JP2016123202A - 電力変換装置及び電力変換装置の制御方法 - Google Patents

電力変換装置及び電力変換装置の制御方法 Download PDF

Info

Publication number
JP2016123202A
JP2016123202A JP2014261694A JP2014261694A JP2016123202A JP 2016123202 A JP2016123202 A JP 2016123202A JP 2014261694 A JP2014261694 A JP 2014261694A JP 2014261694 A JP2014261694 A JP 2014261694A JP 2016123202 A JP2016123202 A JP 2016123202A
Authority
JP
Japan
Prior art keywords
voltage
switching element
driving
power
resistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014261694A
Other languages
English (en)
Other versions
JP6384316B2 (ja
Inventor
菅野 雄一郎
Yuichiro Sugano
雄一郎 菅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2014261694A priority Critical patent/JP6384316B2/ja
Publication of JP2016123202A publication Critical patent/JP2016123202A/ja
Application granted granted Critical
Publication of JP6384316B2 publication Critical patent/JP6384316B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

【課題】回路規模を大型化することなく平滑コンデンサに蓄積された電力を放電することが可能な電力変換装置、及び電力変換装置の制御方法を提供する。
【解決手段】インバータ装置2に搭載される各スイッチング素子Tr1〜Tr6には、その導通方向に対して反対方向が順方向となるように整流素子D1〜D6が接続されている。各スイッチング素子の制御入力に供給する駆動電圧を制御して、スイッチング素子のオン、オフを切り替える駆動回路10を有し、該駆動回路10は、平滑コンデンサC1の放電時には、上側スイッチング素子、及び、下側スイッチング素子を交互にオンとし、更に、各スイッチング素子の駆動周波数を負荷駆動時の駆動周波数よりも高い周波数とし、且つ、各スイッチング素子の制御入力に供給する駆動電圧を負荷駆動時の駆動電圧よりも低く設定する。
【選択図】図1

Description

本発明は、直流電力を交流電力に変換する電力変換装置、及び電力変換装置の制御方法に係り、特に、平滑コンデンサに蓄積された電力を放電する技術に関する。
例えば、電気自動車に設けられるインバータ装置等の電力変換装置は、平滑コンデンサを備えている。このような電力変換装置では、車両の運転停止時や事故の発生時等において、平滑コンデンサに蓄積された電力を放電する必要がある。平滑コンデンサの放電方法の従来例として、例えば、特許第5375052号公報(特許文献1)に開示されたものが知られている。
特許文献1には、インバータ装置に設けられる上側のIGBT(絶縁ゲートバイポーラトランジスタ)と下側のIGBTを交互にオンとすることにより、各IGBTに対して並列接続されたダイオードに電流を流し、平滑コンデンサに蓄積された電力を消費させることが示されている。
この際、各IGBTのスイッチング周波数を、負荷駆動時のスイッチング周波数よりも高い周波数とする必要がある。このため、各IGBTを駆動するための駆動回路より出力する電力が増大することになり、駆動回路の回路規模の大型化を招いてしまう。
特許第5375052号公報
上述したように、特許文献1に開示された従来技術では、平滑コンデンサに蓄積された電力を放電する際に、各IGBTの駆動周波数を負荷駆動時よりも高くする必要があり、これに起因してIGBTを駆動する駆動回路の回路規模が増大するという問題があった。
本発明は、このような従来の課題を解決するためになされたものであり、その目的とするところは、回路規模を大型化することなく平滑コンデンサに蓄積された電力を放電することが可能な電力変換装置、及び電力変換装置の制御方法を提供することにある。
上記目的を達成するため、本願の電力変換装置に係る発明は、上側スイッチング素子と下側スイッチング素子との対からなるパワーモジュールを複数備え、更に、各スイッチング素子には、その導通方向に対して反対方向が順方向となるように整流素子が接続されている。各スイッチング素子の制御入力に供給する駆動電圧を制御して、スイッチング素子のオン、オフを切り替える駆動回路を有し、該駆動回路は、平滑コンデンサの放電時には、上側スイッチング素子、及び、下側スイッチング素子を交互にオンとし、更に、各スイッチング素子の駆動周波数を負荷駆動時の駆動周波数よりも高い周波数とし、且つ、各スイッチング素子の制御入力に供給する駆動電圧を負荷駆動時の駆動電圧よりも低く設定する。
また、本願の電力変換装置の制御方法に係る発明は、放電動作信号が与えられた際に、交流電圧を生成するための各上側スイッチング素子と、各下側スイッチング素子を交互にオン、オフさせる工程と、各スイッチング素子の駆動周波数を、負荷駆動時の駆動周波数よりも高い周波数に変更する工程と、平滑コンデンサに蓄積された電力を、各スイッチング素子に対して並列に接続された整流素子に流して消費させる工程と、各スイッチング素子の駆動周波数を、負荷の駆動周波数よりも高くした際には、各スイッチング素子の制御入力に供給する電圧を、負荷駆動時に制御入力に供給する電圧よりも低く設定する工程と、備える。
本発明によれば、平滑コンデンサの放電時には、スイッチング素子の制御入力に供給する電圧を低下させるので、回路規模を大型化することなく平滑コンデンサに蓄積された電力を放電することができる。
本発明の実施形態に係る電力変換装置及びその周辺機器の構成を示す回路図である。 本発明の第1実施形態に係り、図1に示した駆動回路の詳細な構成を示す回路図である。 本発明の実施形態に係り、平滑コンデンサ放電時における各トランジスタのオン、オフのタイミングを示すタイミングチャートである。 本発明の第1実施形態に係る電力変換装置の、平滑コンデンサ放電時の処理手順を示すフローチャートである。 本発明の第2実施形態に係り、図1に示した駆動回路の詳細な構成を示す回路図である。 本発明の第2実施形態に係り、デューティ比とゲート電源電圧との関係を示す特性図である。 本発明の第3実施形態に係り、図1に示した駆動回路の詳細な構成を示す回路図である。 本発明の第3実施形態に係り、シャント抵抗(抵抗R8)に流れる電流とデューティ比の上限値との関係を示す特性図である。
以下、本発明の実施形態を図面に基づいて説明する。図1は、本発明の実施形態に係るインバータ装置2(電力変換装置)、及びその周辺機器の構成を示す回路図である。図1に示すように、本実施形態に係るインバータ装置2は、例えば、電気自動車に搭載され、高電圧バッテリ1に充電されている直流電力を所定周波数の三相交流電力に変換し、この三相交流電力をモータ3(負荷)に供給し、該モータ3を回転駆動させるものである。
インバータ装置2は、高電圧バッテリ1より出力される直流電力を平滑化する平滑コンデンサC1と、6個のスイッチング素子Tr1〜Tr6(この例ではIGBT)を含むスイッチング素子群と、各スイッチング素子Tr1〜Tr6の駆動を制御する駆動回路10と、該駆動回路10に制御信号を出力する制御回路11と、を備えている。なお、本実施形態では、三相交流電力を出力するインバータ装置2を例に挙げて説明するが、本発明は、三相に限定されるものではない。
一対のスイッチング素子Tr1、Tr2は直列接続され、U相パワーモジュール13Uを構成している。スイッチング素子Tr1の一端は高電圧バッテリ1のプラス側に接続され、スイッチング素子Tr2の一端は高電圧バッテリ1のマイナス側に接続されている。即ち、スイッチング素子Tr1は、U相の上側アーム(上側スイッチング素子)とされ、スイッチング素子Tr2は、U相の下側アーム(下側スイッチング素子)とされている。各スイッチング素子Tr1、Tr2のゲートは、駆動回路10に接続されており、該駆動回路10より出力される駆動信号に基づいて、オン、オフが制御される。
また、スイッチング素子Tr1に対して並列にダイオードD1(整流素子)が設けられ、スイッチング素子Tr2に対して並列にダイオードD2が設けられている。この際、図示のように、ダイオードD1、D2は、それぞれスイッチング素子Tr1、Tr2の導通方向に対して反対方向が順方向となるように接続されている。
同様に、一対のスイッチング素子Tr3、Tr4は直列接続され、V相パワーモジュール13Vを構成している。スイッチング素子Tr3の一端は高電圧バッテリ1のプラス側に接続され、スイッチング素子Tr4の一端は高電圧バッテリ1のマイナス側に接続されている。即ち、スイッチング素子Tr3は、V相の上側アーム(上側スイッチング素子)とされ、スイッチング素子Tr4は、V相の下側アーム(下側スイッチング素子)とされている。
また、スイッチング素子Tr3に対して並列にダイオードD3が設けられ、スイッチング素子Tr4に対して並列にダイオードD4が設けられている。ダイオードD3、D4の接続方向は、前述したU相の場合と同様である。
更に、一対のスイッチング素子Tr5、Tr6は直列接続され、W相パワーモジュール13Wを構成している。スイッチング素子Tr5の一端は高電圧バッテリ1のプラス側に接続され、スイッチング素子Tr6の一端は高電圧バッテリ1のマイナス側に接続されている。即ち、スイッチング素子Tr5は、W相の上側アーム(上側スイッチング素子)とされ、スイッチング素子Tr6は、W相の下側アーム(下側スイッチング素子)とされている。
また、スイッチング素子Tr5に対して並列にダイオードD5が設けられ、スイッチング素子Tr6に対して並列にダイオードD6が設けられている。ダイオードD5、D6の接続方向は、前述したU相の場合と同様である。
高電圧バッテリ1とインバータ装置2との間には、リレー7が設けられており、インバータ装置2の駆動時にはリレー7はオンとされ、インバータ装置2の停止時にはリレー7はオフとされる。
モータ3のU相、V相、W相の各電線には、それぞれ電流センサ5U、5V、5Wが設けられており、これらの電流センサ5U、5V、5Wで検出された電流データは、制御回路11に送信される。なお、本実施形態では、3個の電流センサ5U、5V、5Wを設ける例について説明するが、電流センサは2個でも良い。
制御回路11は、車両コントローラ12と接続されており、該車両コントローラ12より出力されるトルク指令に基づいてPWM信号の出力指令を駆動回路10に出力する。また、モータ3にはレゾルバ4が取り付けられ、該レゾルバ4で検出される回転数データが制御回路11に出力される。なお、制御回路11は、例えば、中央演算ユニット(CPU)や、RAM、ROM、ハードディスク等の記憶手段からなる一体型のコンピュータとして構成することができる。
駆動回路10は、制御回路11より出力される出力指令に基づいて、各スイッチング素子Tr1〜Tr6の制御入力(IGBTの場合はゲート)に駆動信号を出力する。また、駆動回路10は、平滑コンデンサC1の放電時には、各パワーモジュール13U、13V、13Wの上側スイッチング素子Tr1、Tr3、Tr5、及び、下側スイッチング素子Tr2、Tr4、Tr6を交互にオンとする。更に、各スイッチング素子Tr1〜Tr6の駆動周波数を負荷駆動時の周波数よりも高い周波数とする。また、各スイッチング素子Tr1〜Tr6の制御入力(ゲート)に供給する駆動電圧を、負荷駆動時の駆動電圧よりも低く設定する。こうすることにより、平滑コンデンサC1に蓄積されている電力を短時間で消費して、該平滑コンデンサC1の電圧を低下させる。平滑コンデンサC1の両端電圧を検出し、検出される電圧値が所定電圧以下となった場合に、放電を停止する。或いは、放電を開始してから所定の時間が経過した場合に、放電を停止する。即ち、駆動回路10は、各スイッチング素子Tr1〜Tr6の制御入力に供給する駆動電圧を制御して、各スイッチング素子Tr1〜Tr6のオン、オフを切り替える機能を備えている。
図2は、駆動回路10の詳細な構成を示す回路図である。図2に示すように、駆動回路10は、U相、V相、W相の各パワーモジュール13U、13V、13W毎に、それぞれゲート電源部、及び駆動部を備えている。図2では、U相パワーモジュール13Uを駆動するためのゲート電源部21、及び駆動部22を示している。V相、W相についても同様の構成であるので、記載を省略している。
ゲート電源部21は、主として、直流電源(Vb+、Vb-)より出力される直流電圧を制御する電源IC23(電源回路)と、フライバックトランス24、及び電圧切替部25(第1電圧切替回路)を備えている。電源IC23は、MOSFET(Q1;電子スイッチ)のゲートにPWM駆動信号を出力することにより、該MOSFET(Q1)を所望のデューティ比でPWM制御し、フライバックトランス24の一次側コイルL1に供給する電圧を生成する。
フライバックトランス24の二次側には、二次側コイルL2、L3が設けられ、各二次側コイルL2、L3には、一次側コイルL1に印加された電圧に比例した二次電圧が発生する。各二次側コイルL2、L3に生じた電圧は、ダイオード、コンデンサで整流、平滑化され、駆動部22に出力される。また、フライバックトランス24の一次側には、電圧検出用コイルL4が設けられ、一次側コイルL1に印加された電圧に比例した電圧が該電圧検出用コイルL4に発生する。
電圧検出用コイルL4に生じた電圧は、ダイオード、コンデンサにより、整流、平滑化され、更に、抵抗R1(第1の抵抗)、R2(第2の抵抗)で分圧された後、電源IC23のフィードバック端子(FB)に供給される。従って、電源IC23は、フィードバック端子(FB)にて取得される電圧(フィードバック電圧)に基づいて、MOSFET(Q1)をPWM制御する際のデューティ比を調整し、二次側コイルL2、L3に所望の電圧が供給されるように制御することができる。
抵抗R1、R2の接続点P1と、マイナス電源端子(Vb-)との間には、電圧切替部25が設けられており、該電圧切替部25は、抵抗R3とFET(Q2)を備えている。FET(Q2)は、負荷駆動時にはオンとされ、平滑コンデンサC1を放電させるための放電動作信号が与えられた際にオフとされる。即ち、接続点P1の電圧は、負荷駆動時よりも、放電動作信号が与えられたコンデンサ放電時の方が、相対的に高くなるように設定されている。電圧切替部25の詳細な動作については、後述する。
駆動部22は、2つの駆動IC26、27(スイッチング素子駆動部)、及び2つのプッシュプル回路28、29を備えている。プッシュプル回路28は、2つのトランジスタの直列接続回路を有しており、両端には、二次側コイルL2に生じた交流電圧を整流して得られる直流電圧が供給される。また、プッシュプル回路28の出力電圧は、U相パワーモジュール13Uの上側スイッチング素子Tr1のゲートに供給される。プッシュプル回路29についても同様に、2つのトランジスタの直列接続回路を有しており、両端には、二次側コイルL3に生じた交流電圧を整流して得られる直流電圧が供給される。また、プッシュプル回路29の出力電圧は、U相パワーモジュール13Uの下側スイッチング素子Tr2のゲートに供給される。
駆動IC26は、制御回路11より出力されるスイッチング素子Tr1のPWM信号が供給され、該PWM信号に基づいて、プッシュプル回路28を駆動制御する。同様に、駆動IC27は、制御回路11より出力されるスイッチング素子Tr2のPWM信号が供給され、該PWM信号に基づいて、プッシュプル回路29を駆動制御する。
以下、上述のように構成された本実施形態に係る電力変換装置の作用について説明する。初めに、負荷駆動時の動作、即ち、各スイッチング素子Tr1〜Tr6をインバータとして駆動させる際の動作について説明する。図1に示したモータ3を回転駆動させる際には、インバータ装置2の各パワーモジュール13U、13V、13Wをそれぞれ駆動させ、周知の制御方式である電気角制御を行うことにより、U相、V相、W相に三相交流電圧を発生させる。この三相交流電圧をモータ3に供給することにより、該モータ3を回転駆動させることができる。この際、図1に示す平滑コンデンサC1には、該平滑コンデンサC1の静電容量に応じた電力が蓄積されている。
次に、平滑コンデンサC1に蓄積された電力を放電する際の処理手順を、図4に示すフローチャートを参照して説明する。車両のイグニッションをオフにした場合、或いは車両が衝突信号を検出した場合等においては、平滑コンデンサC1に蓄積された電力を放電する必要が生じる。本実施形態では、制御回路11の制御下で駆動回路10の駆動を制御し、平滑コンデンサC1を放電させる。
初めに、図4のステップST1において、制御回路11は、放電動作信号が与えられたか否かを判断する。放電動作信号が与えられた場合には(ステップST1でYES)、ステップST2において、制御回路11は、各パワーモジュール13U、13V、13Wの上側スイッチング素子Tr1、Tr3、Tr5と、下側スイッチング素子Tr2、Tr4、Tr6を所定のデッドタイムもって、交互にオン、オフを切り替える。例えば、図3に示すように、上側スイッチング素子Tr1、Tr3、Tr5を時間t1だけオンとし、その後、全てがオフとされるデッドタイムt2とし、その後、下側スイッチング素子Tr2、Tr4、Tr6を時間t1だけオンとし、再度、全てがオフとされるデッドタイムt2とする。そして、この動作を繰り返して実行する。
また、ステップST2の処理と同時に、ステップST3において制御回路11は、各スイッチング素子Tr1〜Tr6のスイッチング周波数を高くする。例えば、モータ3駆動用の電力を出力する負荷駆動時のスイッチング周波数f1に対して、放電時のスイッチング周波数をf2(>f1)に設定する。更に、これと同時に、ステップST4において制御回路11は、各スイッチング素子Tr1〜Tr6のゲート電圧を低減させる。
そして、ステップST5において、平滑コンデンサC1に蓄積された電力を、各スイッチング素子Tr1〜Tr6に付帯して設けられた各ダイオードD1〜D6に流すことにより、該平滑コンデンサC1に蓄積された電力を消費する。その結果、平滑コンデンサC1に蓄積された電力を放電することができる。
ステップST6において、放電処理を実行してから所定時間が経過したか否かを判断し、所定時間が経過した場合には(ステップST6でYES)、放電処理を終了する。
ここで、上記のステップST3の処理では、放電をいち早く行う必要性から、各スイッチング素子Tr1〜Tr6のオン、オフを切り替える際の周波数を、負荷駆動時(モータ3の駆動時)における各スイッチング素子Tr1〜Tr6の周波数よりも高く設定している。つまり、図2に示した駆動IC26、27は、負荷駆動時の周波数をf1とした場合、平滑コンデンサC1の放電時における周波数f2を相対的に高くしている。即ち、f2>f1としている。
ここで、各スイッチング素子Tr1〜Tr6を構成するIGBTの駆動電力をP[W]とすると、以下に示す(1)式が成立する。
P=Qg・Vg・fsw+(Vg2/R) …(1)
但し、Qgはゲート電荷量、Vgはゲート電圧、fswはスイッチング周波数、Rは抵抗である。
そして、上記の(1)式から理解されるように、IGBTのスイッチング周波数fswを高くすると、駆動電力Pが増大する。従って、上述したように、平滑コンデンサC1の放電時における周波数f2を、負荷駆動時の周波数f1に対して相対的に高く設定すると、駆動電力Pが増大することになり、駆動回路10の大規模化、高コスト化につながるという問題が発生する。本実施形態では、ゲート電圧Vgを低下させることにより、スイッチング周波数fswを大きくしたことに起因する駆動電力Pの増大を抑制する。
以下、詳細に説明する。前述したように、図2に示す抵抗R1とR2の接続点P1の電圧Vp1は、負荷駆動時においては、抵抗R1と、抵抗R2及びR3(第3の抵抗)の並列合成抵抗と、で分圧された電圧となっている。そして、電源IC23はこの電圧に基づいて、MOSFET(Q1)のデューティ比を設定し、PWM制御を実行している。
ここで、車両コントローラ12より、放電動作信号が与えられた場合には、FET(Q2)のゲート電圧が「H」から「L」に切り替えられ、これにより、抵抗R3が遮断される。従って、接続点P1の電圧Vp1は、抵抗R1と抵抗R2で分圧された電圧に切り替えられる。より詳細には、接続点P1の電圧Vp1は、負荷駆動時よりも放電時の方が相対的に高くなる。
このため、図2に示す電源IC23のフィードバック端子(FB)に供給される電圧が上昇し、一次側コイルL1に供給される電圧が低くなるように、MOSFET(Q1)のデューティ比が制御される。その結果、二次側コイルL2、L3に生じる電圧が低下し、プッシュプル回路28、29に供給される電圧が低下し、ひいては、スイッチング素子Tr1、Tr2のゲートに供給される電圧が低下する。即ち、上述した(1)式におけるゲート電圧Vgが低下するので、スイッチング周波数fswの増大に伴う駆動電力Pの増大を抑制できることになる。
このようにして、本実施形態に係る電力変換装置では、イグニッションのオフ時や衝突発生時等において平滑コンデンサC1に蓄積された電力を放電する際には、各パワーモジュール13U、13V、13Wの上側スイッチング素子Tr1、Tr3、Tr5と、下側スイッチング素子Tr2、Tr4、Tr6を所定のデッドタイムをもって交互にオン、オフさせる。この際、オン、オフの切替時の周波数は、負荷駆動時のスイッチング周波数よりも高くする必要があり、駆動電力が増大するので、これを抑制するために、各スイッチング素子Tr1〜Tr6の制御入力に供給する駆動電圧を低減している。即ち、負荷駆動時の駆動電圧よりも低い駆動電圧に変更している。従って、スイッチング素子の駆動電力の上昇を抑えることができ、ひいては、装置の大型化、高コスト化を防止することができる。
また、駆動回路10は、電圧切替部25を備えており、平滑コンデンサC1を放電させるための放電動作信号が与えられた際には、電源IC23のフィードバック端子(FB)に供給するフィードバック電圧を上昇させる。即ち、電圧切替部25は、電圧検出用コイルL4より出力されるフィードバック電圧を上昇させる第1電圧切替回路としての機能を備えている。そして、フィードバック電圧が上昇することにより、フライバックトランス24の二次側に生じる電圧を低減することができ、各スイッチング素子Tr1〜Tr6の駆動電力が増大することを抑制する。従って、簡単な構成で駆動電力を低減させることができる。
更に、図2に示すように、電圧切替部25はFET(Q2)、及び抵抗R3を備えており、放電動作信号が与えられた際には、FET(Q2)をオフとすることにより、接続点P1の電圧Vp1を上昇させている。そのため、多くの部品を必要とせず、また、高電力用の素子を使用しないので、装置の大規模化を抑制でき、且つ高コスト化を抑制することが可能となる。
ここで、負荷駆動時にはモータ3を駆動させるため、スイッチング素子Tr1〜Tr6の変位電流に加えて、モータ3へ供給する電流(変位電流に比べて極めて大きい電流)が加えられるので、スイッチング素子Tr1〜Tr6で発生する損失をできるだけ低減する必要がある。よって、各スイッチング素子Tr1〜Tr6のゲート電圧を高く設定する必要がある。これに対して、平滑コンデンサC1の放電時には、モータ3には電流が流れないので、各スイッチング素子Tr1〜Tr6の駆動電圧を低下させても問題は生じない。
[第2実施形態の説明]
次に、本発明の第2実施形態に係る電力変換装置について説明する。図5は、第2実施形態に係る電力変換装置に用いられる駆動回路10aの構成を示す回路図である。第2実施形態に係る駆動回路10aは、図2に示した駆動回路10と対比して、電源IC23に接続される電圧切替部25aが相違している。即ち、図2では、電圧切替部25を用いたのに対して、第2実施形態では、電圧切替部25a(第2電圧切替回路)を用いている。また、電源IC23に設けられる端子が相違している。それ以外の構成は、前述した第1実施形態と同様であるので、同一符号を付して構成説明を省略する。
図5に示すように、電源IC23は、PWM制御のデューティ比の上限値を設定するための上限設定端子(S)を備えている。そして、電源IC23は、上限設定端子(S)より入力される電圧に応じて、FET(Q1)をPWM制御する際の、デューティ比の上限値を設定する。具体的には、上限設定端子(S)より入力される電圧が高いほど、デューティ比の上限が高くなる。そして、第2実施形態では、放電動作信号が与えられた際に、上限設定端子(S)に供給する電圧を負荷駆動時に対して低下させることにより、デューティ比の上限値を抑制し、結果として二次側コイルL2、L3に出力する電圧を低下させる。以下、詳細に説明する。
電圧切替部25aは、4つの抵抗R4(第4の抵抗)、R5(第5の抵抗)、R6(第6の抵抗)、R7、及び、FET(Q3)を備えている。抵抗R4、R5は直列接続され、その一端は電源ICの端子(VREF)に接続され、他端はマイナス端子(Vb-)に接続されている。端子(VREF)は、予め設定した基準電圧を出力する。そして、抵抗R4とR5の接続点P2は、抵抗R6、FET(Q3)を介してマイナス端子(Vb-)に接続されている。そして、放電動作信号は、抵抗R7を介してFET(Q3)のゲートに供給される。そして、モータ3を駆動している負荷駆動時には、放電動作信号は「L」とされてFET(Q3)がオフとされる。一方、平滑コンデンサC1を放電する際には放電動作信号は「H」とされて、FET(Q3)はオンとされる。即ち、接続点P2の電圧Vp2は、負荷駆動時よりも平滑コンデンサC1の放電時の方が電圧が低下する。
なお、放電動作信号の「L」、「H」は、前述した第1実施形態と反対にしている。つまり、第1実施形態では、放電時において放電動作信号は「L」であったのに対し、第2実施形態では、放電時において放電動作信号は「H」である。
その結果、平滑コンデンサC1の放電時においては、デューティ比の最大値が低下し、FET(Q1)をPWM制御する際のデューティ比が制限されるので、結果として、一次側コイルL1に供給する電圧が低下する。その結果、パワーモジュール13U、13V、13Wを構成する各スイッチング素子Tr1〜Tr6のゲートに供給する電圧を負荷駆動時に対して相対的に低減させることができる。具体的には、図6に示すようにデューティ比の上限が例えば、0.5(50%)から0.4(40%)に切り替わると、ゲート電圧が16Vから12Vに低下する。
このようにして、第2実施形態に係る電力変換装置では、駆動回路10aに設けられる電圧切替部25a(第2電圧切替回路)により、電源IC23より出力するデューティ比の上限を設定するための、上限設定端子(S)に供給する電圧を変更する。具体的には、平滑コンデンサC1の放電時には、デューティ比の上限を低減させている。従って、平滑コンデンサC1の放電時には、各スイッチング素子Tr1〜Tr6のゲートに供給するゲート電圧を低減することができ、簡単な構成で各スイッチング素子Tr1〜Tr6の駆動電力を低減することが可能となる。
更に、図5に示すように、電圧切替部25aはFET(Q3)、及び抵抗R4、R5、R6、R7を備えており、放電動作信号が与えられた際には、FET(Q3)をオンとすることにより、接続点P2の電圧Vp2を低下させている。そのため、多くの部品を必要とせず、また、高電力用の素子を使用しないので、装置の大規模化を抑制でき、且つ高コスト化を抑制することが可能となる。
[第3実施形態の説明]
次に、本発明の第3実施形態に係る電力変換装置について説明する。図7は、第3実施形態に係る電力変換装置に用いられる駆動回路10bの構成を示す回路図である。第3実施形態に係る駆動回路10bは、図5に示した第2実施形態に係る駆動回路10aと対比して、電源IC23に接続される電圧切替部25bが相違している。即ち、図5では、電圧切替部25aを用いたのに対して、第3実施形態では、電圧切替部25bを用いている。それ以外の構成は、前述した第2実施形態と同様であるので、同一符号を付して構成説明を省略する。
図7に示すように、第3実施形態に係る電圧切替部25bは、図5に示した電圧切替部25aと対比して、FET(Q1)とマイナス電圧(Vb-)との間に配置された抵抗R8(シャント抵抗)と、抵抗R9とコンデンサC2の直列接続回路と、を備えている点で相違している。即ち、FET(Q1;電子スイッチ)に流れる電流経路に、シャント抵抗としての抵抗R8が設けられている。抵抗R8は、電流検出部としての機能を備えている。抵抗R9の一端は、FET(Q1)と抵抗R8との接続点P3に接続され、コンデンサC2の一端は、マイナス電圧(Vb-)に接続されている。また、抵抗R9とコンデンサC2の接続点は抵抗R7に接続されている。それ以外の構成は、図5とに示した電圧切替部25aと同一である。
次に、第3実施形態に係る電力変換装置の作用について説明する。図1に示したインバータ装置2によるモータ3への電力供給が停止し、平滑コンデンサC1の放電を開始する場合には、制御回路11の制御により、各スイッチング素子Tr1〜Tr6のスイッチング周波数が上昇する。例えば、5[KHz]から15[KHz]に上昇する。これに伴って、図7に示すフライバックトランス24の二次側コイルL2、L3に生じる電圧を高くするため、FET(Q1)のデューティ比が増大し、ひいては、抵抗R8に流れる電流が増大する。そして、接続点P3の電圧が上昇して所定電圧を超えた場合には、トランジスタ(Q3)がオフからオンに切り替わる。その結果、電源IC23によるPWM制御のデューティ比の上限が低下し、各スイッチング素子Tr1〜Tr6のゲートに供給する電圧を低減することができる。
図8は、抵抗R8に流れる電流とデューティ比の上限値との関係を示す特性図である。図8の特性図から理解されるように、通常動作時においては、抵抗R8に流れる電流は低い数値であるので、デューティ比の上限値は一定値(例えば、0.5)とされている。放電動作時には、各スイッチング素子Tr1〜Tr6のスイッチング周波数が上昇することにより、抵抗R8に流れる電流が増大する。そして、電流の増加に応じてデューティ比の上限値が一次関数的に低下する。従って、放電動作時においては、通常動作時に対して相対的にデューティ比の上限値が低下し(例えば、0.4)、各スイッチング素子Tr1〜Tr6のゲートに供給する電圧を低減することができる。
このようにして、第3実施形態に係る電力変換装置では、駆動回路10bに設けられる電圧切替部25b(第3電圧切替回路)により、MOSFET(Q1)に流れる電流を検出し、この電流の大きさに基づいて電源IC23より出力するデューティ比の上限を設定するための、上限設定端子(S)に供給する電圧を変更する。具体的には、MOSFET(Q1)に流れる電流が予め設定した閾値電流を上回った場合には、上限設定端子(S)に供給する電圧を低減させる。従って、平滑コンデンサC1の放電時には、各スイッチング素子Tr1〜Tr6の駆動周波数が増大し、これに伴ってMOSFET(Q1)に流れる電流が増大し、閾値電流を上回るので、上限設定端子(S)に供給される電圧が低減する。その結果、各スイッチング素子Tr1〜Tr6のゲートに供給するゲート電圧を低減することができ、簡単な構成で各スイッチング素子Tr1〜Tr6の駆動電力を低減することが可能となる。また、外部より出力される放電動作信号を必要とせずに、自己完結的に各スイッチング素子Tr1〜Tr6のゲート電圧を低下させることが可能となり、制御性を向上させることができる。
更に、図7に示すように、電圧切替部25bはFET(Q3)、及び抵抗R4〜R9、コンデンサC2を備えており、放電動作信号が与えられた際には、FET(Q3)をオンとすることにより、接続点P2の電圧Vp2を低下させている。そのため、多くの部品を必要とせず、また、高電力用の素子を使用しないので、装置の大規模化を抑制でき、且つ高コスト化を抑制することが可能となる。
以上、本発明の電力変換装置、電力変換装置の制御方法を図示の実施形態に基づいて説明したが、本発明はこれに限定されるものではなく、各部の構成は、同様の機能を有する任意の構成のものに置き換えることができる。
1 高電圧バッテリ
2 インバータ装置
3 モータ
4 レゾルバ
5U、5V、5W 電流センサ
7 リレー
10、10a、10b 駆動回路
11 制御回路
12 車両コントローラ
13U U相パワーモジュール
13V V相パワーモジュール
13W W相パワーモジュール
21 ゲート電源部
22 駆動部
23 電源IC
24 フライバックトランス
25、25a、25b 電圧切替部
26、27 駆動IC
28、29 プッシュプル回路
C1 平滑コンデンサ
D1〜D6 ダイオード(整流素子)
L1 一次側コイル
L2、L3 二次側コイル
L4 電圧検出用コイル

Claims (8)

  1. 直流電源より出力される直流電力を交流電力に変換して負荷に供給する電力変換装置において、
    前記直流電力を平滑化する平滑コンデンサと、
    上側スイッチング素子と下側スイッチング素子との対からなるパワーモジュールを複数備えたスイッチング素子群と、
    前記スイッチング素子群に含まれる各スイッチング素子に並列に配置され、スイッチング素子の導通方向に対して反対方向が順方向となるように接続された整流素子と、
    前記スイッチング素子群に含まれる各スイッチング素子の制御入力に供給する駆動電圧を制御して、該スイッチング素子のオン、オフを切り替える駆動回路と、を備え、
    前記駆動回路は、前記平滑コンデンサの放電時には、各パワーモジュールの上側スイッチング素子、及び、下側スイッチング素子を交互にオンとし、更に、前記各スイッチング素子の駆動周波数を負荷駆動時の駆動周波数よりも高い周波数とし、且つ、前記各スイッチング素子の制御入力に供給する駆動電圧を負荷駆動時の駆動電圧よりも低く設定すること
    を特徴とする電力変換装置。
  2. 前記駆動回路は、
    前記各スイッチング素子の制御入力に供給する駆動信号を出力するスイッチング素子駆動部と、
    電子スイッチと、
    前記電子スイッチをPWM制御して所望の電圧を生成し、生成した電圧を前記スイッチング素子駆動部に出力し、且つ、前記生成した電圧に応じた電圧をフィードバック電圧として取得し、該フィードバック電圧に基づいて前記PWM制御のデューティ比を変更する電源回路と、
    前記平滑コンデンサを放電させるための放電動作信号が与えられた際には、前記フィードバック電圧を上昇させる第1電圧切替回路と、
    を備えたことを特徴とする請求項1に記載の電力変換装置。
  3. 前記第1電圧切替回路は、前記生成した電圧を第1の抵抗と、第2の抵抗及び第3の抵抗の並列合成抵抗と、で分圧した電圧Vp1を前記フィードバック電圧とし、
    前記放電動作信号が与えられた際には、前記第3の抵抗を遮断することにより、前記電圧Vp1を上昇させること
    を特徴とする請求項2に記載の電力変換装置。
  4. 前記駆動回路は、
    前記各スイッチング素子の制御入力に供給する駆動信号を出力するスイッチング素子駆動部と、
    電子スイッチと、
    前記電子スイッチをPWM制御して所望の電圧を生成し、生成した電圧を前記スイッチング素子駆動部に出力し、且つ、デューティ比の上限値を設定するための上限設定端子に供給される電圧に応じて、デューティ比の上限を設定する電源回路と、
    前記平滑コンデンサを放電させるための放電動作信号が与えられた際には、前記上限設定端子に供給する電圧を低下させる第2電圧切替回路と、
    を備えたことを特徴とする請求項1に記載の電力変換装置。
  5. 前記第2電圧切替回路は、前記平滑コンデンサを放電しない場合には、予め設定された基準電圧を第4の抵抗と、第5の抵抗とで分圧した電圧Vp2を前記上限設定端子に供給し、
    前記放電動作信号が与えられた際には、前記第5の抵抗に第6の抵抗を並列に接続することにより、前記電圧Vp2を低下させること
    を特徴とする請求項4に記載の電力変換装置。
  6. 前記駆動回路は、
    前記各スイッチング素子の制御入力に供給する駆動信号を出力するスイッチング素子駆動部と、
    電子スイッチと、
    前記電子スイッチをPWM制御して所望の電圧を生成し、生成した電圧を前記スイッチング素子駆動部に出力し、且つ、デューティ比の上限値を設定するための上限設定端子に供給される電圧に応じて、デューティ比の上限を設定する電源回路と、
    前記電子スイッチに流れる電流を検出する電流検出部と、
    前記電流検出部で検出された電流が予め設定した閾値電流を上回った際に、前記上限設定端子に供給する電圧を低下させる第3電圧切替回路と、
    を備えたことを特徴とする請求項1に記載の電力変換装置。
  7. 前記電流検出部は、前記電子スイッチに流れる電流経路に設けられたシャント抵抗を備え、
    前記第3電圧切替回路は、前記平滑コンデンサを放電しない場合には、予め設定された基準電圧を第4の抵抗と、第5の抵抗とで分圧した電圧Vp2を前記上限設定端子に供給し、
    前記シャント抵抗に生じる電圧が所定電圧を超えた際には、前記第5の抵抗に第6の抵抗を並列に接続することにより、前記電圧Vp2を低下させること
    を特徴とする請求項6に記載の電力変換装置。
  8. 直流電源より出力される直流電力を交流電力に変換して負荷に供給する電力変換装置の制御方法において、
    前記直流電力を平滑するための平滑コンデンサを放電するための放電動作信号が与えられた際に、交流電圧を生成するための複数のパワーモジュールの各上側スイッチング素子と、各下側スイッチング素子を交互にオン、オフさせる工程と、
    前記各スイッチング素子の駆動周波数を、負荷駆動時の駆動周波数よりも高い周波数に変更する工程と、
    前記平滑コンデンサに蓄積された電力を、前記各スイッチング素子に対して並列に接続された整流素子に流して消費させる工程と、
    を有し、更に、
    前記各スイッチング素子の駆動周波数を、前記負荷を駆動させる際の駆動周波数よりも高くした際には、前記各スイッチング素子の制御入力に供給する電圧を、負荷駆動時に前記制御入力に供給する電圧よりも低く設定する工程
    を備えたことを特徴とする電力変換装置の制御方法。
JP2014261694A 2014-12-25 2014-12-25 電力変換装置及び電力変換装置の制御方法 Active JP6384316B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014261694A JP6384316B2 (ja) 2014-12-25 2014-12-25 電力変換装置及び電力変換装置の制御方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014261694A JP6384316B2 (ja) 2014-12-25 2014-12-25 電力変換装置及び電力変換装置の制御方法

Publications (2)

Publication Number Publication Date
JP2016123202A true JP2016123202A (ja) 2016-07-07
JP6384316B2 JP6384316B2 (ja) 2018-09-05

Family

ID=56327672

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014261694A Active JP6384316B2 (ja) 2014-12-25 2014-12-25 電力変換装置及び電力変換装置の制御方法

Country Status (1)

Country Link
JP (1) JP6384316B2 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107846155A (zh) * 2016-09-19 2018-03-27 福特全球技术公司 使用相脚开关的链路电容器用主动放电电路
JP2019198176A (ja) * 2018-05-09 2019-11-14 株式会社デンソー スイッチの駆動装置
WO2020110225A1 (ja) * 2018-11-28 2020-06-04 東芝三菱電機産業システム株式会社 電力変換装置
JP2023511516A (ja) * 2019-12-31 2023-03-20 ビーワイディー カンパニー リミテッド モータ制御システム及びモータ制御装置
DE102023107965A1 (de) 2022-03-30 2023-10-05 Kabushiki Kaisha Toyota Jidoshokki Leistungsumwandlungssystem

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010233310A (ja) * 2009-03-26 2010-10-14 Nissan Motor Co Ltd 電力変換装置及び電力変換装置の放電方法
WO2010131353A1 (ja) * 2009-05-15 2010-11-18 トヨタ自動車株式会社 電力変換装置、電力変換装置の制御方法およびそれを搭載する車両
JP2012055026A (ja) * 2010-08-31 2012-03-15 Hitachi Automotive Systems Ltd 電源回路及び電力変換装置
WO2014017279A1 (ja) * 2012-07-21 2014-01-30 Nltテクノロジー株式会社 Dc/dcコンバータ及び表示装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010233310A (ja) * 2009-03-26 2010-10-14 Nissan Motor Co Ltd 電力変換装置及び電力変換装置の放電方法
WO2010131353A1 (ja) * 2009-05-15 2010-11-18 トヨタ自動車株式会社 電力変換装置、電力変換装置の制御方法およびそれを搭載する車両
JP2012055026A (ja) * 2010-08-31 2012-03-15 Hitachi Automotive Systems Ltd 電源回路及び電力変換装置
WO2014017279A1 (ja) * 2012-07-21 2014-01-30 Nltテクノロジー株式会社 Dc/dcコンバータ及び表示装置

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107846155A (zh) * 2016-09-19 2018-03-27 福特全球技术公司 使用相脚开关的链路电容器用主动放电电路
CN107846155B (zh) * 2016-09-19 2021-03-30 福特全球技术公司 使用相脚开关的链路电容器用主动放电电路
JP2019198176A (ja) * 2018-05-09 2019-11-14 株式会社デンソー スイッチの駆動装置
JP7067250B2 (ja) 2018-05-09 2022-05-16 株式会社デンソー スイッチの駆動装置
WO2020110225A1 (ja) * 2018-11-28 2020-06-04 東芝三菱電機産業システム株式会社 電力変換装置
CN112042100A (zh) * 2018-11-28 2020-12-04 东芝三菱电机产业系统株式会社 电力转换装置
JPWO2020110225A1 (ja) * 2018-11-28 2021-02-15 東芝三菱電機産業システム株式会社 電力変換装置
US11368105B2 (en) 2018-11-28 2022-06-21 Toshiba Mitsubishi-Electric Industrial Systems Corporation Power conversion device
JP2023511516A (ja) * 2019-12-31 2023-03-20 ビーワイディー カンパニー リミテッド モータ制御システム及びモータ制御装置
JP7358651B2 (ja) 2019-12-31 2023-10-10 ビーワイディー カンパニー リミテッド モータ制御システム及びモータ制御装置
DE102023107965A1 (de) 2022-03-30 2023-10-05 Kabushiki Kaisha Toyota Jidoshokki Leistungsumwandlungssystem

Also Published As

Publication number Publication date
JP6384316B2 (ja) 2018-09-05

Similar Documents

Publication Publication Date Title
JP5433608B2 (ja) 電力変換装置
JP6394421B2 (ja) 半導体スイッチング素子の駆動装置
US9166493B2 (en) Power converter circuit
JP6384316B2 (ja) 電力変換装置及び電力変換装置の制御方法
US7948276B2 (en) Gate driver circuit, switch assembly and switch system
US9431923B2 (en) Power converter
US9490705B2 (en) Inverter device and air conditioner
JP6550884B2 (ja) モータ駆動装置
JP5252214B2 (ja) スイッチング電源装置
WO2015045107A1 (ja) 突入電流制限回路、及び電力変換装置
JP5382535B2 (ja) ゲート駆動回路の電源装置
JP2004015884A (ja) スイッチング回路及び電源回路
KR101227374B1 (ko) 인버터 과전류 검출 회로를 포함하는 모터 회로 및 인버터 과전류 검출 회로 전원 제공 방법
JP2006180606A (ja) 電圧駆動素子の制御装置
JP6162445B2 (ja) 電力変換装置
KR101946369B1 (ko) 전력 변환 장치 및 이를 포함하는 공기 조화기
JP2016127677A (ja) 電力変換装置
WO2017145242A1 (ja) コンバータ回路、インバータ回路および空気調和機の電力変換装置
JP7460508B2 (ja) 電力変換装置
WO2024075305A1 (ja) 電力変換装置
KR102036113B1 (ko) 전력 변환 장치 및 이를 포함하는 공기 조화기
KR20190019331A (ko) 전력 변환 장치, 이를 포함하는 공기 조화기 및 그 제어 방법
KR20090075526A (ko) 인버터 구동장치 및 그 제어방법, 냉장고
JP5550437B2 (ja) スイッチング電源
JP2022017042A (ja) モータ制御装置およびモータ制御方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171030

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180629

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180710

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180723

R151 Written notification of patent or utility model registration

Ref document number: 6384316

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151