JP2016111781A - 電力変換装置 - Google Patents

電力変換装置 Download PDF

Info

Publication number
JP2016111781A
JP2016111781A JP2014245827A JP2014245827A JP2016111781A JP 2016111781 A JP2016111781 A JP 2016111781A JP 2014245827 A JP2014245827 A JP 2014245827A JP 2014245827 A JP2014245827 A JP 2014245827A JP 2016111781 A JP2016111781 A JP 2016111781A
Authority
JP
Japan
Prior art keywords
current
switching element
battery
power
upper arm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014245827A
Other languages
English (en)
Inventor
敏和 大野
Toshikazu Ono
敏和 大野
智子 大庭
Satoko Oba
智子 大庭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2014245827A priority Critical patent/JP2016111781A/ja
Publication of JP2016111781A publication Critical patent/JP2016111781A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Dc-Dc Converters (AREA)

Abstract

【課題】2つの電流センサのうちの少なくとも一つに異常が生じていることを適正に判定する。【解決手段】2つモータの双方の動力の出力が要求されていないときには、2つのコンバータの上アームをオンする上アームオン制御を実行し(ステップS100)、上アームオン制御を実行しているときに検出された電流IL1,IL2の差分DILが閾値THより大きいときには、2つの電流センサのうちの少なくとも一つに異常が生じていると判定する(ステップS110,S130)。上アームオン制御では、2つのバッテリ間に流れる電流が所定電流IrefとなるようトランジスタT31,T41のオン状態を設定し、設定したオン状態になるようゲート電圧を調整する。【選択図】図3

Description

本発明は、電力変換装置に関し、詳しくは、第1リアクトルとを有し第1バッテリからの電力を昇圧して負荷に供給する第1コンバータと、第2リアクトルを有し第2バッテリからの電力を昇圧して負荷に供給する第2コンバータと、第1,第2リアクトルの電流を検出する第1,第2電流センサと、を備える電力変換装置に関する。
従来、この種の電力変換装置としては、第1の蓄電装置からの電力を昇圧して給電ラインに供給する第1のコンバータと、第2の蓄電装置からの電力を昇圧して給電ラインに供給する第2のコンバータと、を備えるものが提案されている(例えば、特許文献1参照)。この装置では、第1のコンバータについては、給電ラインの電圧が目標電圧値となるよう制御する。そして、第2のコンバータについては、第2の蓄電装置の入出力電力指令値を第2のコンバータの低圧側の電圧で除して電流指令値を算出し、電流センサで検出した第2のコンバータの低圧側の電流と電流指令値との偏差が小さくなるよう制御する。これにより、安定的なエネルギーマネージメントとパワーマネージメントとを可能としている。
特開2011−97693号公報
上述の電力変換装置では、電流センサに異常が生じると、第2のコンバータの制御を適正に実行できない。したがって、電流センサの異常を検出することが重要な課題として認識されている。電流センサの異常を検出する手法として、第2のコンバータの低圧側の電流を検出する電流センサを2つ設け、2つの電流センサの検出値の偏差が閾値以上のときに2つの電流センサのうちのいずれかに異常が生じていると判定する手法がある。しかしながら、この手法では、電流センサの数が増加して、コストが増加してしまう。特に、複数のコンバータを備える電力変換装置において、複数のコンバータ毎に複数の電流センサを設けると電流センサの数が増大してしまう。したがって、電流センサの数を増加させることなく、複数の電流センサに異常が生じているか否かを判定することが望まれている。
本発明の電力変換装置は、電流センサの数を増加させることなく、2つの電流センサの少なくとも一つに異常が生じていることを適正に判定することを主目的とする。
本発明の電力変換装置は、上述の主目的を達成するために以下の手段を採った。
本発明の電力変換装置は、
上アームである第1スイッチング素子と下アームである第2スイッチング素子と第1リアクトルとを有し、第1バッテリからの電力を昇圧して負荷に供給する第1コンバータと、
上アームである第3スイッチング素子と下アームである第4スイッチング素子と第2リアクトルを有し、第2バッテリからの電力を昇圧して前記負荷に供給する第2コンバータと、
前記第1リアクトルを流れる第1電流を検出する第1電流センサと、
前記第2リアクトルを流れる第2電流を検出する第2電流センサと、
前記第1スイッチング素子と前記第2スイッチング素子と前記第3スイッチング素子と前記第4スイッチング素子とをスイッチング制御する制御手段と、
を備える電力変換装置であって、
前記制御手段は、
前記負荷に電力を供給する負荷要求がないときには、前記第1スイッチング素子および前記第3スイッチング素子をオンとし、前記第2スイッチング素子および前記第4スイッチング素子をオフとする上アームオン制御を実行し、前記上アームオン制御を実行しているときに、前記検出された第1電流と前記検出された第2電流との差分が所定閾値よりも大きいときには、第1電流センサおよび第2電流センサのいずれかに異常が生じていると判定する手段であり、
前記上アームオン制御は、前記第1バッテリの端子間電圧と前記第2バッテリの端子間電圧との差分が大きいほど前記第1スイッチング素子と前記第3スイッチング素子の導通抵抗を大きくする制御である、
ことを要旨とする。
この本発明の電力変換装置では、負荷に電力を供給する負荷要求がないときには、第1スイッチング素子および前記第3スイッチング素子をオンとし、第2スイッチング素子および前記第4スイッチング素子をオフとする上アームオン制御を実行する。これにより、第1バッテリと第2バッテリとの間で第1コンバータと第2コンバータとを介して電流が流れるようになる。そして、上アームオン制御を実行しているときに、検出された第1電流と検出された第2電流との差分が所定閾値よりも大きいときには、第1電流センサおよび第2電流センサのうちの少なくとも一方に異常が生じていると判定する。上アームオン制御を実行しているときにおいて、第1電流センサおよび第2電流センサの双方が正常であるときには、第1電流センサから検出値と第2電流センサからの検出値とは検出誤差の範囲内で略一致し、第1電流センサおよび第2電流センサの少なくとも一つに異常が生じているときには、第1電流センサから検出値と第2電流センサからの検出値との偏差が検出誤差の範囲外になると考えられる。したがって、検出された第1電流と検出された第2電流との差分が所定閾値よりも大きいときには、第1電流センサおよび第2電流センサのうちの少なくとも一つに異常が生じていると判定することにより、適正に第1電流センサおよび第2電流センサのうちの少なくとも一つに異常が生じていると判定することができる。さらに、上アームオン制御では、第1バッテリの端子間電圧と第2バッテリの端子間電圧との差分が大きいほど第1スイッチング素子および第3スイッチング素子の導通抵抗を大きくする。導通抵抗が一定の場合、上アームオン制御を実行しているときには、第1バッテリの端子間電圧と第2バッテリの端子間電圧との差分が大きいほど第1コンバータおよび第2コンバータに大きな電流が流れる。したがって、第1バッテリの端子間電圧と第2バッテリの端子間電圧との差分が大きいほど第1スイッチング素子および第3スイッチング素子の導通抵抗を大きくすることにより、第1コンバータや第2コンバータに大きな電流が流れることを抑制できる。この結果、第1電流センサおよび第2電流センサの保護を図りつつ、第1電流センサおよび第2電流センサの少なくとも一つに異常が生じていることを判定することができる。ここで、「導通抵抗を大きくする」とは、第1,第3スイッチング素子がゲート型のトランジスタである場合には、ゲートに供給する電圧を低くすることをいう。
本発明の一実施例としての電力変換装置が搭載されたハイブリッド自動車20の構成の概略を示す構成図である。 モータMG1,MG2を含む電機駆動系の構成の概略を示す構成図である。 実施例のHVECU70により実行される電流センサの異常を判定する異常判定処理ルーチンの一例を示すフローチャートである。 差分DVbとトランジスタT31,T41のオン状態との関係を示すマップの一例を示す説明図である。
次に、本発明を実施するための形態を実施例を用いて説明する。
図1は、本発明の一実施例としての電力変換装置が搭載されたハイブリッド自動車20の構成の概略を示す構成図である。図2は、モータMG1,MG2を含む電機駆動系の構成の概略を示す構成図である。実施例のハイブリッド自動車20は、図示するように、エンジン22と、プラネタリギヤ30と、モータMG1,MG2と、インバータ41,42と、第1,第2昇圧コンバータ54,55,第1,第2バッテリ50,51と、ハイブリッド用電子制御ユニット(以下、HVECUという)70と、を備える。
エンジン22は、ガソリンや軽油などを燃料として動力を出力する内燃機関として構成されている。このエンジン22は、エンジン用電子制御ユニット(以下、エンジンECUという)24により運転制御されている。
エンジンECU24は、図示しないが、CPUを中心とするマイクロプロセッサとして構成されており、CPUの他に、処理プログラムを記憶するROMやデータを一時的に記憶するRAM,入出力ポート,通信ポートを備える。エンジンECU24には、エンジン22を運転制御するのに必要な各種センサからの信号、例えば、クランクシャフト26の回転位置を検出するクランクポジションセンサ23からのクランク角θcrなどが入力ポートを介して入力されている。また、エンジンECU24からは、エンジン22を運転制御するための種々の制御信号が出力ポートを介して出力されている。エンジンECU24は、HVECU70と通信ポートを介して接続されている。このエンジンECU24は、HVECU70からの制御信号によりエンジン22を運転制御する。また、エンジンECU24は、必要に応じてエンジン22の運転状態に関するデータをHVECU70に出力する。
プラネタリギヤ30は、シングルピニオン式の遊星歯車機構として構成されている。プラネタリギヤ30のサンギヤには、モータMG1の回転子が接続されている。プラネタリギヤ30のリングギヤには、駆動輪38a,38bにデファレンシャルギヤ37を介して連結された駆動軸36が接続されている。プラネタリギヤ30のキャリヤには、エンジン22のクランクシャフト26が接続されている。
モータMG1は、永久磁石が埋め込まれた回転子と、三相コイルが巻回された固定子と、を有する同期発電電動機として構成されている。このモータMG1は、上述したように、回転子がプラネタリギヤ30のサンギヤに接続されている。モータMG2は、モータMG1と同様の同期発電電動機として構成されている。このモータMG2は、回転子が駆動軸36に接続されている。
図1や図2に示すように、インバータ41は、第1電力ライン46に接続されている。このインバータ41は、6つのトランジスタT11〜T16と、6つのダイオードD11〜D16と、を有する。トランジスタT11〜T16は、それぞれ、第1電力ライン46の正極母線と負極母線とに対して、ソース側とシンク側になるように、2個ずつペアで配置されている。6つのダイオードD11〜D16は、それぞれ、トランジスタT11〜T16に逆方向に並列接続されている。トランジスタT11〜T16の対となるトランジスタ同士の接続点の各々には、モータMG1の三相コイル(U相,V相,W相)の各々が接続されている。したがって、インバータ41に電圧が作用しているときに、モータ用電子制御ユニット(以下、モータECUという)40によって、対となるトランジスタT11〜T16のオン時間の割合が調節されることにより、三相コイルに回転磁界が形成され、モータMG1が回転駆動される。
インバータ42は、インバータ41と同様に、6つのトランジスタT21〜T26と、6つのダイオードD21〜D26と、を有する。そして、インバータ42に電圧が作用しているときに、モータECU40によって、対となるトランジスタT21〜T26のオン時間の割合が調節されることにより、三相コイルに回転磁界が形成され、モータMG2が回転駆動される。
第1昇圧コンバータ54は、インバータ41,42が接続された第1電力ライン46と、第1バッテリ50が接続された第2電力ライン47と、に接続されている。この第1昇圧コンバータ54は、絶縁ゲート型バイポーラトランジスタ(IGBT)として構成された上アームのトランジスタT31と、絶縁ゲート型バイポーラトランジスタ(IGBT)として構成された下アームのトランジスタT32と、2つのダイオードD31,D32と、リアクトルL1と、を有する。トランジスタT31は、第1電力ライン46の正極母線に接続されている。トランジスタT32は、トランジスタT31と、第1電力ライン46および第2電力ライン47の負極母線と、に接続されている。2つのダイオードD31,D32は、それぞれ、トランジスタT31,T32に逆方向に並列接続されている。リアクトルL1は、トランジスタT31,T32同士の接続点Cn1と、第2電力ライン47の正極母線と、に接続されている。第1昇圧コンバータ54は、モータECU40によって、トランジスタT31,T32のオン時間の割合が調節されることにより、第2電力ライン47の電力を昇圧して第1電力ライン46に供給したり、第1電力ライン46の電力を降圧して第2電力ライン47に供給したりする。
第2昇圧コンバータ55は、第1電力ライン46と、第2バッテリ51が接続された第3電力ライン48と、に接続されている。第2昇圧コンバータ55は、第1昇圧コンバータ54と同様に、絶縁ゲート型バイポーラトランジスタ(IGBT)として構成された上アームのトランジスタT41と、絶縁ゲート型バイポーラトランジスタ(IGBT)として構成された下アームのトランジスタT42と、2つのダイオードD41,D42と、リアクトルL2と、を有する。そして、第2昇圧コンバータ55は、モータECU40によって、トランジスタT41,T42のオン時間の割合が調節されることにより、第3電力ライン48の電力を昇圧して第1電力ライン46に供給したり、第1電力ライン46の電力を降圧して第3電力ライン48に供給したりする。
第1電力ライン46の正極母線と負極母線とには、平滑用のコンデンサ46aが取り付けられている。第2電力ライン47の正極母線と負極母線とには、平滑用のコンデンサ47aが取り付けられている。第3電力ライン48の正極母線と負極母線とには、平滑用のコンデンサ48aが取り付けられている。
モータECU40は、図示しないが、CPUを中心とするマイクロプロセッサとして構成されており、CPUの他に、処理プログラムを記憶するROMやデータを一時的に記憶するRAM,入出力ポート,通信ポートを備える。モータECU40には、モータMG1,MG2や第1,第2昇圧コンバータ54,55を駆動制御するのに必要な各種センサからの信号が入力ポートを介して入力されている。各種センサからの信号としては、以下のものを挙げることができる。モータMG1,MG2の回転子の回転位置を検出する回転位置検出センサ43,44からの回転位置θm1,θm2。モータMG1,MG2の各相に流れる電流を検出する電流センサからの相電流。コンデンサ46aの端子間に取り付けられた電圧センサ46bからのコンデンサ46a(第1電力ライン46)の電圧VH。コンデンサ47aの端子間に取り付けられた電圧センサ47bからのコンデンサ47a(第2電力ライン47)の電圧VL1。コンデンサ48aの端子間に取り付けられた電圧センサ48bからのコンデンサ48a(第3電力ライン48)の電圧VL2。第1昇圧コンバータ54のトランジスタT31,T32同士の接続点Cn1とリアクトルL1との間に取り付けられた電流センサ54aからのリアクトルL1の電流IL1(リアクトルL1側から接続点Cn1側に流れるときが正の値)。第2昇圧コンバータ55のトランジスタT41,T42同士の接続点Cn2とリアクトルL2との間に取り付けられた電流センサ55aからのリアクトルL2の電流IL2(リアクトルL2側から接続点Cn2側に流れるときが正の値)。モータECU40からは、モータMG1,MG2や第1,第2昇圧コンバータ54,55を駆動制御するための種々の制御信号が出力ポートを介して出力されている。種々の制御信号としては、以下のものを挙げることができる。インバータ41,42のトランジスタT11〜T16,T21〜T26へのスイッチング制御信号。第1,第2昇圧コンバータ54,55のトランジスタT31,T32,T41,T42へのスイッチング制御信号。モータECU40は、HVECU70と通信ポートを介して接続されている。このモータECU40は、HVECU70からの制御信号によってモータMG1,MG2や第1,第2昇圧コンバータ54,55を駆動制御する。また、モータECU40は、必要に応じてモータMG1,MG2や第1,第2昇圧コンバータ54,55の駆動状態に関するデータをHVECU70に出力する。
第1バッテリ50は、例えばリチウムイオン二次電池やニッケル水素二次電池として構成されており、上述したように、第2電力ライン47に接続されている。第2バッテリ51は、例えばリチウムイオン二次電池やニッケル水素二次電池として構成されており、上述したように、第3電力ライン48に接続されている。第1,第2バッテリ50,51は、バッテリ用電子制御ユニット(以下、バッテリECUという)52により管理されている。
バッテリECU52は、図示しないが、CPUを中心とするマイクロプロセッサとして構成されており、CPUの他に、処理プログラムを記憶するROMやデータを一時的に記憶するRAM,入出力ポート,通信ポートを備える。バッテリECU52には、第1,第2バッテリ50,51を管理するのに必要な信号が入力ポートを介して入力されている。各種センサからの信号としては、以下のものを挙げることができる。第1バッテリ50の出力端子に取り付けられた電流センサ50aからの電池電流Ib1。第1バッテリ50の端子間に設置された電圧センサ50bからの電池電圧Vb1。第1バッテリ50に取り付けられた温度センサからの電池温度Tb1。第2バッテリ51の出力端子に取り付けられた電流センサ51aからの電池電流Ib2。第2バッテリ51の端子間に設置された電圧センサ51bからの電池電圧Vb2。第2バッテリ51に取り付けられた温度センサからの電池温度Tb2。バッテリECU52は、HVECU70と通信ポートを介して接続されている。このバッテリECU52は、必要に応じて第1,第2バッテリ50,51の状態に関するデータをHVECU70に出力する。
HVECU70は、図示しないが、CPUを中心とするマイクロプロセッサとして構成されており、CPUの他に、処理プログラムを記憶するROMやデータを一時的に記憶するRAM,入出力ポート,通信ポートを備える。HVECU70には、各種センサからの信号が入力ポートを介して入力されている。各種センサからの信号としては、以下のものを挙げることができる。イグニッションスイッチ80からのイグニッション信号。シフトレバー81の操作位置を検出するシフトポジションセンサ82からのシフトポジションSP。アクセルペダル83の踏み込み量を検出するアクセルペダルポジションセンサ84からのアクセル開度Acc。ブレーキペダル85の踏み込み量を検出するブレーキペダルポジションセンサ86からのブレーキペダルポジションBP。車速センサ88からの車速V。HVECU70は、上述したように、エンジンECU24やモータECU40,バッテリECU52と通信ポートを介して接続されている。このHVECU70は、エンジンECU24やモータECU40,バッテリECU52と各種制御信号やデータのやりとりを行なっている。
こうして構成された実施例のハイブリッド自動車20は、エンジン22の運転を伴って走行するハイブリッド走行モード(HV走行モード)や、エンジン22の運転を停止して走行する電動走行モード(EV走行モード)で走行する。ハイブリッド自動車20は、停車時には、必要に応じてエンジン22を停止し、インバータ41,42をシャットダウン(オフ)してモータMG1,MG2を停止する。
実施例のハイブリッド自動車20では、システムが停止しているときにブレーキペダル85がオンされた状態でイグニッションスイッチ80からイグニッション信号を入力したときには、図示しないシステムメインリレーをオンとするなど初期化処理を実行し、必要に応じてエンジン22を始動してシステムを起動状態、即ち、レディオン(READYON)とする。また、システムが起動状態での停車時にイグニッションスイッチ80からイグニッション信号を入力したときには、エンジン22を停止してインバータ41,42をシャットダウン(オフ)してモータMG1,MG2を停止して起動処理を終了、即ち、レディオフ(READYOFF)とする。
次にこうして構成された電力変換装置の動作、特に、電流センサの異常を判定する際の動作について説明する。図3は、実施例のHVECU70により実行される電流センサの異常を判定するセンサ異常判定処理ルーチンの一例を示すフローチャートである。本ルーチンは、例えば、ハイブリッド自動車20が停車中であるときやシステムが起動状態での停車時にイグニッションスイッチ80からのイグニッション信号が入力されたとき(レディオフの直前)など、インバータ41,42がシャットダウン(オフ)されていてモータMG1,MG2からの電力の出力が要求されていないとき(負荷要求がないとき)に実行される。
本ルーチンが実行されると、HVECU70は、まず、第1,第2昇圧コンバータ54,55の上アームをオンとする上アームオン制御を実行する制御実行指令をモータECU40に送信する処理を実行する(ステップS100)。制御実行指令を受信したモータECU40は、第1,第2昇圧コンバータ54,55の上アームのトランジスタT31,T41がオンし、下アームのトランジスタT32,T42がオフするよう、第1,第2昇圧コンバータ54,55を制御する。こうした制御により、第1,第2昇圧コンバータ54,55を介して第1バッテリ50と第2バッテリ51との間に電流を流している。
上アームオン制御では、第1バッテリ50と第2バッテリ51との間に流れる電流が所定電流Iref(例えば、10A,20A,30Aなど)となるようトランジスタT31,T41のオン状態が設定され、設定されたオン状態になるようゲート電圧が調整される。ここで、電池電圧Vb1,Vb2は、電圧センサ50b,51bにより検出されたものをバッテリECU52から通信により入力するものとした。トランジスタT31,T41のオン状態の設定は、第1,第2バッテリ50,51の電池電圧Vb1,Vb2の差分DVb(=|Vb1−Vb2|)と、第1バッテリ50と第2バッテリ51との間に流れる電流が所定電流IrefとなるトランジスタT31,T41のオン状態と、の関係を設定用マップとして予め実験や解析などで定めておく。そして、差分DVbが与えられると設定用マップにより対応するオン状態を導出するものとした。図4は、設定用マップの一例を示す説明図である。図中、トランジスタT31,T41のオン状態は、差分DVbが値0であるときに第1バッテリ50と第2バッテリ51との間に流れる電流を所定電流IrefとするトランジスタT31,T41のゲートの電圧Vref(例えば、2V,1.5V,1Vなど)を値1とした。したがって、例えば「4/8オン」とは、トランジスタT31,T41のゲートを電圧Vrefの4/8倍の電圧に調整することを意味している。トランジスタT31,T41は、図示するように、差分DVbが大きいほどオン状態が低くなる、つまり、ゲートに供給される電圧が低くなるよう調整されるものとした。トランジスタは、一般に、ゲートの電圧が低いほど導通抵抗が高くなることから、トランジスタT31,T41は、差分DVbが大きいほど導通抵抗が高くなるよう調整される。これは、トランジスタT31,T41の導通抵抗が一定の場合、差分DVbが大きくなるほどトランジスタT31,T41に流れる電流が増加することから、差分DVbが大きくなるほどトランジスタT31,T41の導通抵抗を大きくすることにより、トランジスタT31,T41に流れる電流が増大することを抑制できるからである。このように、差分DVbが大きくなるほどトランジスタT31,T41の導通抵抗が大きくなるようトランジスタT31,T41のゲート電圧を調整することにより、第1,第2昇圧コンバータ54,55の保護を図ることができる。
続いて、上アームオン制御を実行している状態で電流センサ54a,55aからの電流IL1,IL2の差分DIL(=|IL1−IL2|)と閾値THとを比較する(ステップS110)。ここで、閾値THは、電流センサ54a,55aの検出誤差として予め定めた値を用いるものとした。電流センサ54a,55aの双方が正常であるときには、差分DILは、閾値THの範囲内となるから、ステップS110の処理は、電流センサ54a,55aのうちの少なくとも一方に異常が生じているか否かを調べる処理となる。
差分DILが閾値TH以下であるときには電流センサ54a,55aが正常であると判定して(ステップS110,S120)、本ルーチンを終了し、差分DILが閾値THを超えているときには電流センサ54a,55aのうちの少なくとも一つに異常が生じていると判定して(ステップS110,S130)、本ルーチンを終了する。こうした処理により、電流センサ54a,55aのそれぞれに対して別途電流センサを設けることなく、電流センサ54a,55aに異常が生じているか否かを判定することができる。電流センサ54a,55aのうちの少なくとも一方に異常が生じると、第1,第2昇圧コンバータ54,55の制御が適正に行えない可能性があることから、電流センサ54a,55aのうちの少なくとも一つに異常が生じていると判定することにより、異常に対処するための様々な制御を行なうことができる。また、上アームオン制御では、差分DVbが大きくなるほどトランジスタT31,T41の導通抵抗が大きくなるようトランジスタT31,T41のゲート電圧を調整するから、第1,第2昇圧コンバータ54,55の保護を図りつつ、電流センサ54a,55aのうちの少なくとも一つに異常が生じていることを判定することができる。
以上説明した実施例のハイブリッド自動車20によれば、モータMG1,MG2から動力を出力する負荷要求がないときに上アームオン制御を実行し、上アームオン制御を実行しているときに検出された電流IL1,IL2との差分DILが閾値THより大きいときに、電流センサ54a,55aのうちの少なくとも一つに異常が生じていることを判定する。これにより、別途電流センサを設けることなく電流センサ54a,55aのうちの少なくとも一方に異常が生じていることを判定することができる。
そして、上アームオン制御では、差分DVbが大きいほどトランジスタT31,T41(上アーム)の導通抵抗を大きくする。これにより、第1,第2昇圧コンバータ54,55の保護を図ることができる。この結果、電流センサの数を増加させることなく、電流センサ54a,54bの少なくとも一つに異常が生じていることを適正に判定することができる。
実施例のハイブリッド自動車20では、トランジスタT31,T32,T41,T42が絶縁ゲート型バイポーラトランジスタ(IGBT)として構成されているものとしたが、絶縁ゲート型バイポーラトランジスタ(IGBT)に限定されるものではなく、他のゲート型のトランジスタや可変抵抗とスイッチとを組み合わせたものなど、導通抵抗を変更可能なスイッチング素子であれば如何なるものとしても構わない。
実施例では、本発明の電力変換装置をハイブリッド自動車20に搭載した場合について例示したが、電力の供給を受けて動作する負荷を備える装置であれば如何なるものに搭載しても構わない。また、こうした負荷を備える装置に搭載されたものに限定されずに、負荷を備える装置とは別に設けられていても構わない。
実施例の主要な要素と課題を解決するための手段の欄に記載した発明の主要な要素との対応関係について説明する。実施例では、第1昇圧コンバータ54が「第1コンバータ」に相当し、第2昇圧コンバータ55が「第2コンバータ」に相当し、電流センサ54aが「第1電流センサ」に相当し、電流センサ55aが「第2電流センサ」に相当し、モータECU40とバッテリECU52とHVECU70とが「制御手段」に相当する。
なお、実施例の主要な要素と課題を解決するための手段の欄に記載した発明の主要な要素との対応関係は、実施例が課題を解決するための手段の欄に記載した発明を実施するための形態を具体的に説明するための一例であることから、課題を解決するための手段の欄に記載した発明の要素を限定するものではない。即ち、課題を解決するための手段の欄に記載した発明についての解釈はその欄の記載に基づいて行なわれるべきものであり、実施例は課題を解決するための手段の欄に記載した発明の具体的な一例に過ぎないものである。
以上、本発明を実施するための形態について実施例を用いて説明したが、本発明はこうした実施例に何等限定されるものではなく、本発明の要旨を逸脱しない範囲内において、種々なる形態で実施し得ることは勿論である。
本発明は、電力変換装置の製造産業などに利用可能である。
20 ハイブリッド自動車、22 エンジン、23 クランクポジションセンサ、24 エンジン用電子制御ユニット(エンジンECU)、26 クランクシャフト、30 プラネタリギヤ、36 駆動軸、37 デファレンシャルギヤ、38a,38b 駆動輪、40 モータ用電子制御ユニット(モータECU)、41,42 インバータ、43,44 回転位置検出センサ、46 第1電力ライン、46a,47a,48a コンデンサ、46b,47b,48b 電圧センサ、47 第2電力ライン、48 第3電力ライン、50 第1バッテリ、50a,51a 電流センサ、50b,51b 電圧センサ、51 第2バッテリ、52 バッテリ用電子制御ユニット(バッテリECU)、54 第1昇圧コンバータ、54a,55a 電流センサ、55 第2昇圧コンバータ、70 ハイブリッド用電子制御ユニット(HVECU)、80 イグニッションスイッチ、81 シフトレバー、82 シフトポジションセンサ、83 アクセルペダル、84 アクセルペダルポジションセンサ、85 ブレーキペダル、86 ブレーキペダルポジションセンサ、88 車速センサ、Cn1,Cn2 接続点、D11〜D16,D21〜D26,D31,D32,D41,D42 ダイオード、L1,L2 リアクトル、MG1,MG2 モータ、T11〜T16,T21〜T26,T31,T32,T41,T42 トランジスタ。

Claims (1)

  1. 上アームである第1スイッチング素子と下アームである第2スイッチング素子と第1リアクトルとを有し、第1バッテリからの電力を昇圧して負荷に供給する第1コンバータと、
    上アームである第3スイッチング素子と下アームである第4スイッチング素子と第2リアクトルを有し、第2バッテリからの電力を昇圧して前記負荷に供給する第2コンバータと、
    前記第1リアクトルを流れる第1電流を検出する第1電流センサと、
    前記第2リアクトルを流れる第2電流を検出する第2電流センサと、
    前記第1スイッチング素子と前記第2スイッチング素子と前記第3スイッチング素子と前記第4スイッチング素子とをスイッチング制御する制御手段と、
    を備える電力変換装置であって、
    前記制御手段は、
    前記負荷に電力を供給する負荷要求がないときには、前記第1スイッチング素子および前記第3スイッチング素子をオンとし、前記第2スイッチング素子および前記第4スイッチング素子をオフとする上アームオン制御を実行し、前記上アームオン制御を実行しているときに、前記検出された第1電流と前記検出された第2電流との差分が所定閾値よりも大きいときには、第1電流センサおよび第2電流センサのいずれかに異常が生じていると判定する手段であり、
    前記上アームオン制御は、前記第1バッテリの端子間電圧と前記第2バッテリの端子間電圧との差分が大きいほど前記第1スイッチング素子と前記第3スイッチング素子の導通抵抗を大きくする制御である、
    電力変換装置。
JP2014245827A 2014-12-04 2014-12-04 電力変換装置 Pending JP2016111781A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014245827A JP2016111781A (ja) 2014-12-04 2014-12-04 電力変換装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014245827A JP2016111781A (ja) 2014-12-04 2014-12-04 電力変換装置

Publications (1)

Publication Number Publication Date
JP2016111781A true JP2016111781A (ja) 2016-06-20

Family

ID=56125155

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014245827A Pending JP2016111781A (ja) 2014-12-04 2014-12-04 電力変換装置

Country Status (1)

Country Link
JP (1) JP2016111781A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018019526A (ja) * 2016-07-28 2018-02-01 トヨタ自動車株式会社 電力変換装置
JP2019071711A (ja) * 2017-10-06 2019-05-09 トヨタ自動車株式会社 電源装置
JP2020065345A (ja) * 2018-10-16 2020-04-23 トヨタ自動車株式会社 多相コンバータ

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018019526A (ja) * 2016-07-28 2018-02-01 トヨタ自動車株式会社 電力変換装置
JP2019071711A (ja) * 2017-10-06 2019-05-09 トヨタ自動車株式会社 電源装置
JP2020065345A (ja) * 2018-10-16 2020-04-23 トヨタ自動車株式会社 多相コンバータ
JP7183684B2 (ja) 2018-10-16 2022-12-06 株式会社デンソー 多相コンバータ

Similar Documents

Publication Publication Date Title
JP6870271B2 (ja) 制御装置
US9932032B2 (en) Hybrid vehicle
JP4123269B2 (ja) 動力出力装置およびこれを搭載する車両並びに動力出力装置の制御方法
JP2021084537A (ja) ハイブリッド車両
JP2016116262A (ja) 駆動装置
JP2018019536A (ja) 自動車
JP2015220825A (ja) 車両
JP6575544B2 (ja) ハイブリッド自動車
JP6631571B2 (ja) ハイブリッド自動車
US10814862B2 (en) Hybrid vehicle
JP2016111781A (ja) 電力変換装置
JP6772947B2 (ja) ハイブリッド自動車
JP2015162977A (ja) 電動車両
JP6451725B2 (ja) ハイブリッド自動車
JP2012182912A (ja) 電動車両およびその制御方法
JP6652089B2 (ja) ハイブリッド自動車
JP2020120526A (ja) 電源システムの制御装置
JP6489100B2 (ja) ハイブリッド自動車
JP2016163534A (ja) 電源装置
CN109968985B (zh) 电动车辆
JP6888511B2 (ja) ハイブリッド自動車
JP6607217B2 (ja) ハイブリッド自動車
JP2016129460A (ja) 電源装置
JP2016100965A (ja) 電動車両
JP2018184059A (ja) ハイブリッド車両