボールが、前記センサ装置の筐体に機械的アームを介して結合され、前記機械的アームが、前記トラッキングボールの位置を決定するように構成されている、付則2に記載のシステム。
付則5
前記第1の構造の前記第1の面が、第2の構造の第2の面とのインターフェースの中に含まれ、前記測定データが、前記第1の面に関連する第1の複数の測定値及び前記第2の面に関連する第2の複数の測定値を更に含む、付則1に記載のシステム。
付則6
前記シム寸法が、少なくとも部分的に、前記第1の複数の測定値及び前記第2の複数の測定値に基づいて決定される、付則5に記載のシステム。
付則7
ベース装置が、前記第1の構造に対して第2の経路に沿って移動するように構成されており、前記ベース装置の移動が、少なくとも部分的に、組立環境内で前記第1の構造の第1の位置及び前記ベース装置の第2の位置を識別する計測データに基づく、付則1に記載のシステム。
付則8
前記遠隔装置の移動が、少なくとも部分的に、エンジニアリングデータに基づく、付則1に記載のシステム。
付則9
前記コントローラー装置が、前記生成された測定データに基づいてエンジニアリングデータを更新するように更に構成されている、付則8に記載のシステム。
付則10
前記第1の構造が、航空機の翼の構成要素である、付則1に記載のシステム。
付則11
第1の構造に対して第1の経路に沿って遠隔装置を移動するステップであって、前記第1の経路が、前記第1の構造の複数の構造寸法を識別するエンジニアリングデータに基づいて識別される、移動するステップと、前記第1の経路に沿って第1の複数の測定値を生成するステップであって、前記第1の複数の測定値が、前記第1の経路に沿った第1の複数の測定点に関連し、前記第1の複数の測定値が、前記第1の構造の第1の面の少なくとも1つの構造寸法を識別する、生成するステップと、前記第1の複数の測定値に基づいて測定データを生成するステップであって、前記測定データが、前記遠隔装置に通信可能に接続されているベース装置によって生成される、生成するステップと、前記測定データに基づいて前記第1の構造の前記第1の面に関連する少なくとも1つのシム寸法を決定するステップとを含む方法。
付則12
前記測定データを生成するステップが、前記ベース装置で、前記遠隔装置の中に含まれるセンサ装置から前記第1の複数の測定値を受信するステップであって、前記遠隔装置が、トラッキングボール及び反射装置を含む、受信するステップを含む、付則11に記載の方法。
付則13
ベース装置が、トラッキング装置を含み、前記第1の複数の測定値を受信するステップが、前記トラッキング装置を経て前記トラッキングボールの少なくとも1つの位置を測定するステップを含む、付則12に記載の方法。
付則14
前記生成された測定データに基づいて前記エンジニアリングデータを更新するステップを更に含む、付則11に記載の方法。
付則15
前記第1の構造の前記第1の面が、第2の構造の第2の面とのインターフェース内に含まれる、付則11に記載の方法。
付則16
前記第1の構造に対して第2の経路に沿って第2の複数の測定値を生成するステップであって、前記第2の複数の測定値が、前記第2の経路に沿った第2の複数の測定点に関連し、前記生成された測定データが、前記第2の構造の前記第2の面に関連する前記第2の複数の測定値を含み、前記シム寸法が、少なくとも部分的に、前記第1の複数の測定値及び前記第2の複数の測定値に基づいて決定される、生成するステップを更に含む、付則15に記載の方法。
付則17
前記第1の構造が、航空機の翼の構成要素である、付則11に記載の方法。
付則18
第1の構造に対して第1の経路に沿って移動するように構成されている遠隔装置と通信するように構成されている第1の通信インターフェースであって、前記遠隔装置が、前記第1の経路の中に含まれる第1の複数の測定点に沿ってセンサ装置を移動するように更に構成されている、第1の通信インターフェースと、ベース装置と通信するように構成されている第2の通信インターフェースであって、前記ベース装置が、複数の測定点の各測定点で、前記遠隔装置のセンサ装置の位置を識別するように構成され、前記第1の構造の前記第1の面の少なくとも1つの構造寸法を識別する測定データを生成するように更に構成されている、第2の通信インターフェースと、前記第1の通信インターフェース及び前記第2の通信インターフェースを経て、前記ベース装置及び前記遠隔装置の移動を制御するように構成され、前記第1の構造の前記第1の面に関連する少なくとも1つのシム寸法を決定するように更に構成されているコントローラーであって、前記少なくとも1つのシム寸法が前記測定データに基づく、コントローラーとを備える装置。
付則19
前記第1の構造の前記第1の面が、第2の構造の第2の面とのインターフェース内に含まれており、前記測定データが、前記第1の経路に沿った前記第1の複数の測定点に関連する第1の複数の測定値及び前記第2の構造の前記第2の面に関連する第2の複数の測定値を含み、前記コントローラーが、少なくとも部分的に、前記第1の複数の測定値及び前記第2の複数の測定値に基づいてシム寸法を決定するように構成されている、付則18に記載の装置。
付則20
前記第1の構造が、航空機の翼の構成要素である、付則18に記載の装置。
提示される概念の理解をもたらすために、複数の実施形態が説明されたが、前述の実施形態は、いくつか又はすべてのこれら特定の詳細を使用せずに実施され得る。他の実施例の中で良く知られている工程操作は、説明される概念を不必要に不明瞭にしないように、詳細には説明されていない。いくつかの概念は、特定の実施例と組み合わせて説明されたが、これらの実施例は、限定することを意図せず、他の適切な実施例が、本明細書に開示される実施形態の範囲内で考えられることを理解されたい。
いくつかの実施形態によって実施される、自動シミングシステムの実施例を示す図である。 いくつかの実施形態によって実施される、構造間のインターフェースの実施例を示す図である。 いくつかの実施形態によって実施される、図1Aに説明する遠隔装置の実施例を示す図である。 いくつかの実施形態によって実施される、図1Aに説明する遠隔装置の別の実施例を示す図である。 いくつかの実施形態によって実施される、回転可能なアームを有する、図1Aに説明する遠隔装置の実施例を示す図である。 いくつかの実施形態によって実施される、回転可能なアームを有する、図1Aに説明する遠隔装置の別の実施例を示す図である。 いくつかの実施形態によって実施される、回転可能なアームを有する、図1Aに説明する遠隔装置のやはり別の実施例を示す図である。 いくつかの実施形態によって実施される、図1Aに説明するベース装置の実施例を示す図である。 いくつかの実施形態によって実施される、自動化シミング方法の流れ図である。 いくつかの実施形態によって実施される、自動化シミング方法の別の流れ図である。 いくつかの実施形態によって実施される、航空機の製造及び保守点検方法の実施例の流れ図である。 いくつかの実施形態によって実施される、航空機の実施例のブロック図である。
以下の説明の中で、提示される概念の完全な理解を提供するために、複数の特定の詳細が記載される。提示される概念は、いくつか又はすべてのこれら特定の詳細を使用せずに実施され得る。他の実施例の中で良く知られている工程操作は、説明される概念を不必要に不明瞭にしないように、詳細には説明されていない。いくつかの概念が、特定の実施例と組み合わせて説明されるが、これらの実施例は限定するように意図されるのではないことを理解されたい。
従来技術は、組立工程に含まれ得る大型構造用の適切な測定データを効果的に生成することができないので、製造又は組立環境の中でシムを実施するための従来技術は、依然として限定されている。本明細書で考察するように、大型構造は、大型車両の中に含まれる大型構成要素を含む可能性がある。例えば、大型構造は、航空機の翼、又は翼の表面パネルなどの翼の構成要素とすることができる。大型構造は、100フィートを超える寸法を有する場合がある。航空機の翼の実施例では、構造又は構成要素は、110フィート×20フィート又はそれ以上の面積を有することができる。そのような構造の広大な寸法に対してシムを実施するための従来技術は、通常、寸法の測定値を手動で収集することに続いて、様々な異なる測定値に基づいてシムの寸法を手動で計算することを含む。そのような手動の工程には、時間がかかる可能性があり、潜在的に人為ミスを誘発する可能性があり、組立工程の中の床空間の重要な部分を使用する場合がある。
本明細書で開示される様々な実施形態は、大型構造の自動予測シミングを提供する。いくつかの実施形態では、リモートドローンなどの遠隔装置が、大型構造の1つ又は複数の面を航行することができ、大型構造のインターフェースで必要なすべてのシムのための寸法を生成するために使用され得る様々な測定値を収集することができる。様々な実施形態では、遠隔装置は、遠隔装置の箇所を監視し、追跡するように構成され得るベース装置に通信可能に接続され得る。いくつかの実施形態では、遠隔装置及びベース装置の両方の操作が、コントローラー装置によって制御され得る。したがって、大型構造のためのシムについて適切な寸法を決定するために使用されることができる測定データを得るために、コントローラー装置は、指定経路に沿って遠隔装置及びベース装置を導くことができる。このように、測定データは、単一の連続的獲得プロセスとして自動的に生成されることができ、したがって、迅速かつ効率的なデータの獲得、ならびにデータ自体の高いレベルの正確性をもたらす。更に、測定データは、構造の特定の設計を説明し、又は特徴づける既存のエンジニアリングデータに統合され得る。したがって、エンジニアリングデータは、最新の、正確な測定データを反映するように更新され得る。以下に更に詳細に説明するように、本明細書で開示する様々な実施形態は、シムの配置、他の部品の配置、及び/又は穴開け、及び/又は洗浄などの他のツーリング操作など、様々な他の態様を提供することができる。
図1Aは、いくつかの実施形態によって実施される、自動シミングシステムの実施例を示す。システム100など、本明細書で開示する自動シミングシステムは、大型構造及び/又は大型構造の構成要素の様々な面及びインターフェースを自動的に走査するように構成されることが可能であって、そのようなインターフェースに存在する可能性がある空隙の精密な寸法、ならびにその空隙を埋め、大型構造の構成要素間の適切な機械的結合を保証するために製造、及び使用され得るシムの適切な寸法を決定することができる。加えて、以下により詳細に考察するように、システム100は、空隙が全く存在せず、シムが製造されないはずであることを決定するように更に構成され得る。このように、システム100は、任意の適切な大型構造用に効率的かつ正確にシムの寸法を決定するために実施され得る。
上記に同様に考察するように、システム100などの自動シミングシステムが、航空機などの大型構造の組立に含まれ得る製造又は組立環境の中で、1つ又は複数の構造と共に実施され得る。例えば、システム100は、翼102などの航空機の翼と共に実施され得る。この実施例では、翼102は、リブ103及び上側パネル104などの外面など、様々な内部及び外部構成要素から組み立てられる。上記に同様に考察するように、リブ103及び上側パネル104などの構成要素は、複数の取り付け点を含むことができるインターフェース又は接合部で接合されるか、又は機械的に結合され得る。しかし、このインターフェース及びその関連する取り付け点では、部品間又は構造間に空隙又は間隙が存在する可能性がある。いくつかの実施形態では、リブ103と上側パネル104との間のインターフェースに沿って異なる箇所で複数の空隙が存在する可能性がある。以下により詳細に考察するように、システム100の様々な構成要素は、リブ103と上側パネル104との間の空隙を埋め、適切な機械的結合を保証することができるシムのための適切な寸法を自動的に決定するように構成され得る。
図1Aに図示するように、翼102は、組立工程中であり、完成時には、表面パネルによって覆われるであろう。更に、図1Aは、航空機の翼を図示するが、システム100は、任意の適切な大型構造と共に実施可能である。例えば、システム100は、胴体区分又は尾翼区分など、航空機の他の部分と共に実施され得る。更に、システム100は、ボート、商用船、電車及びトラックなど、他の型の車両に関連する組立又は製造環境と共に実施され得る。
様々な実施形態では、システム100は、遠隔装置110を含むことができる。いくつかの実施形態によれば、遠隔装置110は、組立環境の中で自在に移動できる、遠隔制御される車両とすることができる。例えば、遠隔装置110は、遠隔装置110の移動を可能にする推進システムを含むことができる。更に、推進システムは、組立環境の三次元空間内で6つの自由度を可能にするように移動可能又は構成可能とすることができる。一実施例では、遠隔装置110は、空中ドローンとすることができる。図2A及び図2Bを参照して以下により詳細に考察するように、遠隔装置110は、プロペラ又はスラスタなど、様々な推進装置を含む推進システムを備える空中ドローンとすることができる。
様々な実施形態では、遠隔装置110は、翼102などの大型構造又はリブ103などの大型構造の構成要素に沿って様々な測定経路を航行するように構成されている。以下により詳細に考察するように、経路は、大型構造の構成要素間のインターフェースによって決定され、又は表示され得る。したがって、遠隔装置に関連する経路は、構成要素間又は構造間のインターフェースを表示することができ、そのための測定はそのインターフェースに対するシムの適切な寸法を決定するように行われるはずである。更に、経路の境界は、コントローラー装置111によって決定され得る。いくつかの実施形態では、以下により詳細に考察するように、遠隔装置110は、無線通信リンク又は他の任意の適切な通信モダリティを経てコントローラー装置111に通信可能に接続され得る。様々な実施形態では、遠隔装置110は、各経路に沿って複数の測定値をサンプリングする、又は獲得するように更に構成され得る。例えば、遠隔装置110は、リブ103と上側パネル104との間のインターフェースを表示する経路に沿って飛行するように更に構成され得る。遠隔装置110は、リブ103の表面の構造寸法を識別する様々な測定値を取得するように構成され得る。したがって、遠隔装置110は、特定の走査又は測定経路の対象又は目標である構成要素又は構造の表面トポロジを正確に測定するように構成され得る、センサ装置112などのセンサ装置を含むことができる。以下により詳細に考察するように、センサ装置112は、ボール又はトラッキングボールなど、大型構造の表面に機械的に結合するセンサ装置とすることができる。いくつかの実施形態では、センサ装置112は、レーザ走査器具など、大型構造の表面に機械的に結合しないセンサ装置とすることができる。
本明細書で様々な実施形態が、翼などの大型構造、ならびにリブ及び上方面又は下方面又はパネルなどの大型構造の部分に関連する測定経路を説明するが、他の部品及び構造に関連する様々な測定経路もまた実施可能である。例えば、測定経路は、翼区分などの大型構造の中に含まれるリブと翼桁との間のインターフェースに関連する測定値を得るために実施され得る。更に、測定経路は、大型構造の翼桁と上方面又は下方面との間のインターフェースに関連する測定値を得るために実施され得る。更に、測定経路は、航空機の胴体区分ならびに尾翼区分の中の接合部又はインターフェースに関連する測定値を得るために実施され得る。
いくつかの実施形態によれば、遠隔装置110は、システム100の他の構成要素との通信を可能にする様々な通信インターフェースを含むことができる。例えば、遠隔装置は、ベース装置106及びコントローラー装置111にデータを送信し、及びベース装置106及びコントローラー装置111からデータを受信するように構成され得る通信インターフェースを含むことができる。上記に同様に考察するように、データの送信及び受信は、無線通信リンクを経ることができる。このように、データは、遠隔装置110に送信され、遠隔装置110から受信されることができ、したがって、コントローラー装置111など、システム100の他の構成要素が、遠隔装置110の操作を制御し、遠隔装置110の特定の走査経路に沿った進行を制御することを可能にする。様々な実施形態では、通信インターフェースは、無線通信インターフェースとすることができ、したがって、システム100の構成要素間で無線通信が可能になる。更に、いくつかの実施形態によれば、遠隔装置110は、バッテリ電源などの電力供給源を更に含むことができる。様々な実施形態では、遠隔装置110は、可撓性電力ケーブルを経て外部電力供給源に接続、又はテザリングされることが可能である。
本明細書で開示する様々な実施形態では、測定データを生成する状況の範囲で遠隔装置110が説明されたが、様々な他の状況もまた本明細書で開示される。例えば、遠隔装置110は、部品などのペイロードを運搬するように構成され得る。したがって、遠隔装置110は、シムなどの部品を特定の経路に沿って配置するように構成され得る。更に、遠隔装置110は、様々な器具を含むように構成可能であり、穴開け及び洗浄など、様々な器具の操作を実施するように構成され得る。したがって、遠隔装置110は、特定の経路に沿って穴を開けるなど、器具の操作を実施するように構成され得る。
システム100は、ベース装置106を更に含むことができる。様々な実施形態では、ベース装置106は、特に、遠隔装置110のための様々な支持機能性を提供するように構成され得る。例えば、ベース装置106は、1つ又は複数の測定経路の間で走査プロトコルを実行するために、遠隔装置110が着陸、及び離陸することができる支持プラットフォーム117を含むように構成され得る。更に、ベース装置106は、遠隔装置110に関連する位置データを監視し、記録するように構成され得るトラッキング装置108などのトラッキングシステム又は装置を含むことができる。したがって、図3に関連して以下により詳細に考察するように、ベース装置106は、遠隔装置110の特定の位置を追跡し、遠隔装置110の位置又は箇所を識別する位置データの記録を取るように構成され得る。遠隔装置110に関連して上記に同様に考察するように、ベース装置106は、コントローラー装置111などのシステム100の他の構成要素と通信を可能にする様々な通信インターフェースを含むことができる。更に、ベース装置106の中に含まれる通信インターフェースは、無線通信インターフェースとすることができ、したがって、構成要素間で無線通信が可能になる。以下により詳細に考察するように、コントローラー装置111は、別個のコンピュータ装置として図示されたが、いくつかの実施形態によれば、コントローラー装置111は、ベース装置106の中に含まれ、統合されることが可能である。したがって、コントローラー装置111は、ベース装置106の内部構成要素とすることができ、通信インターフェースは、含まれない可能性があり、又は内部通信バスとすることができる。
様々な実施形態では、ベース装置106は、それ自体の推進システムを含むことができる。したがって、ベース装置106は、遠隔装置110から独立して移動することができる可動プラットフォームを含むことができる。例えば、ベース装置106は、組立又は製造環境の面に沿って、全方向性移動を可能にする複数の車輪を含むことができる。このように、ベース装置は、走査されている大型構造を周航することができる移動経路に沿って、様々な異なる走査箇所又は測定箇所を航行するように構成され得る。以下により詳細に考察するように、ベース装置106は、ベース装置106と目印118などの1つ又は複数の目印又は目標との間の利用できる計測データ及び/又は決定された関係に基づいて、様々な異なる走査箇所又は測定箇所を航行することができる。一実施例では、ベース装置106は、移動経路に沿って第1の位置まで航行し、測定経路に沿って測定値を得るために遠隔装置110を発射し、遠隔装置110を回収し、次いで、移動経路に沿って第2の位置に移動することができる。このように、ベース装置106は、翼102などの大型構造の周囲の複数の異なる箇所から測定値を得るために、遠隔装置110を発射することができる。
システム100は、コントローラー装置111を更に含むことができる。様々な実施形態では、コントローラー装置111は、遠隔装置110及びベース装置106など、システム100の他の構成要素の操作を制御するように構成されているデータ処理装置又はシステムとすることができる。コントローラー装置111は、別個のデータ処理装置として図示されているが、コントローラー装置は、コントローラー装置107などの搭載構成要素として、ベース装置106内部で実施され得る。いくつかの実施形態では、コントローラー装置111又は107は、処理ユニット及び関連する記憶装置を含むデータ処理装置とすることができる。例えば、処理ユニットは、エンジニアリングデータ及び計測データなど、翼102、遠隔装置110及びベース装置106に関連する様々なデータを回収し、分析するように構成されている1つ又は複数の中央演算処理装置(CPUs)を含むことができる。したがって、いくつかの実施形態では、CPUは、大型構造に関連する空間データの処理のために構成され又はカスタマイズされている特定用途向け処理装置とすることができる。更に、記憶装置は、一時的及び/又は恒久的のいずれかで、データ、機能的形態のプログラムコード及び/又は他の適切な情報を記憶することができる任意のハードウェア部品を含むことができる。記憶装置は、例えば、ランダムアクセスメモリ、又は任意の他の適切な揮発性又は不揮発性記憶装置であってよいメモリを含むことができる。いくつかの実施形態では、記憶装置は、例えば、ハードドライブ、フラッシュメモリ、書換可能光ディスク、又は上記の何らかの組合せなど、1つ又は複数の構成要素又は装置を含むことができる持続的及び非一時的記憶装置とすることができる。記憶装置は、処理ユニットによって生成され、回収されるデータを記憶するように構成され得る。多くの形態をコントローラー装置111に関連して以下に説明するが、コントローラー装置107を含む実施形態は、やはり同様の形態を有するように構成されることを理解されたい。
したがって、コントローラー装置111は、ベース装置106から位置データを受信し、遠隔装置110のための測定経路を決定し、ならびに遠隔装置110を測定経路に従うように設定する命令及び制御データを生成し、遠隔装置110に提供するように構成され得る。いくつかの実施形態では、コントローラー装置111は、走査される大型構造に関連するエンジニアリングデータに少なくとも部分的に基づいて、測定経路を決定するように構成され得る。
いくつかの実施形態では、エンジニアリングデータは、以前に生成された設計又は概要のデータとすることができる。例えば、エンジニアリングデータは、大型構造のコンピュータ援用の設計(CAD)モデルから得られる様々な三次元データを含むことができる。エンジニアリングデータは、コントローラー装置111によって回収されることができ、コントローラー装置111は、エンジニアリングデータに基づいて1つ又は複数の測定経路を生成するように構成され得る。例えば、コントローラー装置111は、以下により詳細に考察するように、エンジニアリングデータを回収するように構成可能であり、遠隔装置110の現在の箇所と複数の指定された測定点の各測定点との間で最短経路を識別する方向を決定し、計算するように更に構成され得る。いくつかの実施形態では、指定された測定点は、設計者又は他の作業者によって以前に識別され、又はフラグを設定され、エンジニアリングデータの中に含まれている可能性がある。したがって、計算される方向は、構造について、及び/又は大型構造自体の形状について利用可能なデータに基づいて生成又は構成される三次元空間を通る最短経路とすることができる。このように、測定経路は、測定経路の中に含まれる各測定点について、遠隔装置110とベース装置106との間の見通し線を全く遮らずに利用できる最短の経路とすることができる。いくつかの実施形態によれば、コントローラー装置111は、大型構造に関連するエンジニアリングデータを記憶するように更に構成され得るエンジニアリングデータ記憶部115などのデータ記憶部に通信可能に接続され得る。いくつかの実施形態では、データ記憶部115は、1つ又は複数の記憶媒体又はデータベースシステムを含むことができる。コントローラー装置111は、データ記憶部115から関連のあるエンジニアリングデータを識別し、回収するように更に構成され得る。
様々な実施形態では、コントローラー装置111は、命令及び制御データを生成し、ベース装置106に提供するように更に構成され得る。例えば、コントローラー装置111は、大型構造の周囲の移動経路に従い、移動経路に沿って複数の箇所のそれぞれで走査プロトコルを完成するように、ベース装置106を設定する命令及び制御データを生成するように構成され得る。いくつかの実施形態では、コントローラー装置111は、組立又は製造環境内でシステム100の1つ又は複数の構成要素の位置又は箇所を識別する計測データに少なくとも部分的に基づいて、移動経路に関連する命令及び制御データを決定することができる。いくつかの実施形態では、システム100は、工場又は倉庫である可能性がある組立環境内の異なる構成要素の位置を監視し、記録を取るように構成され得る計測装置114など、計測システム又は装置を含むことができる。例えば、計測装置114は、中央送信機を含むことができる全地球測位システム(GPS)の少なくとも一部を含むことができる。中央送信機は、工場の床上の構成要素に接続される様々な受信機と通信するように構成され得る。例えば、第1の送信機はベース装置106の中に含まれ、又は接続されることができ、第2の受信機は翼102中に含まれ、又は接続されることができる。このように、計測装置114は、ベース装置106及び翼102など、システム100の構成要素の位置を識別する1つ又は複数のデータ値を含む計測データを生成する受信機に定期的に問い合わせることができる。
様々な実施形態では、コントローラー装置111は、少なくとも部分的に、計測データに基づいて、移動経路を識別し、命令及び制御データを生成するように構成され得る。いくつかの実施形態では、コントローラー装置111は、利用可能なエンジニアリングデータ及び計測データに基づいて、移動経路、ならびに移動経路に関連する命令及び制御データを生成することができる。例えば、上記に考察するように、コントローラー装置111は、翼102などの大型構造の構造を画定し、説明し、又はそうではなく特徴づけるエンジニアリングデータの中に含まれる指定測定点に基づいて測定経路を生成することができる。この実施例では、コントローラー装置111は、特定の測定経路又は1組の指定測定点について、ベース装置106が、測定経路との見通し線を確立するように移動されるべきであるということを決定するように構成され得る。コントローラー装置111は、エンジニアリングデータに基づいて、ベース装置106の理想的な位置を決定するように構成され得る。例えば、エンジニアリングデータの中に含まれるCADモデルデータに基づいて、コントローラー装置111は、特定の測定経路の中の各指定測定点との遮られない見通し線を有する位置又は箇所を識別することができる。コントローラー装置111は、計測データに基づいてベース装置106の現在の位置を決定し、ベース装置106の現在の位置と決定された理想的な箇所との間の最短経路を決定するように更に構成され得る。最短経路は、移動経路として使用され得る。様々な実施形態によれば、計測装置114は、大型構造及び製造環境に関連する計測データを記憶するように構成され得る計測データ記憶部116などのデータ記憶部に通信可能に接続されることが可能である。いくつかの実施形態では、データ記憶部116は、1つ又は複数の記憶媒体又はデータベースシステムを含むことができる。
いくつかの実施形態によれば、コントローラー装置111は、ベース装置106及び遠隔装置110によって生成される測定データに基づいてシムの寸法を決定するように更に構成され得る。図1B及び図5を参照して以下により詳細に考察するように、コントローラー装置111は、リブ103とすることができる第1の面の測定データを、上側パネル104とすることができる第2の面の測定データ、及び/又は第1の面と第2の面との間の距離を決定し、更に、第1の面と第2の面との間に配置されるべきシムの適切な厚さを決定するエンジニアリングデータと比較するように構成可能である。このように、コントローラー装置111は、システム100から様々なデータを回収し、処理するように構成されて、走査された各インターフェース内の各空隙に対してシムの寸法を決定することができる。
図1Aは、単一の遠隔装置及び単一のベース装置を含むものとしてシステム100を図示するが、本明細書で開示する様々な実施形態は、複数の遠隔装置及び複数のベース装置の使用を開示する。例えば、翼102などの大型構造についての測定データを獲得中に、複数の遠隔装置及び複数のベース装置が、異なる測定経路を同時に走査するために使用され得る。更に、単一のコントローラー装置は、複数のベース装置及びそれらが関連する遠隔装置の走査を制御することができる。更に、複数のコントローラー装置が縦一列に実施されて、複数のベース装置及びそれらが関連する遠隔装置を制御して、構造のための測定データを獲得することができる。
図1Bは、いくつかの実施形態によって実施される、構造間のインターフェースの実施例を示す。上記に同様に考察するように、インターフェースは、組立環境120などの組立環境内の2つの構造間に存在する場合がある。例えば、第1の構造122は、インターフェース125などのインターフェースを経て第2の構造124に結合され得る。いくつかの実施形態では、第1の構造122及び第2の構造124は、航空機の翼などの大型車両構造の中に含まれる構成要素又は構造とすることができる。例えば、第1の構造122は、リブなどの内部構成要素とすることができ、第2の構造124は、航空機の翼の下面とすることができる。
様々な実施形態では、インターフェース125を形成する面は、第1の構造122と第2の構造124との間の向上した結合を提供し、ならびに各それぞれの構造のための追加的構造上の支持を提供するように構成される複数の構造上の形態を含むことができる。例えば、第2の構造124は、ストリンガ128などの縦通材、補剛材又はストリンガとすることができる複数の構造部材に結合可能であり、ストリンガ128は、この実施例では、航空機の翼の下面とすることができる第2の構造124の内側面に取り付け、又は結合可能である。更に、第1の構造122は、ストリンガに一致し、ストリンガに結合するように構成され得る複数の部分又は領域を含むことができる。したがって、インターフェース125は、第1の構造122と第2の構造124との間の結合、ならびに各それぞれの構造の面及びストリンガによって画定され得る。
図1Bに示すように、インターフェース125の第1の部分130は、面一とすることができ、第1の構造122と第2の構造124との間に空隙又は距離がない可能性がある。しかし、第2の部分132のような他の部分は、面一ではなく、空隙134のような空隙又は間隙を有する可能性がある。上記に同様に考察するように、第1の構造122と第2の構造124との間の十分な結合を保証するために、空隙134は、金属などの材料を用いて空隙134を埋めるように構成されているシムによって埋められることが可能である。以下により詳細に考察するように、1つ又は複数のシステム構成要素が、第1の構造122及び第2の構造124の寸法及び形態を測定するための遠隔装置及びセンサ装置を利用するように構成可能であり、2つの構造間の任意の空隙を埋めるためのシム寸法を決定するように更に構成され得る。更に、1つ又は複数のシステム構成要素が、シムを製造し、構造間の機械的結合を保証するために空隙の中にシムを配置するように更に構成され得る。
図2Aは、いくつかの実施形態によって実施される、図1Aに説明する遠隔装置の実施例を示す。上記に同様に考察するように、遠隔装置200は、構成要素の表面の複数の測定値を得るために、大型構造の構成要素に相当する1つ又は複数の測定経路を航行するように構成され得る。図2Aに示すように、遠隔装置200は、遠隔装置200の様々な構成要素のための構造的支持を提供することができ、かつ無線通信インターフェース、及びコントロールソフトウェア及びハードウェアなど、様々な構成要素を格納することもできる筐体202などの筐体を含むことができる。
様々な実施形態では、遠隔装置200は、三次元空間を通って移動する場合、揚力を生成し、遠隔装置に6つの自由度を提供する向きに回転するように構成され得る、推進装置204などの様々な推進装置を更に含むことができる。いくつかの実施形態では、推進装置204は、プロペラ205などのプロペラを含むことができる。図2Aに示すように、遠隔装置200は、4つの推進装置を含むが、任意の適切な数の装置を使用することができる。例えば、遠隔装置200は、2つの推進装置又は6つの推進装置でさえも含むように構成され得る。
いくつかの実施形態によれば、遠隔装置200は、大型構造の表面の1つ又は複数の測定値を生成するように構成され得るセンサ装置206を含むことができる。例えば、センサ装置206は、移動の軸線の周りに自由に回転するボール207を含むことができる。ボール207は、反射プリズム又は1群の鏡とすることができる反射装置208を更に含むことができる。様々な実施形態では、反射装置208は、遠隔装置200に付随するベース装置の中に含まれるトラッキング装置から発射することができるレーザ光線を反射するように構成され得る。したがって、図3を参照して以下により詳細に考察するように、ベース装置のレーザトラッキングシステムは、反射装置208の箇所を監視するように構成され得る。センサ装置206が大型構造の表面に接触する場合、コントローラー又はコントローラー装置は、ボール207の既知の半径を使用して、表面自体の位置を計算し、その位置で測定値を得るように構成され得る。いくつかの実施形態では、ボール207は、任意の適切な軽量材料から作製可能であり、約1インチから1.5インチの直径を有することができる。いくつかの実施形態では、ボール207は、より詳細な測定値及び形態の走査及び/又はより小さい作動空間及び領域に対して、より小さい直径を有することができる。例えば、ボール207は、約0.5インチの直径を有することができる。
様々な実施形態では、センサ装置206は、センサ装置206と筐体202との間の取り外し可能な結合を可能にするように構成され得る結合装置210を経て筐体202に結合され得る。例えば、結合装置210は、センサ装置206が筐体202に結合され、又は筐体202から取り外されることを可能にする、嵌合面上のラッチ又は磁気を含む磁気インターフェースを含むことができる。更に、結合装置210は、移動の特定の軸線に部分的に適合するように構成されている圧縮性部分を含むことができる。様々な実施形態では、結合装置210は、測定値を取得している場合に、大型構造の表面との物理的又は機械的結合を維持するために十分なコンプライアンス又はばね定数を有するように構成されているリニア軸受及びばねを含むことができる。いくつかの実施形態では、結合装置210は、ゴムバンド又は気泡ゴムなどの弾性材料を含むことができる。様々な実施形態では、結合装置210は、四節リンク機構などの伸縮機構を含むことができる。したがって、例えば、構造の表面との接触によって生じる可能性がある、センサ装置206に加えられる圧力が、圧縮部分の圧縮及びセンサ装置206の筐体202に対する移動を一時的に発生させる可能性がある。表面との接触がもはや存在しない場合、圧縮は終了することができ、センサ装置206は、静止位置に戻ることができる。
図2Aは、1つのボールを含む遠隔装置200の一実施例を図示するが、本明細書で開示される様々な実施形態は、複数のボールの使用を開示する。例えば、センサ装置206は、2つのボール、又は3つのボールを含むことができ、それらの各ボールは、測定データを生成するために、監視され、追跡され得る反射装置を含むことができる。したがって、結合装置210は、複数のボールを筐体202に結合するように構成され得る。
図2Bは、いくつかの実施形態によって実施される、図1Aに説明する遠隔装置の別の実施例を示す。上記に同様に考察するように、遠隔装置220は、構成要素の表面の複数の測定値を得るために、大型構造の構成要素のインターフェースに相当する1つ又は複数の測定経路を航行するように構成され得る。図2Aを参照して上記に同様に考察するように、遠隔装置220は、筐体、推進装置、及びセンサ装置222などのセンサ装置を含むことができる。図2Aの中で上記に示すように、センサ装置は、遠隔装置の下側に結合され得る。このように構成される場合、遠隔装置は、遠隔装置の下にある面の測定値を得るように構成可能であり、それは、例えば遠隔装置が露出されているリブの上面の上方を低空飛行する、又は飛行している場合である可能性がある。しかし、図2Bに示すように、センサ装置は、遠隔装置220などの遠隔装置の上面に結合されることもまた可能である。このように構成される場合、遠隔装置220は、リブの底面など、遠隔装置220の上方にある面の測定値を得るように構成され得る。図2Bに示すように、遠隔装置220は、結合装置210に関連して上記に同様に考察するように、遠隔装置220の筐体とセンサ装置222との間に取り外し可能な結合及びコンプライアンスを提供することができる結合装置224を含むことができる。
更に、以下により詳細に考察するように、結合装置224は、遠隔装置220の筐体の一部の周りに延伸する回転機構に結合され得る。例えば、回転するカラーが、筐体の中心点の周りに延伸することができ、360°回転するように構成され得る。このように構成される場合、センサ装置222の筐体に対する角度の位置は、様々な配向を含むことができる構成要素の表面に調節するように動的に変化され得る。
図2Cは、いくつかの実施形態によって実施される、回転可能なアームを有する、図1Aに説明する遠隔装置の実施例を示す。上記に同様に考察するように、遠隔装置230などの遠隔装置は、センサ装置238などのセンサ装置の位置を変化させるように構成され得る回転機構232などの回転機構を含むことができる。いくつかの実施形態では、回転機構232は、基部ユニット及び/又はコントローラー装置から、遠隔装置230で受信される1つ又は複数の入力に応答して回転するように構成され得る。例えば、回転機構232は、第1のギヤードホイール及び第2のギヤードホイールなど、1つ又は複数の嵌合ギヤード部品を含むことができる。第2のギヤードホイールは、サーボアクチュエータ234などの第2のギヤードホイールを回転するように構成されている機械装置に結合され得る。したがって、サーボアクチュエータ234によって発生する第2のギヤードホイールの回転が、第1のギヤードホイールを回転させることができる。いくつかの実施形態では、第1のギヤードホイールが、機械アーム236などの1つ又は複数の他の構成要素に結合可能であり、機械アーム236を回転させることができる。このように、結合装置237などの結合装置、及び機械アーム236に結合され得るセンサ装置238は、変更又は修正されることができて、異なる配向を有する異なる表面を走査することができる。更に、遠隔装置230は、第2のセンサ装置とすることができ、又はセンサ装置238に付随する荷重を釣り合わせるために構成されるカウンタウェイトとすることができるセンサ装置239を更に含むことができる。
図2Dは、いくつかの実施形態によって実施される、回転可能なアームを有する、図1Aに説明する遠隔装置の別の実施例を示す。図2Cを参照して上記に同様に考察するように、遠隔装置240は、機械アーム244に結合され得る回転機構242を含むことができる。いくつかの実施形態では、機械アーム244は、結合装置246及びセンサ装置248に結合され得る。いくつかの実施形態では、回転機構242、機械アーム244、及びセンサ装置248は、第1の方向に配向され得る。第1の方向に設定される場合、センサ装置248は、遠隔装置240の前方及び/又は後方にある可能性がある表面を走査するように構成され得る。したがって、第1の方向にある場合、遠隔装置240は、航空機の尾翼区分の垂直安定板など、相対的に垂直方向を有することができる表面を走査するように構成され得る。
図2Eは、いくつかの実施形態によって実施される、回転可能なアームを有する、図1Aに説明する遠隔装置のやはり別の実施例を示す。図2Cを参照して上記に同様に考察するように、遠隔装置250は、機械アーム254に結合され得る回転機構252を含むことができる。上記に同様に考察するように、機械アーム254は、結合装置256及びセンサ装置258に更に結合され得る。いくつかの実施形態では、回転機構252、機械アーム254、及びセンサ装置258は、第2の方向に配向され得る。第2の方向に設定される場合、センサ装置258は、遠隔装置250の上方及び/又は下方にある可能性がある表面を走査するように構成され得る。したがって、第2の方向にある場合、遠隔装置250は、航空機の尾翼区分の水平安定板又は航空機の翼の構成要素の様々な表面など、相対的に水平方向を有することができる表面を走査するように構成され得る。
図3は、いくつかの実施形態によって実施される、図1Aに説明するベース装置の実施例の図を示す。上記に同様に考察するように、システム300などの自動シミングシステムは、シムの製造及び配置についての測定データを獲得するように構成され得るベース装置304及び遠隔装置306など、様々な構成要素を含むことができる。図3は、ベース装置304が遠隔装置306の箇所及び位置を追跡し、そのような追跡に基づいて測定データを生成することを可能にする、遠隔装置306とベース装置304との間の通信可能な接続の実施例を図示する。図3は、異なる走査箇所まで移動経路に沿ってベース装置304を移動するように構成され得るベース推進システム308などの推進システムを更に図示する。いくつかの実施形態では、ベース推進システム308は、搭載電力供給源によって電力供給され得る複数の車輪を含むことができる。更に、ベース装置304は、遠隔装置306のための着陸及び離陸点を提供するように構成され得る着陸プラットフォーム307を含むことができる。
様々な実施形態では、ベース装置304は、トラッキング装置302などのトラッキング装置又はシステムを含むことができる。一実施例では、トラッキング装置302は、レーザトラッキング装置である。様々な実施形態では、レーザトラッキング装置の使用によって、遠隔装置306から長距離のデータ獲得が可能になる。更に、レーザトラッキングシステムの使用によって、反射装置だけが使用されるので、ペイロードを相対的に軽量にすることができる。したがって、トラッキング装置302は、レーザを含むことができ、レーザと遠隔装置306の中に含まれる反射装置との間の見通し線305など、見通し線を維持するために、遠隔装置306の移動に応答して、レーザを移動し、及び/又は角度を変えるように構成され得る。レーザの角度及び標高ならびに範囲情報に基づいて、トラッキング装置302は、座標システムの中で遠隔装置306がベース装置304に対する位置を識別する位置データを生成することができる。したがって、遠隔装置306の位置を識別する位置データは、ベース装置304の位置を参照することができる。
更に、いくつかの実施形態では、ベース装置304は、利用可能な計測データ、及びベース装置304と組立環境内に含まれる1つ又は複数の目印又は目標との間の関係に基づいて、それ自体の位置又は場所を参照するように更に構成され得る。例えば、ベース装置304は、ベース装置304と、所定の既知の場所での組立環境内部に位置する複数の目標との間の距離を決定するように構成され得る。いくつかの実施形態では、ベース装置304は、トラッキング装置302によって提供され得る範囲情報を使用することによって、そのような距離を決定することができる。ベース装置304と目標との間の相対的な距離に基づいて、ベース装置304は、例えば三角測量によって、組立環境内部のその場所を決定することができる。いくつかの実施形態では、目標又は目印は、場所の大体の、又はおおよその近似値を確立するために使用可能であり、そのような位置は、遠隔装置306から受信される詳細な形態の情報に基づいて洗練されることが可能である。例えば、遠隔装置306は、大型構造の特定の形態を走査し、識別することができ、ベース装置304は、走査された形態をエンジニアリングデータの中で識別される場所と相関させるように構成され得る。ベース装置304は、走査された形態との距離及び空間的関係に基づいて、それ自体の場所を推測するように更に構成され得る。様々な実施形態では、ベース装置304は、位置データを記憶し、保存することができ、及び/又はこのデータを更に分析するためにコントローラー装置に送信することができる。特定の実施形態では、図5に関連して以下により詳細に考察するように、生成された位置データは、そのようなデータが測定点での測定経路の間に生成される場合、測定データとすることができる。
図4は、いくつかの実施形態によって実施される、自動化シミング方法の流れ図を示す。上記に同様に考察するように、自動シミングシステムは、シムの製造及び配置についての測定データを獲得するように構成され得る様々な構成要素を含むことができる。したがって、本明細書で開示する自動シミングシステムは、大型構造の構成要素間の空隙を説明し、又は特徴づける測定データの収集、及び構成要素間の空隙を埋めるために製造されるべきシムの寸法を特徴づけるシム寸法を生成するための測定データのその後の処理を含むことができるデータ獲得方法又は工程の一部として実施され得る。
したがって、方法400は、遠隔装置が第1の構造に対して第1の経路に沿って移動され得る操作402で開始することができる。上記に同様に考察するように、第1の経路は、第1の車両構造に関連するエンジニアリングデータに基づいて識別可能であり、航空機の翼などの大型構造の構成要素間のインターフェースに相当することができる。
方法400は、第1の複数の測定値が、第1の経路に沿って生成され得る操作404に進むことができる。いくつかの実施形態では、第1の複数の測定値は、第1の経路に沿った第1の複数の測定点に関連することができる。したがって、遠隔装置のための測定経路を決定するステップに加えて、コントローラー装置などのシステム構成要素が、測定値が取得されるべきいくつかの測定点を識別することができる。これらの測定点は、第1の車両構造を含む構成要素間のインターフェースに沿った特定の点に相当することができる。例えば、測定点は、締め具が使用され得る取り付け点又は箇所に相当することができる。上記に考察するように、測定点は、エンジニアリングデータに含まれる1つ又は複数のデータ値に基づいて識別され得る。いくつかの実施形態では、第1の複数の測定値は、第1の車両構造の第1の表面の少なくとも1つの構造寸法を識別することができる。したがって、測定値は、構造表面の特定の形態の深さ又は高さ、ならびに遠隔装置及び対応するベース装置に対する正確な箇所を識別することができる。
方法400は、測定値が、第1の複数の測定値に基づいて生成され得る操作406に進むことができる。いくつかの実施形態では、測定データは、遠隔装置に通信可能に接続されているベース装置によって生成され得る。したがって、遠隔装置が第1の経路に沿って走査する間に獲得される測定値をデータ対象の中にパッケージ化することができる。データ対象は、次の分析のために、コントローラー装置などの別のシステム構成要素に記憶され、又は送信され得る。
方法400は、第1の車両構造の第1の面に関連する少なくとも1つのシム寸法が決定され得る操作408に進むことができる。いくつかの実施形態では、少なくとも1つのシム寸法が、コントローラー装置によって決定可能であり、少なくとも部分的に、測定データに基づいて決定され得る。図5を参照して以下に更に詳細に考察するように、コントローラー装置は、受信した測定データを他の測定データ、又は既存のエンジニアリングデータと比較して、空隙を有する測定点を識別することができる。次いで、コントローラー装置は、空隙を有すると決定されている各測定点についてシムの適切な寸法を計算することができる。
図5は、いくつかの実施形態によって実施される、自動化シミング方法の別の流れ図を示す。上記に同様に考察するように、自動シミングシステムは、シムの製造及び配置についての測定データを獲得するように構成される様々な構成要素を含むことができる。様々な実施形態では、測定データは、複数の異なる走査箇所から複数の異なる測定経路について獲得され得る。したがって、データ獲得方法又は工程は、大型構造の複数又はすべての構成要素間のインターフェース間の空隙を説明し、又は特徴づける測定データの収集を含むことができる。このように、大型構造のためのシムの製造のために利用されるすべての測定データが、単一のデータ獲得工程又は方法の中で収集され得る。
したがって、方法500は、遠隔装置が車両構造に対して測定経路に沿って移動され得る操作502で開始することができる。図4を参照して上記に同様に考察するように、経路は、車両構造に関連するエンジニアリングデータに基づいて識別可能であり、大型構造の構成要素間のインターフェースに相当することができる。様々な実施形態では、経路は、コントローラー装置によって識別可能であり、命令及び制御データは、遠隔装置に送信されて、現在走査されている測定経路に沿って遠隔装置の移動を制御することができる。
方法500は、複数の測定値が、経路に沿って生成され得る操作504に進むことができる。上記に同様に考察するように、複数の測定値は、コントローラー装置によって決定され得る複数の測定点に関連することができる。いくつかの実施形態では、測定点は、遠隔装置それ自体が停止又は静止する指定された点とすることができ、そうでない場合、遠隔装置の移動によって導入される可能性があるエラーをなくすことができる。したがって、測定値は、ベース装置が、遠隔装置の位置及び遠隔装置に取り付け又は結合され得るセンサ装置の位置を記録する各測定点で、作製され得る。
上記に考察するように、センサ装置は、反射装置を含むことができるトラッキングボールなどのボールとすることができる。したがって、測定経路の走査中に、センサ装置を操作されるべき表面から指定距離以内に配置するように、遠隔装置を配置することができる。例えば、センサ装置は、表面と接触して配置可能であり、表面とセンサ装置との間の物理的接触を経て表面と機械的に結合され得る。遠隔装置は、測定経路に沿って進むことができ、又は経路に沿ってセンサ装置のボールを引っぱり、又は回転させることができる。表面の高さ、深さ又は他の形態における変形が、遠隔装置の結合装置の収縮及び/又は圧縮、ならびに反射装置の位置の相当する変化をもたらす可能性がある。そのような変化は、指定される測定点で測定及び記録されることが可能であり、ベース装置又はコントローラー装置など、他のシステム構成要素によって記憶されることが可能である。
方法500は、追加の測定経路が測定されるべきか否かが決定され得る操作506に進むことができる。いくつかの実施形態では、そのような決定は、コントローラー装置によって生成された走査プロトコルに基づいて成されることができる。上記に同様に考察するように、測定経路は、エンジニアリングデータの中に含まれる測定点の分析に基づいて、コントローラー装置によって決定された可能性がある。いくつかの実施形態では、各測定経路を識別する1つ又は複数のデータ値が、データ対象の中に記憶されることができ、走査プロトコルが、順番に測定経路を通って進むことができる。追加の測定経路が全く測定されるべきではないと決定される場合、方法500は操作512に進むことができ、それを以下に更に詳細に考察する。しかし、追加の測定経路が測定されるべきであると決定される場合、方法500は操作508に進むことができる。
したがって、操作508の間に、ベース装置が移動されるべきか否かが更に決定され得る。いくつかの実施形態では、ベース装置の移動は、そうでない場合は、アクセスできない異なる測定経路の走査及び測定を促進することができる。例えば、ベース装置が、レーザトラッキング装置であるトラッキング装置を含む場合、その時、ベース装置と追加の測定経路との間の見通し線が、大型構造の他の部分、又は組立環境の中に存在する可能性がある他の物体によって遮られる可能性がある。したがって、ベース装置は、見通し線が遮られない箇所まで移動され得る。上記に同様に考察するように、ベース装置を移動させるか否かの決定は、利用可能なエンジニアリングデータ及び/又は計測データに基づいて、コントローラー装置によって生成された走査プロトコルに基づいて成されることが可能である。
ベース装置が移動されるべきではないと決定される場合、方法500は、操作502に戻ることができ、異なる測定経路が走査され、測定され得る。いくつかの実施形態では、異なる測定経路は、以前に測定されたものとは異なる構成要素間の異なるインターフェースのためとすることができる。様々な実施形態では、異なる測定経路は、全く異なる構成要素の異なる表面について作製され得る。例えば、第1の複数の測定値が、航空機の翼のリブの頂部とすることができる、第1の車両構造の第1の面について作製され得る。次いで、第2の複数の測定値が、リブの頂部に取り付けられる上側面パネルの底部とすることができる、第2の車両構造の第2の面について作製され得る。別の実施例では、第2の複数の測定値は、以前に測定されたリブに隣接する可能性がある異なるリブの頂部に相当する第2の面についてとすることができる。
操作508に戻ると、ベース装置が移動されるべきであると決定される場合、方法500は、操作510に進むことができる。様々な実施形態では、操作510の間に、ベース装置は、次の走査箇所に移動され得る。上記に同様に考察するように、走査箇所は、コントローラー装置によって指定された可能性があり、コントローラー装置は、ベース装置の移動を次の走査箇所まで制御することができる。例えば、コントローラー装置は、計測データを計測装置又はシステムから回収することができる。計測データは、大型構造の現在の箇所、及び大型構造に対するベース装置の現在の箇所を識別することができる。コントローラー装置は、利用可能なエンジニアリングデータに基づいて、次の走査箇所の位置を識別することもまた可能である。コントローラー装置は、計測データに位置をマッピングし、ベース装置を現在の箇所から次の走査箇所の位置まで移動するように設定する命令及び制御データを生成することができる。
操作506に関連して上記に考察するように、追加の測定経路を測定すべきでないと一旦決定された場合、方法500は、操作512に進むことができ、操作512の間に、複数の測定値に基づいて測定データが生成され得る。上記に同様に考察するように、測定データは、ベース装置又はコントローラー装置によって生成され得る。したがって、以前に取得された測定値を識別する1つ又は複数のデータ値が、データ対象としてパッケージ化され得る。データ対象は、次の分析のために、コントローラー装置などの別のシステム構成要素に記憶され、又は送信され得る。
方法500は、エンジニアリングデータが、測定データに基づいて更新され得る操作514に進むことができる。様々な実施形態では、表面の測定された構造寸法は、コンピュータモデルに基づくことができるエンジニアリングデータの中に含まれていた可能性がある構造寸法とは異なる場合がある。したがって、いくつかの実施形態によれば、コントローラー装置などのシステム構成要素が、測定データによってエンジニアリングデータを更新するように構成され得る。したがって、エンジニアリングデータの中に含まれたデータ値は、測定データの中に含まれるデータ値と交換されることができる。
方法500は、シム寸法が、少なくとも部分的に、生成された測定データに基づいて決定され得る操作516に進むことができる。上記に考察するように、シム寸法は、コントローラー装置によって決定され得る。様々な実施形態によれば、コントローラー装置は、受信された測定データを他の測定データと比較することによってシム寸法を決定することができる。例えば、受信された測定データは、航空機のリブの頂部である可能性がある第1の面の高さ、深さ及び相対的な位置など、表面の形態を識別する第1の組の測定値を含むことができる。コントローラー装置は、第1の組の測定値を、リブの頂部上に配置されるべき上側面の下側とすることができる第2の面の表面形態を識別する第2の組の測定値と比較することができる。この実施例では、第2の組の測定値は、測定データの中にもまた含まれていた可能性があり、又は以前に測定され、テータ記憶の中に記憶されていた可能性がある。様々な実施形態では、2つの面がインターフェースの嵌合する面であるので、第1の測定経路に沿った測定点の箇所が、第2の測定経路の測定点の配置に相当するであろう。したがって、コントローラー装置は、各相対的な位置の間での相違に基づいて決定され得る、各測定点における第1の面と第2の面との間の空間又は寸法上の相違を計算するように構成され得る。相違がない場合、シムは全く必要ではない。しかし、相違が存在する場合、その時コントローラー装置は、間隙が存在することを決定することができ、計算された空間又は寸法上の間隙の相違が、シムが含むべき厚さであることを更に決定することができる。したがって、計算された空間上の相違は、シムの寸法とすることができる。いくつかの実施形態では、シムの寸法は、各測定経路の中で各測定点について決定され得る。
様々な実施形態では、コントローラー装置は、受信した測定データを既存のエンジニアリングデータと比較することによってシムの寸法を決定することができる。上記の実施例に戻ると、第2の組の測定値が利用できない場合、コントローラー装置は、エンジニアリングデータの中に含まれる既存の構造寸法に基づいてそれらを概算することができる。コントローラー装置は、各測定点で測定データとエンジニアリングデータとの間の空間又は寸法上の相違を計算するように構成可能であり、コントローラー装置は、比較に基づいて、空間又は寸法上の相違を計算することができる。上記に同様に考察するように、コントローラー装置は、計算された距離が相当するシムの厚さであることを決定することができる。
更に、上記に同様に考察するように、いくつかの実施形態によれば、一旦シム寸法が決定されてしまうと、決定された寸法を有する複数のシムが製造され得る。更に、様々な実施形態では、自動シミングシステムは、適切な箇所にシムを配置するように構成され得る。したがって、遠隔装置は、複数のシム、及び遠隔制御されるアーム又はシムを配置するマニピュレータを保管するペイロードベイを有するように構成され得る。遠隔装置は、異なる測定経路に沿ってその経路を引き返し、以前に測定された各箇所にシムを配置することができる。
本開示の実施形態が、図6に示す航空機の製造及び保守点検方法600ならびに図7に示す航空機602の文脈で説明され得る。量産初回中、例示的な方法600は、航空機602の仕様及び設計604、ならびに材料調達606を含むことができる。製造中、構成要素及び部分組立品の製造608ならびに航空機602のシステム統合610が生じる。その後、航空機602は、就航中614の中に配置されるために、認証及び搬送612を経ることができる。顧客によって就航中に、航空機602は、日課の整備及び保守点検616のための予定を組み込まれる(整備及び保守点検には、修正、再構成、改装などもまた含まれる可能性がある)。
方法600の各工程は、システムインテグレータ、第三者及び/又は操作者(例えば、顧客)によって、実施又は実行され得る。この説明の目的のために、システムインテグレータには、限定されないが、任意の数の航空機製造者及び主システム下請人が含まれることができ、第三者には、限定されないが、任意の数の売主、下請人及び供給者が含まれることができ、操作者には、航空会社、リース会社、軍事会社、サービス機構などとすることができる。
図7に示すように、例示的な方法600によって製造される航空機602は、複数のシステム620及び内部622を含む機体618を備えることができる。高水準システム620の実施例は、推進システム624、電気システム626、油圧システム628及び環境システム630の1つ又は複数を含む。任意の数の他のシステムを含むことができる。航空宇宙の実施例が図示されているが、本発明の原理が、自動車産業などの他の産業に応用され得る。
本明細書で実施される装置及び方法は、製造及び保守点検方法600の1つ又は複数の段階の間に採用され得る。実施例として、製造工程608に相当する構成要素又は部分組立品は、航空機602が就航中に製造される構成要素又は部分組立品と同様の様式で製作又は製造され得る。更に、1つ又は複数の装置の実施形態、方法の実施形態又はその組合せが、例えば航空機602の組立を実質的に促進し、又は航空機602の費用を低減することによって、製造段階608及び610の間に利用され得る。同様に1つ又は複数の装置の実施形態、方法の実施形態又はそれらの組合せが、航空機602が就航中に、例えば、限定しないが、整備及び保守点検616まで利用され得る。
前述の概念は、理解を明瞭にする目的で、ある詳細の中で説明されたが、特定の変形形態及び修正形態が、添付の特許請求の範囲内で実施可能であることは明らかであろう。方法、システム及び装置を実施するための多くの代替方法が存在することに留意されたい。したがって、本実施例は、例示的であり、限定するものではないことを理解されたい。
100 システム
102 翼
103 リブ
104 上側パネル
106 ベース装置
107 コントローラー装置
108 トラッキング装置
110 遠隔装置
111 コントローラー装置
112 センサ装置
114 計測装置
115 エンジニアリングデータ記憶部
116 計測データ記憶部
117 支持プラットフォーム
200 遠隔装置
202 筐体
204 推進装置
205 プロペラ
206 センサ装置
207 ボール
208 反射装置
210 結合装置

Claims (15)

  1. 第1の構造(122)に対して第1の経路に沿って遠隔装置(110)を移動するステップ(402)であって、前記第1の経路が、前記第1の構造(122)の複数の構造寸法を識別するエンジニアリングデータに基づいて識別される、移動するステップ(402)と、
    前記第1の経路に沿って第1の複数の測定値を生成するステップ(404)であって、前記第1の複数の測定値が、前記第1の経路に沿った第1の複数の測定点に関連し、前記第1の複数の測定値が、前記第1の構造(122)の第1の面の少なくとも1つの構造寸法を識別する、生成するステップ(404)と、
    前記第1の複数の測定値に基づいて測定データを生成するステップ(406)であって、前記測定データが、前記遠隔装置(106)に通信可能に接続されているベース装置によって生成される、生成するステップ(406)と、
    前記測定データに基づいて前記第1の構造(122)の前記第1の面に関連する少なくとも1つのシム寸法を決定するステップ(408)と
    を含む方法(400)。
  2. 前記測定データを生成するステップが、前記ベース装置(106)で、前記遠隔装置(106)の中に含まれるセンサ装置(112)から前記第1の複数の測定値を受信するステップであって、前記遠隔装置が、トラッキングボール(207)及び反射装置(208)を含む、受信するステップを含む、請求項1に記載の方法。
  3. 前記ベース装置(106)が、トラッキング装置(108)を含み、前記第1の複数の測定値を受信するステップが、前記トラッキング装置(108)を経て前記トラッキングボール(207)の少なくとも1つの位置を測定するステップを含む、請求項2に記載の方法。
  4. 前記生成された測定データに基づいて前記エンジニアリングデータを更新するステップを更に含む、請求項1、2又は3に記載の方法。
  5. 前記第1の構造(122)の前記第1の面が、第2の構造(124)の第2の面とのインターフェース内に含まれる、請求項1、2、3又は4に記載の方法。
  6. 前記第1の構造(122)に対して第2の経路に沿って第2の複数の測定値を生成するステップであって、前記第2の複数の測定値が、前記第2の経路に沿った第2の複数の測定点に関連し、前記生成された測定データが、前記第2の構造(124)の前記第2の面に関連する前記第2の複数の測定値を含み、前記シム寸法が、少なくとも部分的に、前記第1の複数の測定値及び前記第2の複数の測定値に基づいて決定される、ステップを更に含む、請求項5に記載の方法。
  7. 前記第1の構造(122)が、航空機の翼の構成要素である、請求項1から6のいずれか一項に記載の方法。
  8. 第1の構造(122)に対して第1の経路に沿って移動するように構成されている遠隔装置(110)であって、前記第1の経路の中に含まれる複数の測定点に沿ってセンサ装置(112)を移動するように更に構成されている遠隔装置(110)と、
    前記遠隔装置(110)に通信可能に接続され、前記複数の測定点の各測定点で、前記遠隔装置の前記センサ装置(112)の位置を識別するように構成されているベース装置(106)であって、前記第1の構造(122)の第1の面の少なくとも1つの構造寸法を識別する測定データを生成するように更に構成されているベース装置(106)と、
    前記ベース装置(106)及び前記遠隔装置(110)のそれぞれに通信可能に接続されているコントローラー装置(111)であって、前記コントローラー装置(111)が、前記ベース装置及び前記遠隔装置の操作を制御するように構成され、前記第1の構造(122)の前記第1の面に関連する少なくとも1つのシム寸法を決定するように更に構成されており、前記少なくとも1つのシム寸法が前記測定データに基づく、コントローラー装置(111)と
    を備えるシステム。
  9. 前記センサ装置(112)が、トラッキングボール(207)及び前記トラッキングボールに接続されている反射装置(208)を備え、前記ベース装置(106)が、前記反射装置(208)に光学的に接続されるように構成されているトラッキング装置(108)を備える、請求項8に記載のシステム。
  10. 前記トラッキングボール(207)が、前記第1の面の指定距離以内にあることに応答して、前記第1の面と機械的に結合するように構成されており、前記トラッキングボール(207)と前記第1の面との間の機械的結合が、前記トラッキングボール(207)の位置に少なくとも1つの変化をもたらし、前記トラッキング装置(108)が、前記変化を識別するように構成されている、請求項9に記載のシステム。
  11. 前記トラッキングボール(207)が、前記センサ装置(112)の筐体に機械的アームを介して結合され、前記機械的アームが、前記トラッキングボール(207)の位置を決定するように構成されている、請求項9又は10に記載のシステム。
  12. 前記第1の構造(122)の前記第1の面が、第2の構造(124)の第2の面とのインターフェースの中に含まれ、前記測定データが、前記第1の面に関連する第1の複数の測定値及び前記第2の面に関連する第2の複数の測定値を更に含む、請求項8、9、10又は11に記載のシステム。
  13. 前記シム寸法が、少なくとも部分的に、前記第1の複数の測定値及び前記第2の複数の測定値に基づいて決定される、請求項12に記載のシステム。
  14. ベース装置(106)が、前記第1の構造(122)に対して第2の経路に沿って移動するように構成されており、前記ベース装置(106)の移動が、少なくとも部分的に、組立環境内で前記第1の構造(122)の第1の位置及び前記ベース装置(106)の第2の位置を識別する計測データに基づく、請求項8に記載のシステム。
  15. 前記第1の構造(122)が、航空機の翼の構成要素である、請求項8から14のいずれか一項に記載のシステム。
JP2015221188A 2015-01-21 2015-11-11 大型構造用の自動予測シミングのためのシステム、方法及び装置 Active JP6737581B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US14/601,600 US9599983B2 (en) 2015-01-21 2015-01-21 Systems, methods, and apparatus for automated predictive shimming for large structures
US14/601,600 2015-01-21

Publications (2)

Publication Number Publication Date
JP2016133508A true JP2016133508A (ja) 2016-07-25
JP6737581B2 JP6737581B2 (ja) 2020-08-12

Family

ID=54770849

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015221188A Active JP6737581B2 (ja) 2015-01-21 2015-11-11 大型構造用の自動予測シミングのためのシステム、方法及び装置

Country Status (6)

Country Link
US (1) US9599983B2 (ja)
EP (1) EP3048416B1 (ja)
JP (1) JP6737581B2 (ja)
CN (1) CN105806238B (ja)
BR (1) BR102015031877B1 (ja)
CA (1) CA2913170C (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018119852A (ja) * 2017-01-25 2018-08-02 株式会社トプコン 位置特定装置、位置特定方法、位置特定システム、位置特定用プログラム、無人航空機および無人航空機識別用ターゲット
WO2018189870A1 (ja) * 2017-04-13 2018-10-18 株式会社ニコン 情報処理装置、プログラム、作業工程生成装置
CN109019208A (zh) * 2017-06-12 2018-12-18 株式会社日立大厦系统 电梯检查装置用起降台以及电梯检查装置用起降系统
JP2019172259A (ja) * 2017-11-06 2019-10-10 株式会社エアロネクスト 飛行体及び飛行体の制御方法
WO2020016979A1 (ja) * 2018-07-19 2020-01-23 株式会社エアロネクスト 長尺に延びる本体部を備えた飛行体
JP2020033021A (ja) * 2019-12-10 2020-03-05 株式会社エアロネクスト 長尺に延びる本体部を備えた飛行体
JP2021054410A (ja) * 2021-01-12 2021-04-08 株式会社エアロネクスト 長尺に延びる本体部を備えた飛行体
JP2021059335A (ja) * 2021-01-12 2021-04-15 株式会社エアロネクスト 長尺に延びる本体部を備えた飛行体

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10275565B2 (en) 2015-11-06 2019-04-30 The Boeing Company Advanced automated process for the wing-to-body join of an aircraft with predictive surface scanning
TWI655409B (zh) * 2018-03-12 2019-04-01 國立高雄科技大學 Route planning method for aerial photography using multi-axis unmanned aerial vehicles
CN109000630A (zh) * 2018-04-25 2018-12-14 国家电网公司 一种无人机巡检标尺
US10317886B1 (en) 2018-04-30 2019-06-11 Shimtech Industries US, Inc. Method and system for automated shim manufacturing
US10712730B2 (en) * 2018-10-04 2020-07-14 The Boeing Company Methods of synchronizing manufacturing of a shimless assembly
US10488185B1 (en) 2019-03-14 2019-11-26 The Boeing Company Methods and systems for characterizing a surface of a structural component
NL2027421B1 (en) * 2021-01-26 2022-08-26 Boeing Co Assembly line fabrication and assembly of aircraft wings
EP4001100A1 (en) 2020-11-18 2022-05-25 The Boeing Company Method and system for assembling an aircraft wing including shims
JP2022081431A (ja) 2020-11-18 2022-05-31 ザ・ボーイング・カンパニー 組み立てライン製造及び航空機の翼の組み立て
US11787555B2 (en) * 2021-08-13 2023-10-17 The Boeing Company Fuel dams, aircraft wing boxes, aircraft, and methods of assembling aircraft wings

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0749373A (ja) * 1993-08-05 1995-02-21 Mitsui Constr Co Ltd 監視装置付アンテナ
JP2007205998A (ja) * 2006-02-03 2007-08-16 Mitsutoyo Corp 接触プローブおよび形状測定装置
JP2009508755A (ja) * 2005-09-22 2009-03-05 エアバス・ユ―ケ―・リミテッド 航空機部品の組付け
JP2009519175A (ja) * 2005-12-16 2009-05-14 エアバス・ユ―ケ―・リミテッド 航空機部品の組立て
JP2010520104A (ja) * 2007-02-28 2010-06-10 ザ・ボーイング・カンパニー 部品アセンブリを嵌合する方法
JP2013533813A (ja) * 2010-06-04 2013-08-29 ザ・ボーイング・カンパニー 形状記憶合金/繊維強化ポリマー複合構造物および形成方法
JP2014513792A (ja) * 2011-04-14 2014-06-05 ヘキサゴン テクノロジー センター ゲゼルシャフト ミット ベシュレンクテル ハフツング 対象物表面の3d座標を決定するための測定システム
JP2014232113A (ja) * 2011-03-14 2014-12-11 ファロ テクノロジーズ インコーポレーテッド レーザトラッカによる寸法データの自動計測方法
US20140365061A1 (en) * 2013-06-10 2014-12-11 The Boeing Company Systems and methods for robotic measurement of parts

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2519576B1 (fr) * 1982-01-11 1985-11-29 Int Robotic Engineerin Robot a pattes grimpeur
DE3480271D1 (en) * 1984-02-13 1989-11-30 Boeing Co Automatic traversing drilling unit and method of using
FR2625459B1 (fr) * 1987-12-31 1990-06-15 Aerospatiale Mobile autonome du type robot pour le transport d'un outil a vitesse constante
US4850763A (en) * 1988-10-03 1989-07-25 The Boeing Company Tool track for use on aircraft
JPH05131382A (ja) * 1991-11-11 1993-05-28 Takeshi Yanagisawa 歩行ロボツト
US5468099A (en) * 1993-08-11 1995-11-21 Vought Aircraft Company Seam tracking drilling machine
US5920394A (en) * 1995-09-01 1999-07-06 Research Corporation Technologies, Inc. Optical coordinate measuring machine
US6317954B1 (en) * 1998-05-11 2001-11-20 Vought Aircraft Industries, Inc. System and method for aligning aircraft coordinate systems
CN1608212A (zh) * 2001-08-22 2005-04-20 精密自动化股份有限公司 六维激光跟踪系统及方法
US6843328B2 (en) * 2001-12-10 2005-01-18 The Boeing Company Flexible track drilling machine
US6779272B2 (en) * 2002-08-30 2004-08-24 The Boeing Company Single piece flow based wing assembly system
US6926094B2 (en) * 2003-06-25 2005-08-09 The Boeing Company Apparatus for manufacturing operations using non-contact position sensing
US7273333B2 (en) * 2003-06-25 2007-09-25 The Boeing Company Methods and apparatus for counterbalance-assisted manufacturing operations
US7406758B2 (en) * 2003-09-05 2008-08-05 The Boeing Company Apparatus and methods for manufacturing operations
US7194326B2 (en) * 2004-02-06 2007-03-20 The Boeing Company Methods and systems for large-scale airframe assembly
US7461711B2 (en) * 2004-11-24 2008-12-09 The Boeing Company Superconducting crawler system for a production line
US7464997B2 (en) * 2005-08-02 2008-12-16 Raytheon Company Load bearing crawler assembly
ES2325433B1 (es) * 2006-07-31 2010-06-21 Airbus Operations, S.L. Robot trepador equipado con una unidad de trabajo, y equipo de gobierno de tales robots trepadores.
GB0720702D0 (en) 2007-10-23 2007-12-05 Airbus Uk Ltd A shim for arrangement against a structural component and a method making a shim
US7614154B2 (en) * 2007-10-26 2009-11-10 The Boeing Company System and method for locating components of a structure
US8005563B2 (en) * 2007-10-26 2011-08-23 The Boeing Company System for assembling aircraft
FR2934966B1 (fr) * 2008-08-12 2010-09-17 Airbus France Systeme de percage et procede
CN103698769A (zh) * 2008-11-17 2014-04-02 法罗技术股份有限公司 测量六个自由度的装置和方法
CN101750012A (zh) * 2008-12-19 2010-06-23 中国科学院沈阳自动化研究所 一种测量物体六维位姿的装置
US8539658B2 (en) * 2009-08-31 2013-09-24 The Boeing Company Autonomous carrier for continuously moving wing assembly line
US8347746B2 (en) * 2010-01-19 2013-01-08 The Boeing Company Crawling automated scanner for non-destructive inspection of aerospace structural elements
US8695190B2 (en) * 2010-07-19 2014-04-15 The Boeing Company Electromagnetic crawler assembly system
US8655480B1 (en) * 2010-11-11 2014-02-18 The Boeing Company Automated filler production method
US8756792B2 (en) * 2011-06-08 2014-06-24 The Boeing Company Digitally designed shims for joining parts of an assembly
US9014836B2 (en) * 2011-12-15 2015-04-21 The Boeing Company Autonomous carrier system for moving aircraft structures
US9030673B2 (en) * 2012-04-06 2015-05-12 The Boeing Company Circumferential laser crawler
US8813382B1 (en) 2012-10-22 2014-08-26 The Boeing Company Shim measurement system and method of operating the same
US9486917B2 (en) 2014-04-30 2016-11-08 The Boeing Company Mobile automated assembly tool for aircraft structures

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0749373A (ja) * 1993-08-05 1995-02-21 Mitsui Constr Co Ltd 監視装置付アンテナ
JP2009508755A (ja) * 2005-09-22 2009-03-05 エアバス・ユ―ケ―・リミテッド 航空機部品の組付け
JP2009519175A (ja) * 2005-12-16 2009-05-14 エアバス・ユ―ケ―・リミテッド 航空機部品の組立て
JP2007205998A (ja) * 2006-02-03 2007-08-16 Mitsutoyo Corp 接触プローブおよび形状測定装置
JP2010520104A (ja) * 2007-02-28 2010-06-10 ザ・ボーイング・カンパニー 部品アセンブリを嵌合する方法
JP2013533813A (ja) * 2010-06-04 2013-08-29 ザ・ボーイング・カンパニー 形状記憶合金/繊維強化ポリマー複合構造物および形成方法
JP2014232113A (ja) * 2011-03-14 2014-12-11 ファロ テクノロジーズ インコーポレーテッド レーザトラッカによる寸法データの自動計測方法
JP2014513792A (ja) * 2011-04-14 2014-06-05 ヘキサゴン テクノロジー センター ゲゼルシャフト ミット ベシュレンクテル ハフツング 対象物表面の3d座標を決定するための測定システム
US20140365061A1 (en) * 2013-06-10 2014-12-11 The Boeing Company Systems and methods for robotic measurement of parts

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018119852A (ja) * 2017-01-25 2018-08-02 株式会社トプコン 位置特定装置、位置特定方法、位置特定システム、位置特定用プログラム、無人航空機および無人航空機識別用ターゲット
JPWO2018189870A1 (ja) * 2017-04-13 2020-02-27 株式会社ニコン 情報処理装置、プログラム、作業工程生成装置、および完成品の作成方法
WO2018189870A1 (ja) * 2017-04-13 2018-10-18 株式会社ニコン 情報処理装置、プログラム、作業工程生成装置
CN109019208A (zh) * 2017-06-12 2018-12-18 株式会社日立大厦系统 电梯检查装置用起降台以及电梯检查装置用起降系统
CN109019208B (zh) * 2017-06-12 2019-12-20 株式会社日立大厦系统 电梯检查装置用起降台以及电梯检查装置用起降系统
JP2019172259A (ja) * 2017-11-06 2019-10-10 株式会社エアロネクスト 飛行体及び飛行体の制御方法
WO2020016979A1 (ja) * 2018-07-19 2020-01-23 株式会社エアロネクスト 長尺に延びる本体部を備えた飛行体
JPWO2020016979A1 (ja) * 2018-07-19 2020-07-30 株式会社エアロネクスト 長尺に延びる本体部を備えた飛行体
US11772793B2 (en) 2018-07-19 2023-10-03 Aeronext Inc. Flying object with elongated body
JP2020033021A (ja) * 2019-12-10 2020-03-05 株式会社エアロネクスト 長尺に延びる本体部を備えた飛行体
JP2021107229A (ja) * 2019-12-10 2021-07-29 株式会社エアロネクスト 長尺に延びる本体部を備えた飛行体
JP2021107228A (ja) * 2019-12-10 2021-07-29 株式会社エアロネクスト 長尺に延びる本体部を備えた飛行体
JP7195616B2 (ja) 2019-12-10 2022-12-26 株式会社エアロネクスト 長尺に延びる本体部を備えた飛行体
JP2021054410A (ja) * 2021-01-12 2021-04-08 株式会社エアロネクスト 長尺に延びる本体部を備えた飛行体
JP2021059335A (ja) * 2021-01-12 2021-04-15 株式会社エアロネクスト 長尺に延びる本体部を備えた飛行体

Also Published As

Publication number Publication date
BR102015031877B1 (pt) 2022-07-19
CA2913170A1 (en) 2016-07-21
JP6737581B2 (ja) 2020-08-12
US20160207638A1 (en) 2016-07-21
EP3048416A1 (en) 2016-07-27
BR102015031877A2 (pt) 2016-09-27
CN105806238B (zh) 2020-01-31
US9599983B2 (en) 2017-03-21
CN105806238A (zh) 2016-07-27
CA2913170C (en) 2020-09-15
EP3048416B1 (en) 2017-09-13

Similar Documents

Publication Publication Date Title
JP6737581B2 (ja) 大型構造用の自動予測シミングのためのシステム、方法及び装置
KR101606447B1 (ko) 물체 표면의 3d 좌표들을 결정하기 위한 측정 시스템
US8812154B2 (en) Autonomous inspection and maintenance
US9234904B2 (en) Autonomous non-destructive evaluation system for aircraft structures
JP6659228B2 (ja) アセンブリ位置決めのための計測システム
US8930042B2 (en) Mobilized sensor network for structural health monitoring
US9427867B2 (en) Localization within an environment using sensor fusion
JP2019051585A (ja) 位置アライメントフィードバックを用いた、ロボットのエンドエフェクタの位置制御方法
CN107020633A (zh) 绝对机器人辅助定位方法
WO2018208995A1 (en) Self-localized mobile sensor network for autonomous robotic inspection
JP2018008368A (ja) 飛行機組み立て構築プロセスに対するファクトリオートメーションの適用
US20130215433A1 (en) Hover cmm
KR20180039570A (ko) 항공기 모니터링 시스템
US20220092766A1 (en) Feature inspection system
US10162352B2 (en) Remotely operated mobile stand-off measurement and inspection system
JP6127060B2 (ja) コンポーネントプログラミングシステム
US10633117B2 (en) Alignment systems and methods for moving fuselage structures of an aerospace vehicle into assembly alignment
CN114153221A (zh) 卫星高精度跟踪指向控制地面仿真系统及方法
CN114923467B (zh) 激光跟踪仪和igps的空间测量可达性仿真分析与布置方法
US20230332925A1 (en) Methods and apparatus for calibrating sensors on an autonomous vehicle
US8370102B1 (en) Computer aided feature alignment process
WO2023034585A1 (en) Feature inspection system
Ciężkowski et al. Compensating Position Measurement Errors for the IR Static Triangulation System
CN115808133A (zh) 一种自动化飞机结构外形快速检测方法及系统
Krüger et al. Single-Layer Laser Scanner for Detection and Localization of Unmanned Swarm Members

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181022

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190708

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200210

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200330

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200622

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200716

R150 Certificate of patent or registration of utility model

Ref document number: 6737581

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250