JP2016115700A - Electrode structure - Google Patents

Electrode structure Download PDF

Info

Publication number
JP2016115700A
JP2016115700A JP2014250684A JP2014250684A JP2016115700A JP 2016115700 A JP2016115700 A JP 2016115700A JP 2014250684 A JP2014250684 A JP 2014250684A JP 2014250684 A JP2014250684 A JP 2014250684A JP 2016115700 A JP2016115700 A JP 2016115700A
Authority
JP
Japan
Prior art keywords
alloy
electrode
layer
wire
metal layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014250684A
Other languages
Japanese (ja)
Other versions
JP6068425B2 (en
Inventor
後藤 裕史
Yasushi Goto
裕史 後藤
裕美 岩成
Yumi Iwanari
裕美 岩成
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2014250684A priority Critical patent/JP6068425B2/en
Priority to PCT/JP2015/083187 priority patent/WO2016093067A1/en
Priority to TW104141414A priority patent/TWI582851B/en
Publication of JP2016115700A publication Critical patent/JP2016115700A/en
Application granted granted Critical
Publication of JP6068425B2 publication Critical patent/JP6068425B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L24/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C27/00Alloys based on rhenium or a refractory metal not mentioned in groups C22C14/00 or C22C16/00
    • C22C27/04Alloys based on tungsten or molybdenum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C5/00Alloys based on noble metals
    • C22C5/06Alloys based on silver
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/07Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/18Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different subgroups of the same main group of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05638Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/05639Silver [Ag] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05638Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/05647Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45117Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/45124Aluminium (Al) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45147Copper (Cu) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/4847Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/852Applying energy for connecting
    • H01L2224/85201Compression bonding
    • H01L2224/85205Ultrasonic bonding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/1026Compound semiconductors
    • H01L2924/1027IV
    • H01L2924/10272Silicon Carbide [SiC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/1026Compound semiconductors
    • H01L2924/1032III-V
    • H01L2924/1033Gallium nitride [GaN]

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Wire Bonding (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an electrode structure of semiconductor having high bond strength of an electrode and a Cu wire even after Cu wire bonding of large load and vibration, and thereby having high reliability, and is excellent in conformity with the wafer process.SOLUTION: An electrode structure provided on a semiconductor substrate includes an electrode layer, a barrier layer provided on the electrode layer, a first metal layer provided on the barrier layer, a second metal layer provided on the first metal layer, and a wire electrode bonded to the second metal layer. The first metal layer is an Ag alloy containing at least one kind of Nd:0.10-2.0 atom% and Bi:0.08-2.0 atom% as an alloy element, the second metal layer is Cu or Cu alloy, and the wire electrode is Cu or Cu alloy.SELECTED DRAWING: Figure 2

Description

本発明は電極構造に関する。本発明は、例えばパワー半導体における電極構造に関する。   The present invention relates to an electrode structure. The present invention relates to an electrode structure in a power semiconductor, for example.

近年、IGBT(Insulated Gate Bipolar Transistor)やパワーMOSFET(Metal−Oxide−Semiconductor Field−Effect Transistor、パワーMOS型電界効果トランジスタ)などの、絶縁ゲート型の半導体装置が大電力を制御するパワーデバイスとして普及している。   In recent years, insulated gate semiconductor devices such as IGBTs (Insulated Gate Bipolar Transistors) and power MOSFETs (Metal-Oxide-Semiconductor Field-Effect Transistors, power MOS type field effect transistors) have become widespread as power devices that control high power. ing.

図1を参照しながら一般的なIGBTの構成を説明する。p型のコレクタ層2にはコレクタ電極1が接続されている。なお、コレクタ電極1は、図1では図示していない回路基板などに半田層を介して固定・接続されている。コレクタ層2の上にn型のベース層3が形成されている。n型のベース層3の上部にはp型のボディー領域4が形成され、その内部にn型のエミッタ層5が形成されている。2つのエミッタ層5間にあるn型のベース層3の領域がチャネル領域であり、そのチャネル領域上には、ゲート絶縁膜6、ゲート電極7および層間絶縁膜8が形成されている。また、エミッタ層5の上部には電極層9としてエミッタ電極が形成されている。一般的にこれらのn型領域やp型領域は、Siなどからなる基板にPやBが元々含まれるか、領域ごとに決められたドーズ量、加速電圧、注入角度にてPやAs、Bをイオン注入した後に、領域ごとに決められた温度、時間で活性化の熱処理を行うことで形成される。   A general IGBT configuration will be described with reference to FIG. A collector electrode 1 is connected to the p-type collector layer 2. The collector electrode 1 is fixed and connected to a circuit board or the like not shown in FIG. 1 via a solder layer. An n-type base layer 3 is formed on the collector layer 2. A p-type body region 4 is formed above the n-type base layer 3, and an n-type emitter layer 5 is formed therein. A region of the n-type base layer 3 between the two emitter layers 5 is a channel region, and a gate insulating film 6, a gate electrode 7, and an interlayer insulating film 8 are formed on the channel region. An emitter electrode is formed as an electrode layer 9 on the emitter layer 5. In general, these n-type region and p-type region include P, B, or B at a dose amount, acceleration voltage, or implantation angle determined for each region, whether P or B is originally contained in a substrate made of Si or the like. After ion implantation, activation heat treatment is performed at a temperature and time determined for each region.

チャネル領域がp型のIGBTでは、電極層9であるエミッタ電極に負のバイアス、裏面電極であるコレクタ電極1に正のバイアスを印加するのと並行し、ゲート電極7に正のバイアスを印加することで、チャネル領域に反転層が形成され、エミッタ層5とn型ベース層3が反転層で接続されて電流が流れる。この電流はコレクタ電極1に流れる。   In a p-type IGBT having a channel region, a positive bias is applied to the gate electrode 7 in parallel with applying a negative bias to the emitter electrode as the electrode layer 9 and a positive bias to the collector electrode 1 as the back electrode. As a result, an inversion layer is formed in the channel region, and the emitter layer 5 and the n-type base layer 3 are connected by the inversion layer, and a current flows. This current flows through the collector electrode 1.

チップ上の電極から外部へ電流を取り出すための金属ボンディングワイヤには、従来、AlやAuが用いられてきた。しかし、IGBTなどのパワー半導体は用途拡大に伴って年々パワー密度が増大し、これに伴い扱う電流値も増大しているため、ボンディングワイヤ自体の発熱やボンディングワイヤとチップの接続部の発熱が無視できなくなっている。そこで最近では、上記発熱対策として、導電性や熱伝導性の高いCuまたはCu合金であるワイヤやリボンを用いて外部端子に接続する方法が提案されている。以下、前記CuまたはCu合金であるワイヤのボンディングを「Cuワイヤボンディング」、このボンディングに使用されるCuまたはCu合金からなるワイヤを「Cuワイヤ」という。   Conventionally, Al or Au has been used as a metal bonding wire for taking out current from an electrode on a chip to the outside. However, power semiconductors such as IGBTs have increased in power density year by year as their applications expand, and the current value handled with this has also increased, so the heat generated in the bonding wire itself and the bonding wire-chip connection is ignored. I can't. Therefore, recently, as a countermeasure against the heat generation, a method of connecting to an external terminal using a wire or ribbon made of Cu or Cu alloy having high conductivity and high thermal conductivity has been proposed. Hereinafter, bonding of the wire made of Cu or Cu alloy is referred to as “Cu wire bonding”, and the wire made of Cu or Cu alloy used for the bonding is referred to as “Cu wire”.

一般に金属ボンディングワイヤのボンディングは、金属ボンディングワイヤと電極に荷重を加えて圧着させながら熱とともに超音波を加えて振動させ、金属結合を形成させて電気的に接続させる。Cuワイヤは、従来のAlやAuなどのボンディングワイヤと比較して硬度が高いため、Cuワイヤの接合時には、強い荷重と振動により素子破壊、即ち、基板等にクラックが生じやすいといった問題がある。また、ボンディングワイヤと電極の間の接合強度が不十分な場合は、接続部でワイヤが断線し素子の動作不良を招くといった問題がある。よって、金属ボンディングワイヤと電極との接合強度が高く、ボンディングの信頼性、即ち接続信頼性の高い半導体電極構造が求められる。   In general, bonding of a metal bonding wire is performed by applying a load to the metal bonding wire and the electrode and applying pressure to vibrate and applying ultrasonic waves together with heat to form a metal bond to be electrically connected. Since the Cu wire has a higher hardness than conventional bonding wires such as Al and Au, there is a problem that when the Cu wire is joined, the element is broken due to a strong load and vibration, that is, the substrate is easily cracked. In addition, when the bonding strength between the bonding wire and the electrode is insufficient, there is a problem in that the wire is disconnected at the connecting portion, resulting in an element malfunction. Therefore, there is a demand for a semiconductor electrode structure having high bonding strength between the metal bonding wire and the electrode and high bonding reliability, that is, high connection reliability.

例えば特許文献1には、SiC又はGaNを主成分とした半導体基板と、前記半導体基板上に接合された複数の金属層と、を備えた半導体装置が開示されている。詳細には、前記複数の金属層は、最外層に外部との電気接続を行うための配線金属層を備え、前記配線金属層は、Agを主成分としてCu、Al、Be、Sbのうち少なくとも1種類の微量の溶質元素を添加した合金層であり、前記配線金属層に含まれるAgへの溶質元素の添加量は、それぞれ0.1at%Cu以上、0.3at%Al以上、0.1at%Be以上、0.15at%Sb以上である半導体装置が示されている。即ち、特許文献1には、実装時の再結晶温度を超えて耐久性を高めるために、ワイヤボンディングを行うための最外装の金属電極をAg合金電極とすることが開示されている。   For example, Patent Document 1 discloses a semiconductor device including a semiconductor substrate containing SiC or GaN as a main component and a plurality of metal layers bonded on the semiconductor substrate. Specifically, the plurality of metal layers include a wiring metal layer for electrical connection with the outside in an outermost layer, and the wiring metal layer includes at least one of Cu, Al, Be, and Sb mainly composed of Ag. It is an alloy layer to which a small amount of solute element is added, and the addition amount of the solute element to Ag contained in the wiring metal layer is 0.1 at% Cu or more, 0.3 at% Al or more, 0.1 at A semiconductor device having% Be or more and 0.15 at% Sb or more is shown. That is, Patent Document 1 discloses that the outermost metal electrode for wire bonding is an Ag alloy electrode in order to increase the durability beyond the recrystallization temperature at the time of mounting.

しかしながら上記特許文献1は、150℃以上の動作温度でも配線金属の抵抗率が変化し難く安定して動作可能な半導体を得ることを目的としており、金属ワイヤとして、Auワイヤ、Cuワイヤ、Alワイヤ等が考え得ると記載され、金属ワイヤの種類は特に限定していない。即ち特許文献1は、Cuワイヤを用いることを前提に、Cuワイヤボンディング時に素子破壊が生じやすいことに鑑みて、ボンディング後の接合強度確保を検討したものではない。   However, the above-mentioned patent document 1 aims to obtain a semiconductor that can operate stably without changing the resistivity of the wiring metal even at an operating temperature of 150 ° C. or higher. As a metal wire, an Au wire, a Cu wire, and an Al wire are provided. The type of the metal wire is not particularly limited. That is, Patent Document 1 does not consider securing bonding strength after bonding in view of the fact that element destruction is likely to occur during Cu wire bonding on the premise that a Cu wire is used.

一方、特許文献2には、Cuが酸化されやすく、Cuワイヤを用いたボンディングは不良を起こしやすく、特に高温で保管した場合に劣化しやすいことに鑑みて、次の半導体装置が提案されている。即ち、基板に搭載された半導体素子と、前記半導体素子に設けられた電極パッドと、前記基板に設けられた接続端子と前記電極パッドとを接続するCuワイヤと、前記半導体素子及び前記Cuワイヤを封止する封止樹脂と、を有し、前記Cuワイヤとの接合面から深さ方向に3μm以下の範囲における前記電極パッドの領域が、Alよりイオン化傾向が小さい金属を主成分として含み、前記Cuワイヤ中の硫黄含有量が、前記Cuワイヤ全体に対して15ppm以上100ppm以下である、半導体装置が提案されている。即ち、上記特許文献2では、Cuワイヤと接続する電極パッドの領域を、Alよりイオン化傾向が小さい金属を主成分とすることによって、Cuワイヤと接続する電極表面の間で生じる電池効果による腐食を軽減し、耐湿性と高温保管性を改善している。しかし特許文献2には、半導体装置の製造工程での熱履歴も考慮して、Cuワイヤと電極との接合強度を確実に高め得ることまで検討されたものではない。   On the other hand, Patent Document 2 proposes the following semiconductor device in view of the fact that Cu is easily oxidized, and bonding using a Cu wire is likely to cause a defect, and particularly deteriorates when stored at a high temperature. . That is, a semiconductor element mounted on a substrate, an electrode pad provided on the semiconductor element, a Cu wire connecting the connection terminal provided on the substrate and the electrode pad, the semiconductor element and the Cu wire A region of the electrode pad in a range of 3 μm or less in the depth direction from the bonding surface with the Cu wire, the main component being a metal having a smaller ionization tendency than Al, A semiconductor device has been proposed in which the sulfur content in the Cu wire is 15 ppm or more and 100 ppm or less with respect to the entire Cu wire. That is, in the above-mentioned Patent Document 2, the electrode pad region connected to the Cu wire is mainly composed of a metal having a smaller ionization tendency than Al, so that corrosion due to the battery effect generated between the electrode surfaces connected to the Cu wire is prevented. Reduced, improved moisture resistance and high temperature storage. However, Patent Document 2 does not consider that the bonding strength between the Cu wire and the electrode can be reliably increased in consideration of the thermal history in the manufacturing process of the semiconductor device.

上記ワイヤボンディング後も高い接合強度を有する半導体装置を得るには、半導体装置を構成する材料が、半導体装置の製造工程で受ける熱履歴に対して高い耐久性、即ち優れた耐熱性を示すことも必要である。詳細には、上記IGBT等の製造プロセスでは、エミッタ電極を形成後に基板の裏面よりコレクタ層のイオン注入を行う。次いで、450℃以下の熱処理を行うことによって注入されたイオンの活性化を図る。よって、電極構造を構成する材料には、これらの熱に対する耐久性も求められる。   In order to obtain a semiconductor device having high bonding strength even after the wire bonding, the material constituting the semiconductor device may exhibit high durability against heat history received in the manufacturing process of the semiconductor device, that is, excellent heat resistance. is necessary. Specifically, in the manufacturing process of the IGBT or the like, the collector layer is ion-implanted from the back surface of the substrate after the emitter electrode is formed. Next, the implanted ions are activated by performing a heat treatment at 450 ° C. or lower. Therefore, the material constituting the electrode structure is required to have durability against these heats.

金属ボンディングワイヤとの接合には、ウェハプロセスとの整合性に優れていることも求められる。   Bonding with a metal bonding wire is also required to have excellent consistency with a wafer process.

特開2013−125922号公報JP 2013-125922 A 国際公開第2013/140746号International Publication No. 2013/140746

本発明は上記の様な事情に着目してなされたものであって、その目的は、荷重と振動の大きいCuワイヤボンディングを経た後も、電極とCuワイヤとの接合強度が高く、結果として信頼性の高い半導体電極構造を提供することにある。   The present invention has been made paying attention to the above-described circumstances, and the purpose thereof is to provide a high bonding strength between the electrode and the Cu wire even after the Cu wire bonding with a large load and vibration, resulting in reliability. It is to provide a highly reliable semiconductor electrode structure.

また、本発明の他の目的は、ウェハプロセスとの整合性に優れた半導体電極構造を提供することにある。尚、本発明において「ウェハプロセスとの整合性に優れた」とは、後述する実施例2で評価の通り、Ag合金とバリア層の積層を良好に一括エッチングできることをいう。   Another object of the present invention is to provide a semiconductor electrode structure excellent in consistency with a wafer process. In the present invention, “excellent in compatibility with the wafer process” means that the lamination of the Ag alloy and the barrier layer can be satisfactorily collectively etched as evaluated in Example 2 described later.

また、本発明の他の目的は、以下の詳細な説明から明らかになるであろう。   Other objects of the present invention will become apparent from the following detailed description.

上記課題を解決し得た本発明の電極構造は、半導体基板上に設けられた電極構造であって、電極層と、前記電極層上に設けられたバリア層と、前記バリア層上に設けられた第1の金属層と、前記第1の金属層上に設けられた第2の金属層と、前記第2の金属層に接合されたワイヤ電極とを備え、前記第1の金属層は、合金元素として、Nd:0.10原子%以上2.0原子%以下、およびBi:0.08原子%以上2.0原子%以下のうちの少なくとも一種を含むAg合金であり、前記第2の金属層はCuまたはCu合金であり、前記ワイヤ電極はCuまたはCu合金であるところに特徴を有する。   The electrode structure of the present invention that has solved the above problems is an electrode structure provided on a semiconductor substrate, and is provided on the electrode layer, the barrier layer provided on the electrode layer, and the barrier layer. A first metal layer, a second metal layer provided on the first metal layer, and a wire electrode joined to the second metal layer, the first metal layer comprising: An alloy containing at least one of Nd: 0.10 atomic% and 2.0 atomic% and Bi: 0.08 atomic% and 2.0 atomic% as the alloy elements, The metal layer is characterized in that it is Cu or Cu alloy, and the wire electrode is Cu or Cu alloy.

本発明の好ましい実施形態において、前記第1の金属層は、合金元素として更に、Cuを0原子%超2.0原子%以下含むAg合金である。   In a preferred embodiment of the present invention, the first metal layer is an Ag alloy further containing Cu in an amount of more than 0 atomic% and not more than 2.0 atomic% as an alloy element.

本発明の好ましい実施形態において、前記第2の金属層は、圧延またはめっきにより形成されたCu箔またはCu合金箔である。   In a preferred embodiment of the present invention, the second metal layer is a Cu foil or a Cu alloy foil formed by rolling or plating.

本発明の好ましい実施形態において、前記バリア層は、Mo、Mo合金、Mo窒化物、およびIZOよりなる群から選択されるいずれかである。   In a preferred embodiment of the present invention, the barrier layer is any one selected from the group consisting of Mo, Mo alloy, Mo nitride, and IZO.

本発明の好ましい実施形態において、前記電極層は、Ti、Mo、Ni、Al、Au、またはこれらの合金のいずれかである。   In a preferred embodiment of the present invention, the electrode layer is Ti, Mo, Ni, Al, Au, or an alloy thereof.

本発明には、前記電極構造を備えている点に特徴を有する半導体装置も含まれる。   The present invention also includes a semiconductor device characterized by having the electrode structure.

尚、下記の説明では、電極構造における電極層が、AlまたはAl合金であるエミッタ電極に使用する場合を例に説明するが、本発明はこれに限らず、前記電極層が、ゲート電極のパッド部分である場合等も含まれる。また以下では、上記AlまたはAl合金を「Al系」、上記CuまたはCu合金を「Cu系」ということがある。   In the following description, the case where the electrode layer in the electrode structure is used for an emitter electrode made of Al or an Al alloy will be described as an example. However, the present invention is not limited to this, and the electrode layer is a pad of a gate electrode. The case where it is a part is also included. Hereinafter, the Al or Al alloy may be referred to as “Al-based”, and the Cu or Cu alloy may be referred to as “Cu-based”.

本発明によれば、Cuワイヤを用いてボンディングを行い、ワイヤと電極との接合強度を高め得た電極構造を提供することができる。特に本発明の電極構造において、Cuワイヤは同材質のCu系と接続されるため接続信頼性に優れる。また、本発明の電極構造によれば、Cuワイヤボンディング時に、電極層とバリア層と第1の電極層と第2の電極層との積層構造がクッションの役割を果たし、Cuワイヤが素子側に押し込まれても、断線による素子破壊が抑制される。また、本発明の電極構造はバリア層を有するため、コレクタ電極側のイオン活性化のための、400℃での熱処理が施された後も、Agの凝集がなく、AgとAlの相互拡散を防ぐことができる。   ADVANTAGE OF THE INVENTION According to this invention, it can bond using a Cu wire and can provide the electrode structure which was able to raise the joint strength of a wire and an electrode. In particular, in the electrode structure of the present invention, since the Cu wire is connected to the Cu material of the same material, the connection reliability is excellent. According to the electrode structure of the present invention, the laminated structure of the electrode layer, the barrier layer, the first electrode layer, and the second electrode layer serves as a cushion during Cu wire bonding, and the Cu wire is placed on the element side. Even if it is pushed in, element destruction due to disconnection is suppressed. In addition, since the electrode structure of the present invention has a barrier layer, there is no Ag aggregation even after heat treatment at 400 ° C. for ion activation on the collector electrode side, and mutual diffusion of Ag and Al Can be prevented.

更に本発明の半導体電極構造は、Alワイヤとのボンディングを前提に設計された、現在一般に用いられているIGBTチップにおいても、電極層として形成されるエミッタ電極上に、本発明の構成の通り、バリア層、第1の金属層、第2の金属層を順に積層することによって、Cuワイヤボンディングを行うことができ、Cuワイヤと電極との接合強度の高い半導体電極構造を容易に得ることができる。   Furthermore, the semiconductor electrode structure of the present invention is designed on the premise of bonding with an Al wire, and even in an IGBT chip that is currently used in general, on the emitter electrode formed as an electrode layer, as in the configuration of the present invention, By laminating the barrier layer, the first metal layer, and the second metal layer in this order, Cu wire bonding can be performed, and a semiconductor electrode structure with high bonding strength between the Cu wire and the electrode can be easily obtained. .

図1は、一般的なIGBTの構成を示す概略断面図である。FIG. 1 is a schematic cross-sectional view showing a configuration of a general IGBT. 図2は、本発明の電極構造を示す概略断面図である。FIG. 2 is a schematic cross-sectional view showing the electrode structure of the present invention. 図3は、熱処理温度とAg系の反射率との関係を示す図である。FIG. 3 is a diagram showing the relationship between the heat treatment temperature and the Ag-based reflectivity.

本発明者らは、前記課題を解決するために鋭意研究を重ねた。特には、荷重と振動の大きいCuワイヤボンディングを経た後も電極とCuワイヤとの接合強度が高く、結果として信頼性の高い半導体電極構造を得るべく鋭意研究を重ねた。詳細には、電極構造について、材料、厚み、硬さ、めっきや薄膜コーティング等の形成方法など種々の観点から鋭意検討を行った。   The inventors of the present invention have made extensive studies to solve the above problems. In particular, even after Cu wire bonding with a large load and vibration, the bonding strength between the electrode and the Cu wire is high, and as a result, earnest research was repeated to obtain a highly reliable semiconductor electrode structure. Specifically, the electrode structure has been intensively studied from various viewpoints such as materials, thickness, hardness, and formation methods such as plating and thin film coating.

その結果、電極層とCuまたはCu合金であるワイヤ電極との間に、バリア層と;第1の金属層として後述する規定のAg合金と;第2の金属層としてCuまたはCu合金と;をこの順に形成し、該第2の金属層に対して、CuまたはCu合金であるワイヤ電極をボンディングすれば、接合強度の高い電極構造が得られることを見出した。更に好ましくは、バリア層として推奨されるものを用いれば、製造工程で受ける熱履歴に対する耐久性がより高まり、接合強度をより高めることができる。また上記製造過程で、上記第1の金属層とバリア層を一括エッチングすることができる。   As a result, a barrier layer between the electrode layer and the wire electrode that is Cu or Cu alloy; a prescribed Ag alloy described later as the first metal layer; and Cu or Cu alloy as the second metal layer; It was found that an electrode structure with high bonding strength can be obtained by forming in this order and bonding a wire electrode made of Cu or Cu alloy to the second metal layer. More preferably, if a barrier layer that is recommended is used, the durability against the thermal history received in the manufacturing process is further increased, and the bonding strength can be further increased. In the manufacturing process, the first metal layer and the barrier layer can be collectively etched.

以下、本発明の電極構造の一態様を、図面を用いて説明する。   Hereinafter, one embodiment of the electrode structure of the present invention will be described with reference to the drawings.

図2は本発明の電極構造を模式的に示す断面図である。この図2に示すように、本発明の電極構造は、半導体基板10上に設けられており、電極層9、バリア層11、第1の金属層12、第2の金属層13、およびワイヤ電極14とを備えている。本発明の電極構造は、半導体基板10として、シリコンを用いた基板に対して適用できるほか、SiC、GaN、ダイヤモンドといった半導体材料も基板として好適に適用できる。本発明の電極構造が適用可能な半導体素子の種類は、特に限定されない。例えばIGBTやMOSFETのようなスイッチング素子、またはダイオードのような整流素子に、本発明の電極構造を好適に適用できる。   FIG. 2 is a cross-sectional view schematically showing the electrode structure of the present invention. As shown in FIG. 2, the electrode structure of the present invention is provided on a semiconductor substrate 10, and includes an electrode layer 9, a barrier layer 11, a first metal layer 12, a second metal layer 13, and a wire electrode. 14. The electrode structure of the present invention can be applied to a substrate using silicon as the semiconductor substrate 10, and semiconductor materials such as SiC, GaN, and diamond can also be suitably applied as the substrate. The kind of semiconductor element to which the electrode structure of the present invention is applicable is not particularly limited. For example, the electrode structure of the present invention can be suitably applied to a switching element such as IGBT or MOSFET, or a rectifying element such as a diode.

半導体素子が、例えば縦型構造のIGBTの場合、図2の半導体基板10には、図2には図示していない前記図1のコレクタ層2から層間絶縁膜8までが形成されている。図2の半導体基板10の、電極層9と反対側の面には、図2では示していないコレクタ電極が形成される。コレクタ電極は半導体パッケージと直接接続し、外部に取り出される。図2の電極層9としてエミッタ電極が形成される。該エミッタ電極は、ワイヤ電極14によりリード端子と接続される。   When the semiconductor element is, for example, an IGBT having a vertical structure, the semiconductor substrate 10 shown in FIG. 2 is formed with the collector layer 2 to the interlayer insulating film 8 shown in FIG. A collector electrode not shown in FIG. 2 is formed on the surface of the semiconductor substrate 10 of FIG. 2 opposite to the electrode layer 9. The collector electrode is directly connected to the semiconductor package and taken out to the outside. An emitter electrode is formed as the electrode layer 9 in FIG. The emitter electrode is connected to a lead terminal by a wire electrode 14.

以下、ワイヤにより接続される側の電極構造、具体的には図2の電極層9からワイヤ電極14までの各層について詳述する。   Hereinafter, the electrode structure on the side connected by the wire, specifically, each layer from the electrode layer 9 to the wire electrode 14 in FIG. 2 will be described in detail.

電極層
半導体基板10上には、電極層9が形成される。電極層9としては、例えばTi、Mo、Ni、Al、Au;または、これらの金属元素の合金、即ち、Ti、Mo、Ni、Al、またはAuを基とする合金;または、これらの金属元素の化合物;を用いることができる。
Electrode Layer An electrode layer 9 is formed on the semiconductor substrate 10. As the electrode layer 9, for example, Ti, Mo, Ni, Al, Au; or alloys of these metal elements, that is, alloys based on Ti, Mo, Ni, Al, or Au; or these metal elements Can be used.

前記電極層9として前記合金を用いる場合、合金元素として、Ta、Nb、Re、Zr、W、Mo、V、Hf、Ti、Cr、Ptおよび希土類元素よりなるX群から選択される少なくとも一種のX群元素を用いてもよい。これらは高温下の耐熱性向上に寄与する元素である。上記X群元素を含有させることで、半導体製造工程で400℃程度の熱履歴を受けた場合でも優れた耐熱性を示す。   When the alloy is used as the electrode layer 9, the alloy element is at least one selected from the group X consisting of Ta, Nb, Re, Zr, W, Mo, V, Hf, Ti, Cr, Pt and rare earth elements. An X group element may be used. These are elements that contribute to improving heat resistance at high temperatures. By containing the X group element, excellent heat resistance is exhibited even when a thermal history of about 400 ° C. is received in the semiconductor manufacturing process.

前記希土類元素は、単独で添加しても良いし、2種以上を併用しても良い。ここで、希土類元素とは、ランタノイド元素、即ち、周期表において、原子番号57のLaから原子番号71のLuまでの合計15元素に、スカンジウムとイットリウムとを加えた元素群を意味する。   The rare earth elements may be added alone or in combination of two or more. Here, the rare earth element means a lanthanoid element, that is, an element group obtained by adding scandium and yttrium to a total of 15 elements from La with atomic number 57 to Lu with atomic number 71 in the periodic table.

上記X群元素の含有量は、合計で0.1〜5原子%とすることが好ましい。   The total content of the group X elements is preferably 0.1 to 5 atomic%.

前記電極層9として前記合金を用いる場合、合金元素として、NiおよびCoの少なくとも1種の元素や、GeおよびCuの少なくとも1種の元素を含有してもよい。これらの元素を上述したX群元素と共に含有させる他、該X群元素を用いず、これらの元素のみを用いることもできる。   When the alloy is used as the electrode layer 9, the alloy element may contain at least one element of Ni and Co and at least one element of Ge and Cu. In addition to containing these elements together with the X group element described above, these elements can be used alone without using the X group element.

さらに電極層9の金属元素が半導体領域内へ拡散することを防止するため、電極層9と半導体基板10との間に、図2では図示していない電極層−半導体基板間のバリア層を設けてもよい。この電極層−半導体基板間のバリア層は、例えばTi、TiN、TiW、TaN等の、金属、合金または化合物を、スパッタリング法、イオンプレーティング法、電子ビーム蒸着法、または真空蒸着法などにより形成することで得られる。   Further, in order to prevent the metal element of the electrode layer 9 from diffusing into the semiconductor region, a barrier layer between the electrode layer 9 and the semiconductor substrate 10, not shown in FIG. May be. The barrier layer between the electrode layer and the semiconductor substrate is formed by sputtering, ion plating, electron beam evaporation, or vacuum evaporation of a metal, an alloy, or a compound such as Ti, TiN, TiW, or TaN. It is obtained by doing.

本発明の電極層の厚さは、大電流が流れることやワイヤボンディング時のクッション性を確保する観点から、1μm以上とすることが好ましい。上記厚さは、より好ましくは2μm以上であり、更に好ましくは4μm以上である。一方、形成の効率や装置小型化を目的に薄膜化を図る観点からは、10μm以下とすることが好ましく、より好ましくは8μm以下、更に好ましくは5μm以下である。   The thickness of the electrode layer of the present invention is preferably 1 μm or more from the viewpoint of ensuring that a large current flows and cushioning properties during wire bonding. The thickness is more preferably 2 μm or more, and further preferably 4 μm or more. On the other hand, from the viewpoint of reducing the film thickness for the purpose of forming efficiency and apparatus miniaturization, the thickness is preferably 10 μm or less, more preferably 8 μm or less, and still more preferably 5 μm or less.

バリア層
前記電極層と前記第1の金属層との間に介在するバリア層11は次の役割を有する。即ち、例えばAlである電極層9とAg合金である第1の金属層12とを直接積層すると、相互拡散が容易に生じる。この間で相互拡散が生じてAg化合物が形成されると、電極構造の電気抵抗が高まる、即ち導電率が低下し、各層の界面に脆い相互拡散層が生じるため、素子の性能が劣化する。また第1の金属層12から電極層9に拡散したAg原子が、更に下層の半導体基板10中にまで拡散すると半導体特性が著しく劣化する。バリア層11を上記電極層9と第1の金属層12の間に形成することで、上記相互拡散を防ぐことができる。
Barrier layer The barrier layer 11 interposed between the electrode layer and the first metal layer has the following role. That is, for example, when the electrode layer 9 made of Al and the first metal layer 12 made of Ag alloy are directly laminated, mutual diffusion easily occurs. When interdiffusion occurs between them and an Ag compound is formed, the electrical resistance of the electrode structure increases, that is, the conductivity decreases, and a brittle interdiffusion layer is formed at the interface between the layers, so that the performance of the device deteriorates. Further, when Ag atoms diffused from the first metal layer 12 to the electrode layer 9 further diffuse into the lower semiconductor substrate 10, the semiconductor characteristics are remarkably deteriorated. By forming the barrier layer 11 between the electrode layer 9 and the first metal layer 12, the mutual diffusion can be prevented.

本発明者らは、例としてAlである電極層と上記バリア層とAg合金である第1の金属層との積層構造を作製し、製造工程での熱履歴を模擬して400℃で1時間の熱処理を施してから、該積層構造の厚さ方向断面のSEM観察を行った。そして、相互拡散の有無をSEM−EDX(Scanning Electron Microscope−Energy Dispersive X−ray spectrometry、エネルギー分散型X線分光法)にて確認した。その結果、上記バリア層を設けることによって、Ag合金とAlの相互拡散は生じないことを確認した。   As an example, the present inventors made a laminated structure of an electrode layer made of Al, the barrier layer, and a first metal layer made of an Ag alloy, and simulated a thermal history in the manufacturing process at 400 ° C. for 1 hour. After performing the heat treatment, SEM observation of the cross section in the thickness direction of the laminated structure was performed. The presence or absence of interdiffusion was confirmed by SEM-EDX (Scanning Electron Microscope-Energy Dispersive X-ray spectroscopy, energy dispersive X-ray spectroscopy). As a result, it was confirmed that the mutual diffusion of the Ag alloy and Al did not occur by providing the barrier layer.

前記バリア層には次の特性も求められる。即ち、上述の通り電極には大電流が流れるため、バリア層には導電性が求められる。さらに電極の製造工程で容易にパターン形成を行うには、バリア層と後述するAg合金とを共にエッチング加工できることが求められる。特にエッチング液として酸を用いた場合、Ag合金のエッチング速度は非常に速いため、バリア層には、上記Ag合金とほぼ同じ速度で容易にエッチングできることが求められる。   The barrier layer is also required to have the following characteristics. That is, since a large current flows through the electrode as described above, the barrier layer is required to have conductivity. Further, in order to easily form a pattern in the electrode manufacturing process, it is required that both the barrier layer and an Ag alloy described later can be etched. In particular, when an acid is used as the etching solution, the etching rate of the Ag alloy is very high, and therefore the barrier layer is required to be easily etched at almost the same rate as the Ag alloy.

これらの特性を兼備したバリア層としては、バリア層として汎用されるMo以外に、Mo合金、Mo窒化物、IZO、ならびにTi、Cr、Ta、W、およびこれらの金属元素を基とする合金や、該金属元素の窒化物などが挙げられる。これらの中でも、好ましくはMo、Mo合金、Mo窒化物、およびIZOよりなる群から選択されるいずれかであり、より好ましくはMo合金、Mo窒化物、およびIZOよりなる群から選択されるいずれかである。以下、Mo合金、Mo窒化物、およびIZOを含めたバリア層について説明する。   As a barrier layer having these characteristics, in addition to Mo, which is widely used as a barrier layer, Mo alloy, Mo nitride, IZO, Ti, Cr, Ta, W, and alloys based on these metal elements, And nitrides of the metal elements. Among these, Preferably it is either selected from the group which consists of Mo, Mo alloy, Mo nitride, and IZO, More preferably, any one selected from the group which consists of Mo alloy, Mo nitride, and IZO It is. Hereinafter, the barrier layer including Mo alloy, Mo nitride, and IZO will be described.

前記Mo合金として、合金元素にNb、Ti、Ta、W、Cr、Niの少なくとも1種を用いたものが挙げられる。例えば合金元素が上記Nbの場合、5〜15質量%のNbを含むMo−Nb合金が挙げられる。   Examples of the Mo alloy include alloys using at least one of Nb, Ti, Ta, W, Cr, and Ni as alloy elements. For example, when the alloy element is Nb, a Mo—Nb alloy containing 5 to 15% by mass of Nb can be given.

上記Mo−Nb合金は、Moと比較して耐食性が高く、恒温恒湿試験などの湿潤な雰囲気での酸化が抑制される。また上記Mo−Nb合金は、Moと比べてエッチング速度が遅いため、積層構造の電極においてエッチング形状の調整が必要な場合に適する。   The Mo—Nb alloy has higher corrosion resistance than Mo, and oxidation in a humid atmosphere such as a constant temperature and humidity test is suppressed. In addition, the Mo—Nb alloy has a slower etching rate than Mo, and thus is suitable when it is necessary to adjust the etching shape in an electrode having a laminated structure.

次にMo窒化物について説明する。Mo窒化物を構成する窒素原子は、遷移金属原子のように、シリコン半導体のバンドギャップに準位を作って特性を劣化させるコンタミネーションとはならない。また窒素を添加することでアモルファス化する。その結果、次に説明の通り、拡散経路となる結晶粒界の形成が抑えられ、Moをバリア層に用いる場合よりも拡散が抑制される。即ち、上記Moを、例えば電極層としてAl−Siエミッタ電極と第1の金属層であるAg合金との間のバリア層として用いた場合、プロセス温度が上昇すると、徐々に界面反応や拡散が生じ始める。特にMoの厚さが薄いと、薄い部分を起点として拡散が生じる恐れがある。これまでの実験で、Al、MoおよびAgの積層を徐々に昇温させたとき、400℃を超えたあたりから電気抵抗が徐々に増加することが分かっている。このことからMoと他層との界面反応や拡散が生じ始めていることが分かる。前記拡散は拡散速度の速い結晶粒界から始まる。即ち、拡散経路となる結晶粒界が多いほど拡散は生じやすい。これに対し、アモルファス化したMo窒化物は、結晶粒界が少ない分、拡散も抑制されると考えられる。   Next, Mo nitride will be described. Nitrogen atoms constituting Mo nitride do not become a contamination that deteriorates characteristics by creating a level in the band gap of a silicon semiconductor, like a transition metal atom. Moreover, it becomes amorphous by adding nitrogen. As a result, as described below, the formation of crystal grain boundaries serving as diffusion paths is suppressed, and diffusion is suppressed as compared with the case where Mo is used for the barrier layer. That is, when the Mo is used as a barrier layer between an Al-Si emitter electrode and an Ag alloy as the first metal layer as an electrode layer, for example, an interfacial reaction or diffusion occurs gradually as the process temperature rises. start. In particular, when the thickness of Mo is thin, there is a risk of diffusion starting from the thin portion. In the experiments so far, it has been found that when the temperature of the Al, Mo and Ag stack is gradually raised, the electrical resistance gradually increases from around 400 ° C. From this, it can be seen that interfacial reaction and diffusion between Mo and other layers are starting to occur. The diffusion starts from a grain boundary having a high diffusion rate. That is, the more the grain boundaries that serve as diffusion paths, the more likely diffusion occurs. On the other hand, it is considered that the amorphized Mo nitride is suppressed in diffusion due to the small number of crystal grain boundaries.

IZOはIn−Zn−Oで示される酸化物である。透明導電層として用いられており、ZnOを30質量%含む。このIZOはリン硝酢酸でエッチングが可能である。またIZOは、ディスプレイの透明画素電極として広く用いられている材料であり、プロセス適合性が高い。更にIZOは、アモルファスであり粒界がないため、粒界を経路とする拡散が生じにくい。   IZO is an oxide represented by In—Zn—O. It is used as a transparent conductive layer and contains 30% by mass of ZnO. This IZO can be etched with phosphorous nitric acid. IZO is a material widely used as a transparent pixel electrode of a display and has high process compatibility. Furthermore, since IZO is amorphous and has no grain boundary, diffusion through the grain boundary is less likely to occur.

IZO以外にも、In酸化物をベースとした透明導電膜として、ITO、即ちIn−Sn−Oや、IGO、即ちIn−Ge−Oや、IWO、即ちIn−W−Oを、バリア層に用いることができる。   In addition to IZO, ITO, that is, In—Sn—O, IGO, that is, In—Ge—O, and IWO, that is, In—W—O, are used as a transparent conductive film based on In oxide. Can be used.

上記バリア層の中でも、Mo、Mo合金、Mo窒化物、およびIZOは、スパッタリング法で形成でき、かつ電極層として用いうるAl−Si電極や第1の金属層であるAg合金と同じエッチング液、例えばリン硝酢酸を用いたエッチング加工が可能である。よって上層のAg合金と一括でエッチングが可能である。即ち、従来のプロセスが適応できるため、プロセス適合性が高いといえる。尚、Mo合金、Mo窒化物、およびIZOは、いずれもMoと比較するとエッチング速度が小さい。即ち、Ag合金とこれらの積層を一括エッチングすると、Ag合金の方がエッチングされやすい。しかしテーパ部のサイズに対し電極のサイズは大きいため、Ag合金のサイドエッチングが進展しても問題になるレベルではないと考えられる。   Among the barrier layers, Mo, Mo alloy, Mo nitride, and IZO can be formed by a sputtering method and can be formed as an electrode layer using the same etching solution as an Al-Si electrode or an Ag alloy that is a first metal layer, For example, an etching process using phosphorous nitric acid is possible. Therefore, etching with the upper layer Ag alloy is possible. That is, since the conventional process can be applied, it can be said that the process compatibility is high. Note that Mo alloy, Mo nitride, and IZO all have a lower etching rate than Mo. That is, when an Ag alloy and a laminate of these are collectively etched, the Ag alloy is more easily etched. However, since the size of the electrode is larger than the size of the tapered portion, it is considered that the level is not a problem even when side etching of the Ag alloy progresses.

バリア層の厚さが薄い場合には、熱処理後に容易に相互拡散が生じることがある。例えば、電極層としてAl系を用い、かつバリア層が金属からなる場合、該バリア層は多結晶であり粒界を含んでいる。よって高温で熱処理を行うと、粒界を介してAg原子がAl中に拡散する場合がある。これは粒界でのAg原子の拡散速度が非常に早く、AgとAlは低温でも容易に化合物を形成することから生じる。このような現象を抑制して、電極層であるAl系と第1の金属層であるAg合金との間の拡散を十分防止するには、バリア層の厚さを、200nm以上とすることが好ましく、より好ましくは300nm以上である。一方、バリア層が厚すぎると、応力による剥離が生じたり、厚さ方向よりも横方向へのエッチングが進むなど、良好なエッチングが困難となるため1000nm以下とすることが好ましく、より好ましくは500nm以下である。   When the barrier layer is thin, mutual diffusion may easily occur after the heat treatment. For example, when an Al-based electrode layer is used and the barrier layer is made of metal, the barrier layer is polycrystalline and includes a grain boundary. Therefore, when heat treatment is performed at a high temperature, Ag atoms may diffuse into Al through grain boundaries. This is because the diffusion rate of Ag atoms at the grain boundary is very fast, and Ag and Al easily form a compound even at a low temperature. In order to suppress such a phenomenon and sufficiently prevent diffusion between the Al-based electrode layer and the Ag alloy as the first metal layer, the thickness of the barrier layer should be 200 nm or more. Preferably, it is 300 nm or more. On the other hand, if the barrier layer is too thick, peeling due to stress occurs or etching in the lateral direction rather than in the thickness direction becomes difficult, so that it is difficult to achieve good etching. It is as follows.

第1の金属層
本発明における電極構造のうち、前記第1の金属層は特定のAg合金である。このAg合金は、例えばエミッタ電極の端子に相当する前記Al系と、第2の金属層であるCu系とを直接接触させて電気的な導通を確保するのに必要な接合層である。
First Metal Layer Of the electrode structure in the present invention, the first metal layer is a specific Ag alloy. This Ag alloy is, for example, a bonding layer necessary to ensure electrical conduction by directly contacting the Al-based material corresponding to the terminal of the emitter electrode and the Cu-based metal layer.

また本発明では、次に説明する通り、特定のAg合金とすることによって、電極構造の製造工程で受ける熱履歴に対し、耐熱性を確保することができる。   Moreover, in this invention, heat resistance can be ensured with respect to the heat history received in the manufacturing process of an electrode structure by using a specific Ag alloy as explained below.

即ち、Agを接合層に用いた場合には、電極構造の製造工程で受ける400℃の熱により、Agの表面が容易に凝集し表面荒れが生じる。Agの凝集は熱によるマイグレーションが起因である。凝集が生じ、表面荒れの生じたAg表面に対して第2の電極層であるCu系を形成すると、これらの界面に空隙が生じて接合強度の低下、即ち密着性の低下、ひいては接合の信頼性低下を招く。また、Ag合金の表面荒れがCu系表面に転写されると、その後のCuワイヤボンディング時に、Cuワイヤと第2の電極層であるCu系との接触面が十分得られず接合強度が低下し、この場合も接合の信頼性が低下する。よって、電極の製造工程で受ける300〜400℃の熱処理において上記マイグレーションを抑制する必要がある。   That is, when Ag is used for the bonding layer, the surface of Ag is easily aggregated and roughened by the heat of 400 ° C. received in the manufacturing process of the electrode structure. Ag aggregation is caused by thermal migration. When a Cu-based second electrode layer is formed on the Ag surface where aggregation occurs and the surface is roughened, voids are generated at these interfaces, resulting in a decrease in bonding strength, that is, a decrease in adhesion, and thus a reliability of bonding. Cause a decline in sex. Further, when the surface roughness of the Ag alloy is transferred to the Cu-based surface, a sufficient contact surface between the Cu wire and the Cu-based second electrode layer cannot be obtained during subsequent Cu wire bonding, resulting in a decrease in bonding strength. Also in this case, the reliability of bonding is lowered. Therefore, it is necessary to suppress the migration in the heat treatment at 300 to 400 ° C. received in the electrode manufacturing process.

そこで本発明では、上記マイグレーションを抑制することのできるAg合金を用いる。本発明で規定のAg合金であれば、添加した合金元素が、熱によるAgの表面マイグレーションを抑制するため、凝集が生じず平坦性を維持できる。その結果、前記Ag合金上に形成するCu系と、該Ag合金との接合強度を高めることができる。更に、前記Ag合金の上に形成されるCu系も表面の平坦なものが得られ、該Cu系とCuワイヤとの接合強度も高めることができる。そしてその結果、電極とCuワイヤの接続信頼性が高い半導体電極構造を得ることができる。   Therefore, in the present invention, an Ag alloy that can suppress the migration is used. In the case of the Ag alloy specified in the present invention, the added alloy element suppresses the surface migration of Ag due to heat, so that aggregation does not occur and flatness can be maintained. As a result, the bonding strength between the Cu alloy formed on the Ag alloy and the Ag alloy can be increased. Further, a Cu-based material formed on the Ag alloy can be obtained with a flat surface, and the bonding strength between the Cu-based material and the Cu wire can be increased. As a result, a semiconductor electrode structure having high connection reliability between the electrode and the Cu wire can be obtained.

前記Ag合金は、合金元素として、Nd:0.10原子%以上2.0原子%以下、およびBi:0.08原子%以上2.0原子%以下のうちの少なくとも一種を含む。   The Ag alloy contains at least one of Nd: 0.10 atomic% and 2.0 atomic% and Bi: 0.08 atomic% and 2.0 atomic% as alloying elements.

Ndは、原子半径がAgと比べて大きいため、空孔をトラップすることでAg拡散を抑制する効果を有する。この効果はAgにCuのみを添加した場合には見られない効果である。この効果を発揮させるには、Ndを0.10原子%以上含有させる。Ndの含有量は好ましくは0.12原子%以上、より好ましくは0.15原子%以上、更に好ましくは0.20%以上である。一方、Ndが過剰に含まれると、電気抵抗率が高まることから、Ndの含有量は2.0原子%以下、好ましくは1.5原子%以下とする。   Since Nd has a larger atomic radius than Ag, it has the effect of suppressing Ag diffusion by trapping vacancies. This effect is not seen when only Cu is added to Ag. In order to exert this effect, Nd is contained in an amount of 0.10 atomic% or more. The content of Nd is preferably 0.12 atomic% or more, more preferably 0.15 atomic% or more, and further preferably 0.20% or more. On the other hand, if Nd is excessively contained, the electrical resistivity is increased, so the Nd content is 2.0 atomic% or less, preferably 1.5 atomic% or less.

またBiは、前述の、熱によるAgのマイグレーションを抑制し、凝集が生じず平坦性を維持する効果の大きい元素である。更にBiとNdは、微量添加で熱処理後のAgのグレイン成長を抑制するため、表面荒れの原因となるAgの異常粒成長を抑制することができる。この効果を発揮させるには、Biを0.08原子%以上含有させる。Biの含有量は好ましくは0.10原子%以上、より好ましくは0.12原子%以上である。一方、Biが過剰に含まれると、電気抵抗率が高まるので、Biの含有量は2.0原子%以下、好ましくは1.5原子%以下とする。   Bi is an element having a large effect of suppressing the above-described migration of Ag due to heat and maintaining flatness without causing aggregation. Further, Bi and Nd can suppress the grain growth of Ag after heat treatment by addition of a small amount, and thus can suppress the abnormal grain growth of Ag that causes surface roughness. In order to exhibit this effect, Bi is contained by 0.08 atomic% or more. The Bi content is preferably 0.10 atomic% or more, more preferably 0.12 atomic% or more. On the other hand, if Bi is excessively contained, the electrical resistivity increases, so the Bi content is 2.0 atomic% or less, preferably 1.5 atomic% or less.

前記NbとBiは、単独で、または併合して用いることができる。本発明のAg合金として、上記合金元素を上記量含み、残部Agおよび不可避不純物からなるものが挙げられる。   Nb and Bi can be used alone or in combination. Examples of the Ag alloy of the present invention include those containing the above-mentioned alloy elements in the above-mentioned amount and comprising the balance Ag and inevitable impurities.

前記第1の金属層は、合金元素として更に、Cuを0原子%超2.0原子%以下含んでいてもよい。Cuの含有量は好ましくは0.10原子%以上である。   The first metal layer may further contain more than 0 atomic% and not more than 2.0 atomic% of Cu as an alloy element. The Cu content is preferably 0.10 atomic% or more.

例えば上記量のNdと共に上記量のCuを含むAg合金は、後述する実施例に示す通り、上記量のNdを含むAg合金等と同じく、電極構造の製造工程で受ける300〜400℃の熱履歴に対して優れた耐熱性を発揮する。   For example, an Ag alloy containing the above amount of Nd together with the above amount of Cu has a heat history of 300 to 400 ° C. that is received in the manufacturing process of the electrode structure, as in the case of an Ag alloy containing the above amount of Nd, as shown in the examples described later. Excellent heat resistance.

第1の金属層の厚さは、電極層であるAl系と第2の金属層であるCu系とを良好に接合する観点や熱履歴に対する耐熱性確保の観点から、300nm以上とすることが好ましく、より好ましくは500nm以上である。一方、第1の金属層が厚すぎると、厚さ方向よりも横方向へのエッチングが進みやすくなり良好なエッチングが困難となる。よって第1の金属層の厚さは、1000nm以下とすることが好ましく、より好ましくは700nm以下である。   The thickness of the first metal layer should be 300 nm or more from the viewpoint of satisfactorily bonding the Al-based electrode layer and the Cu-based second metal layer and ensuring heat resistance against thermal history. Preferably, it is 500 nm or more. On the other hand, if the first metal layer is too thick, etching in the lateral direction rather than in the thickness direction is likely to proceed, and good etching becomes difficult. Therefore, the thickness of the first metal layer is preferably 1000 nm or less, more preferably 700 nm or less.

第2の金属層
第2の金属層として、Cu系は、下記のCuワイヤと容易に接続させるために形成する。この第2の金属層を設けることによって、Cuワイヤは同質材料と接続されるため接続信頼性に優れる。また硬度が固く、厚さの厚いCu系をCuワイヤの相手材に用いることで、ボンディング時の素子への機械的なダメージを防ぐこともできる。第2の金属層であるCu系として、厚膜化が容易である観点から圧延またはめっきにより形成されたCu箔またはCu合金箔が好ましい。より好ましくは転写法に対応した、予め電極パターンの施されたパターン付の圧延箔またはめっき箔である。Cu系として、Cuの他に、一般にCu合金箔として流通しているCu−0.15原子%Sn、Cu−0.3原子%Cr−0.25原子%Sn−0.2原子%Zn、Cu−0.03原子%Zr等のCu合金を用いることができる。
Second metal layer As the second metal layer, a Cu-based material is formed for easy connection to the following Cu wire. By providing this second metal layer, the Cu wire is connected to the homogeneous material, so that the connection reliability is excellent. Moreover, mechanical damage to the element at the time of bonding can also be prevented by using a hard Cu-based material having a high hardness as the counterpart material of the Cu wire. A Cu foil or Cu alloy foil formed by rolling or plating is preferable as the Cu-based second metal layer from the viewpoint of easy film thickening. More preferably, it is a rolled foil or plating foil with a pattern on which an electrode pattern has been applied in advance, corresponding to the transfer method. As Cu-based, in addition to Cu, Cu-0.15 atomic% Sn, Cu-0.3 atomic% Cr-0.25 atomic% Sn-0.2 atomic% Zn, which are generally distributed as Cu alloy foils, A Cu alloy such as Cu-0.03 atomic% Zr can be used.

第2の金属層の厚さは、前記Cuワイヤと容易に接続できて接合強度を確保する観点から、3μm以上とすることが好ましく、より好ましくは5μm以上である。一方、第2の金属層が厚すぎても電極パターンへの加工が困難であるため、第2の金属層の厚さは、35μm以下とすることが好ましく、より好ましくは15μm以下である。   The thickness of the second metal layer is preferably 3 μm or more, more preferably 5 μm or more, from the viewpoint of easily connecting to the Cu wire and ensuring the bonding strength. On the other hand, since it is difficult to process the electrode pattern even if the second metal layer is too thick, the thickness of the second metal layer is preferably 35 μm or less, more preferably 15 μm or less.

本発明の電極構造は、上記Cu系に対しワイヤ電極がボンディングされたものである。上記ボンディングに用いられるワイヤ電極は、従来より用いられているCuまたはCu合金を使用すればよい。   The electrode structure of the present invention is obtained by bonding a wire electrode to the Cu system. The wire electrode used for the bonding may be Cu or Cu alloy that has been used conventionally.

本発明の電極構造によれば、Cuワイヤボンディングに供するときに、最表面に硬質の上記Cu系が形成されていると共に、半導体基板側から順に、電極層とバリア層と第1の金属層と第2の金属層とが積層構造を形成しているため、Cuワイヤボンディング時にCuワイヤが素子側に押し込まれても、上記積層構造がクッションの役割を果たし、断線による素子破壊が抑制されてボンディングの信頼性が向上する。   According to the electrode structure of the present invention, when being subjected to Cu wire bonding, the hard Cu system is formed on the outermost surface, and the electrode layer, the barrier layer, and the first metal layer are sequentially formed from the semiconductor substrate side. Since the second metal layer forms a laminated structure, even if the Cu wire is pushed into the element side during Cu wire bonding, the laminated structure serves as a cushion, and element destruction due to disconnection is suppressed and bonding is performed. Reliability is improved.

以下、本発明の電極構造の製造工程について、図2を例に説明する。   Hereinafter, the manufacturing process of the electrode structure of the present invention will be described with reference to FIG.

半導体基板10は、Cuワイヤが用いられうるパワー半導体で一般に用いられる基板であればよい。例えば、下記の実施例で用いるSi基板の他、SiC基板、GaN基板、ダイヤモンド基板等が挙げられる。   The semiconductor substrate 10 may be a substrate generally used in a power semiconductor that can use Cu wires. For example, in addition to the Si substrate used in the following examples, a SiC substrate, a GaN substrate, a diamond substrate, and the like can be given.

電極層9は、スパッタリング法やイオンプレーティング法、電子ビーム蒸着法、真空蒸着法等により得られるが、スパッタリング法にてスパッタリングターゲットを用いて形成することが望ましい。以下、上記スパッタリングターゲットを、単に「ターゲット」ということがある。   The electrode layer 9 can be obtained by a sputtering method, an ion plating method, an electron beam vapor deposition method, a vacuum vapor deposition method, or the like, but is preferably formed by a sputtering method using a sputtering target. Hereinafter, the sputtering target may be simply referred to as “target”.

続いて、エッチングを施して電極層9を形成する。該エッチングは一般的な方法で行えばよく、例えば電極層9にAlやAl−Siを適用する場合、リン硝酢酸を用いたウェットエッチングが挙げられる。   Subsequently, an electrode layer 9 is formed by etching. The etching may be performed by a general method. For example, when Al or Al—Si is applied to the electrode layer 9, wet etching using phosphorous nitric acid may be used.

バリア層11の形成方法は、後述する第1の金属層であるAg合金や第2の金属層であるCu系よりも比較的薄いことが望ましいため、例えばDCマグネトロンスパッタ法等のスパッタリング法、蒸着法で形成することが好ましい。Mo窒化物は反応性スパッタによって形成することができる。   Since the barrier layer 11 is preferably formed to be relatively thinner than an Ag alloy that is a first metal layer and a Cu metal that is a second metal layer, which will be described later, for example, a sputtering method such as a DC magnetron sputtering method, vapor deposition, or the like. It is preferable to form by a method. Mo nitride can be formed by reactive sputtering.

バリア層11として、MoやMo合金を形成する場合は、ターゲットとして、Moや前記Mo合金と同じ成分組成のMo合金ターゲットを用いスパッタリングを行えばよい。またバリア層11として、IZOや、ITO、IGO、IWOを形成する場合には、それぞれ同じ組成のIZOターゲット、ITOターゲット、IGOターゲット、IWOターゲットを用いてスパッタリングを行えばよい。   When Mo or Mo alloy is formed as the barrier layer 11, sputtering may be performed using a Mo alloy target having the same composition as Mo or the Mo alloy as a target. When IZO, ITO, IGO, or IWO is formed as the barrier layer 11, sputtering may be performed using an IZO target, ITO target, IGO target, or IWO target having the same composition.

上記MoやMo−Nb合金は、結晶粒界を有している。これらは、上述の通り、アモルファス化したMo窒化物等と比較すると拡散が生じやすい。しかしながら、これらの厚さを500nmと厚くし、かつ形成条件を制御する等して粒界密度を小さく、即ち、結晶粒径を大きめとすれば、拡散を抑制することができる。一方、Mo窒化物やIZO、ITOは、アモルファスであり粒界が存在しないため、Ag原子の拡散が生じにくい。   The Mo or Mo—Nb alloy has a grain boundary. As described above, these are likely to be diffused as compared with amorphous Mo nitride or the like. However, if the thickness is increased to 500 nm and the grain boundary density is reduced by controlling the formation conditions, that is, the crystal grain size is increased, diffusion can be suppressed. On the other hand, Mo nitride, IZO, and ITO are amorphous and have no grain boundary, so that Ag atoms hardly diffuse.

前記金属や合金、IZO等の酸化物のスパッタリング法での形成条件は、特に限定されないが、例えば以下のような条件を採用することが好ましい。
・基板温度:室温〜150℃
・雰囲気ガス:Arなどの不活性ガス
・形成時のガス圧、例えばArガス圧:1.0〜5.0mTorr
・スパッタパワー:100〜2000W
・到達真空度:1×10−5Torr以下
The conditions for forming the metal, alloy, oxide such as IZO in the sputtering method are not particularly limited, but for example, the following conditions are preferably employed.
-Substrate temperature: Room temperature to 150 ° C
Atmospheric gas: Inert gas such as Ar Gas pressure at the time of formation, for example, Ar gas pressure: 1.0 to 5.0 mTorr
・ Sputtering power: 100-2000W
-Ultimate vacuum: 1 x 10-5 Torr or less

Mo窒化物は、反応性スパッタによって形成することができる。詳細には例えば、スパッタガスとして、窒素ガスを流量比で例えば17〜44%含むアルゴン+窒素ガスを用い、以下のような条件で形成することができる。
・基板温度:室温〜150℃
・形成時の全ガス圧:1.0〜5.0mTorr
・スパッタパワー:100〜2000W
・到達真空度:1×10−5Torr以下
Mo nitride can be formed by reactive sputtering. More specifically, for example, argon gas containing, for example, 17 to 44% nitrogen gas as a sputtering gas and nitrogen gas can be formed under the following conditions.
-Substrate temperature: Room temperature to 150 ° C
-Total gas pressure during formation: 1.0 to 5.0 mTorr
・ Sputtering power: 100-2000W
-Ultimate vacuum: 1 x 10-5 Torr or less

前記バリア層11として、例えば、約500nmの厚さのMoを形成する場合、一般的なガス圧条件である、例えば2mTorrで形成すると、応力が大きくなり、剥がれが生じやすくなる。これを防ぐため、上記厚さのバリア層の形成は、応力が低下する比較的高いガス圧を採用することが推奨される。   For example, when Mo having a thickness of about 500 nm is formed as the barrier layer 11, if it is formed at a general gas pressure condition, for example, 2 mTorr, the stress increases and peeling easily occurs. In order to prevent this, it is recommended to use a relatively high gas pressure at which the stress is reduced for the formation of the barrier layer having the above thickness.

次に第1の金属層12であるAg合金を形成する。Ag合金の形成方法として、DCマグネトロンスパッタ法等のスパッタリング法、蒸着法、電解めっき法、スクリーン印刷法、インクジェット法等が挙げられる。前記スパッタリング法での形成条件として、前記Ag合金と同じ成分組成のAg合金ターゲットを用い、例えば以下の条件を採用することが挙げられる。
・基板温度:室温〜150℃
・雰囲気ガス:Arなどの不活性ガス
・形成時のガス圧、例えばArガス圧:1〜5mTorr
・スパッタパワー:100〜2000W
・到達真空度:1×10−5Torr以下
Next, an Ag alloy that is the first metal layer 12 is formed. Examples of the method for forming the Ag alloy include sputtering methods such as DC magnetron sputtering, vapor deposition, electrolytic plating, screen printing, and ink jet. Examples of the formation conditions in the sputtering method include using an Ag alloy target having the same composition as that of the Ag alloy, and employing the following conditions, for example.
-Substrate temperature: Room temperature to 150 ° C
Atmospheric gas: Inert gas such as Ar Gas pressure at the time of formation, for example, Ar gas pressure: 1 to 5 mTorr
・ Sputtering power: 100-2000W
-Ultimate vacuum: 1 x 10-5 Torr or less

次いで、バリア層11と第1の金属層12の積層に対して、フォトレジストを塗布してリソグラフィにてレジストパターンを形成する。本発明で推奨のバリア層と規定のAg合金との積層構造によれば、これらの積層に対し、リン硝酢酸を用い一括してウェットエッチングすることができる。前記フォトレジストには、例えばリン硝酢酸として、ナガセケムテックス製の商品名:AC−101を液温40℃で用いることが挙げられる。   Next, a photoresist is applied to the stacked layer of the barrier layer 11 and the first metal layer 12, and a resist pattern is formed by lithography. According to the laminated structure of the barrier layer and the prescribed Ag alloy recommended in the present invention, these laminated layers can be wet-etched collectively using phosphorous nitric acid. Examples of the photoresist include use of Nagase ChemteX's trade name: AC-101 at a liquid temperature of 40 ° C., for example, as phosphorous nitrate acetic acid.

次に、剥離液として東京応化工業製の商品名:TOK104を用い、レジストを剥離する。その後、図2には図示していないウェハ裏面のコレクタ層のイオン注入を行うと共に、コレクタ電極としてAlをスパッタリング法で形成し、次いで例えば真空中にて400℃で活性化熱処理を行う。本発明によれば、この熱処理において、Ag合金のマイグレーションが抑制されるため、上記熱処理後もAg合金の表面が平滑に保たれる。   Next, the resist is stripped using a product name: TOK104 manufactured by Tokyo Ohka Kogyo Co., Ltd. as the stripping solution. Thereafter, the collector layer on the back surface of the wafer (not shown in FIG. 2) is ion-implanted, and Al is formed as a collector electrode by a sputtering method. According to the present invention, since the migration of the Ag alloy is suppressed in this heat treatment, the surface of the Ag alloy is kept smooth even after the heat treatment.

次いで第2の金属層13であるCu系を形成する。Cu系の形成には、圧延、めっき、スパッタリング、蒸着法の他、スクリーン印刷やインクジェット法が挙げられる。これらの中でも、圧延またはめっきによりCu箔またはCu合金箔を形成することが好ましい。前記めっき法として、一般的には電解めっき法が挙げられるが、無電解めっき法を行ってもよい。該無電解めっき法では、自己触媒反応による銅皮膜形成;や、触媒となるパラジウムや銅下地上で選択的にめっき浴中の銅イオンを還元する銅皮膜形成;が挙げられる。該無電解めっき法では、膜厚が薄くなりやすいため、更に電解めっきを行って膜厚を厚くしてもよい。また前記圧延法やめっき法を適用する場合、例えば、予め電極パターンを施した圧延銅箔や電解銅箔を、加熱しながら圧着してAg合金上に転写する「銅箔パターン転写法」を適用することができる。   Next, a Cu-based material that is the second metal layer 13 is formed. In addition to rolling, plating, sputtering, and vapor deposition methods, Cu-based formation includes screen printing and ink jet methods. Among these, it is preferable to form Cu foil or Cu alloy foil by rolling or plating. The plating method generally includes an electrolytic plating method, but an electroless plating method may be performed. Examples of the electroless plating method include formation of a copper film by an autocatalytic reaction; and formation of a copper film that selectively reduces copper ions in a plating bath on palladium as a catalyst or a copper base. In the electroless plating method, the film thickness tends to be thin, and therefore, the electroplating may be further performed to increase the film thickness. In addition, when applying the rolling method or the plating method, for example, a “copper foil pattern transfer method” in which a rolled copper foil or an electrolytic copper foil that has been subjected to an electrode pattern in advance is pressed and transferred onto an Ag alloy while heating is applied. can do.

前記スパッタリング法や蒸着法でCu系を形成する場合は、Cu系形成後にリソグラフィを用いたパターン加工が必要になる。スパッタリング法や蒸着法の利点はnmオーダーで厚さの制御が可能で、均一性に優れる点である。ただし、スパッタリング法や蒸着法の場合、Cuワイヤのダメージ抑制のために必要なCu系の厚膜化の観点からは、形成の効率が他の手法よりも劣る。   When forming a Cu system by the sputtering method or the vapor deposition method, pattern processing using lithography is necessary after the Cu system is formed. The advantage of the sputtering method or the vapor deposition method is that the thickness can be controlled in the order of nm and the uniformity is excellent. However, in the case of the sputtering method or the vapor deposition method, the formation efficiency is inferior to other methods from the viewpoint of increasing the thickness of the Cu-based film necessary for suppressing damage to the Cu wire.

また前記めっき法は、添加物としてアルカリ金属を用いており、これらが素子中に拡散しウェハ汚染が生じた場合には、素子特性が劣化するので注意が必要である。まためっき法にはデメリットとして、めっき浴や廃液の管理などの負担がある。   In the plating method, alkali metals are used as additives, and when these diffuse into the device and cause wafer contamination, the device characteristics deteriorate, so care must be taken. In addition, the plating method has disadvantages such as plating bath and waste liquid management.

前記第2の金属層であるCu系上に、電極ワイヤ14としてCuワイヤを用い、ボンディングを行う。詳細には、Cu系とCuワイヤとを圧着させて超音波振動を加えると、Cu系とCuワイヤの表面の酸化層が破れて真性面が得られ、Cu元素どうしの金属間結合により容易にボンディングすることができる。Cu系とCuワイヤの間の接合強度を得るため、上記ボンディングは一般に不活性ガス中で行われる。不活性ガス中であればCu表面の酸化層形成を防ぐことができ、超音波振動により真性面を露出して圧着することで接合が可能となる。またボンディング中の雰囲気には水素を添加するなどし、還元性雰囲気で行われる場合もある。   Bonding is performed using a Cu wire as the electrode wire 14 on the Cu-based second metal layer. More specifically, when ultrasonic vibration is applied by crimping a Cu system and a Cu wire, an oxide layer on the surface of the Cu system and the Cu wire is broken and an intrinsic surface is obtained. Can be bonded. In order to obtain the bonding strength between the Cu system and the Cu wire, the bonding is generally performed in an inert gas. If it is in an inert gas, the formation of an oxide layer on the Cu surface can be prevented, and bonding is possible by exposing the intrinsic surface by ultrasonic vibration and pressing. In some cases, hydrogen is added to the atmosphere during bonding, for example, in a reducing atmosphere.

以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited by the following examples, but may be appropriately modified within a range that can meet the purpose described above and below. Of course, it is possible to implement them, and they are all included in the technical scope of the present invention.

実施例1
第1の金属層に用いるAg合金の表面荒さを評価するため、Si基板上に、バリア層として厚さが500nmのMoと、厚さが1000nmの表1に示す種々のAg合金とを形成した試料を用意した。また、前記Ag合金の代わりにAgを形成した試料も用意した。表1において「at%」は「原子%」である。前記Moは、スパッタガス:アルゴン、ガス圧:10mTorr、スパッタパワー:DC260Wの条件で形成した。また前記AgまたはAg合金は、DCマグネトロンスパッタ法で、基板温度:室温〜150℃、雰囲気ガス:Arなどの不活性ガス、Arガス圧:2mTorr、スパッタパワー:DC260Wの条件で形成した。
Example 1
In order to evaluate the surface roughness of the Ag alloy used for the first metal layer, Mo having a thickness of 500 nm and various Ag alloys having a thickness of 1000 nm shown in Table 1 were formed on the Si substrate. A sample was prepared. A sample in which Ag was formed instead of the Ag alloy was also prepared. In Table 1, “at%” is “atomic%”. The Mo was formed under the conditions of sputtering gas: argon, gas pressure: 10 mTorr, sputtering power: DC260W. The Ag or Ag alloy was formed by DC magnetron sputtering under the conditions of substrate temperature: room temperature to 150 ° C., atmosphere gas: inert gas such as Ar, Ar gas pressure: 2 mTorr, and sputtering power: DC 260 W.

本実施例では、接合歩留りに影響を与える表面荒さの指標として、この表面荒さと相関のある反射率を測定した。   In this example, the reflectivity correlated with the surface roughness was measured as an index of the surface roughness that affects the bonding yield.

上記Ag系の反射率は次の様にして測定した。即ち、上記試料を用い、真空中にて熱処理温度300℃または400℃で1時間熱処理を行った後、JIS R 3106に基づき、D65光源での波長380〜780nmの光によって、可視光反射率を分光光度計(日本分光株式会社製:可視・紫外分光光度計「V−570」)を用いて測定した。具体的には、基準ミラーの反射光強度に対する、上記作製した試料の反射光強度(測定値)の割合、即ち、[試料の反射光強度/基準ミラーの反射光強度]×100%を「反射率」として求めた。そして本実施例では、λ=400nmでの反射率を下記基準で評価した。そして、反射率が70%以上であるAおよびBの場合は表面粗さが小さく、Cu系との接合強度が確保されているとして合格とし、反射率が70%を下回るCの場合は、表面粗さが大きく、Cu系との接合強度が不足しているとして不合格とした。その結果を表1に示す。
反射率の評価基準
A:反射率が80%以上
B:反射率が70%以上80%未満
C:反射率が70%未満
The Ag-based reflectance was measured as follows. That is, after performing heat treatment at a heat treatment temperature of 300 ° C. or 400 ° C. for 1 hour in a vacuum using the above sample, the visible light reflectance is increased by light having a wavelength of 380 to 780 nm with a D65 light source based on JIS R 3106. It measured using the spectrophotometer (The JASCO Corporation make: Visible and ultraviolet spectrophotometer "V-570"). Specifically, the ratio of the reflected light intensity (measured value) of the prepared sample to the reflected light intensity of the reference mirror, that is, [reflected light intensity of sample / reflected light intensity of reference mirror] × 100% is “reflected”. Rate ". In this example, the reflectance at λ = 400 nm was evaluated according to the following criteria. And in the case of A and B having a reflectance of 70% or more, the surface roughness is small, and the bonding strength with the Cu-based material is secured, and in the case of C in which the reflectance is less than 70%, the surface Since the roughness was large and the bonding strength with the Cu system was insufficient, it was rejected. The results are shown in Table 1.
Evaluation criteria for reflectance A: Reflectance is 80% or more B: Reflectance is 70% or more and less than 80% C: Reflectance is less than 70%

この表1から次のことがわかる。比較例として、AgとMoの積層構造を用いたNo.1では、熱によってAgの表面が容易に凝集し、300℃の熱処理温度で反射率が低下し、400℃の熱処理温度では表面が著しく荒れて反射率が急激に低下した。また、Ag合金であるがNdの含有量が不足しているNo.2やBiの含有量が不足しているNo.8も、反射率が低下した。また、NdやBiを含まず、Cuのみを合金元素として含むNo.5〜7も反射率が低下した。これに対し、No.3、4、9〜12の通り、規定量のNd、Biの少なくとも一種を含むAg合金を形成した場合はいずれも、300℃での熱処理で80%以上の反射率を確保でき、更に400℃での熱処理を行った後も70%以上の反射率を確保でき、表面の荒れが抑制された。   From Table 1, the following can be understood. As a comparative example, No. 1 using a laminated structure of Ag and Mo. In No. 1, the Ag surface was easily agglomerated by heat, the reflectivity was lowered at a heat treatment temperature of 300 ° C., and the reflectivity was drastically lowered due to the rough surface at 400 ° C. Moreover, although it is an Ag alloy, the Nd content is insufficient. No. 2 or Bi content is insufficient. The reflectance of 8 also decreased. Further, No. containing Nd and Bi and containing only Cu as an alloy element. The reflectance also decreased in 5-7. In contrast, no. As in 3, 4, 9-12, when an Ag alloy containing at least one of Nd and Bi in the specified amount is formed, a reflectance of 80% or more can be secured by heat treatment at 300 ° C., and further 400 ° C. Even after the heat treatment at, the reflectance of 70% or more was secured, and the surface roughness was suppressed.

表1のNo.1のAg、No.11のAg−0.7at%Nd−0.9at%Cu、No.12のAg−0.2at%Nd−0.35at%Biについては、熱処理条件が更に「熱処理なし」「熱処理温度200℃」および「熱処理温度500℃」の場合も、反射率を測定した。これらの熱処理条件と反射率との関係を図3に示す。   No. in Table 1 1 Ag, No. 1 11 Ag-0.7 at% Nd-0.9 at% Cu, No. 11 For 12 Ag-0.2 at% Nd-0.35 at% Bi, the reflectance was also measured when the heat treatment conditions were “no heat treatment”, “heat treatment temperature 200 ° C.”, and “heat treatment temperature 500 ° C.”. The relationship between these heat treatment conditions and reflectance is shown in FIG.

この図3から次のことがわかる。即ち、Agは熱処理後の凝集が合金より進みやすく、熱処理温度が300℃を超えると反射率が急激に低下する。これに対し、本発明で規定のAg合金であるAg−0.7at%Nd−0.9at%CuとAg−0.2at%Nd−0.35at%Biは、真空中400℃で熱処理後も反射率低下は小さく、また500℃で熱処理後も反射率低下は小さく鏡面を保っている。これらのうち特にAg−0.7at%Nd−0.9at%Cuの方が、熱処理温度300℃や400℃での反射率低下が小さく、耐凝集性がより高いといえる。   The following can be understood from FIG. That is, Ag is more likely to agglomerate after the heat treatment than the alloy, and when the heat treatment temperature exceeds 300 ° C., the reflectance decreases rapidly. On the other hand, Ag-0.7 at% Nd-0.9 at% Cu and Ag-0.2 at% Nd-0.35 at% Bi, which are the Ag alloys specified in the present invention, are also subjected to heat treatment at 400 ° C. in a vacuum. The reflectivity decrease is small, and the reflectivity decrease is small even after heat treatment at 500 ° C., and the mirror surface is maintained. Among these, it can be said that Ag-0.7 at% Nd-0.9 at% Cu is particularly less resistant to aggregation at heat treatment temperatures of 300 ° C. and 400 ° C., and has higher aggregation resistance.

上記表1および図3の結果から、規定のAg合金を形成すれば、該Ag合金と直接接するCu系との高い接合強度を確保することができ、結果として、電極構造の信頼性を高め得ることがわかる。またCu系表面の平坦性を確保して該Cu系とCuワイヤボンディングとの接合強度向上も期待できる。   From the results shown in Table 1 and FIG. 3, if a prescribed Ag alloy is formed, high bonding strength with the Cu-based material that is in direct contact with the Ag alloy can be secured, and as a result, the reliability of the electrode structure can be improved. I understand that. In addition, the flatness of the Cu-based surface can be secured, and an improvement in bonding strength between the Cu-based and Cu wire bonding can be expected.

実施例2
Si基板上に、膜厚が500nmの表2に示すバリア層と、膜厚が1000nmであって表1のNo.11、12と同じ成分組成の、第1の金属層に該当するAg合金とを形成し、評価用サンプルを得た。表2におけるバリア層としてMoは実施例1と同様にして形成し、Mo窒化物、Mo−Nb合金、IZO、ITO、Tiは、下記の条件で形成した。
Example 2
On the Si substrate, the barrier layer shown in Table 2 with a film thickness of 500 nm and the film thickness of 1000 nm with No. An Ag alloy corresponding to the first metal layer having the same composition as 11 and 12 was formed to obtain a sample for evaluation. As a barrier layer in Table 2, Mo was formed in the same manner as in Example 1, and Mo nitride, Mo—Nb alloy, IZO, ITO, and Ti were formed under the following conditions.

Mo窒化物の形成には、Moターゲットを用いて、スパッタガスにはアルゴンと窒素の混合ガスを用いた。このときアルゴン+窒素の全ガス流量に対する窒素ガスの流量比は30%とした。以下にMo窒化物のスパッタ条件を示す。
Mo窒化物のスパッタ条件
・スパッタガス:アルゴン+窒素(窒素ガス流量比30%)
・ガス圧:2mTorr
・パワー:RF500W
A Mo target was used to form the Mo nitride, and a mixed gas of argon and nitrogen was used as the sputtering gas. At this time, the flow rate ratio of nitrogen gas to the total gas flow rate of argon + nitrogen was 30%. The sputtering conditions for Mo nitride are shown below.
Mo-nitride sputtering conditions and sputtering gas: Argon + Nitrogen (nitrogen gas flow rate ratio 30%)
・ Gas pressure: 2mTorr
・ Power: RF500W

Mo−Nb合金の形成には、Nbを8at%含むMo−Nb合金をターゲットに用いた。以下にMo−Nb合金のスパッタ条件を示す。
Mo−Nb合金のスパッタ条件
・スパッタガス:アルゴン
・ガス圧:2mTorr
・パワー:DC260W
For the formation of the Mo—Nb alloy, a Mo—Nb alloy containing 8 at% Nb was used as a target. The sputtering conditions for the Mo—Nb alloy are shown below.
Sputtering conditions of Mo—Nb alloy ・ Sputtering gas: Argon ・ Gas pressure: 2 mTorr
・ Power: DC260W

IZOはIn−Zn−Oで示され、30質量%のZnOを含む酸化物である。また、ITOはIn−Sn−Oで示され、30質量%のSnOを含む酸化物である。以下にIZOとITOのスパッタ条件を示す。
IZOとITOのスパッタ条件
・スパッタガス:アルゴン、酸素の混合ガス
・ガス圧:2mTorr
・パワー:DC260W
IZO is represented by In—Zn—O and is an oxide containing 30% by mass of ZnO. ITO is an oxide containing In-Sn-O and containing 30% by mass of SnO. The sputtering conditions for IZO and ITO are shown below.
Sputtering conditions of IZO and ITO ・ Sputtering gas: Argon and oxygen mixed gas ・ Gas pressure: 2 mTorr
・ Power: DC260W

また、表2のバリア層としてTiは、Tiスパッタリングターゲットを用い、下記条件でスパッタリングを行って得た。
Tiのスパッタ条件
・スパッタガス:アルゴン
・ガス圧:2mTorr
・パワー:DC260W
Further, Ti was obtained as a barrier layer in Table 2 by performing sputtering under the following conditions using a Ti sputtering target.
Sputtering conditions of Ti ・ Sputtering gas: Argon ・ Gas pressure: 2 mTorr
・ Power: DC260W

上記各バリア層を形成してから、Al−Si電極のパターン幅を想定して、設計上の線幅1000μm角のボンディングパッドのパターンを形成し、評価用サンプルを得た。そしてこの評価用サンプルに対し、リン硝酢酸を用いてウェットエッチングを行った。詳細には、ナガセケムテックス製の商品名:AC−101であって液温が40℃のリン硝酢酸系エッチング液を用いてエッチングを行った。そして、エッチング残りが生じず、エッチング後の線幅が上記線幅の80%超である場合を、一括エッチングOKと評価した。一方、エッチング後の線幅が上記線幅の80%以下である場合を一括エッチングNGと評価した。また、バリア層やAg合金のエッチング残りが生じた場合;や、極度のアンダーカット、具体的には、バリア層のエッチングが早くて上層のAg合金が庇状に残った場合;剥離が生じた場合;についても、一括エッチングNGと評価した。これらの結果を表2に示す。   After forming each of the barrier layers, assuming a pattern width of the Al—Si electrode, a bonding pad pattern having a designed line width of 1000 μm square was formed to obtain an evaluation sample. And this sample for evaluation was wet-etched using phosphorous nitrate acetic acid. In detail, it etched using the phosphoric-acetic-acetate type etching liquid which is the product name: AC-101 by Nagase ChemteX, and whose liquid temperature is 40 degreeC. And the case where etching residue does not arise and the line width after an etching exceeds 80% of the said line width was evaluated as collective etching OK. On the other hand, the case where the line width after etching was 80% or less of the line width was evaluated as batch etching NG. In addition, when an etching residue of the barrier layer or the Ag alloy occurs; or, when an extreme undercut, specifically, when the barrier layer is etched quickly and the upper Ag alloy remains in a bowl shape; peeling occurs. Case: was also evaluated as batch etching NG. These results are shown in Table 2.

表2より次のことがわかる。表2から、Mo窒化物、Mo−Nb合金、IZOは、リン硝酢酸でAgと同時に一括エッチング可能であるが、ITOとTiは一括エッチングできないことがわかる。   Table 2 shows the following. From Table 2, it can be seen that Mo nitride, Mo—Nb alloy, and IZO can be etched together with phosphorous acetic acid simultaneously with Ag, but ITO and Ti cannot be etched together.

1 コレクタ電極
2 コレクタ層
3 ベース層
4 ボディー領域
5 エミッタ層
6 ゲート絶縁膜
7 ゲート電極
8 層間絶縁膜
9 電極層
10 半導体基板
11 バリア層
12 第1の金属層
13 第2の金属層
14 ワイヤ電極
DESCRIPTION OF SYMBOLS 1 Collector electrode 2 Collector layer 3 Base layer 4 Body region 5 Emitter layer 6 Gate insulating film 7 Gate electrode 8 Interlayer insulating film 9 Electrode layer 10 Semiconductor substrate 11 Barrier layer 12 1st metal layer 13 2nd metal layer 14 Wire electrode

Claims (6)

半導体基板上に設けられた電極構造であって、
電極層と、
前記電極層上に設けられたバリア層と、
前記バリア層上に設けられた第1の金属層と、
前記第1の金属層上に設けられた第2の金属層と、
前記第2の金属層に接合されたワイヤ電極とを備え、
前記第1の金属層は、合金元素として、Nd:0.10原子%以上2.0原子%以下、およびBi:0.08原子%以上2.0原子%以下のうちの少なくとも一種を含むAg合金であり、
前記第2の金属層はCuまたはCu合金であり、
前記ワイヤ電極はCuまたはCu合金であることを特徴とする電極構造。
An electrode structure provided on a semiconductor substrate,
An electrode layer;
A barrier layer provided on the electrode layer;
A first metal layer provided on the barrier layer;
A second metal layer provided on the first metal layer;
A wire electrode joined to the second metal layer,
The first metal layer includes, as an alloy element, Ag containing at least one of Nd: 0.10 atomic% to 2.0 atomic% and Bi: 0.08 atomic% to 2.0 atomic%. Alloy,
The second metal layer is Cu or Cu alloy;
The electrode structure is characterized in that the wire electrode is Cu or a Cu alloy.
前記第1の金属層は、合金元素として更に、Cuを0原子%超2.0原子%以下含むAg合金である請求項1に記載の電極構造。   2. The electrode structure according to claim 1, wherein the first metal layer is an Ag alloy further containing Cu in an amount of more than 0 atomic% and not more than 2.0 atomic% as an alloy element. 前記第2の金属層は、圧延またはめっきにより形成されたCu箔またはCu合金箔である請求項1または2に記載の電極構造。   The electrode structure according to claim 1, wherein the second metal layer is a Cu foil or a Cu alloy foil formed by rolling or plating. 前記バリア層は、Mo、Mo合金、Mo窒化物、およびIZOよりなる群から選択されるいずれかである請求項1〜3のいずれかに記載の電極構造。   The electrode structure according to claim 1, wherein the barrier layer is selected from the group consisting of Mo, Mo alloy, Mo nitride, and IZO. 前記電極層は、Ti、Mo、Ni、Al、Au、またはこれらの合金のいずれかである請求項1〜4のいずれかに記載の電極構造。   The electrode structure according to claim 1, wherein the electrode layer is one of Ti, Mo, Ni, Al, Au, or an alloy thereof. 請求項1〜5のいずれかに記載の電極構造を備えていることを特徴とする半導体装置。   A semiconductor device comprising the electrode structure according to claim 1.
JP2014250684A 2014-12-11 2014-12-11 Electrode structure Expired - Fee Related JP6068425B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2014250684A JP6068425B2 (en) 2014-12-11 2014-12-11 Electrode structure
PCT/JP2015/083187 WO2016093067A1 (en) 2014-12-11 2015-11-26 Electrode structure
TW104141414A TWI582851B (en) 2014-12-11 2015-12-10 Electrode structure and semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014250684A JP6068425B2 (en) 2014-12-11 2014-12-11 Electrode structure

Publications (2)

Publication Number Publication Date
JP2016115700A true JP2016115700A (en) 2016-06-23
JP6068425B2 JP6068425B2 (en) 2017-01-25

Family

ID=56107257

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014250684A Expired - Fee Related JP6068425B2 (en) 2014-12-11 2014-12-11 Electrode structure

Country Status (3)

Country Link
JP (1) JP6068425B2 (en)
TW (1) TWI582851B (en)
WO (1) WO2016093067A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018055693A1 (en) * 2016-09-21 2018-03-29 新電元工業株式会社 Semiconductor device
KR20190075686A (en) * 2017-12-21 2019-07-01 울산과학기술원 Steam generation device, and purification device comprising the same
JP2020035846A (en) * 2018-08-29 2020-03-05 新電元工業株式会社 Silicon carbide semiconductor device and method of manufacturing the same
JP6892023B1 (en) * 2020-08-03 2021-06-18 三菱電機株式会社 Semiconductor devices, semiconductor device manufacturing methods and power conversion devices
WO2022024572A1 (en) * 2020-07-27 2022-02-03 ローム株式会社 Semiconductor device
DE112020007244T5 (en) 2020-05-28 2023-03-09 Mitsubishi Electric Corporation SEMICONDUCTOR DEVICE, METHOD OF MANUFACTURE THE SAME, AND ELECTRIC POWER CONVERTER

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63148649A (en) * 1986-12-12 1988-06-21 Mitsubishi Electric Corp Electrode construction of semiconductor device
JP2010225586A (en) * 2008-11-10 2010-10-07 Kobe Steel Ltd Reflective anode and wiring film for organic el display device
JP2013125922A (en) * 2011-12-16 2013-06-24 Hitachi Automotive Systems Ltd Semiconductor device and circuit board
JP2014082367A (en) * 2012-10-17 2014-05-08 Nippon Micrometal Corp Power semiconductor device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010225572A (en) * 2008-11-10 2010-10-07 Kobe Steel Ltd Reflective anode and wiring film for organic el display device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63148649A (en) * 1986-12-12 1988-06-21 Mitsubishi Electric Corp Electrode construction of semiconductor device
JP2010225586A (en) * 2008-11-10 2010-10-07 Kobe Steel Ltd Reflective anode and wiring film for organic el display device
JP2013125922A (en) * 2011-12-16 2013-06-24 Hitachi Automotive Systems Ltd Semiconductor device and circuit board
JP2014082367A (en) * 2012-10-17 2014-05-08 Nippon Micrometal Corp Power semiconductor device

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10651038B2 (en) 2016-09-21 2020-05-12 Shindengen Electric Manufacturing Co., Ltd. Semiconductor device
JP6326547B1 (en) * 2016-09-21 2018-05-16 新電元工業株式会社 Semiconductor device
CN108093655A (en) * 2016-09-21 2018-05-29 新电元工业株式会社 Semiconductor device
TWI666769B (en) * 2016-09-21 2019-07-21 日商新電元工業股份有限公司 Semiconductor device
WO2018055693A1 (en) * 2016-09-21 2018-03-29 新電元工業株式会社 Semiconductor device
KR20190075686A (en) * 2017-12-21 2019-07-01 울산과학기술원 Steam generation device, and purification device comprising the same
KR102011974B1 (en) * 2017-12-21 2019-10-21 울산과학기술원 Steam generation device, and purification device comprising the same
JP2020035846A (en) * 2018-08-29 2020-03-05 新電元工業株式会社 Silicon carbide semiconductor device and method of manufacturing the same
JP7195086B2 (en) 2018-08-29 2022-12-23 新電元工業株式会社 Silicon carbide semiconductor device and method for manufacturing silicon carbide semiconductor device
DE112020007244T5 (en) 2020-05-28 2023-03-09 Mitsubishi Electric Corporation SEMICONDUCTOR DEVICE, METHOD OF MANUFACTURE THE SAME, AND ELECTRIC POWER CONVERTER
WO2022024572A1 (en) * 2020-07-27 2022-02-03 ローム株式会社 Semiconductor device
DE112021003392B4 (en) 2020-07-27 2024-03-28 Rohm Co., Ltd. Semiconductor component
JP6892023B1 (en) * 2020-08-03 2021-06-18 三菱電機株式会社 Semiconductor devices, semiconductor device manufacturing methods and power conversion devices
WO2022029828A1 (en) * 2020-08-03 2022-02-10 三菱電機株式会社 Semiconductor device, semiconductor device manufacturing method, and power conversion device

Also Published As

Publication number Publication date
JP6068425B2 (en) 2017-01-25
TW201633405A (en) 2016-09-16
WO2016093067A1 (en) 2016-06-16
TWI582851B (en) 2017-05-11

Similar Documents

Publication Publication Date Title
JP6068425B2 (en) Electrode structure
JP5549118B2 (en) Manufacturing method of semiconductor device
JP5983889B2 (en) Manufacturing method of semiconductor device
JP4449405B2 (en) Nitride semiconductor light emitting device and manufacturing method thereof
US9087833B2 (en) Power semiconductor devices
US9610655B2 (en) Solder paste
KR101998340B1 (en) Power Device Module and Method of fabricating the same
CN104170092B (en) Semiconductor device
JP2014082367A (en) Power semiconductor device
JP5327233B2 (en) Semiconductor device and manufacturing method thereof
EP2541626B1 (en) Nitride semiconductor light emitting element and method for manufacturing same
JP2014236043A (en) Semiconductor device and manufacturing method of the same
JP2017118014A (en) Laminate, semiconductor element and electrical machine
US20200152594A1 (en) Silicon carbide semiconductor device, silicon carbide semiconductor assembly, and method of manufacturing silicon carbide semiconductor device
JP6455109B2 (en) Semiconductor device and manufacturing method of semiconductor device
JP2001036084A (en) Back metal drain terminal with low stress and heat resistance
JP2011193007A (en) Semiconductor chip and semiconductor device using the same
JP2017118039A (en) Laminate, semiconductor element and electrical apparatus
JP2017157776A (en) Electrode film, semiconductor device having the same, and method of manufacturing semiconductor device
JP6407355B2 (en) Semiconductor device and manufacturing method thereof
JP2016122799A (en) Semiconductor device
KR102106076B1 (en) Power Semiconductor Device
JP2017117953A (en) Laminated electrode and semiconductor device including laminated electrode
JP2016122798A (en) Semiconductor device
JP2016122797A (en) Semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160901

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161222

R150 Certificate of patent or registration of utility model

Ref document number: 6068425

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees