JP2016114241A - Differential device - Google Patents

Differential device Download PDF

Info

Publication number
JP2016114241A
JP2016114241A JP2015223207A JP2015223207A JP2016114241A JP 2016114241 A JP2016114241 A JP 2016114241A JP 2015223207 A JP2015223207 A JP 2015223207A JP 2015223207 A JP2015223207 A JP 2015223207A JP 2016114241 A JP2016114241 A JP 2016114241A
Authority
JP
Japan
Prior art keywords
gear
pinion
differential device
differential
input member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015223207A
Other languages
Japanese (ja)
Other versions
JP6683460B2 (en
Inventor
森 裕之
Hiroyuki Mori
裕之 森
直哉 西村
Naoya Nishimura
直哉 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Musashi Seimitsu Industry Co Ltd
Original Assignee
Musashi Seimitsu Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Musashi Seimitsu Industry Co Ltd filed Critical Musashi Seimitsu Industry Co Ltd
Priority to US14/964,754 priority Critical patent/US9739364B2/en
Priority to DE102015224892.5A priority patent/DE102015224892B4/en
Priority to CN201510920595.7A priority patent/CN105697714B/en
Publication of JP2016114241A publication Critical patent/JP2016114241A/en
Application granted granted Critical
Publication of JP6683460B2 publication Critical patent/JP6683460B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H48/00Differential gearings
    • F16H48/38Constructional details

Abstract

PROBLEM TO BE SOLVED: To effectively prevent seizure of a pinion slide part or an engagement part of a pinion and a side gear, even when a tooth part of the side gear is separated far from an output shaft by enlargement of the side gear or when the pinion rotates at high speed, in a differential device.SOLUTION: A side gear S has a shaft part Sj connected to an output shaft A, and a flat intermediate wall part Sw integrally connected between the shaft part Sj and a tooth part Sg of the side gear S separated from the shaft part Sj toward the radial outside of an input member I. In the intermediate wall part Sw of at least one side gear S, provided is a through oil passage 15 of which both ends are opened to the inside surface and outside surface of the intermediate wall part Sw respectively.SELECTED DRAWING: Figure 1

Description

本発明は、差動装置、特にピニオン(差動ギヤ)を支持するピニオン支持部(差動ギヤ支持部)を支持して該ピニオン支持部と共に回転可能な入力部材の回転力を、ピニオンに噛合する歯部を外周部に有する一対のサイドギヤ(出力ギヤ)を介して一対の出力軸に分配して伝達するものの改良に関する。   The present invention supports a differential device, in particular, a pinion support portion (differential gear support portion) that supports a pinion (differential gear) and meshes with the pinion the rotational force of an input member that can rotate together with the pinion support portion. The present invention relates to an improvement in what is distributed and transmitted to a pair of output shafts via a pair of side gears (output gears) having teeth on the outer periphery.

従来、斯かる差動装置は、例えば特許文献1にも記載されているように公知である。従来装置では、サイドギヤの背面とデフケースとの間の隙間や、サイドギヤ内周と出力軸外周間のスプライン嵌合部を経て、ピニオンの摺動部やサイドギヤ噛合部に潤滑油が供給されるようになっている。   Conventionally, such a differential device is known as described in Patent Document 1, for example. In the conventional device, the lubricating oil is supplied to the sliding portion of the pinion and the side gear meshing portion through the gap between the back surface of the side gear and the differential case and the spline fitting portion between the inner periphery of the side gear and the outer periphery of the output shaft. It has become.

特開2008−89147号公報JP 2008-89147 A 特許第4803871号公報Japanese Patent No. 4803871 特開2002−364728号公報JP 2002-364728 A

ところが従来装置では、ピニオンとサイドギヤとの噛合部に大量の潤滑油を効率よく集めることができないため、例えばサイドギヤを大径化することで上記噛合部が出力軸から遠く離れる場合やピニオンが高速回転するような過酷な運転状況の場合には、ピニオンの摺動部やサイドギヤ噛合部への潤滑油の供給が不足してしまう虞れがある。   However, in the conventional device, a large amount of lubricating oil cannot be efficiently collected at the meshing portion of the pinion and the side gear. For example, when the meshing portion is far from the output shaft by increasing the diameter of the side gear, the pinion rotates at high speed. In such a severe driving situation, there is a risk that the supply of lubricating oil to the sliding portion of the pinion and the side gear meshing portion will be insufficient.

本発明は、斯かる事情に鑑みてなされたもので、上記問題を解決し得る差動装置を提供することを目的とする。   The present invention has been made in view of such circumstances, and an object thereof is to provide a differential device that can solve the above-described problems.

上記目的を達成するために、本発明に係る差動装置は、ピニオンを支持するピニオン支持部を支持して該ピニオン支持部と共に回転可能な入力部材の回転力を、前記ピニオンに噛合する歯部を外周部に有する一対のサイドギヤを介して一対の出力軸に分配して伝達する差動装置であって、前記一対のサイドギヤは、前記一対の出力軸にそれぞれ接続される軸部と、前記軸部と該軸部から前記入力部材の半径方向外方に離間した前記歯部との間を一体に接続する扁平な中間壁部とを有し、少なくとも一方の前記サイドギヤの前記中間壁部には、前記中間壁部の内側面と外側面とに両端が各々開口する貫通油路が形成される(これを第1の特徴とする)。   In order to achieve the above object, a differential according to the present invention includes a tooth portion that supports a pinion support portion that supports a pinion and meshes the rotational force of an input member that can rotate together with the pinion support portion with the pinion. A differential device that distributes and transmits to a pair of output shafts via a pair of side gears having an outer peripheral portion, wherein the pair of side gears are respectively connected to the pair of output shafts, and the shaft And a flat intermediate wall portion integrally connecting the tooth portion spaced from the shaft portion radially outward of the input member, and the intermediate wall portion of at least one of the side gears A through oil passage having both ends opened on the inner side surface and the outer side surface of the intermediate wall portion is formed (this is a first feature).

好適には、さらに、前記少なくとも一方のサイドギヤの外側面を覆う側壁部を有し且つ前記入力部材と一体に回転するよう結合されるカバー部と、前記側壁部の内側面と前記サイドギヤの外側面との間に介装されるワッシャとを備え、前記ワッシャの少なくとも内周部が前記貫通油路の、前記中間壁部の外側面への開口部に臨むように、該ワッシャ及び前記貫通油路の相対位置が設定される(これを第2の特徴とする)。   Preferably, the cover further includes a side wall covering the outer surface of the at least one side gear and coupled to rotate integrally with the input member, an inner surface of the side wall, and an outer surface of the side gear. A washer interposed between the washer and the penetrating oil passage so that at least an inner peripheral portion of the washer faces an opening of the penetrating oil passage to an outer surface of the intermediate wall portion. Relative position is set (this is the second feature).

好適には、前記側壁部の内側面と前記サイドギヤの外側面との相対向面の少なくとも一方に、前記ワッシャを嵌合保持するワッシャ保持溝が形成される(これを第3の特徴とする)。   Preferably, a washer holding groove for fitting and holding the washer is formed on at least one of the opposing surfaces of the inner side surface of the side wall portion and the outer side surface of the side gear (this is a third feature). .

好適には、前記側壁部は、前記サイドギヤの外側面を露出させる肉抜き部を備え、前記側壁部の内側面には、前記入力部材の回転時に前記肉抜き部の周縁から前記ワッシャ及び前記貫通油路への潤滑油の流入を誘導し得る油ガイド溝が凹設される(これを第4の特徴とする)。   Preferably, the side wall portion includes a lightening portion that exposes an outer side surface of the side gear, and the washer and the through-hole are formed on an inner surface of the side wall portion from a peripheral edge of the lightening portion when the input member rotates. An oil guide groove that can guide the inflow of the lubricating oil into the oil passage is recessed (this is a fourth feature).

また上記目的を達成するために、本発明に係る差動装置は、差動ギヤを支持する差動ギヤ支持部を支持して該差動ギヤ支持部と共に回転可能な入力部材の回転力を、前記差動ギヤに噛合する歯部を外周部に有する一対の出力ギヤを介して一対の出力軸に分配して伝達する差動装置であって、前記一対の出力ギヤは、前記一対の出力軸にそれぞれ接続される軸部と、前記軸部と該軸部から前記入力部材の半径方向外方に離間した前記歯部との間を一体に接続する扁平な中間壁部とを有し、少なくとも一方の前記出力ギヤの前記中間壁部には、前記中間壁部の内側面と外側面とに両端が各々開口する貫通油路が形成され、前記出力ギヤの歯数をZ1とし、前記差動ギヤの歯数をZ2とし、前記差動ギヤ支持部の直径をd2とし、ピッチ円錐距離をPCDとしたときに、   In order to achieve the above object, the differential device according to the present invention supports the differential gear support portion that supports the differential gear, and the rotational force of the input member that can rotate with the differential gear support portion. A differential device that distributes and transmits to a pair of output shafts via a pair of output gears having tooth portions meshing with the differential gear on an outer peripheral portion, wherein the pair of output gears is the pair of output shafts A shaft portion connected to each other, and a flat intermediate wall portion integrally connecting the shaft portion and the tooth portion spaced apart from the shaft portion radially outward of the input member, and at least In the intermediate wall portion of one of the output gears, through oil passages having both ends opened on the inner surface and the outer surface of the intermediate wall portion are formed, the number of teeth of the output gear is Z1, and the differential gear The number of gear teeth is Z2, the diameter of the differential gear support is d2, and the pitch cone distance is When the CD,

Figure 2016114241
Figure 2016114241

を満たし、
且つZ1/Z2>2を満たす(これを第5の特徴とする)。
The filling,
And Z1 / Z2> 2 is satisfied (this is the fifth feature).

また、好適には、Z1/Z2≧4を満たす(これを第6の特徴とする)。   Preferably, Z1 / Z2 ≧ 4 is satisfied (this is the sixth feature).

また、好適には、Z1/Z2≧5.8を満たす(これを第7の特徴とする)。   Preferably, Z1 / Z2 ≧ 5.8 is satisfied (this is the seventh feature).

第1の特徴によれば、一対のサイドギヤは、出力軸に接続される軸部と、軸部から入力部材の半径方向外方に離間した歯部と軸部との間を一体に接続する扁平な中間壁部とを有するので、サイドギヤの歯数をピニオンの歯数よりも十分大きく設定し得るようにサイドギヤをピニオンに対し十分大径化でき、これにより、ピニオンからサイドギヤへのトルク伝達時におけるピニオン支持部の荷重負担を軽減できてピニオン支持部の有効直径の小径化、延いてはピニオンの軸方向幅狭化が図られるため、中間壁部が扁平である効果とも相俟って、差動装置の軸方向幅狭化に寄与することができる。また、サイドギヤの上記大径化に伴い、サイドギヤの歯部が出力軸から半径方向に遠く離れても、少なくとも一方のサイドギヤの中間壁部には、中間壁部の内側面と外側面とに両端が各々開口する貫通油路が形成されるので、貫通油路を通してサイドギヤの外側面側から内側面側へ潤滑油を流入可能とし、流入した潤滑油を遠心力でサイドギヤの外周の歯部、延いてはピニオンとの噛合部に効率よく供給可能である。これにより、サイドギヤの大径化でサイドギヤの歯部が出力軸から遠く離れる場合やピニオンが高速回転する過酷な運転状況の場合でも、ピニオンとサイドギヤとの噛合部やピニオンの摺動部へ潤滑油を十分に供給できるから、噛合部や摺動部の焼付きを効果的に防止できる。   According to the first feature, the pair of side gears is a flat portion that integrally connects the shaft portion connected to the output shaft and the tooth portion spaced from the shaft portion radially outward of the input member and the shaft portion. With the intermediate wall portion, the side gear can have a sufficiently large diameter with respect to the pinion so that the number of teeth of the side gear can be set sufficiently larger than the number of teeth of the pinion, so that when torque is transmitted from the pinion to the side gear, The load on the pinion support can be reduced and the effective diameter of the pinion support can be reduced, and the axial width of the pinion can be narrowed. This can contribute to narrowing the axial width of the moving device. Further, with the increase in the diameter of the side gear, even if the tooth portion of the side gear is far away from the output shaft in the radial direction, the intermediate wall portion of at least one side gear has both ends on the inner surface and the outer surface of the intermediate wall portion. Since the through oil passages are opened, the lubricating oil can flow from the outer surface side of the side gear to the inner surface side through the through oil passage, and the lubricating oil that has flowed in is extended by centrifugal force to the teeth on the outer periphery of the side gear. Therefore, it can be efficiently supplied to the meshing portion with the pinion. As a result, even when the side gear teeth are separated from the output shaft due to the increased diameter of the side gear or in severe operating situations where the pinion rotates at high speed, the lubricating oil is applied to the meshing part of the pinion and the side gear and the sliding part of the pinion. Therefore, seizure of the meshing part and the sliding part can be effectively prevented.

また特に本発明の第2の特徴によれば、さらに、少なくとも一方のサイドギヤの外側面を覆う側壁部を有し且つ入力部材と一体に回転するよう結合されるカバー部と、側壁部の内側面とサイドギヤの外側面との間に介装されるワッシャとを備え、ワッシャの少なくとも内周部が貫通油路の、中間壁部の外側面への開口部に臨むように、ワッシャ及び貫通油路の相対位置が設定されるので、カバー部内側面とサイドギヤ外側面との間隙において遠心力で半径方向外方に流出しようとする潤滑油の流動をワッシャで抑制して、ワッシャの内周側から貫通油路を経てサイドギヤの内方側に誘導できる。これにより、貫通油路を通過してサイドギヤ内側面に沿って外周歯部側へ向かう潤滑油量を増やして噛合部等に対する潤滑効果を高めることができる。しかもワッシャが貫通油路への油誘導手段を兼ねるため、それだけ構造簡素化が図られ、コスト節減に寄与することができる。   In particular, according to the second feature of the present invention, the cover further includes a side wall covering the outer surface of at least one of the side gears and coupled to rotate integrally with the input member, and the inner surface of the side wall And a washer interposed between the outer side surface of the side gear and the washer and the through oil passage so that at least the inner periphery of the washer faces the opening to the outer side surface of the intermediate wall portion of the through oil passage. The relative position of the oil is set so that the flow of lubricating oil, which tries to flow radially outward by centrifugal force in the gap between the inner surface of the cover part and the outer surface of the side gear, is suppressed by the washer and penetrates from the inner peripheral side of the washer. It can be guided to the inner side of the side gear through the oil passage. Thereby, the lubrication effect with respect to a meshing part etc. can be heightened by increasing the amount of lubricating oil which passes a penetration oil path and goes to an outer peripheral tooth part side along the inner side surface of a side gear. In addition, since the washer also serves as an oil guiding means to the through oil passage, the structure can be simplified and the cost can be reduced.

また特に第3の特徴によれば、カバー部の側壁部の内側面とサイドギヤの外側面との相対向面の少なくとも一方にワッシャ保持溝が形成されるので、貫通油路への潤滑油経路を考慮した適切な定位置にワッシャを安定よく保持できる。   Further, in particular, according to the third feature, the washer holding groove is formed in at least one of the opposing surfaces of the inner side surface of the side wall portion of the cover portion and the outer side surface of the side gear. The washer can be stably held at an appropriate fixed position in consideration.

また特に第4の特徴によれば、カバー部の側壁部は、サイドギヤの外側面を露出させる肉抜き部を備えていて、側壁部の内側面には、入力部材の回転時に肉抜き部の周縁からワッシャ及び貫通油路への潤滑油の流入を誘導し得る油ガイド溝が凹設されるので、油ガイド溝の油誘導効果により、入力部材の回転を利用して肉抜き部の周縁からワッシャ及び貫通油路への潤滑油の流入を効率よく誘導できる。従って、ワッシャに対する潤滑効果が高められることは元より、貫通油路を通してサイドギヤの外周の歯部側へ向かう潤滑油量をより効果的に増やして噛合部等に対する潤滑効果を一層高めることができる。   In particular, according to the fourth feature, the side wall portion of the cover portion is provided with a lightening portion that exposes the outer surface of the side gear, and the inner surface of the side wall portion has a peripheral edge of the lightening portion when the input member rotates. Since the oil guide groove that can guide the inflow of the lubricating oil into the washer and the through oil passage is recessed, the oil guide effect of the oil guide groove makes the washer from the peripheral edge of the thinned portion using the rotation of the input member. In addition, the inflow of lubricating oil to the through oil passage can be efficiently induced. Therefore, since the lubricating effect on the washer can be enhanced, the amount of lubricating oil directed toward the tooth portion on the outer periphery of the side gear through the through oil passage can be increased more effectively to further enhance the lubricating effect on the meshing portion and the like.

また第5の特徴によれば、一対の出力ギヤは、出力軸に接続される軸部と、軸部から入力部材の半径方向外方に離間した歯部と軸部との間を一体に接続する扁平な中間壁部とを有するので、出力ギヤの歯数を差動ギヤの歯数よりも十分大きく設定し得るように出力ギヤを差動ギヤに対し十分大径化できる。これにより、差動ギヤから出力ギヤへのトルク伝達時における差動ギヤ支持部の荷重負担を軽減できて差動ギヤ支持部の有効直径の小径化、延いては差動ギヤの軸方向幅狭化が図られるため、中間壁部が扁平である効果とも相俟って、差動装置の軸方向幅狭化に寄与することができる。また、出力ギヤの上記大径化に伴い、出力ギヤの歯部が出力軸から半径方向に遠く離れても、少なくとも一方の出力ギヤの中間壁部には、中間壁部の内側面と外側面とに両端が各々開口する貫通油路が形成されるので、貫通油路を通して出力ギヤの外側面側から内側面側へ潤滑油を流入可能とし、流入した潤滑油を遠心力で出力ギヤの外周の歯部、延いては差動ギヤとの噛合部に効率よく供給可能である。これにより、出力ギヤの大径化で出力ギヤの歯部が出力軸から遠く離れる場合や差動ギヤが高速回転する過酷な運転状況の場合でも、差動ギヤと出力ギヤとの噛合部や差動ギヤの摺動部へ潤滑油を十分に供給できるから、噛合部や摺動部の焼付きを効果的に防止できる。その上、第5の特徴によれば、従来装置と同程度の強度(例えば静ねじり荷重強度)や最大トルク伝達量を確保しながら、差動装置を全体として出力軸の軸方向で十分に幅狭化できるから、差動装置周辺のレイアウト上の制約が多い伝動系に対しても差動装置を、高い自由度を以て無理なく容易に組込み可能となり、またその伝動系を小型化する上で有利となる。   According to the fifth feature, the pair of output gears are integrally connected between the shaft portion connected to the output shaft and the tooth portion spaced from the shaft portion radially outward of the input member and the shaft portion. Therefore, the output gear can have a sufficiently large diameter with respect to the differential gear so that the number of teeth of the output gear can be set sufficiently larger than the number of teeth of the differential gear. This reduces the load on the differential gear support when transmitting torque from the differential gear to the output gear, reduces the effective diameter of the differential gear support, and narrows the differential gear in the axial direction. Therefore, combined with the effect that the intermediate wall portion is flat, it is possible to contribute to narrowing the axial width of the differential device. Further, with the increase in the diameter of the output gear, even if the tooth portion of the output gear is far away from the output shaft in the radial direction, the inner wall surface and the outer surface of the intermediate wall portion are provided on the intermediate wall portion of at least one output gear. Since through oil passages are formed at both ends, the lubricating oil can flow from the outer surface side of the output gear to the inner surface side through the through oil passages. Can be efficiently supplied to the teeth portion, and thus the meshing portion with the differential gear. As a result, even when the output gear teeth are far away from the output shaft due to an increase in the diameter of the output gear, or in severe operating situations where the differential gear rotates at a high speed, the meshing portion or difference between the differential gear and the output gear can be reduced. Since the lubricating oil can be sufficiently supplied to the sliding portion of the moving gear, seizure of the meshing portion and the sliding portion can be effectively prevented. In addition, according to the fifth feature, the differential device as a whole is sufficiently wide in the axial direction of the output shaft while ensuring the same strength (for example, static torsional load strength) and the maximum torque transmission amount as the conventional device. Because it can be narrowed, it is possible to easily incorporate a differential gear into a transmission system with many restrictions on the layout around the differential gear without difficulty, and it is advantageous for downsizing the transmission system. It becomes.

また特に第6及び第7の各特徴によれば、従来装置と同程度の強度(例えば静ねじり荷重強度)や最大トルク伝達量を確保しながら、差動装置を出力軸の軸方向で更に十分に幅狭化できる。   In particular, according to each of the sixth and seventh features, the differential device is more sufficiently secured in the axial direction of the output shaft while ensuring the same strength (for example, static torsional load strength) and the maximum torque transmission amount as the conventional device. Can be narrowed.

本発明の第1実施形態に係る差動装置及びその周辺の縦断面図(図2の1−1線断面図)1 is a longitudinal sectional view of a differential according to a first embodiment of the present invention and its surroundings (a sectional view taken along line 1-1 of FIG. 2). 本発明の第1実施形態に係る差動装置の一部を破断した軸方向一方側の側面図(図1の2−2線断面図)1 is a side view of one side in an axial direction in which a part of a differential device according to a first embodiment of the present invention is broken (sectional view taken along line 2-2 in FIG. 1) 本発明の第1実施形態に係る差動装置の軸方向他方側の要部側面図(図1の3−3線断面図)The principal part side view of the other axial direction side of the differential gear which concerns on 1st Embodiment of this invention (3-3 line sectional drawing of FIG. 1). 図1の4−4線断面図であって、一方のカバー部Cのみを実線で示すFIG. 4 is a cross-sectional view taken along line 4-4 of FIG. 1 and shows only one cover portion C by a solid line. 図1の5−5線断面図であって、他方のカバー部C′及び入力部材のみを実線で示すFIG. 5 is a cross-sectional view taken along line 5-5 in FIG. 1 and shows only the other cover portion C ′ and the input member with solid lines. (A)は図1の6矢視部の拡大図であり、(B)は(A)のB−B線断面図(A) is an enlarged view of a portion indicated by arrow 6 in FIG. 1, and (B) is a sectional view taken along line BB in (A). 油ガイド溝の形状のみが異なる、カバー部の変形例を示す図4対応図FIG. 4 is a diagram corresponding to FIG. 本発明の第2実施形態に係る差動装置のピニオン支持部の変形例を示す、図6(A)対応の部分断面図The fragmentary sectional view corresponding to FIG. 6 (A) which shows the modification of the pinion support part of the differential gear which concerns on 2nd Embodiment of this invention. 従来の差動装置の一例を示す縦断面図A longitudinal sectional view showing an example of a conventional differential device ピニオンの歯数を10とした時の歯数比率に対するギヤ強度変化率の関係を示すグラフThe graph which shows the relationship of the gear strength change rate with respect to the ratio of the number of teeth when the number of teeth of the pinion is 10 ピッチ円錐距離の変化率に対するギヤ強度変化率の関係を示すグラフGraph showing the relationship between the rate of change in gear strength and the rate of change in pitch cone distance ピニオンの歯数を10とした時のギヤ強度を100%維持する場合における歯数比率に対するピッチ円錐距離の変化率の関係を示すグラフThe graph which shows the relationship of the change rate of the pitch cone distance with respect to the ratio of the number of teeth when the gear strength is maintained at 100% when the number of teeth of the pinion is 10 ピニオンの歯数を10とした時の歯数比率と、シャフト径/ピッチ円錐距離の比率との関係を示すグラフA graph showing the relationship between the ratio of the number of teeth when the number of teeth of the pinion is 10 and the ratio of the shaft diameter / pitch cone distance ピニオンの歯数を6とした時の歯数比率と、シャフト径/ピッチ円錐距離の比率との関係を示すグラフA graph showing the relationship between the ratio of the number of teeth when the number of teeth of the pinion is 6 and the ratio of the shaft diameter / pitch cone distance ピニオンの歯数を12とした時の歯数比率と、シャフト径/ピッチ円錐距離の比率との関係を示すグラフA graph showing the relationship between the ratio of the number of teeth when the number of teeth of the pinion is 12 and the ratio of the shaft diameter / pitch cone distance ピニオンの歯数を20とした時の歯数比率と、シャフト径/ピッチ円錐距離の比率との関係を示すグラフA graph showing the relationship between the ratio of the number of teeth when the number of teeth of the pinion is 20 and the ratio of the shaft diameter / pitch cone distance

本発明の実施の形態を、添付図面に示す本発明の好適な実施例に基づいて以下に説明する。   Embodiments of the present invention will be described below on the basis of preferred embodiments of the present invention shown in the accompanying drawings.

先ず、図1〜図7に示す第1実施形態について説明する。差動装置Dは、自動車に搭載されるエンジン(図示せず)から伝達された回転駆動力を、左右一対の車軸に連なる左右一対の出力軸Aに分配して伝達することにより、左右車軸を、差動回転を許容しつつ駆動するためのものであって、例えば車体前部のエンジンの横に配置されたミッションケース1内に収容、支持されている。   First, a first embodiment shown in FIGS. 1 to 7 will be described. The differential device D distributes and transmits the rotational driving force transmitted from the engine (not shown) mounted on the automobile to the pair of left and right output shafts A connected to the pair of left and right axles, thereby transmitting the left and right axles. For driving while allowing differential rotation, for example, it is housed and supported in a mission case 1 disposed beside the engine at the front of the vehicle body.

差動装置Dは、複数のピニオン(差動ギヤ)Pと、ピニオンPを回転自在に支持するピニオン支持部(差動ギヤ支持部)としてのピニオンシャフトPSと、ピニオンシャフトPSと共に回転し得るようピニオンシャフトPSを支持する短円筒状の入力部材Iと、ピニオンPに対し左右両側より噛合し且つ左右一対の出力軸Aにそれぞれ接続される左右一対のサイドギヤ(出力ギヤ)Sと、両サイドギヤSの外側をそれぞれ覆い且つ入力部材Iと一体に回転する左右一対のカバー部C,C′とを備えており、入力部材I及びカバー部C,C′によりデフケースDCが構成される。   The differential device D can rotate together with a plurality of pinions (differential gears) P, a pinion shaft PS as a pinion support portion (differential gear support portion) that rotatably supports the pinion P, and the pinion shaft PS. A short cylindrical input member I that supports the pinion shaft PS, a pair of left and right side gears (output gears) S that are engaged with the pinion P from the left and right sides and connected to a pair of left and right output shafts A, and both side gears S And a pair of left and right cover portions C and C ′ that rotate integrally with the input member I, and a differential case DC is constituted by the input member I and the cover portions C and C ′.

尚、本実施形態ではピニオンPを2個とし、ピニオン支持部としてのピニオンシャフトPSを入力部材Iの一直径線に沿って延びる直線棒状に形成して、それの両端部に2個のピニオンPをそれぞれ支持させるようにしたものを示したが、ピニオンPを3個以上設けてもよい。その場合には、ピニオンシャフトPSを、3個以上のピニオンPに対応して入力部材Iの回転軸線Lから三方向以上に枝分かれして放射状に延びる交差棒状(例えばピニオンPが4個の場合には十字状)に形成して、ピニオンシャフトPSの各先端部にピニオンPを各々支持させるようにする。   In this embodiment, there are two pinions P, and a pinion shaft PS as a pinion support is formed in a straight bar shape extending along one diameter line of the input member I, and two pinions P are provided at both ends thereof. However, three or more pinions P may be provided. In that case, the pinion shaft PS is branched in the form of three or more directions from the rotation axis L of the input member I corresponding to three or more pinions P and extends radially (for example, when there are four pinions P). Is formed in a cross shape, and the pinions P are supported on the respective tip portions of the pinion shaft PS.

また、ピニオンシャフトPSにピニオンPを図示例のように直接嵌合させてもよいし、或いは軸受ブッシュ等の軸受手段(図示せず)を介挿させてもよい。またピニオンシャフトPSは、全長に亘り略一様等径の軸状としてもよいし、或いは段付き軸状としてもよい。またピニオンシャフトPSの、ピニオンPと嵌合する外周面に凹部を設けて、そこを油通路としてもよい。   Further, the pinion P may be directly fitted to the pinion shaft PS as in the illustrated example, or a bearing means (not shown) such as a bearing bush may be inserted. Further, the pinion shaft PS may have a substantially uniform shaft diameter or a stepped shaft shape over the entire length. Further, a recess may be provided on the outer peripheral surface of the pinion shaft PS that fits with the pinion P, and this may be used as an oil passage.

デフケースDCは、左右の軸受2を介してミッションケース1に回転自在に支持される。またミッションケース1に形成されて各出力軸Aが嵌挿される貫通孔1aの内周と、各出力軸Aの外周との間には、その間をシールする環状シール部材3が介装される。またミッションケース1の底部には、ミッションケース1の内部空間に臨んで所定量の潤滑油を貯溜するオイルパン(図示せず)が設けられており、オイルパンに貯溜された潤滑油がミッションケース1内においてデフケースDCその他の回転部材の回転により差動装置Dの周辺に飛散することで、デフケースDCの内外に存する機械連動部分を潤滑できるようになっている。   The differential case DC is rotatably supported by the transmission case 1 via the left and right bearings 2. An annular seal member 3 is interposed between the inner periphery of the through hole 1a formed in the mission case 1 and into which each output shaft A is inserted and the outer periphery of each output shaft A. Further, an oil pan (not shown) for storing a predetermined amount of lubricating oil facing the internal space of the mission case 1 is provided at the bottom of the mission case 1, and the lubricating oil stored in the oil pan is transmitted to the mission case. 1 is scattered around the differential device D by the rotation of the differential case DC and other rotating members, so that the mechanical interlocking portions existing inside and outside the differential case DC can be lubricated.

入力部材Iの外周部には、ファイナルドリブンギヤとしての入力歯部Igが設けられ、入力歯部Igは、エンジンの動力で回転駆動されるドライブギヤ(図示せず)と噛合する。尚、入力歯部Igは、本実施形態では入力部材Iの外周面に横幅一杯(即ち軸方向全幅)に亘り直接形成されているが、入力歯部Igを入力部材Iよりも小幅に形成したり、或いは入力部材Iとは別体に形成して後付けで入力部材Iの外周部に固定するようにしてもよい。   An input tooth portion Ig as a final driven gear is provided on the outer peripheral portion of the input member I, and the input tooth portion Ig meshes with a drive gear (not shown) that is rotationally driven by engine power. In this embodiment, the input tooth portion Ig is directly formed on the outer peripheral surface of the input member I over the entire width (that is, the full width in the axial direction). However, the input tooth portion Ig is formed to be narrower than the input member I. Alternatively, it may be formed separately from the input member I and fixed to the outer peripheral portion of the input member I by retrofitting.

またピニオンP及びサイドギヤSは、本実施形態ではベベルギヤに形成されており、しかも歯部を含む全体が各々鍛造等の塑性加工で形成されている。そのため、ピニオンP及びサイドギヤSの歯部を切削加工する場合のような機械加工上の制約を受けることなく歯部を任意の歯数比を以て高精度に形成可能である。尚、ベベルギヤに代えて他のギヤを採用してもよく、例えばサイドギヤSをフェースギヤとし且つピニオンPを平歯車又は斜歯歯車としてもよい。   The pinion P and the side gear S are formed as bevel gears in the present embodiment, and the whole including the tooth portions is formed by plastic working such as forging. Therefore, the teeth can be formed with high accuracy with an arbitrary ratio of teeth without being subjected to machining restrictions as in the case of cutting the teeth of the pinion P and the side gear S. Note that other gears may be employed instead of the bevel gear. For example, the side gear S may be a face gear, and the pinion P may be a spur gear or an inclined gear.

また一対のサイドギヤSは、一対の出力軸Aの内端部がそれぞれスプライン嵌合4されて接続される円筒状の軸部Sjと、軸部Sjから入力部材Iの半径方向外方に離れた位置に在ってピニオンPに噛合する円環状の歯部Sgと、出力軸Aの軸線Lと直交する扁平なリング板状に形成されて軸部Sj及び歯部Sg間を一体に接続する中間壁部Swとを備える。   The pair of side gears S is separated from the shaft portion Sj in the radial direction of the input member I by the cylindrical shaft portion Sj to which the inner end portions of the pair of output shafts A are respectively connected by spline fitting 4. An annular tooth portion Sg that is in position and meshes with the pinion P, and an intermediate portion that is formed in a flat ring plate shape orthogonal to the axis L of the output shaft A and integrally connects the shaft portion Sj and the tooth portion Sg. And wall part Sw.

少なくとも一方(本実施形態では両方)のサイドギヤSの中間壁部Swには、中間壁部Swの内側面と外側面とに両端が各々開口して該中間壁部Swを貫通する貫通油路15が形成される。尚、貫通油路15は、本実施形態では出力軸Aの軸線Lと中心軸線が平行な円形孔に形成されるが、その横断面形状は、図示例に限定されず、種々の形状、例えば扇形状、楕円状、多角形状の孔や角形の孔であってもよく、また孔の中心軸線は、出力軸Aの軸線Lに対し平行でなくてもよい。例えば、貫通油路15の中心軸線がサイドギヤSの内側面に近づくにつれてサイドギヤSの半径方向外方側に向かうように、貫通油路15を出力軸Aの軸線Lに対し斜めに設けることで、貫通油路15を通してサイドギヤSの外周歯部Sg(従ってピニオンP)側へ向かう潤滑油の流動をより促進できる。   At least one (both in the present embodiment) side wall S of the intermediate wall portion Sw has a through oil passage 15 having both ends opened to the inner side surface and the outer side surface of the intermediate wall portion Sw and penetrating through the intermediate wall portion Sw. Is formed. In addition, in this embodiment, the through oil passage 15 is formed in a circular hole in which the axis L of the output shaft A and the center axis are parallel, but the cross-sectional shape is not limited to the illustrated example, and various shapes such as, for example, The hole may be a fan shape, an elliptical shape, a polygonal shape or a square shape, and the center axis of the hole may not be parallel to the axis L of the output axis A. For example, by providing the penetrating oil passage 15 obliquely with respect to the axis L of the output shaft A so that the central axis of the penetrating oil passage 15 approaches the radially outer side of the side gear S as it approaches the inner surface of the side gear S, The flow of the lubricating oil toward the outer peripheral tooth portion Sg (and hence the pinion P) of the side gear S through the through oil passage 15 can be further promoted.

また、サイドギヤSの中間壁部Swは、これの半径方向の幅t1がピニオンPの最大直径d1よりも大きくなり、且つ中間壁部Swの、出力軸Aの軸方向での最大肉厚t2がピニオンシャフトPSの有効直径d2よりも小さくなるように形成(図1参照)される。これにより、後述するように、サイドギヤSの歯数Z1をピニオンPの歯数Z2よりも十分大きく設定し得るようサイドギヤSを十分に大径化することができ、且つ出力軸Aの軸方向でサイドギヤSが十分に薄肉化できる。尚、本明細書において、「有効直径d2」とは、ピニオンPと別体又は一体に形成されてピニオンPを支持し且つ入力部材Iに取付けられる、ピニオン支持部としての軸(即ち、ピニオンシャフトPS或いは後述する支持軸部PS′)の外径d2をいう。   Further, the intermediate wall portion Sw of the side gear S has a radial width t1 larger than the maximum diameter d1 of the pinion P, and the intermediate wall portion Sw has a maximum wall thickness t2 in the axial direction of the output shaft A. The pinion shaft PS is formed to be smaller than the effective diameter d2 (see FIG. 1). As a result, as will be described later, the side gear S can be sufficiently increased in diameter so that the number of teeth Z1 of the side gear S can be set sufficiently larger than the number of teeth Z2 of the pinion P, and in the axial direction of the output shaft A. The side gear S can be sufficiently thinned. In this specification, the “effective diameter d2” is a shaft as a pinion support portion (that is, a pinion shaft) that is formed separately from or integrally with the pinion P, supports the pinion P, and is attached to the input member I. PS or the outer diameter d2 of the support shaft portion PS ′) described later.

また一対のカバー部C,C′のうちの一方Cは、入力部材Iとは別体に形成されて入力部材Iにボルトbを以て着脱可能に結合されるが、その結合手段としては、ネジ手段以外の種々の結合手段、例えば溶接手段やカシメ手段も使用可能である。また他方のカバー部C′は入力部材Iに一体に形成される。尚、他方のカバー部C′を、一方のカバー部Cと同様に入力部材Iとは別体に形成して、入力部材Iにボルトbその他の結合手段を以て結合してもよい。   One of the pair of cover portions C and C ′ is formed separately from the input member I and is detachably coupled to the input member I with bolts b. The coupling means includes screw means. Various coupling means other than the above, such as welding means and caulking means, can also be used. The other cover portion C ′ is formed integrally with the input member I. The other cover portion C ′ may be formed separately from the input member I in the same manner as the one cover portion C, and may be coupled to the input member I by a bolt b or other coupling means.

また各々のカバー部C,C′は、サイドギヤSの軸部Sjを同心状に囲繞して回転自在に嵌合支持する円筒状のボス部Cbと、外側面を入力部材Iの回転軸線Lと直交する平坦面としてボス部Cbの軸方向内端に一体に連設される板状の側壁部Csとを備えており、カバー部C,C′の側壁部Csは、出力軸Aの軸方向で入力部材I(従って入力歯部Ig)の幅内に収まるように配置される。これにより、カバー部C,C′の側壁部Csが入力部材Iの端面より軸方向外方側に張出すことが抑えられるから、差動装置Dの出力軸Aの軸方向での幅狭化を図る上で有利になる。   Each of the cover portions C and C ′ includes a cylindrical boss portion Cb that concentrically surrounds and supports the shaft portion Sj of the side gear S, and an outer surface that is connected to the rotation axis L of the input member I. And a plate-like side wall Cs integrally connected to the inner end in the axial direction of the boss Cb as an orthogonal flat surface. The side wall Cs of the cover C, C ′ is the axial direction of the output shaft A. The input member I (and thus the input tooth portion Ig) is arranged so as to be within the width. As a result, the side wall Cs of the cover portions C and C ′ can be prevented from projecting outward in the axial direction from the end face of the input member I, so that the width of the differential shaft D in the axial direction of the output shaft A is reduced. It will be advantageous to plan.

また、カバー部C,C′の側壁部Csの内側面により、サイドギヤSの中間壁部Sw及び歯部Sgのうちの少なくとも一方(図示例では中間壁部Sw)の背面がワッシャWを介して回転自在に支持される。尚、このようなワッシャWを省略して、側壁部Csの内側面により、サイドギヤSの背面を回転自在に直接支持させてもよい。またサイドギヤSの軸部Sjは、カバー部C,C′のボス部Cbに軸受を介して支持させてもよい。   In addition, the back surface of at least one of the intermediate wall portion Sw and the tooth portion Sg (the intermediate wall portion Sw in the illustrated example) of the side gear S is interposed through the washer W by the inner surface of the side wall portion Cs of the cover portions C and C ′. It is supported rotatably. Note that such a washer W may be omitted, and the back surface of the side gear S may be directly supported rotatably by the inner surface of the side wall portion Cs. The shaft portion Sj of the side gear S may be supported by the boss portion Cb of the cover portions C and C ′ via a bearing.

次にピニオン支持部としてのピニオンシャフトPSの入力部材Iへの取付構造について図6を併せて参照して説明する。ピニオンシャフトPSは、ピニオンシャフトPSの両端部がそれぞれ取付体Tを介して入力部材Iに連結支持されており、取付体Tには、ピニオンシャフトPSの端部を全周に亘って嵌合、保持し得る保持孔Thが形成される(図1参照)。また入力部材Iの内周面には、入力部材Iの、一方のカバー部C側の側面に開口部を有して出力軸A軸方向に延びる横断面コ字状の取付溝Iaが凹設されており、取付溝Iaには、取付溝Iaの開口部より直方体状の取付体Tが挿入される。取付体Tは、これを入力部材Iの取付溝Iaに挿入された状態で一方のカバー部Cを入力部材Iにボルトbで締結することにより入力部材Iに固定される。また取付体TとピニオンPの大径側端面との間には、その間の相対回転を許容する環状のスラストワッシャ25が介装される。   Next, a structure for attaching the pinion shaft PS as the pinion support portion to the input member I will be described with reference to FIG. In the pinion shaft PS, both end portions of the pinion shaft PS are connected and supported to the input member I via the attachment body T, and the end portion of the pinion shaft PS is fitted to the attachment body T over the entire circumference. A holding hole Th that can be held is formed (see FIG. 1). A mounting groove Ia having a U-shaped cross section extending in the direction of the output shaft A is provided on the inner peripheral surface of the input member I. The rectangular parallelepiped mounting body T is inserted into the mounting groove Ia from the opening of the mounting groove Ia. The attachment body T is fixed to the input member I by fastening one cover portion C to the input member I with a bolt b in a state in which the attachment body T is inserted into the attachment groove Ia of the input member I. An annular thrust washer 25 that allows relative rotation between the attachment body T and the large-diameter side end face of the pinion P is interposed.

上記したようなピニオンシャフトPSの入力部材Iへの取付構造によれば、ピニオンシャフトPSの端部を全周に亘り嵌合保持させたブロック状の取付体Tを介して、ピニオンシャフトPSを入力部材Iの取付溝Iaに容易且つ強固に連結固定できるため、入力部材IにピニオンシャフトPS支持のための貫通孔を特別に形成することなく、また組立作業性を低下させることなく、ピニオンシャフトPSを入力部材Iに対し高い強度を以て連結支持させることができる。しかも本実施形態では、サイドギヤSの外側を覆うカバー部Cが取付体Tに対する抜け止め固定手段を兼ねることで構造簡素化が図られる。   According to the mounting structure of the pinion shaft PS to the input member I as described above, the pinion shaft PS is input via the block-shaped mounting body T in which the end of the pinion shaft PS is fitted and held over the entire circumference. Since it can be easily and firmly connected and fixed to the mounting groove Ia of the member I, the pinion shaft PS is not formed in the input member I without specially forming a through hole for supporting the pinion shaft PS, and without reducing the assembling workability. Can be connected and supported to the input member I with high strength. In addition, in this embodiment, the structure is simplified because the cover portion C that covers the outside of the side gear S also serves as a retaining fixing means for the attachment body T.

かくして、ピニオンシャフトPSの両端部が取付体Tを介して入力部材Iに連結支持された状態では、ピニオンシャフトPSに回転自在に支持されるピニオンPの大径側端面と、入力部材Iの内周面との間には半径方向の間隙10が形成される。従って、間隙10には潤滑油が溜まり易くなるため、間隙10に臨むピニオンPの端部やピニオンPの周辺部の焼付き防止に有効である。   Thus, in a state where both ends of the pinion shaft PS are connected and supported by the input member I via the attachment body T, the large-diameter side end surface of the pinion P that is rotatably supported by the pinion shaft PS, and the input member I A radial gap 10 is formed between the peripheral surface. Accordingly, since the lubricating oil easily accumulates in the gap 10, it is effective for preventing seizure of the end portion of the pinion P facing the gap 10 and the peripheral portion of the pinion P.

ところで、一方のカバー部Cの側壁部Csは、出力軸Aの軸方向外方から見た側面視で(即ち図2で見て)ピニオンPと重なる領域を含む第1の所定領域でサイドギヤSの背面を覆う油保持部7を備えており、更に上記側面視でピニオンPと重ならない第2の所定領域において、サイドギヤSの背面をデフケースDC外に露出させる肉抜き部8と、油保持部7から入力部材Iの周方向に離間し且つ入力部材Iの半径方向に延びてボス部Cb及び入力部材I間を連結する連結腕部9とを併せ持つ構造となっている。換言すれば、カバー部Cの基本的に円板状をなす側壁部Csは、そこに切欠き状をなす肉抜き部8が周方向に間隔をおいて複数形成されることで、肉抜き部8を周方向に挟んで一方側に油保持部7が、他方側に連結腕部9がそれぞれ形成される構造形態となっている。   By the way, the side wall portion Cs of the one cover portion C has a side gear S in a first predetermined region including a region overlapping with the pinion P as viewed from the side in the axial direction of the output shaft A (that is, as viewed in FIG. 2). An oil retaining portion 7 that covers the rear surface of the side gear S, and further, an oil retaining portion 8 that exposes the rear surface of the side gear S to the outside of the differential case DC in the second predetermined region that does not overlap the pinion P in the side view. 7 and a connecting arm portion 9 that is spaced apart from the input member I in the circumferential direction and extends in the radial direction of the input member I to connect the boss portion Cb and the input member I together. In other words, the side wall Cs that basically has a disk shape of the cover C is formed by forming a plurality of cutouts 8 in the circumferential direction at intervals in the circumferential direction. The oil holding portion 7 is formed on one side and the connecting arm portion 9 is formed on the other side with 8 being sandwiched in the circumferential direction.

このようなカバー部Cの側壁部Csの構造形態、特に油保持部7により、入力部材Iの回転による遠心力で径方向外方側に移動しようとする潤滑油を、油保持部7と入力部材Iとで覆われた空間に滞留させ易くなり、ピニオンP及びピニオンPの周辺部に潤滑油を保持し易くすることができる。その上、カバー部Cが肉抜き部8を備えることで、肉抜き部8を通してデフケースDCの内外に潤滑油を流通させることができるため、潤滑油が適度に交換・冷却されて、油劣化防止に効果的である。また、デフケースDC内に多量の潤滑油を閉じ込めておく必要はない上、肉抜き部8の形成分だけカバー部C自体が軽くなるため、それだけ差動装置Dの軽量化が図られる。   Lubricating oil which is going to move outward in the radial direction by the centrifugal force generated by the rotation of the input member I is input to the oil holding portion 7 by the structural form of the side wall portion Cs of the cover portion C, particularly the oil holding portion 7. It becomes easy to make it stay in the space covered with the member I, and it can make it easy to hold | maintain lubricating oil in the peripheral part of the pinion P and the pinion P. In addition, since the cover part C includes the lightening part 8, the lubricating oil can be circulated in and out of the differential case DC through the lightening part 8, so that the lubricating oil is appropriately exchanged and cooled to prevent oil deterioration. It is effective. Further, it is not necessary to confine a large amount of lubricating oil in the differential case DC, and the cover portion C itself becomes lighter by the amount corresponding to the formation of the thinned portion 8, so that the weight of the differential device D can be reduced.

尚、肉抜き部8は、本実施形態では側壁部Csの外周端側が開放した切欠き状に形成されるが、外周端側が開放されない貫通孔状に形成してもよい。   In the present embodiment, the thinned portion 8 is formed in a notch shape in which the outer peripheral end side of the side wall portion Cs is opened, but may be formed in a through hole shape in which the outer peripheral end side is not opened.

また本実施形態では、図3に示されるように、他方のカバー部C′においても、側壁部Csに一方のカバー部Cと同様に肉抜き部8が形成される。但し、他方のカバー部C′の側壁部Csにおいては、油保持部7及び連結腕部9は入力部材Iに一体に形成される。尚、カバー部C,C′のうちの何れか一方のカバー部の側壁部Csを、肉抜き部を持たない(従ってサイドギヤSの中間壁部Sw及び歯部Sgの背面全面を覆う)円板状に形成してもよい。   In the present embodiment, as shown in FIG. 3, also in the other cover portion C ′, the thinned portion 8 is formed in the side wall portion Cs similarly to the one cover portion C. However, the oil retaining portion 7 and the connecting arm portion 9 are formed integrally with the input member I in the side wall portion Cs of the other cover portion C ′. Note that the side wall Cs of one of the covers C and C ′ does not have a lightening portion (thus covering the entire rear surface of the intermediate wall Sw of the side gear S and the tooth Sg). You may form in a shape.

尚、油保持部7及び連結腕部9を入力部材Iに各々連結する構造は、カバー部C,C′の入力部材Iへの連結構造として前述した通りである。即ち、油保持部7及び連結腕部9は、入力部材Iと一体に形成してもよく、また別体に形成する場合には、本実施形態のようにボルトb等のネジ手段で入力部材Iに結合されてもよいし、或いはその他の種々の結合手段(例えば溶接手段、カシメ手段等)で入力部材Iに結合されてもよい。   The structure for connecting the oil holding part 7 and the connecting arm part 9 to the input member I is as described above as the connecting structure of the cover parts C and C ′ to the input member I. That is, the oil holding portion 7 and the connecting arm portion 9 may be formed integrally with the input member I. When the oil holding portion 7 and the connecting arm portion 9 are formed separately, the input member is formed by screw means such as a bolt b as in the present embodiment. It may be coupled to I or may be coupled to the input member I by various other coupling means (for example, welding means, caulking means, etc.).

ところで、カバー部C,C′の側壁部Csの内側面とサイドギヤSの外側面との間には前述のようにワッシャWが介装されるが、ワッシャWを、貫通油路15への潤滑油経路を考慮した適切な定位置に位置決め保持するために、側壁部Csの内側面とサイドギヤSの外側面との少なくとも一方(図示例ではサイドギヤSの外側面)には環状のワッシャ保持溝16が形成され、これにワッシャWが嵌合される。   By the way, the washer W is interposed between the inner side surface of the side wall portion Cs of the cover portions C and C ′ and the outer side surface of the side gear S as described above, but the washer W is lubricated to the through oil passage 15. An annular washer retaining groove 16 is provided on at least one of the inner side surface of the side wall Cs and the outer side surface of the side gear S (in the illustrated example, the outer side surface of the side gear S) in order to be positioned and held at an appropriate fixed position in consideration of the oil path. Is formed, and a washer W is fitted thereto.

そして、ワッシャWの内周部が貫通油路15の、中間壁部Swの外側面への開口部に臨むように、ワッシャW及び貫通油路15の相対位置が設定される。これにより、カバー部C,C′の側壁部Csの内側面とサイドギヤSの外側面との間隙において遠心力で半径方向外方に流出しようとする潤滑油の流動がワッシャWで抑制されて、ワッシャWの内周側から貫通油路15を経てサイドギヤSの内方側に誘導できるため、貫通油路15を通過してサイドギヤSの内側面に沿って歯部Sg側へ向かう潤滑油量を増やすことができる。   Then, the relative positions of the washer W and the through oil passage 15 are set so that the inner peripheral portion of the washer W faces the opening of the through oil passage 15 to the outer surface of the intermediate wall portion Sw. Accordingly, the washer W suppresses the flow of the lubricating oil that tends to flow outward in the radial direction by centrifugal force in the gap between the inner side surface of the side wall portion Cs of the cover portions C and C ′ and the outer side surface of the side gear S. Since it can be guided from the inner peripheral side of the washer W to the inner side of the side gear S through the through oil passage 15, the amount of lubricating oil passing through the through oil passage 15 and moving toward the tooth portion Sg along the inner side surface of the side gear S is reduced. Can be increased.

また図4,図5を併せて参照して、カバー部C,C′の側壁部Csの内側面には、入力部材Iの回転時に肉抜き部8の周縁からワッシャW及び貫通油路15への潤滑油の流入を誘導し得る油ガイド溝17が凹設される。油ガイド溝17は、肉抜き部8の周縁から油保持部7の接線方向に対し斜めに(より具体的に言えば、入力部材Iの後述する正転方向後方側に向かって中心軸線L側に)傾斜して延びる第1内側壁17aと、同じく油保持部7の接線方向に延びる第2内側壁17bと、両内側壁17a,17bの内端間を接続する奥壁部17cとによって、概ね三角形状に形成される。   4 and 5 together, the inner surface of the side wall portion Cs of the cover portions C and C ′ is connected to the washer W and the penetrating oil passage 15 from the periphery of the thinned portion 8 when the input member I rotates. An oil guide groove 17 that can guide the inflow of the lubricating oil is recessed. The oil guide groove 17 is inclined with respect to the tangential direction of the oil retaining portion 7 from the peripheral edge of the thinned portion 8 (more specifically, toward the rear side in the normal rotation direction to be described later of the input member I on the central axis L side) (I) by the first inner wall 17a extending in an inclined manner, the second inner wall 17b extending in the tangential direction of the oil retaining portion 7, and the inner wall 17a and the inner wall 17c connecting the inner ends of the inner walls 17b, It is generally formed in a triangular shape.

しかも油ガイド溝17の、奥壁部17cが臨む内奥溝部17iは、入力部材Iの回転軸線Lと直交する投影面で見てワッシャWの一部と常にオーバラップし、且つ入力部材Iの回転に伴い貫通油路15の、中間壁部Swの外側面への開口部とも一時的にオーバラップし得る位置に配置される。   Moreover, the inner back groove portion 17i of the oil guide groove 17 facing the back wall portion 17c always overlaps with a part of the washer W when viewed from the projection plane orthogonal to the rotation axis L of the input member I, and the input member I Along with the rotation, the penetrating oil passage 15 is disposed at a position where it can temporarily overlap with the opening to the outer surface of the intermediate wall portion Sw.

而して、自動車を前進させるべくエンジンから差動装置Dの入力歯部Igに伝達される回転力で入力部材Iが正転方向(図2〜図5の太字矢印方向)に回転される場合には、ミッションケース1内でデフケースDCの周囲を飛散する潤滑油が、飛散した潤滑油と回転中のカバー部C,C′との相対速度差により肉抜き部8の周縁から油保持部7内(即ち油ガイド溝17)に流入する。この場合、油ガイド溝17に流入した潤滑油は、特に第1内側壁17aの案内作用により油ガイド溝17の回転方向最後方位置の内奥溝部17iに向けて効率よく集められて、内奥溝部17iからワッシャW及び貫通油路15側へ効率よく誘導される。そして、貫通油路15を通過してサイドギヤSの内側に達した潤滑油は、遠心力でサイドギヤSの中間壁部Swの内側面を径方向外方側に流動し、サイドギヤSの歯部Sgに到達する。これにより、ワッシャWに対する潤滑効果が高められることは元より、貫通油路15を通過してサイドギヤSの外周の歯部Sg側へ向かう潤滑油量をより効果的に増やすことができて、サイドギヤSとピニオンPとの噛合部やピニオンPの摺動部に対する潤滑効果が高められる。   Thus, when the input member I is rotated in the forward rotation direction (the direction of the bold arrow in FIGS. 2 to 5) by the rotational force transmitted from the engine to the input tooth portion Ig of the differential device D in order to advance the automobile. In the transmission case 1, the lubricating oil that scatters around the differential case DC is transferred from the periphery of the thinned portion 8 to the oil retaining portion 7 due to the relative speed difference between the scattered lubricating oil and the rotating cover portions C and C ′. It flows into the inside (that is, the oil guide groove 17). In this case, the lubricating oil that has flowed into the oil guide groove 17 is efficiently collected toward the inner back groove portion 17i at the rearmost position in the rotation direction of the oil guide groove 17 particularly by the guide action of the first inner wall 17a. It is efficiently guided from the groove 17i to the washer W and the through oil passage 15 side. The lubricating oil that has passed through the through oil passage 15 and has reached the inside of the side gear S flows to the radially outer side on the inner side surface of the intermediate wall portion Sw of the side gear S by centrifugal force, and the tooth portion Sg of the side gear S. To reach. As a result, the lubricating effect on the washer W can be enhanced, and the amount of lubricating oil passing through the through oil passage 15 toward the tooth Sg side of the outer periphery of the side gear S can be increased more effectively. The lubricating effect on the meshing part of S and the pinion P and the sliding part of the pinion P is enhanced.

更に本実施形態のカバー部C,C′は、肉抜き部8の周縁部において、入力部材Iの回転時に入力部材Iの内方側への潤滑油の流入を誘導し得る油誘導斜面fを有しており、上記した油ガイド溝17の入口も油誘導斜面fに開口している。そして、油誘導斜面fは、油保持部7及び連結腕部9を入力部材Iの周方向に横切る横断面(図2の部分断面図を参照)で見て、油保持部7及び連結腕部9の各々の外側面から内側面に向かって油保持部7及び連結腕部9の各々の周方向中央側に傾斜した斜面より構成される。   Furthermore, the cover portions C and C ′ of the present embodiment have an oil guide slope f that can guide the inflow of the lubricating oil to the inner side of the input member I when the input member I rotates at the peripheral portion of the thinned portion 8. The inlet of the oil guide groove 17 is also open to the oil guiding slope f. The oil guiding slope f is formed by the oil holding portion 7 and the connecting arm portion as viewed in a cross section (see the partial cross-sectional view of FIG. 2) across the oil holding portion 7 and the connecting arm portion 9 in the circumferential direction of the input member I. 9, each of the oil holding portions 7 and the connecting arm portions 9 is formed of a slope inclined toward the center in the circumferential direction from the outer side surface toward the inner side surface.

而して、油誘導斜面fの油誘導作用により、デフケースDCの回転に伴いカバー部C,C′の外側から内側へ潤滑油をスムーズに流入させることができ、特に油ガイド溝17にも、油誘導斜面fに開口する入口から潤滑油を一層効率よく流入させることができるため、油ガイド溝17による前述の油案内作用と相俟って、噛合部等に対する潤滑効果が一層高められる。   Thus, the oil guiding action of the oil guiding slope f allows the lubricating oil to flow smoothly from the outside to the inside of the cover portions C and C ′ as the differential case DC rotates. Since the lubricating oil can flow more efficiently from the inlet opening to the oil guiding slope f, the lubricating effect on the meshing portion and the like is further enhanced in combination with the oil guiding action by the oil guide groove 17.

尚、カバー部C,C′における肉抜き部8(従って油保持部7及び連結腕部9)の形態は種々の変形例が考えられ、図2,図3の実施形態に限定されない。   Various modifications can be considered for the form of the lightening part 8 (and hence the oil retaining part 7 and the connecting arm part 9) in the cover parts C and C ', and the invention is not limited to the embodiment shown in FIGS.

尚また、カバー部C,C′の側壁部Csの内側面に凹設される油ガイド溝17の形態も種々の変形例が考えられ、例えば、図7に示すように油ガイド溝17を、曲率が一部領域で異なる一連の円弧状に形成してもよい。即ち、油ガイド溝17は、入力部材Iの正転方向の回転に伴いミッションケース1内で飛散した潤滑油がカバー部C,C′の肉抜き部8の周縁から油ガイド溝17に流入したときに、流入した潤滑油が円弧状の第1内側壁17aの案内作用により、図1〜図6に記載した実施形態と同様、油ガイド溝17の回転方向最後方位置の内奥溝部17iに向けて効率よく集められて、内奥溝部17iからワッシャW及び貫通油路15側へ効率よく誘導される。従って、図7に記載した油ガイド溝17は、図1〜図6に記載した油ガイド溝17と同様の作用効果が達成可能である。   In addition, various modifications can be considered for the form of the oil guide groove 17 recessed in the inner surface of the side wall part Cs of the cover parts C and C ′. For example, as shown in FIG. You may form in a series of circular arc shape from which a curvature differs in one part area | region. That is, in the oil guide groove 17, the lubricating oil scattered in the transmission case 1 with the rotation of the input member I in the forward rotation direction flows into the oil guide groove 17 from the peripheral edge of the thinned portion 8 of the cover portions C and C ′. In some cases, the lubricating oil that has flowed into the inner groove 17i at the rearmost position in the rotational direction of the oil guide groove 17 is guided by the guide action of the arc-shaped first inner wall 17a as in the embodiment described in FIGS. Are efficiently collected toward the washer W and the through oil passage 15 from the inner back groove portion 17i. Therefore, the oil guide groove 17 shown in FIG. 7 can achieve the same effect as the oil guide groove 17 shown in FIGS.

次に、上記した実施形態の作用について説明する。本実施形態の差動装置Dは、入力部材Iにエンジンから回転力を受けた場合に、ピニオンPがピニオンシャフトPS回りに自転しないで入力部材Iと共に入力部材Iの軸線L回りに公転するときは、左右のサイドギヤSが同速度で回転駆動されて、駆動力が均等に左右の出力軸Aに伝達される。また、自動車の旋回走行等により左右の出力軸Aに回転速度差が生じるときは、ピニオンPが自転しつつ公転することで、ピニオンPから左右のサイドギヤSに対して差動回転を許容しつつ回転駆動力が伝達される。以上は、従来周知の差動装置の作動と同様である。   Next, the operation of the above-described embodiment will be described. In the differential device D of the present embodiment, when the input member I receives rotational force from the engine, the pinion P revolves around the axis L of the input member I together with the input member I without rotating around the pinion shaft PS. The left and right side gears S are rotationally driven at the same speed, and the driving force is evenly transmitted to the left and right output shafts A. Further, when a difference in rotational speed occurs between the left and right output shafts A due to turning of the automobile or the like, the pinion P revolves while rotating, thereby allowing differential rotation from the pinion P to the left and right side gears S. A rotational driving force is transmitted. The above is the same as the operation of a conventionally known differential device.

ところで自動車の前進走行状態でエンジンの動力が差動装置Dを介して左右の出力軸Aに伝達される場合に、デフケースDCの正転方向(図2〜図5の太字矢印方向)の回転に伴いミッションケース1内の各所で潤滑油が勢いよく飛散するが、飛散した潤滑油の一部は、前述のようにカバー部C,C′の内側に肉抜き部8から流入する。   By the way, when the power of the engine is transmitted to the left and right output shafts A through the differential device D in the forward traveling state of the automobile, the differential case DC rotates in the forward direction (the direction of the bold arrow in FIGS. 2 to 5). Along with this, the lubricating oil scatters vigorously at various locations in the mission case 1, but a part of the scattered lubricating oil flows into the cover portions C and C ′ from the lightening portion 8 as described above.

この場合、カバー部C,C′の側壁部Csの内側面に形成される油ガイド溝17に流入した潤滑油は、前述のように第1内側壁17aの案内作用により内奥溝部17iに向けて効率よく集められて、そこからワッシャW及び貫通油路15側へ効率よく誘導されるため、ワッシャWに対する潤滑効果が高められることは元より、貫通油路15を通過して遠心力でサイドギヤSの外周の歯部Sg側へ向かう潤滑油量をより効果的に増やすことができる。これにより、サイドギヤSとピニオンPとの噛合部やピニオンPの摺動部に対する潤滑効果が高められる。その結果、サイドギヤSの大径化でサイドギヤSの歯部Sgが出力軸Aから遠く離れる場合やピニオンPが高速回転する過酷な運転状況の場合でも、上記した噛合部や摺動部へ潤滑油を効率よく供給可能となるから、噛合部や摺動部の焼付きを効果的に防止できる。   In this case, the lubricating oil that has flowed into the oil guide groove 17 formed on the inner side surface of the side wall portion Cs of the cover portions C and C ′ is directed toward the inner back groove portion 17i by the guiding action of the first inner side wall 17a as described above. Since it is efficiently collected and efficiently guided to the washer W and the through oil passage 15 from there, it is possible to improve the lubricating effect on the washer W, and from the start, the side gear is passed through the through oil passage 15 by centrifugal force. The amount of lubricating oil toward the tooth portion Sg side of the outer periphery of S can be increased more effectively. Thereby, the lubrication effect with respect to the meshing part of the side gear S and the pinion P and the sliding part of the pinion P is enhanced. As a result, even when the tooth portion Sg of the side gear S is far away from the output shaft A due to an increase in the diameter of the side gear S or in a severe driving situation where the pinion P rotates at high speed, the lubricating oil is transferred to the meshing portion and the sliding portion. Therefore, seizure of the meshing part and the sliding part can be effectively prevented.

而して、本実施形態の差動装置Dにおいて、サイドギヤSは、出力軸Aに接続される軸部Sjと、出力軸Aの軸線Lと直交する扁平なリング板状に形成されて、軸部Sjと該軸部Sjから入力部材Iの半径方向外方に離間したサイドギヤSの歯部Sgとの間を一体に接続する中間壁部Swとを有しており、その上、中間壁部Swは、それの半径方向幅t1がピニオンPの最大直径d1よりも長くなるよう形成されている。このため、サイドギヤSの歯数Z1をピニオンPの歯数Z2よりも十分大きく設定し得るようにサイドギヤSをピニオンPに対し十分大径化できることから、ピニオンPからサイドギヤSへのトルク伝達時におけるピニオンシャフトPSの荷重負担を軽減できてピニオンシャフトPSの有効直径d2の小径化、延いてはピニオンPの、出力軸Aの軸方向での幅狭化を図ることができる。   Thus, in the differential device D of the present embodiment, the side gear S is formed in a flat ring plate shape orthogonal to the shaft portion Sj connected to the output shaft A and the axis L of the output shaft A, and the shaft An intermediate wall portion Sw integrally connecting the portion Sj and the tooth portion Sg of the side gear S spaced apart from the shaft portion Sj radially outward of the input member I. Sw is formed such that its radial width t1 is longer than the maximum diameter d1 of the pinion P. For this reason, since the side gear S can be sufficiently enlarged with respect to the pinion P so that the number of teeth Z1 of the side gear S can be set sufficiently larger than the number of teeth Z2 of the pinion P, the torque at the time of torque transmission from the pinion P to the side gear S can be reduced. The load on the pinion shaft PS can be reduced, the effective diameter d2 of the pinion shaft PS can be reduced, and the width of the pinion P in the axial direction of the output shaft A can be reduced.

また上記のようにピニオンシャフトPの荷重負担が軽減されると共に、サイドギヤSにかかる反力が低下し、その上、サイドギヤSの中間壁部Sw又は歯部Sgの背面がカバー側壁部Csに支持されるので、サイドギヤSの中間壁部Swを薄肉化してもサイドギヤSの必要な剛性強度は確保することが容易であり、即ち、サイドギヤSに対する支持剛性を確保しつつサイドギヤ中間壁部Swを十分に薄肉化することが可能となる。また、本実施形態では、上記のように小径化を可能としたピニオンシャフトPSの有効直径d2よりもサイドギヤ中間壁部Swの最大肉厚t2が更に小さく形成されるため、サイドギヤ中間壁部Swの更なる薄肉化が達成可能となる。しかもカバー側壁部Csが、外側面を出力軸Aの軸線Lと直交する平坦面とした板状に形成されることで、カバー側壁部Cs自体の薄肉化も達成される。   In addition, as described above, the load on the pinion shaft P is reduced, and the reaction force applied to the side gear S is reduced. In addition, the intermediate wall portion Sw of the side gear S or the back surface of the tooth portion Sg is supported by the cover side wall portion Cs. Therefore, even if the intermediate wall portion Sw of the side gear S is thinned, it is easy to ensure the necessary rigidity and strength of the side gear S, that is, the side gear intermediate wall portion Sw is sufficiently secured while ensuring the support rigidity for the side gear S. It is possible to reduce the thickness. In the present embodiment, the maximum thickness t2 of the side gear intermediate wall portion Sw is formed to be smaller than the effective diameter d2 of the pinion shaft PS that can be reduced in diameter as described above. Further thinning can be achieved. In addition, since the cover side wall portion Cs is formed in a plate shape whose outer surface is a flat surface orthogonal to the axis L of the output shaft A, the cover side wall portion Cs itself can be thinned.

それらの結果、差動装置Dは、従来装置と同程度の強度(例えば静ねじり荷重強度)や最大トルク伝達量を確保しながら、全体として出力軸Aの軸方向で十分に幅狭化することができる。これにより、差動装置Dの周辺のレイアウト上の制約が多い伝動系に対しても差動装置Dを、高い自由度を以て無理なく容易に組込み可能となり、またその伝動系を小型化する上で頗る有利となる。   As a result, the differential device D should be sufficiently narrow in the axial direction of the output shaft A as a whole while securing the same strength (for example, static torsional load strength) and the maximum torque transmission amount as the conventional device. Can do. As a result, the differential device D can be easily and easily incorporated into a transmission system with many restrictions on the layout around the differential device D with a high degree of freedom, and the transmission system can be downsized. It is advantageous.

ところで、上記した第1実施形態では、ピニオン支持部(差動ギヤ支持部)として長いピニオンシャフトPSを用いるものを示したが、図8に示す第2実施形態のようにピニオン(差動ギヤ)Pの大径側の端面に同軸に一体に結合された支持軸部PS′でピニオン支持部(差動ギヤ支持部)を構成してもよい。この構成によれば、ピニオンシャフトPSを嵌合させる貫通孔をピニオンPに設ける必要はなくなるため、それだけピニオンPを小径化(軸方向幅狭化)できて、差動装置Dの出力軸Aの軸方向での扁平化を図ることができる。即ち、ピニオンシャフトPSがピニオンPを貫通する場合、ピニオンPにはピニオンシャフト径に対応するサイズの貫通孔を形成する必要があるが、ピニオンPの端面に支持軸部PS′を一体化した場合には、支持軸部PS′の径に依存することなくピニオンPの小径化(軸方向幅狭化)が可能となる。   By the way, in 1st Embodiment mentioned above, although what used the long pinion shaft PS as a pinion support part (differential gear support part) was shown, pinion (differential gear) like 2nd Embodiment shown in FIG. A pinion support portion (differential gear support portion) may be configured by a support shaft portion PS ′ that is integrally and coaxially coupled to an end face on the large diameter side of P. According to this configuration, since there is no need to provide a through-hole for fitting the pinion shaft PS in the pinion P, the pinion P can be reduced in diameter (in the axial direction), and the output shaft A of the differential device D can be reduced. Flattening in the axial direction can be achieved. That is, when the pinion shaft PS penetrates the pinion P, it is necessary to form a through hole of a size corresponding to the pinion shaft diameter in the pinion P, but when the support shaft portion PS ′ is integrated with the end surface of the pinion P Therefore, the pinion P can be reduced in diameter (narrower in the axial direction) without depending on the diameter of the support shaft PS ′.

また本第2実施形態では、支持軸部PS′の外周面と、これが挿入される取付体Tの保持孔Thの内周面との間に、その間の相対回転を許容する軸受としての軸受ブッシュ12が介挿される。尚、軸受としては、ニードルベアリング等の軸受を使用してもよい。尚また、軸受を省略して、支持軸部PS′を取付体Tの保持孔Thに直接嵌合させてもよい。   In the second embodiment, a bearing bush serving as a bearing that allows relative rotation between the outer peripheral surface of the support shaft portion PS ′ and the inner peripheral surface of the holding hole Th of the attachment body T into which the support shaft portion PS ′ is inserted. 12 is inserted. In addition, as a bearing, you may use bearings, such as a needle bearing. Further, the bearing may be omitted and the support shaft portion PS ′ may be directly fitted into the holding hole Th of the attachment body T.

ところで上記した特許文献2,3で例示したような従来の差動装置(特に入力部材内にピニオン(差動ギヤ)と、ピニオン(差動ギヤ)に噛合する一対のサイドギヤ(出力ギヤ)とを備えた従来の差動装置)では、通常、サイドギヤ(出力ギヤ)の歯数Z1とピニオン(差動ギヤ)の歯数Z2として、例えば特許文献3に示される14×10、或いは16×10または13×9が用いられている。この場合、差動ギヤに対する出力ギヤの歯数比率Z1/Z2は、それぞれ1.4 、1.6 、1.44となっている。また従来の差動装置では、歯数Z1,Z2の、その他の組合わせとして、例えば15×10、17×10、18×10、19×10、または20×10となっているものも知られており、この場合の歯数比率Z1/Z2は、それぞれ1.5 、1.7 、1.8 、1.9 、2.0 となっている。   By the way, a conventional differential device as exemplified in Patent Documents 2 and 3 above (in particular, a pinion (differential gear) in the input member and a pair of side gears (output gears) meshed with the pinion (differential gear)). In the conventional differential device), normally, the number of teeth Z1 of the side gear (output gear) and the number of teeth Z2 of the pinion (differential gear) are, for example, 14 × 10 or 16 × 10 shown in Patent Document 3 or 13 × 9 is used. In this case, the gear ratio Z1 / Z2 of the output gear with respect to the differential gear is 1.4, 1.6, and 1.44, respectively. In addition, in the conventional differential device, other combinations of the number of teeth Z1 and Z2, for example, 15 × 10, 17 × 10, 18 × 10, 19 × 10, or 20 × 10 are also known. In this case, the tooth number ratios Z1 / Z2 are 1.5, 1.7, 1.8, 1.9, and 2.0, respectively.

一方、今日では、差動装置周辺でのレイアウト上の制約を伴う伝動装置も増えており、差動装置のギヤ強度を確保しつつ差動装置を出力軸の軸方向に十分幅狭化(即ち扁平化)することが市場で要求されている。しかしながら従来の既存の差動装置では、上記歯数比率の組み合わせからも明らかなように出力軸の軸方向で幅広の構造形態となっているため、上記した市場の要求を満たすことが困難な状況にある。   On the other hand, the number of transmission devices with layout constraints around the differential device is increasing today, and the differential device is sufficiently narrow in the axial direction of the output shaft while ensuring the gear strength of the differential device (that is, Flattening) is required in the market. However, the conventional differential device has a wide structure in the axial direction of the output shaft, as is clear from the combination of the above-mentioned number of teeth ratios, so it is difficult to satisfy the above market requirements. It is in.

そこで差動装置のギヤ強度を確保しつつ差動装置を出力軸の軸方向に十分幅狭化(即ち扁平化)し得る差動装置Dの構成例を、上記した実施形態とは異なる観点より、以下に具体的に特定する。尚、この構成例に係る差動装置Dの各構成要素の構造は、図1〜図8(特に図1〜図7)で説明した上記実施形態の差動装置Dの各構成要素と同様であるので、各構成要素の参照符号は、上記実施形態のそれと同じ符号を使用し、構造説明は省略する。   Therefore, a configuration example of the differential device D capable of sufficiently narrowing (that is, flattening) the differential device in the axial direction of the output shaft while securing the gear strength of the differential device from a viewpoint different from the above-described embodiment. Specific identification will be given below. The structure of each component of the differential device D according to this configuration example is the same as that of each component of the differential device D of the above-described embodiment described with reference to FIGS. 1 to 8 (particularly FIGS. 1 to 7). Therefore, the same reference numerals as those in the above embodiment are used as the reference numerals of the respective components, and the description of the structure is omitted.

先ず、差動装置Dを出力軸Aの軸方向に十分に幅狭化(即ち扁平化)するための基本的な考え方を、図9を併せて参照して説明すると、それは、
[1]ピニオンP即ち差動ギヤに対するサイドギヤS即ち出力ギヤの歯数比率Z1/Z2を従来既存の差動装置の歯数比率よりも増大させる。(これにより、ギヤのモジュール(従って歯厚)が減少してギヤ強度が低下する一方で、サイドギヤSのピッチ円直径が増大してギヤ噛合部での伝達荷重が低減しギヤ強度が増大するが、全体としては後述する如くギヤ強度は低下する。)
[2]ピニオンPのピッチ円錐距離PCDを従来既存の差動装置のピッチ円錐距離よりも増やす。(これにより、ギヤのモジュールが増加してギヤ強度が増大すると共に、サイドギヤSのピッチ円直径が増大してギヤ噛合部での伝達荷重が低減しギヤ強度が増大するため、全体としては後述する如くギヤ強度は大幅に増大する。)
従って、上記[1]によるギヤ強度低下の量と、上記[2]によるギヤ強度増大の量とが等しくなるか、或いは上記[1]によるギヤ強度低下の量よりも、上記[2]によるギヤ強度増大の量の方が上回るように、歯数比率Z1/Z2及びピッチ円錐距離PCDを設定することにより、全体としてギヤ強度を従来既存の差動装置と比べて同等もしくは増大させることができる。
First, a basic idea for sufficiently narrowing (that is, flattening) the differential device D in the axial direction of the output shaft A will be described with reference to FIG.
[1] The tooth number ratio Z1 / Z2 of the side gear S, that is, the output gear with respect to the pinion P, that is, the differential gear is increased from the tooth number ratio of the existing differential device. (This reduces the gear module (and hence the tooth thickness) and decreases the gear strength, while the pitch circle diameter of the side gear S increases and the transmission load at the gear meshing portion decreases and the gear strength increases. As a whole, the gear strength decreases as will be described later.)
[2] The pitch cone distance PCD of the pinion P is increased from the pitch cone distance of the existing differential device. (As a result, the gear module is increased and the gear strength is increased, and the pitch circle diameter of the side gear S is increased to reduce the transmission load at the gear meshing portion and increase the gear strength. Thus, the gear strength is greatly increased.)
Accordingly, the amount of reduction in gear strength due to the above [1] is equal to the amount of increase in gear strength due to the above [2], or the amount of gear strength due to the above [2] is larger than the amount of reduction in gear strength due to the above [1]. By setting the gear ratio Z1 / Z2 and the pitch cone distance PCD so that the amount of strength increase is greater, the gear strength as a whole can be equal or increased as compared with conventional differential devices.

次に上記[1][2]に基づくギヤ強度の変化態様を数式により具体的に検証する。尚、検証は、以下の実施形態で説明する。先ず、サイドギヤSの歯数Z1を14、ピニオンPの歯数Z2を10とした時の差動装置D′を「基準差動装置」とする。また「変化率」とは、基準差動装置D′を基準(即ち100 %)とした場合の各種変数の変化率である。
[1]について
サイドギヤSのモジュールをM、ピッチ円直径をPD1 、ピッチ角をθ1 、ピッチ円錐距離をPCD、ギヤ噛合部での伝達荷重をF、伝達トルクをTとした場合に、ベベルギヤの一般的な公式より、
M=PD1 /Z1
PD1 =2PCD・ sinθ1
θ1 = tan-1(Z1/Z2)
これら式から、ギヤのモジュールは、
M=2PCD・ sin{ tan-1(Z1/Z2)}/Z1 ・・・(1)
となり、
また基準差動装置D′のモジュールは、2PCD・ sin{ tan-1(7/5)}/14
となる。
Next, the change mode of the gear strength based on the above [1] and [2] will be specifically verified by mathematical expressions. The verification will be described in the following embodiment. First, the differential device D ′ when the number of teeth Z1 of the side gear S is 14 and the number of teeth Z2 of the pinion P is 10 is referred to as a “reference differential device”. The “change rate” is a change rate of various variables when the reference differential device D ′ is used as a reference (ie, 100%).
Regarding [1] When the side gear S module is M, the pitch circle diameter is PD 1 , the pitch angle is θ 1 , the pitch cone distance is PCD, the transmission load at the gear meshing portion is F, and the transmission torque is T, the bevel gear From the general formula of
M = PD 1 / Z1
PD 1 = 2PCD · sinθ 1
θ 1 = tan -1 (Z1 / Z2)
From these equations, the gear module is
M = 2PCD · sin {tan −1 (Z1 / Z2)} / Z1 (1)
And
The module of the reference differential device D ′ is 2PCD · sin {tan −1 (7/5)} / 14.
It becomes.

従って、この両式の右項を除算することにより、基準差動装置D′に対するモジュール変化率は、次の(2)式のようになる。   Therefore, by dividing the right term of both equations, the module change rate with respect to the reference differential device D ′ is expressed by the following equation (2).

Figure 2016114241
Figure 2016114241

また、ギヤ強度(即ち歯部の曲げ強度)に相当する歯部の断面係数は、歯厚の二乗に比例する関係にあり、一方、その歯厚は、モジュールMと略リニアな関係にある。従って、モジュール変化率の二乗は、歯部の断面係数変化率、延いてはギヤ強度の変化率に相当する。即ち、そのギヤ強度変化率は、(2)式に基づいて次の(3)式のように表される。(3)式は、ピニオンPの歯数Z2が10の時には図10のL1で示され、これにより、歯数比率Z1/Z2が増えるにつれてモジュール減少によりギヤ強度が低下することが判る。   Further, the section modulus of the tooth portion corresponding to the gear strength (that is, the bending strength of the tooth portion) is proportional to the square of the tooth thickness, and the tooth thickness is in a substantially linear relationship with the module M. Accordingly, the square of the module change rate corresponds to the change rate of the section modulus of the tooth portion, and thus the change rate of the gear strength. That is, the gear strength change rate is expressed by the following equation (3) based on the equation (2). Equation (3) is indicated by L1 in FIG. 10 when the number of teeth Z2 of the pinion P is 10, and it can be seen that the gear strength decreases due to the module decrease as the number of teeth ratio Z1 / Z2 increases.

Figure 2016114241
Figure 2016114241

ところで上記したベベルギヤの一般的な公式より、サイドギヤSのトルク伝達距離は、次の(4)式のようになる。   By the way, from the general formula of the bevel gear described above, the torque transmission distance of the side gear S is expressed by the following equation (4).

PD1 /2=PCD・ sin{ tan-1(Z1/Z2)}・・・(4)
そして、トルク伝達距離PD1 /2による伝達荷重Fは、F=2T/PD1 である。従って、基準差動装置D′のサイドギヤSにおいて、トルクTを一定とすれば、伝達荷重Fとピッチ円直径PD1 とが反比例の関係となる。また伝達荷重Fの変化率は、ギヤ強度の変化率とも反比例の関係にあることから、ギヤ強度の変化率は、ピッチ円直径PD1 の変化率と等しくなる。
PD 1/2 = PCD · sin {tan -1 (Z1 / Z2)} ··· (4)
The transmission load F due to the torque transmission distance PD 1/2 is F = 2T / PD 1 . Therefore, if the torque T is constant in the side gear S of the reference differential device D ′, the transmission load F and the pitch circle diameter PD 1 are in an inversely proportional relationship. The rate of change in transmitted load F, since the both the rate of change of the gear strength is inversely proportional to the rate of change in gear strength is equal to the rate of change of the pitch diameter PD 1.

その結果、ピッチ円直径PD1 の変化率は、(4)の式を用いて、次の(5)式のようになる。 As a result, the change rate of the pitch circle diameter PD 1 is expressed by the following equation (5) using the equation (4).

Figure 2016114241
Figure 2016114241

(5)式は、ピニオンPの歯数Z2が10の時には図10のL2で示され、これにより、歯数比率Z1/Z2が増えるにつれて伝達荷重低減によりギヤ強度が高まることが判る。   The expression (5) is indicated by L2 in FIG. 10 when the number of teeth Z2 of the pinion P is 10, and it can be seen that as the number of teeth ratio Z1 / Z2 increases, the gear strength increases as the transmission load decreases.

結局のところ、歯数比率Z1/Z2が増えることに伴うギヤ強度の変化率は、モジュールMの減少によるギヤ強度の減少変化率(上記した(3)式の右項)と、伝達荷重低減によるギヤ強度の増加変化率(上記した(5)式の右項)との掛け合わせにより、次の(6)式として表される。   After all, the change rate of the gear strength with the increase in the tooth number ratio Z1 / Z2 is the change rate of the gear strength due to the decrease of the module M (the right term of the above equation (3)) and the reduction of the transmission load. It is expressed as the following equation (6) by multiplication with the rate of increase in gear strength (the right term of the above equation (5)).

Figure 2016114241
Figure 2016114241

(6)式は、ピニオンPの歯数Z2が10の時には図10のL3で示され、これにより、歯数比率Z1/Z2が増えるにつれて全体としてギヤ強度が低下することが判る。
[2]について
ピニオンPのピッチ円錐距離PCDを基準差動装置D′のピッチ円錐距離よりも増やすと、変更前のPCDをPCD1、変更後のPCDをPCD2とした場合には、PCDの変更前後のモジュール変化率は、上記したベベルギヤの一般的な公式より、歯数を一定とすれば、(PCD2/PCD1)となる。
Equation (6) is indicated by L3 in FIG. 10 when the number of teeth Z2 of the pinion P is 10, and it can be seen that the gear strength as a whole decreases as the number of teeth ratio Z1 / Z2 increases.
[2] When the pitch cone distance PCD of the pinion P is increased beyond the pitch cone distance of the reference differential device D ′, when the PCD before the change is PCD1 and the PCD after the change is PCD2, before and after the change of the PCD According to the general formula of the bevel gear described above, the module change rate is (PCD2 / PCD1) if the number of teeth is constant.

一方、サイドギヤSのギヤ強度の変化率は、(3)式を導いた過程からも明らかなように、モジュール変化率の二乗に相当するため、結局のところ、
モジュール増大によるギヤ強度変化率=(PCD2/PCD1)2 ・・・(7)
(7)式は、図11のL4で示され、これにより、ピッチ円錐距離PCDが増えるにつれてモジュール増加によりギヤ強度が増加することが判る。
On the other hand, the change rate of the gear strength of the side gear S corresponds to the square of the module change rate, as is apparent from the process of deriving the equation (3).
Gear strength change rate due to module increase = (PCD2 / PCD1) 2 (7)
The equation (7) is indicated by L4 in FIG. 11, and it can be seen that the gear strength increases due to the module increase as the pitch cone distance PCD increases.

また、ピッチ円錐距離PCDを基準差動装置D′のピッチ円錐距離PCD1よりも増やした場合に、伝達荷重Fが低減されるが、これによる、ギヤ強度の変化率は、前述のようにピッチ円直径PD1 の変化率と等しくなる。またサイドギヤSのピッチ円直径PD1 とピッチ円錐距離PCDとは比例関係にある。従って、
伝達荷重低減によるギヤ強度変化率=PCD2/PCD1 ・・・(8)
(8)式は、図11のL5で示され、これにより、ピッチ円錐距離PCDが増えるにつれて伝達荷重低減によりギヤ強度が高まることが判る。
Further, when the pitch cone distance PCD is increased beyond the pitch cone distance PCD1 of the reference differential device D ′, the transmission load F is reduced. As a result, the change rate of the gear strength is as described above. equal to the rate of change of the diameter PD 1. Also there is a proportional relationship with the pitch diameter PD 1 and a pitch cone distance PCD side gear S. Therefore,
Gear strength change rate due to reduced transmission load = PCD2 / PCD1 (8)
Expression (8) is indicated by L5 in FIG. 11, and it can be seen that as the pitch cone distance PCD increases, the gear strength increases due to the transmission load reduction.

そして、ピッチ円錐距離PCDが増えることに伴うギヤ強度の変化率は、モジュールMの増大によるギヤ強度の増加変化率(上記した(7)式の右項)と、ピッチ円直径PDの増加に伴う伝達荷重低減によるギヤ強度の増加変化率(上記した(8)式の右項)との掛け合わせにより、次の(9)式として表される。   The change rate of the gear strength accompanying the increase in the pitch cone distance PCD is the change rate of the gear strength due to the increase in the module M (the right term in the above equation (7)) and the increase in the pitch circle diameter PD. The following equation (9) is obtained by multiplying with the rate of increase change in gear strength due to the reduction of the transmission load (the right term of the above equation (8)).

ピッチ円錐距離増大によるギヤ強度変化率=(PCD2/PCD1)3 ・・(9)
(9)式は、図11のL6で示され、これにより、ピッチ円錐距離PCDが増えるにつれてギヤ強度が大幅に高められることが判る。
Gear strength change rate due to increase in pitch cone distance = (PCD2 / PCD1) 3 (9)
The expression (9) is indicated by L6 in FIG. 11, and it can be seen that the gear strength is greatly increased as the pitch cone distance PCD increases.

そして、[1]の手法(歯数比率増大)によるギヤ強度の低下分を、[2]の手法(ピッチ円錐距離増大)によるギヤ強度の増大分で十分補うようにして全体として差動装置のギヤ強度を従来既存の差動装置のギヤ強度と同等もしくはそれ以上とするように、歯数比率Z1/Z2及びピッチ円錐距離PCDの組み合わせを決定する。   Then, the decrease in gear strength due to the method [1] (increase in the number of teeth ratio) is sufficiently compensated by the increase in gear strength due to the method [2] (increase in pitch cone distance). The combination of the gear ratio Z1 / Z2 and the pitch cone distance PCD is determined so that the gear strength is equal to or higher than the gear strength of the existing differential gear.

例えば、基準差動装置D′のサイドギヤSのギヤ強度を100%維持する場合には、[1]で求めた歯数比率増大に伴うギヤ強度の変化率(上記した(6)式の右項)と、[2]で求めたピッチ円錐距離増大によるギヤ強度変化率(上記した(9)の右項)とを掛け合わせたものが100%となるように設定すればよい。これより、基準差動装置D′のギヤ強度を100%維持する場合における歯数比率Z1/Z2とピッチ円錐距離PCDの変化率との関係は、次の(10)式で求められる。(10)式は、ピニオンPの歯数Z2が10の時には図12のL7で示される。   For example, when the gear strength of the side gear S of the reference differential device D ′ is maintained at 100%, the change rate of the gear strength with the increase in the tooth number ratio obtained in [1] (the right term of the above equation (6)). ) And the gear strength change rate (right term of (9) described above) obtained by increasing the pitch cone distance obtained in [2] may be set to 100%. Accordingly, the relationship between the gear ratio Z1 / Z2 and the rate of change of the pitch cone distance PCD when the gear strength of the reference differential device D ′ is maintained at 100% can be obtained by the following equation (10). The expression (10) is indicated by L7 in FIG. 12 when the number of teeth Z2 of the pinion P is 10.

Figure 2016114241
Figure 2016114241

このように(10)式は、歯数比率Z1/Z2=14/10とした基準差動装置D′のギヤ強度を100%維持する場合における歯数比率Z1/Z2とピッチ円錐距離PCDの変化率との関係(図12参照)を示すものであるが、図12の縦軸のピッチ円錐距離PCDの変化率は、ピニオンPを支持するピニオンシャフトPS(即ちピニオン支持部)のシャフト径をd2とした場合にはd2/PCDの比率に変換可能である。   In this way, the expression (10) indicates that the change in the tooth number ratio Z1 / Z2 and the pitch cone distance PCD in the case where the gear strength of the reference differential device D ′ with the tooth number ratio Z1 / Z2 = 14/10 is maintained at 100%. The change rate of the pitch cone distance PCD on the vertical axis in FIG. 12 indicates the shaft diameter of the pinion shaft PS (that is, the pinion support portion) that supports the pinion P. In this case, the ratio can be converted to a ratio of d2 / PCD.

Figure 2016114241
Figure 2016114241

すなわち、従来既存の差動装置において、ピッチ円錐距離PCDの増大変化は、上記表1のようにd2の増大変化と相関があり、且つd2を一定としたときはd2/PCDの比率の低下として表現可能である。しかも、従来既存の差動装置においては、上記表1のように、基準差動装置D′の時にはd2/PCDが40〜45%の範囲に収まっている関係と、PCDを増やすとギヤ強度が増大することとから、基準差動装置D′の時には少なくともd2/PCDが45%以下となるように、ピニオンシャフトPSのシャフト径d2及びピッチ円錐距離PCDを決めれば、ギヤ強度を従来既存の差動装置のギヤ強度と同等もしくはそれ以上とすることができる。つまり、基準差動装置D′の場合には、
d2/PCD≦0.45を満たせばよい。この場合、基準差動装置D′のピッチ円錐距離PCD1に対して、増減変更後のPCDをPCD2とすれば、
d2/PCD2≦0.45/(PCD2/PCD1)・・・(11)
を満たせばよいということになる。そして、(11)式を、上記した(10)式に適用すれば、d2/PCDと、歯数比率Z1/Z2との関係が、次の(12)式のように変換可能である。
That is, in an existing differential device, an increase in pitch cone distance PCD is correlated with an increase in d2 as shown in Table 1 above, and when d2 is constant, the ratio of d2 / PCD decreases. It can be expressed. Moreover, in the conventional differential device, as shown in Table 1, when the reference differential device D ′ is used, d2 / PCD is within the range of 40 to 45%, and when the PCD is increased, the gear strength is increased. Therefore, when the shaft diameter d2 and the pitch cone distance PCD of the pinion shaft PS are determined so that at least d2 / PCD is 45% or less at the time of the reference differential device D ′, the gear strength is different from the existing difference. It can be equal to or greater than the gear strength of the moving device. That is, in the case of the reference differential device D ′,
d2 / PCD ≦ 0.45 may be satisfied. In this case, if the PCD after the increase / decrease change is PCD2 with respect to the pitch cone distance PCD1 of the reference differential device D ′,
d2 / PCD2 ≦ 0.45 / (PCD2 / PCD1) (11)
It will be sufficient to satisfy. Then, by applying the expression (11) to the above expression (10), the relationship between d2 / PCD and the tooth number ratio Z1 / Z2 can be converted as the following expression (12).

Figure 2016114241
Figure 2016114241

(12)式の等号が成立する時において、ピニオンPの歯数Z2が10の時には図13のL8のように表すことができる。(12)式の等号が成立する時が、基準差動装置D′のギヤ強度を100%維持する場合のd2/PCDと歯数比率Z1/Z2との関係である。   When the equal sign of the expression (12) is established, when the number of teeth Z2 of the pinion P is 10, it can be expressed as L8 in FIG. The time when the equality in equation (12) is established is the relationship between d2 / PCD and the tooth number ratio Z1 / Z2 when the gear strength of the reference differential device D ′ is maintained at 100%.

ところで従来既存の差動装置では、上述したように、通常、基準差動装置D′のような歯数比率Z1/Z2を1.4とするものだけでなく、歯数比率Z1/Z2を1.6とするものや、歯数比率Z1/Z2を1.44とするものも採用されている。この事実を踏まえて、基準差動装置D′(Z1/Z2=1.4)で必要十分な、即ち100%のギヤ強度が得られると想定した場合には、従来既存の差動装置において歯数比率Z1/Z2が16/10の差動装置では、図10から明らかなようにギヤ強度が基準差動装置D′に比べ87%に低下していることが判る。しかしながら、この程度に低下したギヤ強度は、従来既存の差動装置では実用強度として許容され、実用されている。そこで、軸方向に扁平な差動装置においても、基準差動装置D′に対し少なくとも87%のギヤ強度があれば、ギヤ強度が十分に確保、許容されると考えられる。   By the way, in the conventional differential device, as described above, not only the tooth number ratio Z1 / Z2 is set to 1.4 as in the reference differential device D ′, but also the tooth number ratio Z1 / Z2 is set to 1. .6 and those having a tooth number ratio Z1 / Z2 of 1.44 are also employed. Based on this fact, if it is assumed that the reference differential device D ′ (Z1 / Z2 = 1.4) can provide a sufficient and sufficient gear strength, that is, a gear strength of 100%, a conventional differential device has As can be seen from FIG. 10, in the differential device having the number ratio Z1 / Z2 of 16/10, the gear strength is reduced to 87% as compared with the reference differential device D ′. However, the gear strength reduced to such a degree is allowed as a practical strength and is practically used in existing differential devices. Therefore, even in a differential device that is flat in the axial direction, if the gear strength is at least 87% with respect to the reference differential device D ′, it is considered that the gear strength is sufficiently secured and allowed.

このような観点から、基準差動装置D′のギヤ強度を87%維持する場合における歯数比率Z1/Z2と、ピッチ円錐距離PCDの変化率との関係を先ず求めると、その関係は、(10)式を導く過程に倣って演算(即ち、歯数比率増大に伴うギヤ強度の変化率(上記した(6)式の右項)と、ピッチ円錐距離増大によるギヤ強度変化率(上記した(9)の右項)とを掛け合わせたものが87%となるように演算)することにより、次の(10′)式のように表すことができる。   From this point of view, when the relationship between the gear ratio Z1 / Z2 and the rate of change in the pitch cone distance PCD when the gear strength of the reference differential device D ′ is maintained at 87%, the relationship is: Following the process of deriving equation (10), calculation (ie, the rate of change in gear strength accompanying the increase in the number of teeth ratio (the right term in equation (6) above) and the rate of change in gear strength due to the increase in pitch cone distance (as described above ( 9) is multiplied so as to be 87%, and can be expressed as the following equation (10 ′).

Figure 2016114241
Figure 2016114241

そして、前述の(11)式を、上記した(10′)式に適用すれば、基準差動装置D′のギヤ強度を87%以上維持する場合におけるd2/PCDと、歯数比率Z1/Z2との関係が、次の(13)式のように変換可能である。但し、計算の過程において、変数を用いて表される項を除き、有効数字を3桁で計算し、それ以外の桁は切り捨てで対応する都合上、実際には計算誤差によりほぼ等しいとなる場合でも、式の表現では等号で表すこととする。   If the above-described equation (11) is applied to the above-described equation (10 ′), d2 / PCD and the gear ratio Z1 / Z2 when the gear strength of the reference differential device D ′ is maintained at 87% or more. Can be converted as in the following equation (13). However, in the calculation process, except for terms expressed using variables, the significant figures are calculated with 3 digits, and the other digits are rounded down, so that they are actually almost equal due to calculation errors. However, in the expression of the expression, it shall be expressed with an equal sign.

Figure 2016114241
Figure 2016114241

(13)式の等号が成立する場合において、ピニオンPの歯数Z2が10の時には図13のように(より具体的には、図13のL9ラインのように)表すことができ、この場合に(13)式に対応する領域は、図13でL9ライン上及びL9ラインよりも下側の領域となる。そして、(13)式を満たし、且つ図13でL10ラインよりも右側となる歯数比率Z1/Z2が2.0を超えることを満たす特定領域(図13のハッチング領域)が、特にピニオンPの歯数Z2が10で歯数比率Z1/Z2が2.0を超える軸方向に扁平な差動装置において、基準差動装置D′に対し少なくとも87%のギヤ強度を確保可能なZ1/Z2及びd2/PCDの設定領域である。尚、参考までに、歯数比率Z1/Z2を40/10と、d2/PCDを20.00%とそれぞれ設定した時の実施例を図13において例示すれば、菱形点のようになり、また歯数比率Z1/Z2を58/10と、d2/PCDを16.67%とそれぞれ設定した時の実施例を図13において例示すれば、三角点のようになり、これらは上記の特定領域に収まっている。これらの実施例について、シミュレーションによる強度解析を行った結果、従来と同等またはそれ以上のギヤ強度(より具体的には基準差動装置D′に対して87%のギヤ強度またはそれ以上のギヤ強度)が得られていることが確認できた。   When the equal sign of equation (13) holds, when the number of teeth Z2 of the pinion P is 10, it can be expressed as shown in FIG. 13 (more specifically, as shown by the line L9 in FIG. 13). In this case, the region corresponding to the expression (13) is the region above the L9 line and below the L9 line in FIG. And the specific region (hatching region in FIG. 13) that satisfies the equation (13) and satisfies that the tooth number ratio Z1 / Z2 on the right side of the L10 line in FIG. In a differential gear flat in the axial direction in which the number of teeth Z2 is 10 and the gear ratio Z1 / Z2 exceeds 2.0, Z1 / Z2 that can secure a gear strength of at least 87% with respect to the reference differential gear D ′; This is a setting area for d2 / PCD. For reference, if an example when the tooth number ratio Z1 / Z2 is set to 40/10 and d2 / PCD is set to 20.00% in FIG. 13 is illustrated in FIG. In the example shown in FIG. 13, when the tooth number ratio Z1 / Z2 is set to 58/10 and d2 / PCD is set to 16.67%, it becomes like a triangular point. It is settled. As a result of performing a strength analysis by simulation with respect to these embodiments, a gear strength equal to or higher than that of a conventional gear strength (more specifically, a gear strength of 87% or higher with respect to the reference differential device D ′). ) Was obtained.

而して、上記特定領域にある扁平な差動装置は、従来既存の非扁平な差動装置と同程度のギヤ強度(例えば静ねじり荷重強度)や最大トルク伝達量を確保しながら、全体として出力軸の軸方向で十分に幅狭化な差動装置として構成されるものであり、そのため、差動装置周辺のレイアウト上の制約が多い伝動系に対しても差動装置を、高い自由度を以て無理なく容易に組込み可能となり、またその伝動系を小型化する上で頗る有利となる等の効果を達成可能である。   Therefore, the flat differential device in the specific area as a whole while securing the same gear strength (for example, static torsional load strength) and maximum torque transmission amount as conventional non-flat differential devices. It is configured as a differential device with a sufficiently narrow width in the axial direction of the output shaft. Therefore, the differential device can be used with a high degree of freedom even for transmission systems with many layout constraints around the differential device. As a result, it can be easily assembled without difficulty, and it is possible to achieve advantages such as being advantageous in reducing the size of the transmission system.

また、上記特定領域にある扁平な差動装置の構造が、例えば、上述した実施形態の構造(より具体的には、図1〜8で示される構造)となる場合には、上記特定領域にある扁平な差動装置は、上述した実施形態で示した構造に伴う効果も併せて達成可能である。   Further, when the structure of the flat differential device in the specific area is, for example, the structure of the above-described embodiment (more specifically, the structure shown in FIGS. 1 to 8), the specific area A certain flat differential device can also achieve the effect accompanying the structure shown in the above-described embodiment.

尚、前述の説明(特に図10,12,13に関する説明)は、ピニオンPの歯数Z2を10とした時の差動装置について行っているが、本発明は、これに限定されるものではない。例えば、ピニオンPの歯数Z2を6,12,20とした場合にも、上記効果を達成可能な扁平な差動装置は、図14,15,16のハッチングで示されるように、(13)式で表すことができる。即ち、前述のようにして導出された(13)式は、ピニオンPの歯数Z2の変化に関わらず適用できるものであって、例えばピニオンPの歯数Z2を6,12,20とした場合でも、ピニオンPの歯数Z2を10とした場合と同様、(13)式を満たすようにサイドギヤSの歯数Z1、ピニオンPの歯数Z2、ピニオンシャフトPSのシャフト径d2及びピッチ円錐距離PCDを設定すれば上記効果が得られる。   The above description (especially with respect to FIGS. 10, 12, and 13) is performed with respect to the differential when the number of teeth Z2 of the pinion P is 10, but the present invention is not limited to this. Absent. For example, when the number of teeth Z2 of the pinion P is set to 6, 12, and 20, the flat differential device that can achieve the above effect is (13) as shown by hatching in FIGS. It can be expressed by a formula. That is, the expression (13) derived as described above can be applied regardless of the change in the number of teeth Z2 of the pinion P. For example, when the number of teeth Z2 of the pinion P is 6, 12, 20 However, as in the case where the number of teeth Z2 of the pinion P is 10, the number of teeth Z1 of the side gear S, the number of teeth Z2 of the pinion P, the shaft diameter d2 of the pinion shaft PS, and the pitch cone distance PCD so as to satisfy the expression (13). The above effect can be obtained by setting.

また、参考までに、ピニオンPの歯数Z2を12とした場合において、歯数比率Z1/Z2を48/12と、d2/PCDを20.00%とそれぞれ設定した時の実施例を図15に菱形点で、歯数比率Z1/Z2を70/12と、d2/PCDを16.67%とそれぞれ設定した時の実施例を図15に三角点で例示する。これらの実施例について、シミュレーションによる強度解析を行った結果、従来と同等またはそれ以上のギヤ強度(より具体的には基準差動装置D′に対して87%のギヤ強度またはそれ以上のギヤ強度)が得られていることが確認できた。また、これらの実施例は、図15に示されるように上記特定領域に収まっている。   For reference, in the case where the number of teeth Z2 of the pinion P is 12, the embodiment when the tooth number ratio Z1 / Z2 is set to 48/12 and d2 / PCD is set to 20.00% is shown in FIG. FIG. 15 illustrates an example of the case where the ratio of the teeth number Z1 / Z2 is set to 70/12 and d2 / PCD is set to 16.67%. As a result of performing a strength analysis by simulation with respect to these embodiments, a gear strength equal to or higher than that of a conventional gear strength (more specifically, a gear strength of 87% or higher with respect to the reference differential device D ′). ) Was obtained. Further, these examples are within the specific area as shown in FIG.

比較例として、上記特定範囲に収まらない実施例、例えばピニオンPの歯数Z2を10とした場合において、歯数比率Z1/Z2を58/10と、d2/PCDを27.50%とそれぞれ設定した時の実施例を図13に星形点で、ピニオンPの歯数Z2を10とした場合において、歯数比率Z1/Z2を40/10と、d2/PCDを34.29%とそれぞれ設定した時の実施例を図13に丸点で、ピニオンPの歯数Z2を12とした場合において、歯数比率Z1/Z2を70/12と、d2/PCDを27.50%とそれぞれ設定した時の実施例を図15の星形点で、ピニオンPの歯数Z2を12とした場合において、歯数比率Z1/Z2を48/12と、d2/PCDを34.29%とそれぞれ設定した時の実施例を図15の丸点で示す。これらの実施例についてシミュレーションによる強度解析を行った結果、従来と同等またはそれ以上のギヤ強度(より具体的には基準差動装置D′に対して87%のギヤ強度またはそれ以上のギヤ強度)が得られなかったことが確認できた。つまり、上記特定範囲に収まらない実施例では上記効果が得られないことが確認できた。   As a comparative example, in an example that does not fall within the above specific range, for example, when the number of teeth Z2 of the pinion P is 10, the tooth number ratio Z1 / Z2 is set to 58/10 and d2 / PCD is set to 27.50%. In the case where the number of teeth Z2 of the pinion P is 10 and the tooth number ratio Z1 / Z2 is set to 40/10 and d2 / PCD is set to 34.29%, respectively. When the number of teeth Z2 of the pinion P is set to 12 in FIG. 13, the tooth number ratio Z1 / Z2 is set to 70/12, and the d2 / PCD is set to 27.50%. In the case of the star point in FIG. 15 where the number of teeth Z2 of the pinion P is 12, the tooth number ratio Z1 / Z2 is set to 48/12 and d2 / PCD is set to 34.29%. Example of time is indicated by the dot in FIG.As a result of performing a strength analysis by simulation for these examples, a gear strength equal to or higher than the conventional one (more specifically, a gear strength of 87% or higher than the reference differential device D ′) is obtained. It was confirmed that was not obtained. In other words, it was confirmed that the above-mentioned effects could not be obtained in the examples not falling within the specific range.

以上、本発明の実施形態を説明したが、本発明は上述した実施形態に限定されるものではなく、その要旨を逸脱しない範囲で種々の設計変更が可能である。   As mentioned above, although embodiment of this invention was described, this invention is not limited to embodiment mentioned above, A various design change is possible in the range which does not deviate from the summary.

例えば、上述した実施形態では、ミッションケース1内にランダムに飛散する潤滑油がカバー部C,C′の肉抜き部8を通して自然流入するものを示したが、肉抜き部8に対しては、ミッションケース1内で差動装置Dの回転に伴い特定方向に撥ね掛けるようにした潤滑油や、ミッションケース1の天井部から特定箇所に滴下させる潤滑油を積極的に流入させるようにしてもよく、或いは潤滑油ポンプで潤滑油を強制的に圧送させるようにしてもよい。   For example, in the above-described embodiment, the lubricant that randomly scatters in the mission case 1 is shown to naturally flow through the lightening portions 8 of the cover portions C and C ′. Lubricating oil that repels in a specific direction with the rotation of the differential device D in the mission case 1 or lubricating oil that drops from a ceiling portion of the mission case 1 to a specific location may be actively introduced. Alternatively, the lubricating oil may be forcibly pumped by a lubricating oil pump.

また上述した実施形態では、左右少なくとも一方のカバー部C,C′の側壁部Csに肉抜き部8を設けたものを示したが、左右何れのカバー部C,C′の側壁部Csにも肉抜き部8を形成しないようにして、側壁部Csにより、対応するサイドギヤSの背面全面を覆うようにしてもよい。   Further, in the above-described embodiment, the thinned portion 8 is provided on the side wall Cs of at least one of the left and right covers C, C ′. However, the side wall Cs of any of the left and right covers C, C ′ is also provided. You may make it cover the whole back surface of the corresponding side gear S by the side wall part Cs so that the lightening part 8 may not be formed.

また上述した実施形態では、サイドギヤSの外側まで潤滑油が導かれる油経路として、カバー部C,C′の側壁部Csに形成した肉抜き部8から油ガイド溝17に至る油経路を説明したが、このような肉抜き部8(油ガイド溝17)に代えて、又は加えて、他の油経路も実施可能である。他の油経路としては、例えば、サイドギヤSの軸部Sjとカバー部C,C′のボス部Cbとの嵌合面の少なくとも一方に螺旋溝を形成して、軸部Sjとボス部Cbとの相対回転に連動してカバー部C,C′の外側から螺旋溝を通してサイドギヤSの外側面に潤滑油を導くようにしてもよい。或いは、カバー部C,C′の側壁部Csに、肉抜き部8とは別に貫通油路を形成してカバー部C,C′の外側からサイドギヤSの外側面に潤滑油を導くようにしてもよい。   In the above-described embodiment, the oil path from the thinned portion 8 formed in the side wall portion Cs of the cover portions C and C ′ to the oil guide groove 17 is described as the oil route through which the lubricating oil is guided to the outside of the side gear S. However, instead of or in addition to such a lightening portion 8 (oil guide groove 17), other oil paths can be implemented. As another oil path, for example, a spiral groove is formed in at least one of the fitting surfaces of the shaft portion Sj of the side gear S and the boss portion Cb of the cover portions C and C ′, and the shaft portion Sj and the boss portion Cb The lubricating oil may be guided to the outer surface of the side gear S from the outside of the cover portions C and C ′ through the spiral groove in conjunction with the relative rotation of the side gear S. Alternatively, a through oil passage is formed in the side wall portion Cs of the cover portions C and C ′ separately from the thinned portion 8 so that the lubricating oil is guided from the outside of the cover portions C and C ′ to the outer surface of the side gear S. Also good.

また上述した実施形態では、入力部材Iが入力歯部Igを一体に備えるものを示したが、入力部材Iとは別体に形成したリングギヤを後付けで入力部材Iに固定するようにしてもよい。また本発明の入力部材は、上記のような入力歯部Igやリングギヤを備えない構造であってもよく、例えば入力部材Iが、動力伝達経路で入力部材Iよりも上流側に位置する駆動部材(例えば遊星歯車機構や減速歯車機構の出力部材、無端伝動帯式伝動機構の被動輪等)と連動、連結されることにより、入力部材Iに回転駆動力が入力されるようにしてもよい。   In the embodiment described above, the input member I is integrally provided with the input tooth portion Ig. However, a ring gear formed separately from the input member I may be fixed to the input member I by retrofitting. . The input member of the present invention may have a structure not including the input tooth portion Ig and the ring gear as described above. For example, the input member I is a drive member positioned upstream of the input member I in the power transmission path. For example, a rotational driving force may be input to the input member I by interlocking with and coupled to an output member of a planetary gear mechanism or a reduction gear mechanism, a driven wheel of an endless transmission band type transmission mechanism, or the like.

また、上述した実施形態では、一対のサイドギヤSの背面を一対のカバー部C,C′でそれぞれ覆うものを示したが、本発明では、一方のサイドギヤSの背面にのみカバー部を設けるようにしてもよい。この場合、例えば、カバー部が設けられない側に、動力伝達経路で上流側に位置する駆動部材を配設して、カバー部が設けられない側で駆動部材と入力部材とを連動、連結させるようにしてもよい。   Further, in the above-described embodiment, the back surface of the pair of side gears S is shown as being covered with the pair of cover portions C and C ′. However, in the present invention, the cover portion is provided only on the back surface of the one side gear S. May be. In this case, for example, a drive member located upstream in the power transmission path is disposed on the side where the cover part is not provided, and the drive member and the input member are linked and connected on the side where the cover part is not provided. You may do it.

また、上述した実施形態において、差動装置Dは、左右車軸の回転差を許容するものであったが、前輪と後輪の回転差を吸収するセンターデフにも本発明の差動装置を実施可能である。   Further, in the above-described embodiment, the differential device D allows the rotational difference between the left and right axles. However, the differential device of the present invention is also applied to the center differential that absorbs the rotational difference between the front wheels and the rear wheels. Is possible.

A・・・・・出力軸
C,C′・・カバー部
Cs・・・・側壁部
D・・・・・差動装置
d2・・・・ピニオンシャフトの直径、支持軸部の直径(ピニオン支持部の直径,差動ギヤ支持部の直径)
I・・・・・入力部材
P・・・・・ピニオン(差動ギヤ)
PCD・・・ピッチ円錐距離
PS・・・・ピニオンシャフト(ピニオン支持部,差動ギヤ支持部)
PS′・・・支持軸部(ピニオン支持部,差動ギヤ支持部)
S・・・・・サイドギヤ(出力ギヤ)
Sj・・・・軸部
Sg・・・・歯部
Sw・・・・中間壁部
W・・・・・ワッシャ
8・・・・・肉抜き部
15・・・・貫通油路
16・・・・ワッシャ保持溝
17・・・・油ガイド溝
A ... Output shaft C, C '... Cover portion Cs ... Side wall D ... Differential gear d2 ... Diameter of pinion shaft, diameter of support shaft (pinion support) Diameter, differential gear support diameter)
I: Input member P: Pinion (differential gear)
PCD ・ ・ ・ Pitch cone distance PS ・ ・ ・ ・ Pinion shaft (Pinion support, differential gear support)
PS '... support shaft (pinion support, differential gear support)
S: Side gear (output gear)
Sj ··· Shaft portion Sg ··· Tooth portion Sw · · · Intermediate wall portion W · · · Washer 8 · Meat removal portion 15 · · · through oil passage 16 · · ·・ Washer holding groove 17 ... Oil guide groove

Claims (7)

ピニオン(P)を支持するピニオン支持部(PS,PS′)を支持して該ピニオン支持部(PS,PS′)と共に回転可能な入力部材(I)の回転力を、前記ピニオン(P)に噛合する歯部(Sg)を外周部に有する一対のサイドギヤ(S)を介して一対の出力軸(A)に分配して伝達する差動装置であって、
前記一対のサイドギヤ(S)は、前記一対の出力軸(A)にそれぞれ接続される軸部(Sj)と、前記軸部(Sj)と該軸部(Sj)から前記入力部材(I)の半径方向外方に離間した前記歯部(Sg)との間を一体に接続する扁平な中間壁部(Sw)とを有し、
少なくとも一方の前記サイドギヤ(S)の前記中間壁部(Sw)には、前記中間壁部(Sw)の内側面と外側面とに両端が各々開口する貫通油路(15)が形成されることを特徴とする差動装置。
The rotational force of the input member (I) that supports the pinion support (PS, PS ′) that supports the pinion (P) and is rotatable together with the pinion support (PS, PS ′) is applied to the pinion (P). A differential device that distributes and transmits to a pair of output shafts (A) via a pair of side gears (S) having meshing teeth (Sg) on an outer peripheral portion,
The pair of side gears (S) includes a shaft portion (Sj) connected to the pair of output shafts (A), the shaft portion (Sj), and the shaft portion (Sj) of the input member (I). A flat intermediate wall portion (Sw) that integrally connects the tooth portions (Sg) spaced radially outwardly;
The intermediate wall (Sw) of at least one of the side gears (S) is formed with a through oil passage (15) having both ends opened on the inner surface and the outer surface of the intermediate wall (Sw). A differential device characterized by.
さらに、前記少なくとも一方のサイドギヤ(S)の外側面を覆う側壁部(Cs)を有し且つ前記入力部材(I)と一体に回転するよう結合されるカバー部(C,C′)と、前記側壁部(Cs)の内側面と前記サイドギヤ(S)の外側面との間に介装されるワッシャ(W)とを備え、
前記ワッシャ(W)の少なくとも内周部が前記貫通油路(15)の、前記中間壁部(Sw)の外側面への開口部に臨むように、該ワッシャ(W)及び前記貫通油路(15)の相対位置が設定されることを特徴とする、請求項1に記載の差動装置。
A cover portion (C, C ′) having a side wall portion (Cs) covering an outer surface of the at least one side gear (S) and coupled to rotate integrally with the input member (I); A washer (W) interposed between the inner surface of the side wall (Cs) and the outer surface of the side gear (S),
The washer (W) and the through oil passage (so that at least the inner periphery of the washer (W) faces the opening of the through oil passage (15) to the outer surface of the intermediate wall portion (Sw). 15. The differential device according to claim 1, wherein the relative position of 15) is set.
前記側壁部(Cs)の内側面と前記サイドギヤ(S)の外側面との相対向面の少なくとも一方に、前記ワッシャ(W)を嵌合保持するワッシャ保持溝(16)が形成されることを特徴とする、請求項2に記載の差動装置。   A washer holding groove (16) for fitting and holding the washer (W) is formed on at least one of the opposing surfaces of the inner side surface of the side wall portion (Cs) and the outer side surface of the side gear (S). The differential device according to claim 2, wherein the differential device is a characteristic. 前記側壁部(Cs)は、前記サイドギヤ(S)の外側面を露出させる肉抜き部(8)を備え、
前記側壁部(Cs)の内側面には、前記入力部材(I)の回転時に前記肉抜き部(8)の周縁から前記ワッシャ(W)及び前記貫通油路(15)への潤滑油の流入を誘導し得る油ガイド溝(17)が凹設されることを特徴とする、請求項2又は3に記載の差動装置。
The side wall (Cs) includes a lightening portion (8) that exposes an outer surface of the side gear (S),
Lubricating oil flows into the inner side surface of the side wall portion (Cs) from the periphery of the thinned portion (8) to the washer (W) and the through oil passage (15) when the input member (I) rotates. The differential device according to claim 2 or 3, characterized in that an oil guide groove (17) capable of guiding the oil is recessed.
差動ギヤ(P)を支持する差動ギヤ支持部(PS,PS′)を支持して該差動ギヤ支持部(PS,PS′)と共に回転可能な入力部材(I)の回転力を、前記差動ギヤ(P)に噛合する歯部(Sg)を外周部に有する一対の出力ギヤ(S)を介して一対の出力軸(A)に分配して伝達する差動装置であって、
前記一対の出力ギヤ(S)は、前記一対の出力軸(A)にそれぞれ接続される軸部(Sj)と、前記軸部(Sj)と該軸部(Sj)から前記入力部材(I)の半径方向外方に離間した前記歯部(Sg)との間を一体に接続する扁平な中間壁部(Sw)とを有し、
少なくとも一方の前記出力ギヤ(S)の前記中間壁部(Sw)には、前記中間壁部(Sw)の内側面と外側面とに両端が各々開口する貫通油路(15)が形成され、
前記出力ギヤ(S)の歯数をZ1とし、前記差動ギヤ(P)の歯数をZ2とし、前記差動ギヤ支持部(PS,PS′)の直径をd2とし、ピッチ円錐距離をPCDとしたときに、
Figure 2016114241
を満たし、
且つZ1/Z2>2を満たすことを特徴とする差動装置。
The rotational force of the input member (I) that supports the differential gear support (PS, PS ′) that supports the differential gear (P) and is rotatable together with the differential gear support (PS, PS ′), A differential device that distributes and transmits to a pair of output shafts (A) via a pair of output gears (S) having teeth (Sg) meshing with the differential gear (P) on the outer periphery,
The pair of output gears (S) includes a shaft portion (Sj) connected to the pair of output shafts (A), the shaft portion (Sj), and the shaft portion (Sj) to the input member (I). A flat intermediate wall portion (Sw) that integrally connects the tooth portions (Sg) that are spaced apart radially outward from each other,
The intermediate wall (Sw) of at least one of the output gears (S) is formed with a through oil passage (15) having both ends opened on the inner surface and the outer surface of the intermediate wall (Sw).
The number of teeth of the output gear (S) is Z1, the number of teeth of the differential gear (P) is Z2, the diameter of the differential gear support (PS, PS ') is d2, and the pitch cone distance is PCD. And when
Figure 2016114241
The filling,
A differential device satisfying Z1 / Z2> 2.
Z1/Z2≧4を満たすことを特徴とする、請求項5に記載の差動装置。   The differential device according to claim 5, wherein Z1 / Z2 ≧ 4 is satisfied. Z1/Z2≧5.8を満たすことを特徴とする、請求項5に記載の差動装置。   The differential device according to claim 5, wherein Z1 / Z2 ≧ 5.8 is satisfied.
JP2015223207A 2014-12-12 2015-11-13 Differential Expired - Fee Related JP6683460B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/964,754 US9739364B2 (en) 2014-12-12 2015-12-10 Differential device
DE102015224892.5A DE102015224892B4 (en) 2014-12-12 2015-12-10 Oil supply to a narrow differential gear
CN201510920595.7A CN105697714B (en) 2014-12-12 2015-12-11 Differential gear

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014251879 2014-12-12
JP2014251879 2014-12-12

Publications (2)

Publication Number Publication Date
JP2016114241A true JP2016114241A (en) 2016-06-23
JP6683460B2 JP6683460B2 (en) 2020-04-22

Family

ID=56141297

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015223207A Expired - Fee Related JP6683460B2 (en) 2014-12-12 2015-11-13 Differential

Country Status (2)

Country Link
JP (1) JP6683460B2 (en)
CN (1) CN105697714B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113748279A (en) * 2019-03-29 2021-12-03 株式会社爱信 Differential gear mechanism and design method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6863115B2 (en) * 2017-06-19 2021-04-21 株式会社ジェイテクト Differential device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58137644A (en) * 1982-02-08 1983-08-16 Nissan Motor Co Ltd Differential gear apparatus
JPH04132243U (en) * 1991-05-30 1992-12-07 栃木富士産業株式会社 differential limiter
WO2013161365A1 (en) * 2012-04-26 2013-10-31 アイシン・エィ・ダブリュ株式会社 Differential gear

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3495298A (en) * 1967-11-30 1970-02-17 Borg Warner Differential lubricating mechanism
JP2000297856A (en) * 1999-04-14 2000-10-24 Tochigi Fuji Ind Co Ltd Differential device
CN200949647Y (en) * 2006-08-03 2007-09-19 四川成都成工工程机械股份有限公司 Drive axle differential mechanism with rotation preventing big bevel gear pad
JP2008281159A (en) * 2007-05-14 2008-11-20 Honda Motor Co Ltd Differential device
CN102996714A (en) * 2012-11-22 2013-03-27 柳州市汽车齿轮总厂 Gear pair of automobile main reducing gear and drive axle
JP2014190526A (en) * 2013-03-28 2014-10-06 Honda Motor Co Ltd Lubrication structure of differential device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58137644A (en) * 1982-02-08 1983-08-16 Nissan Motor Co Ltd Differential gear apparatus
JPH04132243U (en) * 1991-05-30 1992-12-07 栃木富士産業株式会社 differential limiter
WO2013161365A1 (en) * 2012-04-26 2013-10-31 アイシン・エィ・ダブリュ株式会社 Differential gear

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113748279A (en) * 2019-03-29 2021-12-03 株式会社爱信 Differential gear mechanism and design method thereof
EP3945225A4 (en) * 2019-03-29 2022-02-23 Aisin Corporation Differential gear mechanism and design method therefor

Also Published As

Publication number Publication date
CN105697714B (en) 2018-06-26
CN105697714A (en) 2016-06-22
JP6683460B2 (en) 2020-04-22

Similar Documents

Publication Publication Date Title
CN106015534B (en) Differential gear
US9897188B2 (en) Differential device
US20160369880A1 (en) Differential device
US20160138702A1 (en) Differential device
US20160169360A1 (en) Differential device
US9587730B2 (en) Differential device
US9677664B2 (en) Vehicle differential device
JP6487664B2 (en) Differential
JP2016191418A (en) Differential device
US20170059030A1 (en) Cooling ring gear
CN106895127B (en) Differential gear
US9739364B2 (en) Differential device
JP6621298B2 (en) Differential
JP2016114241A (en) Differential device
CN106337922B (en) Differential gear
JP2017009109A (en) Differential device
JP6587892B2 (en) Differential
US9810306B2 (en) Differential device
JP2016109297A (en) Differential device
JP6612577B2 (en) Differential
JP2016102587A (en) Differential device
JP2016194362A (en) Differential gear for vehicle
JP6827752B2 (en) Differential
CN111577855B (en) Differential device
JP6649057B2 (en) Differential device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181012

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190925

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200304

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200326

R150 Certificate of patent or registration of utility model

Ref document number: 6683460

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees