JP2016131983A - Continuous casting method for molten steel - Google Patents

Continuous casting method for molten steel Download PDF

Info

Publication number
JP2016131983A
JP2016131983A JP2015006472A JP2015006472A JP2016131983A JP 2016131983 A JP2016131983 A JP 2016131983A JP 2015006472 A JP2015006472 A JP 2015006472A JP 2015006472 A JP2015006472 A JP 2015006472A JP 2016131983 A JP2016131983 A JP 2016131983A
Authority
JP
Japan
Prior art keywords
mold
flow
discharge
long side
short side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2015006472A
Other languages
Japanese (ja)
Inventor
宏泰 新妻
Hiroyasu Niizuma
宏泰 新妻
大川 幸男
Yukio Okawa
幸男 大川
宏治 森脇
Koji Moriwaki
宏治 森脇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinagawa Refractories Co Ltd
Original Assignee
Shinagawa Refractories Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinagawa Refractories Co Ltd filed Critical Shinagawa Refractories Co Ltd
Priority to JP2015006472A priority Critical patent/JP2016131983A/en
Publication of JP2016131983A publication Critical patent/JP2016131983A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Continuous Casting (AREA)
  • Casting Support Devices, Ladles, And Melt Control Thereby (AREA)

Abstract

PROBLEM TO BE SOLVED: To make appropriate a molten steel flow pattern in a mold by making appropriate the discharge direction of the molten steel from an immersion nozzle to contribute to improvement of a cast slab quality in a slab continuous casting machine.SOLUTION: A continuous casting method for molten steel includes using a slab continuous casting machine in which the length of the short side (12) of a mold (20) is 180 mm or more and the length ratio of a long side (13) to the short side (12) is 3 to 20. The casting machine includes using an immersion nozzle (10) having a pair or more of discharge holes (11) facing a nozzle side. When defining the length of a long side (13) of the mold (20) as L, the position at which the short and long sides (12) and (13) intersect as intersection (4), the position at which the discharge direction (B) of a discharge flow from the discharge hole (11) and the long side (13) intersect as intersection (5), and the distance between the intersections (4, 5) as L, L/Lis in a range of 0.125 to 0.375.SELECTED DRAWING: Figure 1

Description

本発明は、溶鋼からスラブ鋼片を連続的に製造する連続鋳造方法に関し、特に電磁力を用いず鋳型内で溶鋼を撹拌するための新規な改良に関する。   The present invention relates to a continuous casting method for continuously producing slab steel slabs from molten steel, and more particularly to a novel improvement for stirring molten steel in a mold without using electromagnetic force.

連続鋳造設備において、タンディッシュからモールドへ溶鋼を注入するために浸漬ノズルが広く使用されている。浸漬ノズルは、溶鋼が大気と直接接触して再酸化することを予防する役割を持ち、鋳片の品質向上に大きく寄与する重要な耐火物である。
この連続鋳造法によって、非金属介在物が少なく、且つ成分の偏析が少ない優れた品質の鋳塊を得るには、溶湯の凝固層に捕捉された非金属介在物を除去すること、および凝固成分の均質化を図ることが重要である。具体的には、凝固途上の溶湯を適宜撹拌すること、湯面変動を抑制し、溶湯の上部にあるモールドパウダースラグの巻き込みを抑制することが重要である。そのため、連続鋳造における溶湯撹拌の技術開発が従来より盛んであり、電磁力を利用した撹拌装置が普及している。ところが、電磁撹拌装置は、高価であるため、これに代わる安価なシステムでモールド内溶湯を撹拌することが求められてきた。
その方法として、浸漬ノズルからの吐出流によってモールド内で旋回流を作り、これによって溶鋼を撹拌する試みがなされてきた。
In continuous casting equipment, immersion nozzles are widely used to inject molten steel from the tundish into the mold. The immersion nozzle has an important role in preventing molten steel from coming into direct contact with the atmosphere and being reoxidized, and is an important refractory material that greatly contributes to improving the quality of the slab.
By this continuous casting method, in order to obtain an ingot of excellent quality with less non-metallic inclusions and less segregation of components, the removal of non-metallic inclusions trapped in the solidified layer of the molten metal and the solidification component It is important to achieve homogenization. Specifically, it is important to appropriately agitate the molten metal in the course of solidification, suppress fluctuations in the molten metal surface, and suppress entrainment of mold powder slag in the upper part of the molten metal. Therefore, technical development of molten metal agitation in continuous casting has been thriving conventionally, and agitation devices using electromagnetic force have become widespread. However, since the electromagnetic stirring device is expensive, it has been required to stir the molten metal in the mold with an inexpensive system instead.
As a method therefor, an attempt has been made to create a swirl flow in the mold by the discharge flow from the immersion nozzle, thereby stirring the molten steel.

例えば、特許文献1には、吐出流を、吐出の中心に関して対称な複数の位置において接線方向に吐出し、また、方形のモールド面に対して45±10°の角度で吐出することで、旋回流を得る方法が提案されている。また、吐出孔は、直線や湾曲形状のものが提案されている。
また、特許文献2には、吐出孔の内壁の一部がノズル内周の接線と一致するノズルが提案されている。
For example, Patent Document 1 discloses that a discharge flow is swung in a tangential direction at a plurality of positions symmetrical with respect to the center of discharge and is discharged at an angle of 45 ± 10 ° with respect to a rectangular mold surface. A method of obtaining a flow has been proposed. In addition, the discharge holes have been proposed to be straight or curved.
Patent Document 2 proposes a nozzle in which a part of the inner wall of the discharge hole coincides with the tangent of the inner periphery of the nozzle.

さらに、特許文献3には、吐出孔の吐出方向をその中心からの放射方向に対して周方向に角度を持たせて形成したノズルを利用し、溶鋼が吐出する時の反作用の力を浸漬ノズルが受けるようにして、浸漬ノズル自体を鉛直軸に回転させることによって溶鋼流を旋回させる方法が提案されている。この方法では、浸漬ノズルが容易に回転するように、金属部品を介してベアリングと接触する構造となっている。
特許文献4には、吐出孔を放射方向に対して傾けて設置し、浸漬ノズルを上下2つのパーツとし、下側のノズルが鉛直軸に回転させる構造をとる方法が提案されている。
これらの方法は、ブルームやビレットといったモールドの水平断面形状が正方形に近い形状であり、断面形状の縦横比が大きいスラブ(たとえば、モールド長辺の長さ÷短辺の長さが3以上)においては適さない方法であった。スラブにおける旋回流の生成方法としては、特許文献5では、スラブ用連続鋳造機において、2孔式浸漬ノズルによる溶鋼の吐出方向を、浸漬ノズルの中心軸から鋳型短辺に下ろした垂線と鋳型の対角線との間になるように取り付け設置することで、溶鋼を集中して長辺側端面に溶鋼を供給し、かつ、溶鋼を円滑に撹拌する方法を提供している。長辺壁面に当たる吐出流の供給過多をなくし、ブレークアウトを防止し、且つ品質の優れた鋳塊を製造機能とする溶鋼の連続鋳造方法を提供し、鋳片の品質はかなり向上したとしている。ただし、この条件では生成する旋回流の強さが不十分である。湯面変動が大きくなる等の不具合があった。
Further, in Patent Document 3, a nozzle formed by setting the discharge direction of the discharge hole to have an angle in the circumferential direction with respect to the radial direction from the center of the discharge hole is used to determine the reaction force when the molten steel is discharged. Has been proposed to rotate the molten steel flow by rotating the immersion nozzle itself around the vertical axis. In this method, the immersion nozzle is in contact with the bearing via the metal part so that the immersion nozzle rotates easily.
Patent Document 4 proposes a method in which a discharge hole is inclined with respect to a radial direction, an immersion nozzle is formed into two upper and lower parts, and a lower nozzle rotates around a vertical axis.
In these methods, the horizontal cross-sectional shape of the mold such as bloom or billet is close to a square, and the slab has a large cross-sectional aspect ratio (for example, the length of the mold long side ÷ the length of the short side is 3 or more). Was an unsuitable method. As a method for generating a swirling flow in a slab, in Patent Document 5, in a continuous casting machine for a slab, the discharge direction of the molten steel by the two-hole immersion nozzle is lowered from the central axis of the immersion nozzle to the mold short side and the mold By installing and installing so that it may become between diagonal lines, the molten steel is concentrated, the molten steel is supplied to a long side side end surface, and the method of stirring a molten steel smoothly is provided. It provides a continuous casting method of molten steel that eliminates excessive supply of the discharge flow that hits the long side wall surface, prevents breakout, and uses an ingot of excellent quality as a manufacturing function, and is said that the quality of the slab has been considerably improved. However, the strength of the swirling flow generated is insufficient under these conditions. There were problems such as large fluctuations in the molten metal surface.

特開昭58−77754号公報JP 58-77754 A 特開昭58−112641号公報JP 58-111261 A 特開昭62−270260号公報JP-A-62-270260 特開平10−113753号公報Japanese Patent Laid-Open No. 10-113753 特開2000−263199号公報JP 2000-263199 A

従来の溶鋼の連続鋳造方法は、以上のように構成されていたため、次のような課題が存在していた。
すなわち、スラブの鋳片品質を向上させるためには、(1)スラブ形状のモールド内に安定した旋回流を得、流れの停滞する部位の発生を抑制すること、(2)モールドパウダースラグの巻き込みの要因となり得る湯面各所の湯面変動を抑制することの2点が重要である。このような視点から浸漬ノズルの評価を以下に示す図5等で示す水モデル試験によって行い、本発明に至った。
前記水モデル試験に用いる試験機(図5、図6)においては、従来方法の吐出方向を短辺中央に向けた場合で、モールド表面付近での流動状態(図5)と湯面付近での湯面の盛り上がり状態(図6)を示している。
Since the conventional continuous casting method of molten steel was configured as described above, the following problems existed.
That is, in order to improve the quality of slab slab, (1) obtain a stable swirling flow in the slab-shaped mold and suppress the occurrence of stagnant flow, (2) entrainment of mold powder slag Two points are important: suppression of fluctuations in the hot water surface at various locations. From such a viewpoint, the immersion nozzle was evaluated by a water model test shown in FIG.
In the testing machine (FIGS. 5 and 6) used for the water model test, the flow state in the vicinity of the mold surface (FIG. 5) and the vicinity of the molten metal surface when the discharge direction of the conventional method is directed to the center of the short side. The rising state (FIG. 6) of the hot water surface is shown.

図5において、符号20で示されるものは長手形状のモールドであり、このモールド20は、モールド長辺13とモールド短辺12よりなり、前記モールド20の中心と浸漬ノズル10の中心1とが一致するように構成されている。
符号4,4’は、図6で示すように、モールド長辺13とモールド短辺12の交点であり、符号2は前記モールド短辺12の中心、符号5は吐出流の方向とモールド20との交点、符号6は前記浸漬ノズル10の中心と前記モールド短辺12の中心を結んだ線、符号7は前記浸漬ノズル10の中心1と前記モールド長辺13の中心3とを結んだ線、符号8は前記浸漬ノズル10の中心1と前記交点4を結んだ線である。
In FIG. 5, what is indicated by reference numeral 20 is a longitudinal mold, and this mold 20 comprises a mold long side 13 and a mold short side 12, and the center of the mold 20 and the center 1 of the immersion nozzle 10 coincide. Is configured to do.
As shown in FIG. 6, reference numerals 4 and 4 ′ are intersections of the mold long side 13 and the mold short side 12, reference numeral 2 is the center of the mold short side 12, and reference numeral 5 is the direction of the discharge flow and the mold 20. , 6 is a line connecting the center of the immersion nozzle 10 and the center of the mold short side 12, 7 is a line connecting the center 1 of the immersion nozzle 10 and the center 3 of the mold long side 13, Reference numeral 8 denotes a line connecting the center 1 of the immersion nozzle 10 and the intersection 4.

符号9は前記中心1と前記交点5を結んだ線、符号11は浸漬ノズル10の吐出孔、符号14はモールド長辺13と浸漬ノズル10の間の部位、符号15は前記モールド長辺13に沿った流れ、符号16は前記モールド長辺13と前記浸漬ノズル10の間の流れである。   Reference numeral 9 is a line connecting the center 1 and the intersection point 5, reference numeral 11 is a discharge hole of the immersion nozzle 10, reference numeral 14 is a portion between the mold long side 13 and the immersion nozzle 10, and reference numeral 15 is the mold long side 13. A flow along the line 16 is a flow between the mold long side 13 and the immersion nozzle 10.

図7及び図8の従来構成は、前述の図5及び図6の構成に対して、前記交点5の位置を変更することによって、前記モールド20内の溶鋼の流れを矢印で示すように変えたのみで、図5及び図6の構成と同一に構成されているため、同一部分には同一符号を付し、その説明は重複を避けるために省略している。   7 and 8, the flow of molten steel in the mold 20 is changed as indicated by the arrows by changing the position of the intersection 5 with respect to the configuration of FIGS. 5 and 6 described above. 5 and 6, the same reference numerals are given to the same parts, and the description thereof is omitted to avoid duplication.

前述の水モデル試験は、220×1600mmサイズのスラブモールドを用い、浸漬ノズル10は内径φ75、外径φ135、吐出孔11は75×75mmの角孔を浸漬ノズル10の鉛直方向側面にノズル中心1に沿って2つ設けた形状を使用した。スループットは試験時の溶鋼換算にて3ton/minの条件とした。
初めに、ごく一般的な使用方法である浸漬ノズル10の中心1と吐出流の方向とモールド20の交点5を結んだ線9と浸漬ノズル10の中心1とモールド短辺中心2を結んだ線6が一致する方向で水モデル試験を実施した(図5、図6)。この場合、吐出孔11から吐出した流れは短辺方向に向かい、短辺に衝突して上下方向へ分岐し、湯面位置においてもモールド短辺12から浸漬ノズル10側へ向かう上下方向のループが生成した。このループ生成に伴い、モールド短辺12の湯面は盛り上がる傾向も認められた(図6)。湯面付近では、浸漬ノズル10とモールド長辺13の間の部位14の流れが遅く、停滞する様子が認められた。
The water model test described above uses a 220 × 1600 mm slab mold, the immersion nozzle 10 has an inner diameter φ75, an outer diameter φ135, and the discharge hole 11 has a 75 × 75 mm square hole on the side surface in the vertical direction of the immersion nozzle 10. The shape which provided two along was used. The throughput was 3 ton / min in terms of molten steel at the time of the test.
First, a line 9 connecting the center 1 of the immersion nozzle 10 and the direction of the discharge flow and the intersection 5 of the mold 20 and a line connecting the center 1 of the immersion nozzle 10 and the center 2 of the mold short side, which are very general usage methods. Water model tests were conducted in the direction in which 6 coincided (FIGS. 5 and 6). In this case, the flow discharged from the discharge hole 11 is directed in the short side direction, collides with the short side, branches in the vertical direction, and the loop in the vertical direction from the mold short side 12 toward the immersion nozzle 10 is also formed at the molten metal surface position. Generated. Along with this loop generation, the mold surface of the mold short side 12 tended to rise (FIG. 6). In the vicinity of the hot water surface, the flow of the part 14 between the immersion nozzle 10 and the mold long side 13 was slow, and a state of stagnation was observed.

次に、図7、図8で示すように、前述の特許文献5にて記載されている、モールドの交点5が、モールド短辺12の中心2とモールド短辺12と長辺13の交点4の中間点に位置するように浸漬ノズルを向けて試験を行った(図7)。短辺12に向った吐出流は、衝突後に上下方向へ分岐し、メニスカス位置において図7に示すような旋回する流れが発生した。最初の条件下で認められた浸漬ノズル10とモールド長辺13の間の部位14の澱みも解消されていた。但し、発生した旋回流は弱く、不安定な状態であった。加えて、吐出流が向かうモールド短辺12と長辺13の交点4位置では図8で示すように湯面が大きく盛り上がり、反対側の交点4’と大きな差が生じることが分かった。   Next, as shown in FIGS. 7 and 8, the intersection 5 of the mold described in the above-mentioned Patent Document 5 is the intersection 4 of the center 2 of the mold short side 12, the mold short side 12, and the long side 13. The test was conducted with the immersion nozzle oriented so as to be positioned at the midpoint of the sample (FIG. 7). The discharge flow toward the short side 12 branched up and down after the collision, and a swirling flow as shown in FIG. 7 occurred at the meniscus position. The stagnation of the site | part 14 between the immersion nozzle 10 and mold long side 13 recognized on the first conditions was also eliminated. However, the generated swirl flow was weak and unstable. In addition, it was found that at the intersection 4 position of the mold short side 12 and the long side 13 toward which the discharge flow is directed, the molten metal surface rises greatly as shown in FIG. 8, and a large difference is produced from the opposite intersection 4 '.

次に、吐出流のモールド20との交点5を長辺側とし、モールド短辺12と長辺13の交点4と吐出流のモールド20との交点5までの距離Lを、長辺の長さLに対してL/L=0.10の方向に向けた。この場合、図7と同様な流れとなり、湯面の盛り上がりが大きい結果となった。さらに浸漬ノズル10を旋回させ、モールド短辺12と長辺13の交点4と吐出流のモールド20との交点5の距離Lとし、モールド長辺の長さをLとした場合にL/L=0.125の方向へ向けた場合、衝突流は長辺→短辺→反対側の長辺とモールド壁に沿いながら流れ、図7とは異なる旋回流流れが得られた(図1)。モールド短辺12と長辺13の交点4での湯面変動は吐出流が短辺12に衝突していた場合と比べて大幅に軽減された(図2)。生成した旋回流は、文献5にて記載されている条件よりもより強く、安定していた。さらに浸漬ノズル10を過剰に旋回させ、L/L=0.40の方向へ向けた場合は、吐出流が衝突する部分の湯面変動が局所的に大きくなり、旋回流も不安定になった。
以上のように、吐出流の方向をモールド長辺13に向けて突出する実験を繰り返し、最適な範囲を求めた。
Next, let the intersection 5 with the mold 20 of the discharge flow be the long side, and the distance L from the intersection 4 of the mold short side 12 and the long side 13 to the intersection 5 of the mold 20 of the discharge flow is the length of the long side. directed in the direction of the L / L 0 = 0.10 for the L 0. In this case, the flow was the same as in FIG. 7, and the rise of the hot water surface was large. Furthermore the immersion nozzle 10 is pivoted, the mold and the distance L between the intersection 5 between the short side 12 and the mold 20 of intersection 4 with the discharge flow of the long side 13, if the L / L the length of the mold long sides was L 0 When the direction is 0 = 0.125, the collision flow flows along the mold wall along the long side, the short side, the long side on the opposite side, and a swirl flow different from FIG. 7 was obtained (FIG. 1). . The molten metal surface fluctuation | variation in the intersection 4 of the mold short side 12 and the long side 13 was reduced significantly compared with the case where the discharge flow collided with the short side 12 (FIG. 2). The generated swirling flow was stronger and more stable than the conditions described in Document 5. Further, when the immersion nozzle 10 is swirled excessively and directed in the direction of L / L 0 = 0.40, the fluctuation of the molten metal surface locally increases at the portion where the discharge flow collides, and the swirling flow becomes unstable. It was.
As described above, the experiment for projecting the direction of the discharge flow toward the mold long side 13 was repeated, and the optimum range was obtained.

これらの違いは、吐出流と吐出流がモールド長辺13・短辺12に衝突したあとの反射流が干渉するか否かによる。吐出流がモールド壁に対して垂直に衝突すると、反射流は全方位に反射するが(図3)、垂直以外の角度をもって衝突するとモールド壁の垂直方向に対して対称の方向へ反射する(図4)。ここで、吐出流とモールド壁のなす角度θが90°に近いと、吐出流と反射流の一部が干渉し、流れがかき乱される、局所的に流れが強くなることによって湯面変動が大きくなると云った現象が発生すると考えられる。本実験において、良好な溶湯流動パターンを得ることができた条件では、吐出流と反射流が干渉せず、スムーズな流れが起きたことで局所的な湯面変動が抑制されたと考えられる。   These differences depend on whether or not the reflected flow interferes after the ejection flow and the ejection flow collide with the mold long side 13 and the short side 12. When the discharge flow collides perpendicularly to the mold wall, the reflected flow is reflected in all directions (FIG. 3), but when it collides at an angle other than perpendicular, it reflects in a direction symmetrical to the vertical direction of the mold wall (FIG. 3). 4). Here, when the angle θ between the discharge flow and the mold wall is close to 90 °, the discharge flow and the reflected flow partially interfere with each other, the flow is disturbed, and the local flow becomes stronger, resulting in large fluctuations in the molten metal surface. It is considered that the phenomenon that occurs. In this experiment, under the condition that a good molten metal flow pattern can be obtained, the discharge flow and the reflected flow do not interfere with each other, and it is considered that the local fluctuation of the molten metal surface is suppressed by the smooth flow.

本発明は、以上のような発見によってなされたもので、特に、スラブ連鋳機において、浸漬ノズルからの溶鋼流の吐出方向の適正化により、モールド内の溶湯流動パターンを適正化し、鋳片品質の向上に寄与することを目的とする。   The present invention has been made by the discovery as described above. In particular, in a slab continuous casting machine, by optimizing the discharge direction of the molten steel flow from the immersion nozzle, the molten metal flow pattern in the mold is optimized, and the slab quality is improved. The purpose is to contribute to improvement.

本発明による溶鋼の連続鋳造方法は、モールド(20)の短辺(12)の長さが180mm以上であり、かつ長辺(13)と短辺(12)の長さの比が3以上,20以下であるスラブ連鋳機において、ノズル側面に対向する1対以上の吐出孔(11)をもつ浸漬ノズル(10)を用い、前記モールド(20)は、長辺(13)長さをL0、短辺(12)と長辺(13)が交わる位置を交点(4)とし、前記吐出孔(11)からの吐出流の吐出方向(B)とモールド長辺(13)とが交わる位置を交点(5)とし、前記各交点(4,5)間の距離をLとした時にL/Lが0.125から0.375の範囲に入ることを特徴とする溶鋼の連続鋳造方法である。
さらに、吐出孔(11)の形状が、縦方向の長さをh、横方向の長さをwとした際、1≦h/w≦1.2である浸漬ノズル(10)を用いることを特徴とする溶鋼の連続鋳造方法である。
In the continuous casting method of molten steel according to the present invention, the length of the short side (12) of the mold (20) is 180 mm or more, and the ratio of the length of the long side (13) to the short side (12) is 3 or more, In a slab continuous casting machine of 20 or less, an immersion nozzle (10) having one or more pairs of discharge holes (11) facing the nozzle side surface is used, and the mold (20) has a long side (13) length L 0 , the position where the short side (12) and the long side (13) intersect is the intersection (4), and the discharge direction (B) of the discharge flow from the discharge hole (11) and the mold long side (13) intersect Where L / L 0 falls within the range of 0.125 to 0.375 when L is the intersection (5) and the distance between the intersections (4, 5) is L. is there.
Furthermore, when the length of the discharge hole (11) is h in the vertical direction and w in the horizontal direction, the immersion nozzle (10) satisfying 1 ≦ h / w ≦ 1.2 is used. This is a method for continuous casting of molten steel.

本発明による溶鋼の連続鋳造方法は、以上のように構成されているため、次のような効果を得ることができる。
すなわち、良好な溶湯流動パターンを得ることが出来た条件では、吐出流と反射流が干渉せず、スムーズな流れが起きることで局所的な湯面変動が抑制される。また、モールド長辺と短辺の長さの比が3以上,20以下であれば、吐出流と反射流が干渉することはなくなり、より安定的な旋回流を得ることが出来る。
さらに、長辺と短辺の長さの比が5以上の場合、より好ましい効果を得ることが出来る。
Since the molten steel continuous casting method according to the present invention is configured as described above, the following effects can be obtained.
That is, under conditions where a good molten metal flow pattern can be obtained, the discharge flow and the reflected flow do not interfere with each other, and a smooth flow occurs, thereby suppressing local fluctuations in the molten metal surface. Moreover, if the ratio of the length of the mold long side to the short side is 3 or more and 20 or less, the discharge flow and the reflected flow do not interfere with each other, and a more stable swirl flow can be obtained.
Furthermore, when the ratio of the length of the long side to the short side is 5 or more, a more preferable effect can be obtained.

本発明を示す例示図で、モールド表面付近での流動状態(平面図)を示した模式図である。It is the illustration which shows this invention, and is the schematic diagram which showed the flow state (plan view) in the mold surface vicinity. 図1の湯面の盛り上がりを示す右側面の模式図である。It is a schematic diagram of the right side surface which shows the rise of the hot water surface of FIG. 吐出流がモールド壁に対して垂直に衝突した場合の、反射流の状態を示した模式図である。It is the schematic diagram which showed the state of the reflective flow when a discharge flow collides perpendicularly with respect to a mold wall. 吐出流がモールド壁に対して斜めに衝突した場合の、反射流の状態を示した模式図である。It is the schematic diagram which showed the state of the reflected flow when a discharge flow collides diagonally with respect to a mold wall. 従来方法の吐出方向を短辺中央に向けた場合で、モールド表面付近での流動状態(平面図)を示した模式図である。It is the schematic diagram which showed the flow state (plan view) in the mold surface vicinity in the case where the discharge direction of the conventional method is directed to the short side center. 図5の湯面の盛り上がりを示す右側面図の模式図である。It is a schematic diagram of the right view which shows the rise of the hot water surface of FIG. 特許文献5にて記載のモールド短辺の中心2とモールド短辺と長辺の交点4の中間点に位置するように吐出方向を向けた場合で、モールド表面付近での流動状態(平面図)を示した模式図である。The flow state in the vicinity of the mold surface when the discharge direction is oriented so as to be located at the midpoint between the center 2 of the mold short side and the intersection 4 of the mold short side and long side described in Patent Document 5 (plan view) It is the schematic diagram which showed. 図7の湯面の盛り上がりを示す右側面図の模式図である。It is a schematic diagram of the right view which shows the rise of the hot water surface of FIG.

本発明による溶鋼の連続鋳造方法は、長辺と短辺の長さの比が3以上あるスラブ連鋳機において、長辺の長さをLとし、長辺と短辺の交点と吐出方向と長辺との交点間の距離をLとした時のL/Lが0.125から0.375の範囲として、モールド内の溶湯流動パターンを適正化し、鋳片品質の向上に寄与することである。 Continuous casting method of molten steel according to the invention, long sides and in the slab continuous casting machine the ratio of the length is 3 or more of the short side, the length of the long side and L 0, the discharge direction long and short sides of the intersection point L / L 0 when the distance between the intersections of the long side and the long side is L is in the range of 0.125 to 0.375, and the molten metal flow pattern in the mold is optimized to contribute to the improvement of slab quality. It is.

以下、図面と共に本発明による溶鋼の連続鋳造方法の好適な実施の形態について説明する。
尚、本発明方法を示すための図1及び図2のモールド20の構成は、モールド20内における浸漬ノズル10の吐出孔11からの溶鋼の吐出方向が異なるのみで、モールド20の構造自体は、図5から図7で示した従来構成と同一であるため、同一部分には同一符号を付し、重複を避けるためにその説明は省略するものとする。
Hereinafter, preferred embodiments of a continuous casting method for molten steel according to the present invention will be described with reference to the drawings.
The structure of the mold 20 in FIGS. 1 and 2 for illustrating the method of the present invention is different only in the discharge direction of the molten steel from the discharge hole 11 of the immersion nozzle 10 in the mold 20, and the structure itself of the mold 20 is as follows. Since it is the same as the conventional configuration shown in FIGS. 5 to 7, the same reference numerals are given to the same parts, and the description thereof is omitted to avoid duplication.

本発明は、浸漬ノズル10の吐出流をモールド20のどの方向に向けるかという点について、従来の一般的な方法とは異なる方向を示したものである。
本発明は、モールドの短辺12の長さが180mm以上であり、かつ長辺13と短辺12の長さの比が3以上であるスラブ連鋳機に適用可能である。
尚、種々実験の結果、前記比は、3以上,20以下が好適であり、20より大きい場合は、その後工程である圧延機との関係から現実的ではなく、より好ましい前記比の範囲は、5〜15である。
前記モールド短辺12の長さが180mmよりも狭い、薄スラブ、中厚スラブ連続鋳造機の操業条件では、長辺3に衝突した反射流が、対向するもう一方の長辺13にも衝突してしまい、モールド全体に旋回流を生成することが出来ない。
モールド長辺13と短辺12の長さの比が3未満では、吐出流と反射流が干渉しやすくなり、安定的な旋回流を生成することが難しい。モールド長辺13と短辺12の長さの比が3以上であれば、吐出流と反射流が干渉することはなくなり、より安定的な旋回流を得ることが出来る。
前記長辺13と短辺12の長さの比が5以上の場合、より好ましい。
浸漬ノズル10にはノズル側面に対向する1対の吐出孔11を有するノズルを使用する。但し、浸漬ノズル10の底部に1つないし2つ以上の吐出孔11を設けた浸漬ノズル10を用いても同様の効果を有する。
The present invention shows a direction different from a conventional general method in which direction of the mold 20 the discharge flow of the immersion nozzle 10 is directed.
The present invention is applicable to a slab continuous casting machine in which the length of the short side 12 of the mold is 180 mm or more and the ratio of the length of the long side 13 to the short side 12 is 3 or more.
In addition, as a result of various experiments, the ratio is preferably 3 or more and 20 or less, and when it is larger than 20, it is not realistic from the relationship with the rolling mill as a subsequent process, and the more preferable range of the ratio is 5-15.
Under the operating conditions of a thin slab and medium-thick slab continuous casting machine in which the length of the mold short side 12 is narrower than 180 mm, the reflected flow that collides with the long side 3 also collides with the other long side 13 that is opposed. Therefore, a swirl flow cannot be generated in the entire mold.
If the ratio of the length of the mold long side 13 to the short side 12 is less than 3, the discharge flow and the reflected flow are likely to interfere with each other, and it is difficult to generate a stable swirl flow. If the ratio of the length of the mold long side 13 to the short side 12 is 3 or more, the discharge flow and the reflected flow do not interfere with each other, and a more stable swirl flow can be obtained.
It is more preferable when the ratio of the length of the long side 13 to the short side 12 is 5 or more.
As the immersion nozzle 10, a nozzle having a pair of ejection holes 11 facing the nozzle side surface is used. However, the same effect can be obtained by using the immersion nozzle 10 provided with one or more discharge holes 11 at the bottom of the immersion nozzle 10.

本発明において最も重要な点は、吐出流の向かう方向9が一般的なノズルの使用方法であるモールド短辺12ではなく、モールド長辺13に向う点である。これによって吐出流とモールド長辺13のなす角が図4のようにθが90°以下で小さくなり、反射流は吐出流と干渉せずに流れることが可能である。但し、実際の吐出流は、吐出孔11から出てからやや拡散するため、吐出流が向かう方向がモールド短辺12と長辺13の交点に近い位置の場合、干渉が起こりやすくなったり、反射流の流れが複雑になったりすることによってスムーズな流れが阻害され、旋回流が不安定になる、湯面変動が大きくなる等の不具合が生じる。
具体的には、モールド長辺13の長さをLとし、短辺12と長辺13の交点を交点4とし、吐出方向とモールド長辺13との交点を交点5とし、交点4,5間の距離をLとした時に、L/Lが0.125〜0.375の範囲にあることが好ましい。
0.125未満の場合、旋回流が不安定になり、モールド短辺12と長辺13の交点4付近の湯面変動量も大きくなる。
一方、L/Lが0.375より大きい場合には、図3で示すように、吐出流が長辺13に垂直に近い角度で衝突するようになり、旋回流の生成が不安定になり、交点5付近の湯面変動が局所的に大きくなることから好ましくない。
この中間の範囲である、L/L0が0.125から0.375までの位置で交叉すると、モールド20内の矢印で示すように、安定した旋回流(この場合は時計回り方向)と湯面変動量が小さい状態を得ることが出来る。より好ましくは、L/Lが0.15から0.35の範囲である。
The most important point in the present invention is that the direction 9 toward the discharge flow is directed to the mold long side 13 instead of the mold short side 12 which is a general method of using a nozzle. As a result, the angle formed between the discharge flow and the long side 13 of the mold becomes small when θ is 90 ° or less as shown in FIG. 4, and the reflected flow can flow without interfering with the discharge flow. However, since the actual discharge flow is slightly diffused after exiting from the discharge hole 11, if the direction of the discharge flow is close to the intersection of the mold short side 12 and the long side 13, interference tends to occur or reflection occurs. When the flow flow becomes complicated, the smooth flow is hindered, resulting in inconveniences such as the swirling flow becoming unstable and the fluctuation of the molten metal surface becoming large.
Specifically, the length of the mold long side 13 is L 0 , the intersection of the short side 12 and the long side 13 is the intersection 4, the intersection of the discharge direction and the mold long side 13 is the intersection 5, and the intersections 4, 5 L / L 0 is preferably in the range of 0.125 to 0.375, where L is the distance between them.
When it is less than 0.125, the swirl flow becomes unstable, and the amount of molten metal surface fluctuation near the intersection 4 between the mold short side 12 and the long side 13 also increases.
On the other hand, when L / L 0 is larger than 0.375, as shown in FIG. 3, the discharge flow collides with the long side 13 at an angle close to the vertical, and the generation of the swirl flow becomes unstable. This is not preferable because the hot-water surface fluctuation in the vicinity of the intersection 5 locally increases.
When L / L 0 crosses at a position in the middle range of 0.125 to 0.375, as shown by an arrow in the mold 20, a stable swirling flow (in this case, clockwise direction) and hot water A state where the amount of surface fluctuation is small can be obtained. More preferably, L / L 0 is in the range of 0.15 to 0.35.

本発明においては、浸漬ノズル10の吐出孔11の形状については何れの形状も使用できる。その中でもとりわけ、浸漬ノズル10の吐出孔11の縦方向の寸法hと横方向の寸法wの比は1≦h/w≦1.2であることが好ましく、より好ましくは1≦h/w≦1.1である。
h/wが1未満である場合、吐出流が左右方向に大きく拡散しやすくなる。吐出流が左右方向に拡散すると、吐出流と反射流が干渉する可能性が大きくなる。そうなると、安定した旋回流を生成することが難しくなり、加えて流れが集中した箇所では湯面変動が大きく可能性がある。そのため、横方向の吐出孔サイズが大きくなる横長形状は好ましくない。
一方、h/wが1.2より大きい極端な縦長形状とすると、吐出孔11の上部に吸込み領域が生成し、別の鋳片欠陥の原因となりうる。
なお、吐出孔11の形状は矩形とすることが一般的ではあるが、円形、長円形、楕円形、多角形としても良い。この際、hは縦方向の寸法の最大値であり、wは横方向の寸法の最大値である。
In the present invention, any shape can be used as the shape of the discharge hole 11 of the immersion nozzle 10. Among them, the ratio of the vertical dimension h to the horizontal dimension w of the discharge hole 11 of the immersion nozzle 10 is preferably 1 ≦ h / w ≦ 1.2, more preferably 1 ≦ h / w ≦. 1.1.
When h / w is less than 1, the discharge flow is likely to diffuse greatly in the left-right direction. When the discharge flow diffuses in the left-right direction, the possibility that the discharge flow and the reflected flow interfere with each other increases. If it becomes so, it will become difficult to generate | occur | produce the stable swirl | flow, and a hot_water | molten_metal surface fluctuation | variation may be large in the location where the flow concentrated in addition. Therefore, a horizontally long shape in which the discharge hole size in the horizontal direction is large is not preferable.
On the other hand, if an extremely vertically long shape with h / w greater than 1.2 is formed, a suction region is generated in the upper portion of the discharge hole 11 and may cause another slab defect.
The shape of the discharge hole 11 is generally rectangular, but may be circular, oval, elliptical, or polygonal. At this time, h is the maximum value of the dimension in the vertical direction, and w is the maximum value of the dimension in the horizontal direction.

本発明において、浸漬ノズル10の吐出方向をノズルセット時から固定しておくこともできるし、浸漬ノズル10の吐出方向を鋳造中に任意に変更できる装置を使用して鋳造途中で変更しても良い。特に、鋳込み開始時には、吐出方向を短辺方向に向けておき、鋳造が安定した段階で吐出方向を所定の方向に向けるように変更することが望ましい。鋳造初期は非定常であるため、長辺に吐出流が衝突すると鋳型内の湯面の変動が大きくなり、異常な凝固膜が発生したりして、ブレークアウトの危険が増すので、鋳込みが安定するまでの間は、短辺方向へ吐出させることが好ましい。
浸漬ノズルの材質面に関しては特に制約はない。具体的にはアルミナ・黒鉛質、アルミナ・シリカ・黒鉛質、ジルコニア・黒鉛質、スピネル・黒鉛質、カルシア・ジルコニア・黒鉛質、アルミナ・シリカ質、アルミナ質、スピネル質、マグネシア質、ジルコン・ジルコニア質などに適用可能である。
この発明は、一般的なスラブ連続鋳造機の操業条件においては適用可能である。すなわち、スループットについては0.5ton/minから8ton/minまでは対応可能である。
In the present invention, the discharge direction of the immersion nozzle 10 can be fixed from the time of nozzle setting, or the discharge direction of the immersion nozzle 10 can be changed during casting using a device that can arbitrarily change the discharge direction of the immersion nozzle 10 during casting. good. In particular, at the start of casting, it is desirable that the discharge direction be directed to the short side direction and changed so that the discharge direction is directed to a predetermined direction when casting is stable. Since casting is unsteady at the beginning of casting, when the discharge flow collides with the long side, the molten metal surface fluctuates greatly, and an abnormal solidified film is formed. In the meantime, it is preferable to discharge in the short side direction.
There are no particular restrictions on the material of the immersion nozzle. Specifically, alumina / graphite, alumina / silica / graphite, zirconia / graphite, spinel / graphite, calcia / zirconia / graphite, alumina / silica, alumina, spinel, magnesia, zircon / zirconia It is applicable to quality.
The present invention is applicable to the operating conditions of a general slab continuous casting machine. That is, the throughput can be from 0.5 ton / min to 8 ton / min.

実施例および比較例
実際のスラブ連続鋳造機と同一スケールをもつ水モデル装置を用い、下記のような条件で試験を実施した。
本発明例を表1に示し、比較例を表2に示す。
モールドのサイズ、スループット、吐出孔の縦/横比を変えた。浸漬ノズルの吐出孔は縦方向の寸法を変化させることで、縦/横比を変化させた。
上記条件で水モデル実験を行い、水よりもやや軽い比重を持つプラスチックビーズを分散させ、ビーズの動きによって旋回流の状態と湯面変動の状態を観察した。
Examples and Comparative Examples Using a water model apparatus having the same scale as an actual slab continuous casting machine, tests were performed under the following conditions.
Examples of the present invention are shown in Table 1, and Comparative Examples are shown in Table 2.
The mold size, throughput, and ejection hole aspect ratio were changed. The discharge hole of the immersion nozzle was changed in length / width ratio by changing the size in the vertical direction.
A water model experiment was performed under the above conditions, and plastic beads having a specific gravity slightly lighter than water were dispersed, and the swirl flow state and the state of the molten metal surface were observed by the movement of the beads.

Figure 2016131983
Figure 2016131983

Figure 2016131983
Figure 2016131983

旋回流の生成状況は、◎:非常に安定、○:安定、△:不安定、×発生しない。以上4段階で評価した。旋回流が安定していることが好ましい。
湯面変動は、コーナー部などの湯面変動の観察結果から、大、中、小を評価した。湯面変動は、小さいことが好ましい。
本発明の場合、何れも安定した旋回流が得られ、また、湯面変動も小さく、良好であった。
それに対し比較例1は吐出孔を、モールド短辺12の中心2に向って吐出させたでは、旋回流は発生せず、湯面変動も大きい傾向であった。
比較例2は、図7、図8のように吐出孔11をモールド短辺12の中心2と、モールド短辺12と長辺13の交点4の中間点に向けた特許文献5の場合であり、旋回流は不安定であり、湯面変動も大きくなる結果となった。比較例3は、吐出孔11を長辺13に向けるが、L/L=0.10とした場合であるが、旋回流は不安定な傾向であった。比較例4は、L/L=0.40に向けた場合であるが、旋回流も不安定となり、湯面変動も大きくなった。比較例5は、モールドサイズを240×1600mmとし、スループット5ton/min吐出孔サイズを80×80mmとした試験でL/L=0.10とした場合、比較例6はL/L=0.40の場合であるが、安定した旋回流は得られず、湯面変動が大きく、不良であった。比較例7と比較例8は同様にモールドサイズを240×2000mmとし、スループット6ton/min吐出孔サイズを85×85mmとした試験でL/L=0.10の向けた場合とL/L=0.40の場合であるが、安定した旋回流得られず、湯面変動が大きく、不良であった。
比較例9はモールド厚みを狭くし、150×1200mmとした場合であるが、旋回流も不安定であり、湯面変動も大きかった。
比較例10は、モールド20の長辺13と短辺12の比が2.5(240×600mm)の条件では、L/L=0.25の方向に吐出孔11を向けた場合であるが、旋回流は不安定であり、湯面変動もやや大きかった。
The generation state of the swirling flow is as follows: ◎: very stable, ○: stable, △: unstable, × not generated. Evaluation was made in the above four stages. It is preferable that the swirl flow is stable.
The hot water level was evaluated as large, medium, or small based on the observation results of hot water level fluctuations at corners. It is preferable that the molten metal surface fluctuation is small.
In the case of the present invention, a stable swirling flow was obtained, and the molten metal surface fluctuation was small and good.
On the other hand, in Comparative Example 1, when the discharge hole was discharged toward the center 2 of the mold short side 12, the swirl flow did not occur and the molten metal surface level tended to be large.
Comparative Example 2 is a case of Patent Document 5 in which the discharge holes 11 are directed to the center 2 of the mold short side 12 and the midpoint of the intersection 4 of the mold short side 12 and the long side 13 as shown in FIGS. As a result, the swirl flow was unstable, and the hot water level fluctuated. In Comparative Example 3, the discharge hole 11 is directed to the long side 13, but L / L 0 = 0.10, but the swirl flow tended to be unstable. Comparative Example 4 is a case where L / L 0 = 0.40, but the swirl flow was also unstable and the molten metal surface fluctuation was increased. In Comparative Example 5, when L / L 0 = 0.10 in a test in which the mold size was 240 × 1600 mm and the throughput was 5 ton / min and the discharge hole size was 80 × 80 mm, Comparative Example 6 was L / L 0 = 0. In the case of .40, a stable swirling flow could not be obtained, and the molten metal surface level was large and was poor. Comparative Example 7 Comparative Example 8 Likewise the mold size as 240 × 2000 mm, if the directed of L / L 0 = 0.10 in test throughput 6 ton / min discharge hole size and 85 × 85 mm and L / L 0 = 0.40, but a stable swirl flow could not be obtained, and the molten metal surface fluctuation was large and was poor.
In Comparative Example 9, the mold thickness was narrowed to 150 × 1200 mm, but the swirl flow was also unstable and the molten metal surface fluctuation was large.
Comparative Example 10 is a case where the discharge hole 11 is directed in the direction of L / L 0 = 0.25 under the condition that the ratio of the long side 13 to the short side 12 of the mold 20 is 2.5 (240 × 600 mm). However, the swirl flow was unstable and the molten metal surface fluctuation was slightly large.

本発明による溶鋼の連続鋳造方法の要旨とするところは、以下の通りである。
すなわち、モールド20の短辺12の長さが180mm以上であり、かつ長辺13と短辺12の長さの比が3以上,20以下であるスラブ連鋳機において、ノズル側面に対向する1対以上の吐出孔11をもつ浸漬ノズル10を用い、前記モールド20は、長辺13長さをL0、短辺12と長辺13が交わる位置を交点4とし、前記吐出孔11からの吐出流の吐出方向Bとモールド長辺13とが交わる位置を交点5とし、前記各交点4,5間の距離をLとした時にL/Lが0.125から0.375の範囲に入ることを特徴とする溶鋼の連続鋳造方法であり、また、
前記吐出孔11の形状が、縦方向の長さをh、横方向の長さをwとした際、1≦h/w≦1.2である前記浸漬ノズル10を用いることを特徴とする溶鋼の連続鋳造方法である。
The gist of the molten steel continuous casting method according to the present invention is as follows.
That is, in the slab continuous casting machine in which the length of the short side 12 of the mold 20 is 180 mm or more and the ratio of the length of the long side 13 to the short side 12 is 3 or more and 20 or less, 1 facing the nozzle side surface. Using the immersion nozzle 10 having a pair or more of the discharge holes 11, the mold 20 is discharged from the discharge holes 11 with the long side 13 length being L 0 and the position where the short side 12 and the long side 13 intersect is the intersection point 4. L / L 0 falls within the range of 0.125 to 0.375 when the position where the flow discharge direction B and the mold long side 13 intersect is the intersection 5 and the distance between the intersections 4 and 5 is L. A continuous casting method of molten steel, characterized by
The shape of the discharge hole 11 is the molten steel using the immersion nozzle 10 in which 1 ≦ h / w ≦ 1.2 when the longitudinal length is h and the lateral length is w. This is a continuous casting method.

本発明による溶鋼の連続鋳造方法によれば、浸漬ノズルからの溶鋼流の吐出方向の適正化により、モールド内の溶湯流動パターンを適正化し、鋳片品質の向上に寄与できる。   According to the continuous casting method of molten steel according to the present invention, it is possible to optimize the molten metal flow pattern in the mold by optimizing the discharge direction of the molten steel flow from the immersion nozzle, and contribute to the improvement of the slab quality.

1 浸漬ノズルの中心
2 モールド短辺の中心
3 モールド長辺の中心
4,4’ モールド長辺と短辺の交点
5 吐出流の方向とモールドとの交点
6 1と2を結んだ線
7 1と3を結んだ線
8 1と4を結んだ線(対角線)
9 1と5を結んだ線(吐出流の吐出方向B)
10 浸漬ノズル
11 浸漬ノズルの吐出孔
12 モールド短辺
13 モールド長辺
14 モールド長辺と浸漬ノズルの間の部位
15 モールド長辺に沿った流れ
16 モールド長辺と浸漬ノズルの間の流れ
17 モールド短辺に沿った流れ
DESCRIPTION OF SYMBOLS 1 Center of immersion nozzle 2 Center of mold short side 3 Center of mold long side 4,4 'Intersection of mold long side and short side 5 Intersection of discharge flow direction and mold 6 Line connecting 1 and 2 7 1 Line connecting 3 8 Line connecting 1 and 4 (diagonal line)
9 Line connecting 1 and 5 (discharge direction B of discharge flow)
DESCRIPTION OF SYMBOLS 10 Immersion nozzle 11 Discharge nozzle discharge hole 12 Mold short side 13 Mold long side 14 Part between mold long side and immersion nozzle 15 Flow along mold long side 16 Flow between mold long side and immersion nozzle 17 Mold short Flow along the side

Claims (2)

モールド(20)の短辺(12)の長さが180mm以上であり、かつ長辺(13)と短辺(12)の長さの比が3以上,20以下であるスラブ連鋳機において、ノズル側面に対向する1対以上の吐出孔(11)をもつ浸漬ノズル(10)を用い、前記モールド(20)は、長辺(13)長さをL0、短辺(12)と長辺(13)が交わる位置を交点(4)とし、前記吐出孔(11)からの吐出流の吐出方向(B)とモールド長辺(13)とが交わる位置を交点(5)とし、前記各交点(4,5)間の距離をLとした時にL/Lが0.125から0.375の範囲に入ることを特徴とする溶鋼の連続鋳造方法。 In the slab continuous casting machine in which the length of the short side (12) of the mold (20) is 180 mm or more and the ratio of the length of the long side (13) to the short side (12) is 3 or more and 20 or less, Using an immersion nozzle (10) having one or more pairs of discharge holes (11) facing the nozzle side surface, the mold (20) has a long side (13) of L 0 , a short side (12) and a long side. (13) as the intersection (4), the intersection of the discharge direction (B) of the discharge flow from the discharge hole (11) and the mold long side (13) as the intersection (5), each intersection A continuous casting method for molten steel, wherein L / L 0 falls within the range of 0.125 to 0.375 when the distance between (4,5) is L. 前記吐出孔(11)の形状が、縦方向の長さをh、横方向の長さをwとした際、1≦h/w≦1.2である前記浸漬ノズル(10)を用いることを特徴とする請求項1記載の溶鋼の連続鋳造方法。   Using the immersion nozzle (10) wherein the shape of the discharge hole (11) is 1 ≦ h / w ≦ 1.2, where h is the length in the vertical direction and w is the length in the horizontal direction. The method for continuous casting of molten steel according to claim 1, wherein:
JP2015006472A 2015-01-16 2015-01-16 Continuous casting method for molten steel Withdrawn JP2016131983A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015006472A JP2016131983A (en) 2015-01-16 2015-01-16 Continuous casting method for molten steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015006472A JP2016131983A (en) 2015-01-16 2015-01-16 Continuous casting method for molten steel

Publications (1)

Publication Number Publication Date
JP2016131983A true JP2016131983A (en) 2016-07-25

Family

ID=56437146

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015006472A Withdrawn JP2016131983A (en) 2015-01-16 2015-01-16 Continuous casting method for molten steel

Country Status (1)

Country Link
JP (1) JP2016131983A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018210772A1 (en) * 2017-05-15 2018-11-22 Vesuvius U S A Corporation Asymetric slab nozzle and metallurgical assembly for casting metal including it

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4202397A (en) * 1975-01-20 1980-05-13 Bethlehem Steel Corporation Method of continuously casting molten metal
JPS6215847U (en) * 1985-07-10 1987-01-30
JPH08206798A (en) * 1995-02-01 1996-08-13 Kobe Steel Ltd Method for pouring molten steel into mold of large section
JP2009220122A (en) * 2008-03-13 2009-10-01 Sumitomo Metal Ind Ltd Continuous casting method for steel

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4202397A (en) * 1975-01-20 1980-05-13 Bethlehem Steel Corporation Method of continuously casting molten metal
JPS6215847U (en) * 1985-07-10 1987-01-30
JPH08206798A (en) * 1995-02-01 1996-08-13 Kobe Steel Ltd Method for pouring molten steel into mold of large section
JP2009220122A (en) * 2008-03-13 2009-10-01 Sumitomo Metal Ind Ltd Continuous casting method for steel

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018210772A1 (en) * 2017-05-15 2018-11-22 Vesuvius U S A Corporation Asymetric slab nozzle and metallurgical assembly for casting metal including it
KR20200007803A (en) * 2017-05-15 2020-01-22 베수비우스 유에스에이 코포레이션 Asymmetric slab nozzles and metallurgical assemblies for metal casting comprising the same
US11103921B2 (en) 2017-05-15 2021-08-31 Vesuvius U S A Corporation Asymmetric slab nozzle and metallurgical assembly for casting metal including it
RU2756838C2 (en) * 2017-05-15 2021-10-06 ВЕЗУВИУС Ю Эс Эй КОРПОРЕЙШН Cup of an asymmetric shape for casting slabs and metallurgical plant for casting metal that includes it
KR102535078B1 (en) 2017-05-15 2023-05-19 베수비우스 유에스에이 코포레이션 Asymmetric slab nozzle and metallurgical assembly for metal casting including the same

Similar Documents

Publication Publication Date Title
JP2019063851A (en) Immersion nozzle for continuous casting and method for steel continuous casting
JP2013240826A (en) Submerged nozzle of continuous casting apparatus
JP2008279501A (en) Continuous casting device of slab and its continuous casting method
JP2016131983A (en) Continuous casting method for molten steel
WO2017047058A1 (en) Continuous casting method for slab casting piece
TWI690377B (en) Continuous casting method of steel
JP4896599B2 (en) Continuous casting method of low carbon steel using dipping nozzle with dimple
JP4553639B2 (en) Continuous casting method
JP2012020293A (en) Method for changing immersion depth of immersion nozzle
JP2007331003A (en) Continuous casting method for low carbon steel, using immersion nozzle with weir-type reservoir
JP2008254050A (en) Method for producing continuously cast slab
JP2007326144A (en) Immersion nozzle
JP4760303B2 (en) Secondary cooling method for continuous cast slabs
JP4851248B2 (en) Continuous casting method of medium carbon steel using a dipping nozzle
JP2008000810A (en) Method for continuously casting high carbon steel using immersion nozzle with gate type pouring basin
US6543656B1 (en) Method and apparatus for controlling standing surface wave and turbulence in continuous casting vessel
JP4902276B2 (en) Continuous casting method of high carbon steel using dipping nozzle with dimple
JP6551161B2 (en) Pouring nozzle for twin roll casting apparatus, twin roll casting apparatus, and cast piece casting method
KR102277295B1 (en) Continuous casting process of steel material by controlling ends of refractory in submerged entry nozzle
JP2002346706A (en) Continuous casting apparatus
JP4714624B2 (en) Method of electromagnetic stirring of molten steel in mold
JP2004098127A (en) Method for continuously casting high quality stainless steel cast slab
JP2004098082A (en) Method for casting molten stainless steel performing electromagnetic stirring
JP2004106021A (en) Method for casting molten stainless steel using vertical-bending type continuous caster
JP6287901B2 (en) Steel continuous casting method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160614

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160621

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160927

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161012

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20161026