JP2016124252A - 立体造形装置 - Google Patents

立体造形装置 Download PDF

Info

Publication number
JP2016124252A
JP2016124252A JP2015001691A JP2015001691A JP2016124252A JP 2016124252 A JP2016124252 A JP 2016124252A JP 2015001691 A JP2015001691 A JP 2015001691A JP 2015001691 A JP2015001691 A JP 2015001691A JP 2016124252 A JP2016124252 A JP 2016124252A
Authority
JP
Japan
Prior art keywords
filament
axis
lever
roller
link arm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015001691A
Other languages
English (en)
Inventor
直行 平出
Naoyuki Hiraide
直行 平出
修一 小柴
Shuichi Koshiba
修一 小柴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Boeki Engineering Ltd
Original Assignee
Tokyo Boeki Engineering Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Boeki Engineering Ltd filed Critical Tokyo Boeki Engineering Ltd
Priority to JP2015001691A priority Critical patent/JP2016124252A/ja
Publication of JP2016124252A publication Critical patent/JP2016124252A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】造形精度を向上させることができる立体造形装置を提供する。【解決手段】立体造形装置において、ヒータ91、押出ノズル81を配置した基台47に固定され押出駆動モータが取り付けられる取付ブラケット101と、モータ駆動軸に固定される送出ローラ97と、押圧リンク軸107を介して取付ブラケット101に回転自在に支持され挟持ローラ99が支持される押圧リンクアーム109と、レバー軸111を介して取付ブラケット101に回転自在に支持され把持部115を有するレバーリンクアーム113と、押圧リンクアーム109の押圧アームバネ係止軸119とレバーリンクアーム113のレバーアームバネ係止軸121とに張架されレバーリンクアーム113が回転されることで挟持ローラ99を送出ローラ97に向かって付勢し送出ローラ97とでフィラメント83を挟持状態に保持または保持解除する引張バネ117と、を設けた。【選択図】 図7

Description

本発明は、立体造形装置に関する。
所望のパターンにより基材上で溶融状態の材料を凝固させて多数の層を順次堆積する方法、所謂熱溶解積層法によって所定の形状の三次元物理的物体を作る装置が知られている(例えば特許文献1参照)。この種の熱溶解積層法による立体造形装置は、樹脂製のフィラメントを送出ローラで押しながら、造形ヘッド内のヒータで軟化させて押出ノズルから押し出し、造形テーブルに押し付けるようにして積層する。より具体的には、非特許文献1,2に開示される立体造形装置のように、造形の材料として、直径約1.75mmの細いワイヤー状の樹脂、所謂フィラメントを用い、これを金属製の送出ローラと挟持ローラとによって挟みながら押し出す。送出ローラと挟持ローラとは、同時にスプールからフィラメントを引っ張る。押し出されるフィラメントは、ヒータによって溶かされ、加熱されたビルトプレート上に押出ノズルを介して押し出されて積層されて行く。この際、溶解されて押出ノズルから吐出されるフィラメントは、造形時にファンによって冷却される。ビルトプレート上に積層される樹脂は、押出ノズルの設けられた造形ヘッドが、X軸レール、Y軸レールに沿ってXY方向に移動される。これと同時に、ビルトプレートがXY方向に直交するZ方向に下げられて行くことで、多数の層を順次堆積した所望形状の造形物が得られて行く。
特公平8−2598号公報
パーソナル3DプリンターMF−1000[平成26年12月24日検索]、インターネット<URL:http://www.mutoheng.com/ ̄drafter/device/MF1000.pdf > MakerBot社デスクトップ3DプリンターReplicator2X[平成26年12月24日検索]、インターネット<URL:http://www.nihonbinary.co.jp/Products/3DModeling/Makerbot/Replicator2X.html >
しかしながら、従来の立体造形装置は、送出ローラ及び挟持ローラが、双方とも金属製であり、フィラメントを挟みこんでいる。押出駆動モータ側の送出ローラに対して挟持ローラが近接方向に移動可能で、挟持ローラの位置を送出ローラの位置に対して決定して圧縮バネ或いはネジ締めによる調整などで、フィラメントを挟むように構成される。
また、これら金属製の送出ローラや挟持ローラは、外周面の滑りを減らす目的で、いずれか一方若しくは両方のローラの外周面に凹凸などを形成し歯車状としていた。しかしながら、この滑り止めのための凹凸形状、すなわち金属製の歯によってフィラメントを削ってしまい、削りかすが発生する場合があり、さらには、フィラメントを削ってしまうことでローラが空転してしまう虞もあった。
また、従来の立体造形装置は、押出ノズルから押し出され溶解したフィラメントがいつまでも高温のままでないように、ファンを設けて冷却を行っていた。しかし、このファンは、押出ノズルのみを冷却するのではなく、その周囲、すなわち押出ノズルに接続される造形ヘッドの周囲や、高温になることを避けたい部位などに向けて設けられ、冷却範囲を広域なものにしており、このことから、押出ノズルを出た溶解状態のフィラメントが、ファンの風の影響を受けることがあった。これによっても、造形物の精度が低下する虞があった。
さらに、従来の立体造形装置は、離間配置された2本のY軸レール間を押出部がX軸レールとともに移動するため、離れた2本のY軸レールの平行度が、押出ノズルの動きを左右していた。このため、2本のY軸レールに歪みが生じていたり、平行度が低下していたりすると、押出ノズルの移動位置に誤差が生じ、造形物の精度が低下する虞があった。
本発明は上記状況に鑑みてなされたもので、その目的は、従来装置に比べ造形精度を向上させることができる立体造形装置を提供することにある。
次に、上記の課題を解決するための手段を、実施の形態に対応する図面を参照して説明する。
本発明の請求項1記載の立体造形装置11は、フィラメント83の押し出し方向に、ヒータ91と押出ノズル81を順次配置した基台47と、
前記基台47に固定され、押出駆動モータ103が取り付けられる取付ブラケット101と、
前記押出駆動モータ103のモータ駆動軸105に固定される送出ローラ97と、
一端が押圧リンク軸107を介して前記取付ブラケット101に回転自在に支持され、中央部に、前記送出ローラ97とで前記フィラメント83を挟持可能な挟持ローラ99が回転自在に支持される押圧リンクアーム109と、
一端がレバー軸111を介して前記取付ブラケット101に回転自在に支持され、他端が把持部115となるレバーリンクアーム113と、
前記押圧リンクアーム109の他端に設けられた押圧アームバネ係止軸119と前記レバーリンクアーム113の中央部に設けられたレバーアームバネ係止軸121とに張架され、前記押圧アームバネ係止軸119及び前記レバー軸111を通る中立線123を前記レバーアームバネ係止軸121が越えて前記レバーリンクアーム113が回転されることで、前記挟持ローラ99を前記送出ローラ97に向かって付勢し、前記送出ローラ97とで前記フィラメント83を挟持状態に保持または保持解除する引張バネ117と、
を具備することを特徴とする。
この立体造形装置11では、押圧リンクアーム109の一端が押圧リンク軸107によって取付ブラケット101に回転自在に支持される。この押圧リンクアーム109は、中央部に挟持ローラ99を有する。押圧リンクアーム109の他端は、押圧アームバネ係止軸119に張架された引張バネ117によって、挟持ローラ99が送出ローラ97に接近する方向に付勢される。従って、挟持ローラ99は、てこの作用によって、小さな引張バネ117の付勢力を増幅させて、大きな挟持力で送出ローラ97とによってフィラメント83を挟むことができる。そして、レバーリンクアーム113は、てこの作用によって、把持部115への小さな力で、フィラメント83の保持または保持解除が可能となる。レバーリンクアーム113は、中立線123すなわち付勢力の死点を若干越えたところで、引張バネ117によって保持状態とされるため、レバーリンクアーム113の逆方向となる保持解除方向へ逆転する恐れがなく、フィラメント83の確実な保持及びその維持が可能となる。
本発明の請求項2記載の立体造形装置11は、請求項1記載の立体造形装置11であって、
前記送出ローラ97及び前記挟持ローラ99の少なくとも一方の円周方向の外周には弾性材料からなる弾性挟持面129が連続して設けられ、
前記弾性挟持面129には前記フィラメント83の軸線に直交する断面形状がV字状となって内方で前記フィラメント83の外周に2箇所で接するV溝131が円周方向に連続して形成されていることを特徴とする。
この立体造形装置11では、ゴムや樹脂等の弾性材料からなる弾性挟持面129により、フィラメント83との密着度が高まり、フィラメント83のグリップ性が向上する。また、弾性挟持面129のV溝131によって、フィラメント83の接触点が増え、フィラメント83との摩擦力が増大する。これにより、フィラメント83の送りが確実なものとなり、また、フィラメント83に対する挟持ローラ99や送出ローラ97の空転が抑制される。
本発明の請求項3記載の立体造形装置11は、請求項1または2記載の立体造形装置11であって、
前記基台47には、前記押出ノズル81から押し出された直後の高温で溶解した前記フィラメント83にエアを吹き付けて冷却するエアノズル133が設けられていることを特徴とする。
この立体造形装置11では、押出ノズル81から押し出された直後の高温で溶解したフィラメント83が、エアノズル133から吹き出されるエアによってピンポイントで冷却される。エアノズル133は、押出ノズル81を冷却することはなく、既に造形された固化状態の造形物に積層された押出直後のフィラメント83を冷やし固めることができる。これにより、溶解状態のフィラメント83の垂れ等を抑制でき、造形精度を向上させることができる。
本発明の請求項4記載の立体造形装置11は、請求項1,2,3のいずれか1つに記載の立体造形装置11であって、
装置フレーム13には平行な一対のY軸レール19のそれぞれの両端が固定され、
前記一対のY軸レール19のそれぞれには連結ブロック21が摺動自在に外挿され、
前記一対のY軸レール19に直交方向のX軸レール25の両端がX軸支持ベース27に固定され、
一対の前記X軸支持ベース27の少なくともいずれか一方が、Y軸レール19及びX軸レール25に直交するZ軸方向の回転ピン31によって前記連結ブロック21に回転自在に連結されていることを特徴とする。
この立体造形装置11では、例えば装置製造時における誤差や、装置設置時に起きる誤差、或いは経時変化によるものなどの2本のY軸レール19に歪みや、ズレがあったり、平行度が低下していたりしても、それによって生じる連結ブロック21などの摺動機構部分の誤差が、回転ピン31を中心とする連結ブロック21の回転によって吸収される。これにより、連結ブロック21は、Y軸レール19に対する摺動抵抗の増加が抑制され、X軸レール25の移動がスムースとなる。
本発明に係る請求項1記載の立体造形装置によれば、送出ローラ及び挟持ローラによってフィラメントに対して適度な挟持力を付与し続けることができ、フィラメントの送りを確実にすることが可能となる。また、フィラメントが確実に送られることから、造形物の造形精度を向上させることができる。さらに、確実にフィラメントを送出ローラと挟持ローラとで挟持し保持でき、またその状態をバネの付勢力にて維持できるので、フィラメントの送りを安定して行うことが可能となる。
本発明に係る請求項2記載の立体造形装置によれば、V溝の弾性挟持面によってフィラメントの送りを確実にすることができ、造形精度を向上させることができる。また、フィラメントに対する挟持ローラや送出ローラの空転が抑制され、フィラメントを削ってしまうような不具合がなくなる。
本発明に係る請求項3記載の立体造形装置によれば、押し出された直後の溶解したフィラメントをピンポイントで冷却でき、すなわち冷却の必要な部分のみを冷却でき、不要な風などを起こさず、造形精度を向上させることができる。また、ファンなどの回転駆動部品であるモータ等を使用しないことから、軽量化を図ることが可能となる。
本発明に係る請求項4記載の立体造形装置によれば、例えば装置の製造時において発生する誤差や、装置設置時に起きる誤差、或いは装置を運転して経時変化によるものなどで、離間配置された平行な2本のY軸レールに、歪みや、ズレがあったり、互いの平行度が低下していたりしても、それによって生じる連結ブロックなどの摺動機構部分の誤差が、回転ピンを中心とする連結ブロックの回転によって吸収することが可能となる。これにより、連結ブロックは、Y軸レールに対する摺動抵抗の増加が抑制され、X軸レールのY軸レールに沿う移動がスムースとなり、造形精度を向上させることができる。
本発明の実施形態に係る立体造形装置の平面図である。 図1に示した立体造形装置の正面図である。 図1に示したX軸支持ベースの平面図である。 X軸支持ベースの正面図である。 図1に示した造形ヘッドの平面図である。 造形ヘッドの側面図である。 造形ヘッドの正面図である。 解放状態におけるフィラメントロック機構の正面図である。 ロック解除状態におけるフィラメントロック機構の正面図である。 ロック状態におけるフィラメントロック機構の正面図である。 送出ローラ及び挟持ローラを切り欠いたフィラメントロック機構の平面図である。 エアノズル近傍の造形ヘッドの拡大斜視図である。
以下、本発明に係る実施形態を図面を参照して説明する。
図1は本発明の実施形態に係る立体造形装置の平面図、図2は図1に示した立体造形装置の正面図である。
本実施形態に係る立体造形装置11は、平面視が略正方形、正面視及び側面視が横長の矩形となる装置フレーム13を有する。装置フレーム13は、アングル鋼材等によって形成される。装置フレーム13の四隅は、アジャスター付きの脚部15によって床に設置される。装置フレーム13の上面、左右側面、前後面は、透明な樹脂カバー等によって覆われる。これにより、空気の流れ等による外乱要因を遮断し、造形精度の低下を防止している。また、透明カバーは、造形物17の視認を可能とする。なお、図示はしないが、装置フレーム13の上方から上面を覆う樹脂カバーは、透明板などで略箱型に形成されて、後述する機構部分を覆うように取り付けられ、また、装置フレーム13に対して着脱自在や開閉自在となって設けられる。
装置フレーム13の上部における左右には、互いに平行となる一対のY軸レール19が配置される。なお、本明細書中、左右方向は図1における左右方向に準ずる。上下方向は、図2における上下方向に準ずる。一対のY軸レール19は、それぞれの両端が装置フレーム13に固定される。本実施形態において、Y軸レール19は、軸線直交断面が円形状のシャフトで形成されるが、これには限定されない。
図3は図1に示したX軸支持ベースの平面図、図4はX軸支持ベースの正面図である。
一対のY軸レール19のそれぞれには、連結ブロック21が摺動自在に外挿される。連結ブロック21は、内設するブッシュ23によって、Y軸レール19に対して摺動自在に支持される。左右に離間された一対のY軸レール19には、直交方向の一対のX軸レール25が掛け渡されるようにして配置される。一対のX軸レール25のそれぞれの両端は、矩形板状のX軸支持ベース27のX軸固定ブラケット29を介して固定される。X軸固定ブラケット29は、連結ブロック21に連結される。一対のX軸支持ベース27の少なくとも一方は、Y軸レール19及びX軸レール25に直交するZ軸方向の回転ピン31によって、連結ブロック21に回転自在に連結されている。
回転ピン31は、X軸支持ベース27を下方向に貫通した先端が連結ブロック21に螺着される。この回転ピン31の外周には、軸受33が外挿される。軸受33は、回転ピン31に対するX軸支持ベース27の回転時に生じる摩擦を軽減する。また、X軸支持ベース27と連結ブロック21との間には、回転ピン31を包囲する円環状のドライワッシャ35が挟入される。ドライワッシャ35は、X軸支持ベース27の回転時に生じる摩擦を抑制する。このように、X軸支持ベース27は、回転ピン31を介して連結ブロック21に対して回転自在となる。この回転は、遊びがある程度の若干の角度、すなわち、連結ブロック21に対して微小な角度の回転が許容されるものであればよい。
装置フレーム13の上面における背面側にはY軸用モータ37(図1参照)が設けられている。Y軸用モータ37は、左右方向に延在するドライブシャフト39を回転させる。ドライブシャフト39の両端と、装置フレーム13の上面における正面側の左右にそれぞれ配設されるY軸従動プーリ40(図2参照)との間に、無端状のY軸ベルト41がそれぞれ掛け渡され、それぞれのX軸支持ベース27が、無端状のY軸ベルト41の中途に固定されている。Y軸ベルト41の内周面側には、Y軸従動プーリ40との滑りを規制する凹凸部が形成される。Y軸ベルト41は、Y軸ベルト固定部43(図4参照)によって、周回方向の一部分がX軸支持ベース27に固定される。Y軸用モータ37は、駆動することによってY軸ベルト41を周回させて、X軸支持ベース27をY軸レール19に沿う方向に移動する。
図5は図1に示した造形ヘッドの平面図、図6は造形ヘッドの側面図である。
一対のX軸レール25には造形ヘッド45がX方向に移動自在に支持される。造形ヘッド45は、基台47を有し、基台47の下面側に固定された一対の連結ブロック49のブッシュ51を介してX軸レール25に対して摺動自在となっている。
一対のX軸支持ベース27の一方、本実施形態では図1中左方には、X軸用モータ53が設けられる。一方、一対のX軸支持ベース27の他方、本実施形態では図1中右方には、従動用のX軸プーリ55が設けられる。そして、このX軸プーリ55の設けられる他方のX軸支持ベース27に上記した回転ピン31が設けられる。本実施形態では、X軸プーリ55は、スライド板57によって、回転自在に軸支される。スライド板57は、X軸支持ベース27に固定されたX軸プーリブラケット59によって、X軸用モータ53に対して接近離反する方向にスライド自在となる。このスライド板57のスライドは、調整ネジ61によって調整される。そして、この調整ネジ61にて、後述するX軸ベルト63の張り具合を調整可能となっている。
X軸用モータ53とX軸プーリ55とには、無端状のX軸ベルト63が掛け渡される。X軸ベルト63の内周面側には、X軸プーリ55との滑りを規制する凹凸部65(図4参照)が形成される。X軸支持ベース27のX軸固定ブラケット29には、X軸ベルト63との干渉を回避するためのベルト用凹部67(図3参照)が形成されている。X軸ベルト63は、X軸ベルト固定部69(図6参照)によって、周回方向の一部分が基台47に固定される。X軸用モータ53は、駆動することによってX軸ベルト63を周回させて、造形ヘッド45の基台47をX軸レール25に沿う方向に移動する。これによって、造形ヘッド45は、水平な方向であるXY方向の任意位置への移動を可能としている。
装置フレーム13の内側には、四角形のビルトプレート71が配置される。ビルトプレート71は、加温されているホットプレートとなる。ビルトプレート71は、背面となる下面に温度センサを設けてあり、加温状態であるおよそ100°の設定に制御される。ビルトプレート71は、昇降台73の上に離間して固定され、断熱が図られている。昇降台73の四隅には、上下方向に延在し、上下端が装置フレーム13に固定された4本のZ軸シャフト75(図1参照)が貫通する。4本のZ軸シャフト75は、昇降台73を上下方向すなわちZ軸方向に摺動自在にガイドする。
昇降台73の左右には、一対のZ軸ネジシャフト77(図1参照)が貫通する。Z軸ネジシャフト77は、上端が装置フレーム13に回動自在に支持される。Z軸ネジシャフト77の外周には、雄ネジが形成される。昇降台73は、Z軸ネジシャフト77の貫通孔に形成した雌ネジによってZ軸ネジシャフト77と螺合する。Z軸ネジシャフト77の下端には、Z軸用モータ79(図2参照)が接続される。Z軸用モータ79は、駆動することによってZ軸ネジシャフト77を回転させて、昇降台73をZ軸シャフト75に沿う方向(上下方向)に昇降させる。これによって、ビルトプレート71に造形される造形物17の位置は、押出ノズル81(図2参照)に対して、XYZ方向の任意の相対位置への移動を可能としている。
装置フレーム13の内部には、フィラメント83の巻回されたフィラメントスプール(図示略)を収容するスプール収容部85(図1参照)が設けられる。スプール収容部85と造形ヘッド45との間は、フィラメントガイドチューブ87で接続される。フィラメントガイドチューブ87は、フィラメントスプールからのフィラメント83を基端から導入して造形ヘッド45へと導く。フィラメント83は、例えば直径約1.75mmのものが用いられる。フィラメント83の材質としては、ABS樹脂であるが、その他に、例えばPLA(ポリ乳酸)樹脂や、ポリカーボネート樹脂、PC/ABSアロイ、PPSF/PPSU樹脂、ポリエーテルイミド樹脂等を挙げることができる。
造形ヘッド45の基台47には、フィラメント導入パイプ89(図6参照)が立設される。フィラメント導入パイプ89には、後述の送出ローラ97及び挟持ローラ99によって挟持されたフィラメント83が導入される。基台47を挟んでフィラメント導入パイプ89の反対側となる基台下側には、ヒータ91が設けられている。ヒータ91の下面には押出ノズル81が固定されている。押出ノズル81の先端には、溶解したフィラメント83を押し出す直径0.4mm程の細孔が開口する。フィラメント導入パイプ89,ヒータ91,押出ノズル81は、フィラメント83の押し込み可能な経路を形成している。つまり、基台47は、フィラメント83の押し出し方向にヒータ91、押出ノズル81を順次配置している。
造形ヘッド45は、押出ノズル81と造形物17の間隔とが0.2〜0.4mm程度に設定される。この間隔は、ビルトプレート71を昇降するZ軸用モータ79の駆動を制御することによって設定され、常にこの間隔を維持し昇降可能となっている。
ヒータ91には、ヒートシンク93が固定される。ヒートシンク93は、例えばアルミ製で、複数のフィンを有する。ヒートシンク93は、フィラメント83を溶解した余剰の熱を放熱し、造形ヘッド45への熱伝導を抑制する。ヒートシンク93には、さらに、冷却ファン95が設けられる。冷却ファン95は、冷却フィン間から空気を強制送風することにより、ヒートシンク93の放熱効果を高める。
図7は造形ヘッドの正面図である。
ところで、フィラメント83は、造形ヘッド45に設けられている送出ローラ97と挟持ローラ99の回転駆動で引っ張られ、ヒータ91へ送られる。フィラメント83は、フィラメント83を巻回状態としたフィラメントスプールが回転するわけではなく、引っ張られてスプール収容部85から繰り出される。基台47には、略板状の取付ブラケット101が立設される。取付ブラケット101には、フィラメント83を引っ張り、且つフィラメント導入パイプ89へ押し込む駆動源である押出駆動モータ103が固定される。
押出駆動モータ103は、モータ駆動軸105(図6参照)が取付ブラケット101を貫通する。取付ブラケット101を貫通したモータ駆動軸105には、送出ローラ97が固定される。
取付ブラケット101には、一端が押圧リンク軸107を介して、この押圧リンク軸107を中心に回転自在となった押圧リンクアーム109が支持される。押圧リンクアーム109の中央部、本実施形態では、押圧リンクアーム109の長手方向中間より押圧リンク軸107側となる位置には、挟持ローラ99が回転自在に支持される。押圧リンクアーム109は、押圧リンク軸107を中心に揺動することで、挟持ローラ99と送出ローラ97とが接離自在となり、これら挟持ローラ99と送出ローラ97とによってフィラメント83を挟持可能としている。
また、取付ブラケット101には、一端がレバー軸111を介して、このレバー軸111を中心に回転自在となったレバーリンクアーム113が支持される。レバーリンクアーム113は、他端が、作業者が手指で摘むことの可能な把持部115となる。
押圧リンクアーム109とレバーリンクアーム113の双方には、引張バネ117が張架される。すなわち、引張バネ117は、押圧リンクアーム109の他端に設けられた押圧アームバネ係止軸119と、レバーリンクアーム113の中央部に設けられたレバーアームバネ係止軸121とに張架される。この引張バネ117は、押圧アームバネ係止軸119及びレバー軸111を通る中立線123(図10参照)をレバーアームバネ係止軸121が越えて、レバーリンクアーム113が回転されることで、挟持ローラ99を送出ローラ97に向かって付勢し、送出ローラ97とでフィラメント83を挟持状態に保持し、また、この保持を解除する。この押圧リンクアーム109及びレバーリンクアーム113は、てこの原理により引張バネ117の力を増力するフィラメントロック機構125を構成する。
なお、フィラメント83は、押し出す際、押出ノズル81を通過するときの圧力の抵抗から、挟持圧力が算出される。
本実施形態において、フィラメント83は、計算上、3.3kgにてグリップされる。引張バネ117の力自体は1.5kgであるが、押圧リンクアーム109及びレバーリンクアーム113からなるフィラメントロック機構125のてこの原理で増力される。フィラメントロック機構125に、必要なグリップ力Fnは、2.4kgに設定される(計算値)。
引張バネ117のバネ力Fは、初張力Tを5.1N、バネ定数kを1.86N/mmとし、指定荷重時バネ長さxを35.2mm、バネ自由長さLを30mmとした場合、
F=T+k×(x−L)
=5.1+1.86×(35.2−30)
=14.7N(≒1.5kg)
となる。
そして、押付力F2は、押圧アームバネ係止軸119とレバーアームバネ係止軸121を結ぶ線と押圧リンクアーム109に垂直な線との角度αを10°、押圧リンクアーム109の挟持ローラ99と押圧アームバネ係止軸119との距離(長さ)L1を20mm、押圧リンクアーム109の挟持ローラ99と押圧リンク軸107との距離(長さ)L2を9mm、押圧リンクアーム109に垂直な線と送出ローラ97と挟持ローラ99の中心を結んだ線との角度βを10°とした場合に、
F2=F×cosα×L1/L2×cosβ
=1.5×cos10°×20/9×cos10°
=3.23kg
となり、上記した必要なグリップ力Fn=2.4kgに対してF2≧Fnとなり、すなわち、S.F.=1.3となる。
図8は解放状態におけるフィラメントロック機構の正面図である。
フィラメントロック機構125は、把持部115によってレバーリンクアーム113が図8中反時計回りに回転されることで、解放状態となる。この解放状態で、フィラメント83のセットや交換が行われる。
図9はロック解除状態におけるフィラメントロック機構の正面図である。
フィラメントロック機構125は、レバーリンクアーム113が図8の状態から図中時計回りに所定角度θ1回転され、これに連動して引張バネ117を介して押圧リンクアーム109が回転し、挟持ローラ99が送出ローラ97に近接するまでが解放状態となる。この位置では、引張バネ117の力が作用していない。すなわち、挟持ローラ99と送出ローラ97による挟持力が発生しない。
図10はロック状態におけるフィラメントロック機構の正面図
図9に示した解放状態から、レバーリンクアーム113が図中時計回りに所定角度θ2回転されると、レバーリンクアーム113がロック状態となる。すなわち、レバーリンクアーム113は、レバーアームバネ係止軸121が、押圧アームバネ係止軸119及びレバー軸111を通る中立線123を越えて、反時計回りの回転が引張バネ117の付勢力によって規制される。このロック状態で、フィラメント83は、上記の必要なグリップ力で挟持される。
図11は送出ローラ及び挟持ローラを切り欠いたフィラメントロック機構の平面図である。
挟持ローラ99は、支軸に対してベアリング127を介して低摩擦で回転が支持される。送出ローラ97及び挟持ローラ99の少なくとも一方は、円周方向の外周に、弾性材料からなる弾性挟持面129が連続して設けられている。本実施形態においては、送出ローラ97のみに弾性挟持面129が設けられる。弾性材料としては、例えばウレタンゴムを用いることができる。弾性挟持面129にはフィラメント83の軸線に直交する断面形状がV字状となって内方でフィラメント83の外周に2箇所で接するV溝131が円周方向に連続して形成されている。V溝131は、例えば挟角が60°の角度で設定される。本実施形態において、弾性挟持面129とV溝131は、送出ローラ97に設けられる。挟持ローラ99は、金属製となる。
弾性挟持面129及びV溝131を設けた送出ローラ97は、ゴムの摩擦力で、フィラメント83の送り出しをスムースにする。金属製の従来品のようなスリップが生じにくくなる。また、送出ローラ97は、歯(凹凸)も必要なく、さらに、フィラメント83の削れも防止できる。なお、弾性挟持面129とV溝131は、挟持ローラ99のみ、或いは送出ローラ97及び挟持ローラ99の双方に設けられてもよい。
送出ローラ97及び挟持ローラ99の双方にV溝131が設けられる場合には、V溝131の溝幅、溝深さが浅くなるように広い挟角に変更される。この場合、送出ローラ97及び挟持ローラ99の双方のV溝131によってフィラメント83を4点で支持でき、押し込みをより確実なものとすることができる。
図12はエアノズル近傍の造形ヘッドの拡大斜視図である。
造形ヘッド45の基台47には、エアノズル133が設けられている。エアノズル133には、エア用チューブ135が接続される。エア用チューブ135は、装置フレーム13の下部に設置されたエアコンプレッサやエアポンプ137に接続される。エアノズル133には、エアポンプ137から圧送されるエアがエア用チューブ135によって供給される。エアノズル133は、押出ノズル81から押し出された直後の高温で溶解したフィラメント83にエアを吹き付けて冷却を行う。エアノズル133は、エアノズルブラケット139によって、エア吹き出し角度が変更可能に基台47に取り付けられている。
本実施形態において、エアノズル133は、先端のエア吹き出し口が、細径な管状の部材よりなり、拡散せずに直線状にエアを吹き出し、押出ノズル81の先端或いは先端からやや下方となるフィラメント83に向けてエアを吹き付けるように角度をやや下向きに設定される。また、本実施形態のエアノズル133の重量は、7.9gに設定される。従来のフィラメント冷却用ファンは15gであった。造形ヘッド45は、エアノズル133の重量が従来のフィラメント冷却用ファンに比べておよそ半分になることで、移動に必要な動力負荷が低減される。つまり、冷却ファンを回転駆動するモータ、冷却ファンに付帯される冷却フィン等が不要となり、造形ヘッド45は、大幅な軽量化を実現している。
エアノズル133は、押出ノズル81から押し出された直径0.4mm程の柔らかい状態の樹脂を冷やしている。その下層には既に固化した造形物17としての形ができている。すなわち、溶解樹脂がくっついている直上を冷やすこととなる。従来装置では、まだ冷えてなく温かい樹脂層の上に、押出ノズルからの温かい溶解樹脂を重ねていく。つまり固化していない柔らかい樹脂の上に押し出された直後の柔らかい樹脂を載せるので、細かな形状であると、形がぶれてしまう。これに対し、本実施形態の造形ヘッド45は、温かい樹脂がすぐに冷やされるので、押出直後の柔らかさが減って抑えられ、造形される形が大きくぶれることがない。これにより、次の樹脂を積層する場合であっても形状が安定する。
その結果、造形ヘッド45は、細い形やエッジのある形、稜線の部分、尖った形、張り出した形状、が綺麗に仕上がる。また、造形ヘッド45は、エアノズル133がピンポイントで冷却することから、造形物17の形状として細い形状や、薄い形状、尖った先端など微細な造形が可能となり、より精密な形状を作ることができる。
また、造形ヘッド45は、フィラメント冷却用ファンを廃止したので、ファンの風で素材がぶれることがない。
なお、エアノズル133にエアを送気するエアポンプ137は、装置フレーム13の下部に配置される。これにより、立体造形装置11の重心が低くなり、装置の振動等に対する安定性が向上する。
この他、造形ヘッド45には、装置フレーム13に設置された装置制御部(図示略)との間を接続する通信線、電力線等のケーブルが通ったケーブルガイド(図示略)や、ヒータ91に接続されるヒーターケーブル141が設けられている。
次に、上記した構成の作用を説明する。
本実施形態に係る立体造形装置11では、押圧リンクアーム109の一端が押圧リンク軸107によって取付ブラケット101に回転自在に支持される。この押圧リンクアーム109は、中央部に挟持ローラ99を有する。押圧リンクアーム109の他端は、押圧アームバネ係止軸119に張架された引張バネ117によって、挟持ローラ99が送出ローラ97に接近する方向に付勢される。従って、挟持ローラ99は、てこの作用によって、小さな引張バネ117の付勢力を増幅させて、大きな挟持力で送出ローラ97とによってフィラメント83を挟むことができる。そして、レバーリンクアーム113は、てこの作用によって、把持部115への小さな力(作業者の操作力)で、フィラメント83の保持、または保持解除が可能となる。レバーリンクアーム113は、中立線123、すなわち死点を若干越えたところで、引張バネ117によって保持状態とされるため、レバーリンクアーム113の逆方向となる保持解除方向へ逆転する恐れがなく、フィラメント83の確実な保持及びその維持が可能となる。
そして、このような構成を有するフィラメントロック機構125は、引張バネ117によるバネ力(牽引力)で、挟持ローラ99が送出ローラ97から離れず、振動などの動作中に外れることもなく、フィラメント83の送りを安定して行える。フィラメントロック機構125は、外方に張り出す把持部115で操作性が良好であり、簡単にフィラメント83を引張バネ117の力で確実に送出ローラ側に押さえつけ、フィラメント搬送性を向上させることができる。
また、立体造形装置11では、ゴムや樹脂等の弾性材料からなる弾性挟持面129により、フィラメント83との密着度が高まり、フィラメント83のグリップ性が向上する。また、弾性挟持面129のV溝131によって、フィラメント83の接触点が増え、フィラメント83との摩擦力が増大する。これにより、フィラメント83に対する挟持ローラ99や送出ローラ97の空転が抑制される。その結果、フィラメント83の送りを確実にすることができ、造形精度を向上させることができる。
さらに、この立体造形装置11では、押出ノズル81から押し出された直後の高温で溶解したフィラメント83が、エアノズル133から吹き出されるエアによってピンポイントで冷却される。エアノズル133は、既に造形された固化状態の造形物に積層された押出直後のフィラメント83を冷やし固めることができる。これにより、溶解状態のフィラメント83の垂れ等を抑制できる。その結果、押し出された直後の溶解したフィラメント83のみをピンポイントで冷却でき、造形精度を向上させることができる。
なお、エアノズル133での送風は、ファンのように周囲の空気を送るのではなく、チューブを介して離れた位置からエアポンプ137で送られるので、造形物周囲の環境(雰囲気)の温度に影響されず、冷却エアを吹き付けることができる。また、エアノズル133の場合、可動部品(回転機械部品)としてのファンが不要となるので、消耗の交換等によるメンテナンスが不要となる。さらに、冷却ファンなどの回転部品がないことから、回転によって発生する振動なども無く、押出ノズル81に対する影響を減らし、これによっても造形精度の向上を図れる。
さらに、立体造形装置11では、平行な2本のY軸レール19に歪みや、ズレがあったり、平行度が低下していたりしても、それによって生じる摺動機構部分の誤差が、回転ピン31を中心とする連結ブロック21の回転によって吸収される。これにより、連結ブロック21は、Y軸レール19に対する摺動抵抗の増加が抑制される。その結果、Y軸に沿う方向のX軸レール25の移動をスムースにすることができ、造形精度を向上させることができる。
なお、エアノズル133は、上述したように1つではなく、2つ以上を対向配置するものであってもよい。また、エアノズル133の向きは、造形物17に応じて適宜に設定することができる。すなわち、造形物17の形状などによっては、エアノズル133の向きを水平や上向きも可能となる。或いは、造形しながら向きを変えるなどの自動制御が行われてもよい。エアノズル133は、ピンポイントで冷却するので、向きを変えながら樹脂を冷やすことが可能となる。また、エアノズル133の近傍には、囲み板や整流板など、風を効率的にフィラメントや造形物に吹き付ける流路調整手段が設けられてもよい。
従って、本実施形態に係る立体造形装置11によれば、送出ローラ97及び挟持ローラ99によって適度な挟持力を付与し続けることができ、フィラメント83の送りを確実にすることができ、造形精度を向上させることができる。
11…立体造形装置
13…装置フレーム
19…Y軸レール
21…連結ブロック
25…X軸レール
27…X軸支持ベース
31…回転ピン
47…基台
81…押出ノズル
83…フィラメント
91…ヒータ
97…送出ローラ
99…挟持ローラ
101…取付ブラケット
103…押出駆動モータ
105…モータ駆動軸
107…押圧リンク軸
109…押圧リンクアーム
111…レバー軸
113…レバーリンクアーム
115…把持部
117…引張バネ
119…押圧アームバネ係止軸
121…レバーアームバネ係止軸
123…中立線
129…弾性挟持面
131…V溝
133…エアノズル

Claims (4)

  1. フィラメントの押し出し方向に、ヒータと押出ノズルを順次配置した基台と、
    前記基台に固定され、押出駆動モータが取り付けられる取付ブラケットと、
    前記押出駆動モータのモータ駆動軸に固定される送出ローラと、
    一端が押圧リンク軸を介して前記取付ブラケットに回転自在に支持され、中央部に、前記送出ローラとで前記フィラメントを挟持可能な挟持ローラが回転自在に支持される押圧リンクアームと、
    一端がレバー軸を介して前記取付ブラケットに回転自在に支持され、他端が把持部となるレバーリンクアームと、
    前記押圧リンクアームの他端に設けられた押圧アームバネ係止軸と前記レバーリンクアームの中央部に設けられたレバーアームバネ係止軸とに張架され、前記押圧アームバネ係止軸及び前記レバー軸を通る中立線を前記レバーアームバネ係止軸が越えて前記レバーリンクアームが回転されることで、前記挟持ローラを前記送出ローラに向かって付勢し、前記送出ローラとで前記フィラメントを挟持状態に保持または保持解除する引張バネと、
    を具備することを特徴とする立体造形装置。
  2. 請求項1記載の立体造形装置であって、
    前記送出ローラ及び前記挟持ローラの少なくとも一方の円周方向の外周には弾性材料からなる弾性挟持面が連続して設けられ、
    前記弾性挟持面には前記フィラメントの軸線に直交する断面形状がV字状となって内方で前記フィラメントの外周に2箇所で接するV溝が円周方向に連続して形成されていることを特徴とする立体造形装置。
  3. 請求項1または2記載の立体造形装置であって、
    前記基台には、前記押出ノズルから押し出された直後の高温で溶解した前記フィラメントにエアを吹き付けて冷却するエアノズルが設けられていることを特徴とする立体造形装置。
  4. 請求項1,2,3のいずれか1つに記載の立体造形装置であって、
    装置フレームには平行な一対のY軸レールのそれぞれの両端が固定され、
    前記一対のY軸レールのそれぞれには連結ブロックが摺動自在に外挿され、
    前記一対のY軸レールに直交方向のX軸レールの両端がX軸支持ベースに固定され、
    一対の前記X軸支持ベースの少なくともいずれか一方が、Y軸レール及びX軸レールに直交するZ軸方向の回転ピンによって前記連結ブロックに回転自在に連結されていることを特徴とする立体造形装置。
JP2015001691A 2015-01-07 2015-01-07 立体造形装置 Pending JP2016124252A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015001691A JP2016124252A (ja) 2015-01-07 2015-01-07 立体造形装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015001691A JP2016124252A (ja) 2015-01-07 2015-01-07 立体造形装置

Publications (1)

Publication Number Publication Date
JP2016124252A true JP2016124252A (ja) 2016-07-11

Family

ID=56357405

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015001691A Pending JP2016124252A (ja) 2015-01-07 2015-01-07 立体造形装置

Country Status (1)

Country Link
JP (1) JP2016124252A (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106903313A (zh) * 2017-04-12 2017-06-30 窦鹤鸿 激光选区熔化装置及3d打印机
KR101856616B1 (ko) * 2017-01-23 2018-05-14 주식회사 신도리코 3차원 프린터의 익스투르더용 가압 조정 장치
JP2018192624A (ja) * 2017-05-12 2018-12-06 セイコーエプソン株式会社 三次元造形装置および三次元物体の製造方法
KR101937840B1 (ko) * 2016-11-30 2019-01-14 주식회사 대건테크 상향 토출 적층 가능한 3d 프린터
JP6552772B1 (ja) * 2018-10-18 2019-07-31 三菱電機株式会社 付加製造加工機および冷却方法
CN112248442A (zh) * 2020-09-09 2021-01-22 武汉路然科技有限责任公司 一种打印出料装置
FR3112977A1 (fr) * 2020-07-29 2022-02-04 Ecole Nationale Superieure D'arts Et Metiers (Ensam) Système d’entraînement de pour machine de fabrication additive par dépôt de fil fondu
WO2022065803A1 (ko) * 2020-09-27 2022-03-31 조경일 3차원 프린터의 에어압력 압출 노즐
CN114454484A (zh) * 2022-01-26 2022-05-10 台州新森增材制造有限公司 一种3d打印用耗材支架及其安装方法

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101937840B1 (ko) * 2016-11-30 2019-01-14 주식회사 대건테크 상향 토출 적층 가능한 3d 프린터
KR101856616B1 (ko) * 2017-01-23 2018-05-14 주식회사 신도리코 3차원 프린터의 익스투르더용 가압 조정 장치
CN106903313B (zh) * 2017-04-12 2020-01-31 窦鹤鸿 激光选区熔化装置及3d打印机
CN106903313A (zh) * 2017-04-12 2017-06-30 窦鹤鸿 激光选区熔化装置及3d打印机
JP2018192624A (ja) * 2017-05-12 2018-12-06 セイコーエプソン株式会社 三次元造形装置および三次元物体の製造方法
WO2020079799A1 (ja) * 2018-10-18 2020-04-23 三菱電機株式会社 付加製造加工機および冷却方法
JP6552772B1 (ja) * 2018-10-18 2019-07-31 三菱電機株式会社 付加製造加工機および冷却方法
FR3112977A1 (fr) * 2020-07-29 2022-02-04 Ecole Nationale Superieure D'arts Et Metiers (Ensam) Système d’entraînement de pour machine de fabrication additive par dépôt de fil fondu
CN112248442A (zh) * 2020-09-09 2021-01-22 武汉路然科技有限责任公司 一种打印出料装置
CN112248442B (zh) * 2020-09-09 2022-03-15 武汉路然科技有限责任公司 一种打印出料装置
WO2022065803A1 (ko) * 2020-09-27 2022-03-31 조경일 3차원 프린터의 에어압력 압출 노즐
CN114454484A (zh) * 2022-01-26 2022-05-10 台州新森增材制造有限公司 一种3d打印用耗材支架及其安装方法
CN114454484B (zh) * 2022-01-26 2023-12-12 台州新森增材制造有限公司 一种3d打印用耗材支架及其安装方法

Similar Documents

Publication Publication Date Title
JP2016124252A (ja) 立体造形装置
US10112343B2 (en) Robot system and 3D printer including the same
US9138940B2 (en) Winchester print head
US20140120196A1 (en) Quick-release extruder
JP7274495B2 (ja) 積層造形装置の少なくとも1個のノズルアセンブリを運動させるための運動システム
KR20150097626A (ko) 유리 리본을 처리하기 위한 롤러 쌍 및 이를 통합한 드로우 장치
JP2016523220A (ja) ガラス形成装置およびガラスリボンを形成する方法
JP2007038274A (ja) プリプレグの切断方法
JP2012199467A (ja) 空芯コイルの巻線装置および巻線方法
JP6650228B2 (ja) 繊維強化熱可塑性樹脂テープの製造装置及び製造方法
JP2009107093A (ja) アクリル系樹脂切断物の製造方法、および製造装置
US3471606A (en) Producing thermoplastic films
JP2005321542A (ja) 光学フィルム
JP2008302581A (ja) 延伸光学フィルムの製造方法
TWI676540B (zh) 捲筒式纖維製品的裁切機構
JP2006198817A (ja) シート延伸装置
BRPI0808762A2 (pt) Aparelho de decoração em molde e método para fabricação de produto moldado decorado em molde
KR101774445B1 (ko) 권취코어에 감겨지는 광학필름의 자동 절단 및 권취 장치
JP2009291949A (ja) 熱可塑性樹脂の成形方法および成形装置
WO2020250482A1 (ja) 延伸装置
JP4289611B2 (ja) テンター装置
JP4144659B2 (ja) 連続輪切断方法及び連続輪切断装置
KR102388574B1 (ko) 터닝 컨베이어장치
TWI527673B (zh) 切割機及該切割機的切割方法
JP4989564B2 (ja) 剥離用治具および剥離方法