JP2016107843A - Three-dimensional shape measurement method and device using multicopter - Google Patents

Three-dimensional shape measurement method and device using multicopter Download PDF

Info

Publication number
JP2016107843A
JP2016107843A JP2014247527A JP2014247527A JP2016107843A JP 2016107843 A JP2016107843 A JP 2016107843A JP 2014247527 A JP2014247527 A JP 2014247527A JP 2014247527 A JP2014247527 A JP 2014247527A JP 2016107843 A JP2016107843 A JP 2016107843A
Authority
JP
Japan
Prior art keywords
multicopter
dimensional shape
laser scanner
point cloud
sky
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014247527A
Other languages
Japanese (ja)
Other versions
JP6179502B2 (en
Inventor
典子 小澤
Noriko Ozawa
典子 小澤
亀崎 俊一
Shunichi Kamezaki
俊一 亀崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2014247527A priority Critical patent/JP6179502B2/en
Publication of JP2016107843A publication Critical patent/JP2016107843A/en
Application granted granted Critical
Publication of JP6179502B2 publication Critical patent/JP6179502B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide three-dimensional shape measurement method and device capable of accurately obtaining the point group data of an object from the sky by a laser scanner installed in a multicopter including a plurality of propellers to measure a three-dimensional shape.SOLUTION: The three-dimensional shape measurement method for obtaining the point group data of an object from the sky by a laser scanner 7 installed in a multicopter including a plurality of propellers 3 to measure a three-dimensional shape, includes: flying the multicopter up to near a predetermined structure for enabling the object to be seen from the sky to set it in a hovering state; opening/closing a gripper 8 provided to the multicopter by remote control, fixing the multicopter to a part of the structure, and then obtaining the point group data of object by the laser scanner.SELECTED DRAWING: Figure 3

Description

本発明は、飛行体を用いた3次元形状計測方法および装置に関し、特に、複数のプロペラを備えたマルチコプタに搭載したレーザースキャナーによって上空から対象物の点群データを取得し3次元形状を計測する、マルチコプタを用いた3次元形状計測方法および装置に関するものである。   The present invention relates to a method and apparatus for measuring a three-dimensional shape using a flying object, and in particular, acquires point cloud data of an object from the sky and measures a three-dimensional shape by a laser scanner mounted on a multicopter equipped with a plurality of propellers. The present invention relates to a three-dimensional shape measuring method and apparatus using a multicopter.

広範囲での3次元形状計測、例えば、地形調査などを行うには、ステレオ写真測量および/またはレーザースキャナーを用いた点群データの取得を行う。ステレオ写真測量は、異なる位置に設置したカメラから撮影された2枚以上の対象物の画像から、共通する点の各画素を選び、各画素の対応関係を求め、三角測量の原理で各対応点位置での3次元座標を算出し、点群データを取得する。また、レーザースキャナーを用いた点群データ取得では、対象物にレーザー光をスキャニングし、対象物からの反射波によって対象物までの距離を認識し、物体表面を細かな点群データとして取得する。   In order to perform three-dimensional shape measurement over a wide range, for example, topographical survey, stereophotogrammetry and / or point cloud data acquisition using a laser scanner is performed. Stereo photogrammetry is based on the triangulation principle by selecting each pixel at a common point from images of two or more objects taken from cameras placed at different positions and determining the correspondence between each pixel. The three-dimensional coordinates at the position are calculated, and point cloud data is acquired. In the point cloud data acquisition using a laser scanner, laser light is scanned on the object, the distance to the object is recognized by the reflected wave from the object, and the object surface is acquired as fine point cloud data.

そして、計測手段であるカメラやレーザースキャナーを、車や飛行体等の移動手段に搭載し、移動しながら広範囲の撮影や計測を実施し、高速で3次元形状計測を実現している。移動手段としての飛行体は、無人飛行機、中でも特に、ヘリコプタの一種であり、複数のプロペラ(回転翼、ロータとも呼ぶ)を持つマルチコプタが安価で入手できるようになり、操作性も向上したことから普及が進んでいる。   A camera or laser scanner, which is a measuring means, is mounted on a moving means such as a car or a flying object, and a wide range of shooting and measurement is performed while moving to realize three-dimensional shape measurement at high speed. The flying body as a moving means is an unmanned airplane, especially a kind of helicopter, and a multi-copter having a plurality of propellers (also called rotors and rotors) can be obtained at low cost, and the operability is improved. The spread is progressing.

特許文献1には、飛行機等から取得したレーザースキャナー点群データとステレオ写真から精度の高い3次元形状モデルを構築する方法が開示されている。また、特許文献2には、既に取得されている対象物の3次元形状を出発点として、形状データが未取得の部分を認識し、未取得部分を撮影するように指示することで、効率よく3次元形状を求める方法が開示されている。   Patent Document 1 discloses a method of constructing a highly accurate three-dimensional shape model from laser scanner point cloud data acquired from an airplane or the like and a stereo photograph. In addition, Patent Document 2 efficiently recognizes a part where shape data has not yet been acquired and instructs to capture the part that has not been acquired, starting from the three-dimensional shape of an object that has already been acquired. A method for obtaining a three-dimensional shape is disclosed.

また、地形調査ほど広範囲ではないものの、工場などで対象物の3次元形状計測を行う場合には、ポールやクレーンにカメラやレーザースキャナーを設置して上空から撮影や計測する方法が知られている。   Also, although it is not as wide as the topographical survey, there is a known method of shooting and measuring from the sky by installing a camera or laser scanner on a pole or crane when measuring the three-dimensional shape of an object in a factory or the like. .

特開2003−323640号公報JP 2003-323640 A 特開2006−24161号公報JP 2006-24161 A

特許文献1や特許文献2に開示の技術では、取得されたレーザースキャンデータや撮影された画像データを如何に高精度で効率良く扱うかについて提案されている。しかしながら、レーザースキャナーを用いる方法では、文字通りレーザーをスキャンさせて、点群データを取得するわけで、一般にスキャンが完了するまでには数分から数十分の時間が必要となる。   In the techniques disclosed in Patent Document 1 and Patent Document 2, it is proposed how to handle the acquired laser scan data and captured image data with high accuracy and efficiency. However, the method using a laser scanner literally scans a laser to acquire point cloud data, and generally requires several minutes to several tens of minutes to complete the scan.

このスキャンにかかる時間は、レーザースキャナーをどこかに固定してデータ取得ができる場合には問題にならないものの、上空からのデータ取得が必要な場合には飛行体からのデータ取得となり、スキャン中に飛行体の位置が変動、すなわち、レーザースキャナーの位置が変動するため、精度の良い点群データ取得ができないという問題がある。   The time required for this scan is not a problem when data can be acquired with the laser scanner fixed somewhere, but if data acquisition from the sky is necessary, data acquisition from the flying object will be required. Since the position of the flying object fluctuates, that is, the position of the laser scanner fluctuates, there is a problem that accurate point cloud data cannot be obtained.

一般的に、飛行体としてのマルチコプタでは、慣性計測装置IMU(Inertial Measurement Unit)による姿勢制御と全地球測位網GPS( Global Positioning System)による位置制御が適用されており、操縦者の技量に依存していた以前の操作に比べて割合簡単に利用可能になっている。   In general, multi-copters as flying objects apply attitude control by inertial measurement device IMU (Inertial Measurement Unit) and position control by Global Positioning System GPS (Global Positioning System), depending on the skill of the pilot. Compared to the previous operation that was previously available, it is now easier to use.

しかしながら、マルチコプタのGPSによる位置制御は、産業用と言われるものであっても、空中での静止状態を意味するホバリングの精度として、垂直: ±0.5m 、水平: ±1.5m程度であり、スキャン中にレーザースキャナーの位置がこの程度変動すると考えられる。通常、レーザースキャナーではスキャン間隔を細かく設定した場合には、得られる点群密度が上がるので測定精度は向上するものの、より長いスキャン時間を要するため、飛行体の位置のずれ、すなわちレーザースキャナーの位置変動がある場合には点群データの取得誤差が大きくなる可能性がある。   However, even if the position control by GPS of the multicopter is said to be for industrial use, the accuracy of hovering, which means a stationary state in the air, is vertical: ± 0.5m, horizontal: about ± 1.5m, scanning It is thought that the position of the laser scanner fluctuates to this extent. Normally, when the scanning interval is set finely in a laser scanner, the obtained point cloud density increases, so the measurement accuracy improves, but a longer scanning time is required, so the displacement of the flying object, that is, the position of the laser scanner If there is a change, the point cloud data acquisition error may become large.

また、ポールやクレーンなどにレーザースキャナーを固定して設置する方法では、レーザースキャナーの位置変動がなく、精度よくスキャンすることが可能になる。しかしながら、レーザースキャナーへの電源供給方法として、バッテリーを積んだ場合には充電や交換が必要になり、また有線給電の場合には高所からのケーブルの取り回しが必要となる。このように、バッテリーのメンテナンスまたはケーブルの取り回しのために頻繁に高所を行き来しするのは管理上負担が大きく、上空からの広範囲の3次元計測には不向きである。   In addition, the method of fixing the laser scanner on a pole, crane, or the like does not change the position of the laser scanner, and enables scanning with high accuracy. However, as a method for supplying power to the laser scanner, charging or replacement is necessary when a battery is loaded, and cable connection from a high place is required in the case of wired power supply. As described above, frequently going back and forth between high places for battery maintenance or cable handling is heavy in terms of management, and is unsuitable for a wide range of three-dimensional measurement from the sky.

本発明は、上記のような事情に鑑みてなされたものであり、複数のプロペラを備えたマルチコプタに搭載したレーザースキャナーによって精度よく上空から対象物の点群データを取得し3次元形状を計測する、マルチコプタを用いた3次元形状計測方法および装置を提供することを課題とする。   The present invention has been made in view of the above circumstances, and accurately obtains point cloud data of an object from the sky and measures a three-dimensional shape by a laser scanner mounted on a multicopter equipped with a plurality of propellers. It is an object of the present invention to provide a three-dimensional shape measuring method and apparatus using a multicopter.

[1] 複数のプロペラを備えたマルチコプタに搭載したレーザースキャナーによって上空から対象物の点群データを取得し3次元形状を計測する、マルチコプタを用いた3次元形状計測方法であって、
対象物を上空から望むことができる所定の構造物の近くまで、前記マルチコプタを飛行させてホバリング状態とし、前記マルチコプタに取り付けられたグリッパーを遠隔操作で開閉して、前記マルチコプタを前記構造物の一部に固定したのち、前記レーザースキャナー対象物の点群データを取得することを特徴とするマルチコプタを用いた3次元形状計測方法。
[1] A three-dimensional shape measurement method using a multicopter that acquires point cloud data of an object from the sky by a laser scanner mounted on a multicopter equipped with a plurality of propellers and measures a three-dimensional shape,
The multicopter is made to fly to the vicinity of a predetermined structure where an object can be viewed from above, and is hovered. A gripper attached to the multicopter is remotely opened and closed, and the multicopter is moved to one of the structures. A method for measuring a three-dimensional shape using a multicopter, wherein point cloud data of the laser scanner object is acquired after being fixed to a part.

[2] 複数のプロペラを備えたマルチコプタに搭載したレーザースキャナーによって上空から対象物の点群データを取得し3次元形状を計測する、マルチコプタを用いた3次元形状計測装置であって、
前記マルチコプタに取り付けられ、対象物を上空から望むことができる所定の構造物の近くまで前記マルチコプタを飛行させてホバリング状態で、遠隔操作で開閉することによって前記マルチコプタを前記構造物の一部に固定するグリッパーを具備することを特徴とするマルチコプタを用いた3次元形状計測装置。
[2] A three-dimensional shape measurement apparatus using a multicopter that acquires point cloud data of an object from the sky by a laser scanner mounted on a multicopter having a plurality of propellers and measures a three-dimensional shape,
The multicopter is fixed to a part of the structure by remotely operating and opening the multicopter near the predetermined structure that is attached to the multicopter and can see the object from above. A three-dimensional shape measuring apparatus using a multicopter, characterized by comprising a gripper that performs the above-described operation.

本発明は、複数のプロペラを備えたマルチコプタに搭載したレーザースキャナーによって上空から対象物の点群データを取得するにあたって、マルチコプタに取り付けられたグリッパーでマルチコプタを上空の構造物の一部に固定しレーザースキャンするようにしたので、精度良く対象物の点群データおよび3次元形状を計測できるようになった。   When acquiring point cloud data of an object from the sky by a laser scanner mounted on a multicopter having a plurality of propellers, the laser is obtained by fixing the multicopter to a part of the structure in the sky with a gripper attached to the multicopter. Since scanning is performed, the point cloud data and the three-dimensional shape of the object can be measured with high accuracy.

本発明を実施するための装置構成の一例を示す図である。It is a figure which shows an example of the apparatus structure for implementing this invention. 本発明におけるマルチコプタのグリップ部を示す図である。It is a figure which shows the grip part of the multicopter in this invention. 本発明におけるマルチコプタがパイプにグリップし静止した状態を示す図である。It is a figure which shows the state which the multicopter in this invention grips on the pipe and stood still. マルチコプタを用いた3次元形状計測方法の処理フロー例を示す図である。It is a figure which shows the example of a processing flow of the three-dimensional shape measuring method using a multicopter. 平面と計測点までの距離データ((a)比較例、(b)本発明)を示す図である。It is a figure which shows the distance data ((a) comparative example, (b) this invention) to a plane and a measurement point.

工場などの限られた空間といった比較的広範囲にある対象物の3次元形状計測を行うために、複数のプロペラを備えたマルチコプタに搭載したレーザースキャナーによって上空から対象物の点群データを精度よく取得する方法について検討し、本発明に想到した。   In order to measure the three-dimensional shape of an object in a relatively wide area such as a limited space such as a factory, the point cloud data of the object is accurately acquired from the sky by a laser scanner mounted on a multicopter equipped with multiple propellers. The present inventors have studied a method for achieving this and have come up with the present invention.

マルチコプタによる計測で誤差を生む原因は、マルチコプタの位置や姿勢が安定しないことであるから、マルチコプタを静止させることが必要であると考えた。そこで、工場内構造物の一部にマルチコプタを固定するために、マルチコプタに構造物の一部をグリップする(つかむ)機能を有するグリッパーを設けて、工場内の高所につかまった後にマルチコプタのプロペラの回転を止めた状態で、レーザースキャナーによって上空から対象物の点群データ取得を実施すれば良いと考えた。   The cause of the error in the measurement by the multicopter is that the position and orientation of the multicopter are not stable, so it was considered necessary to stop the multicopter. Therefore, in order to fix the multicopter to a part of the factory structure, the multicopter is provided with a gripper having a function of gripping (grabbing) a part of the structure, and after being held at a high place in the factory, the propeller of the multicopter is provided. I thought it would be good to acquire point cloud data of the object from the sky with a laser scanner in a state where the rotation of was stopped.

図1は、本発明を実施するための装置構成の一例を示す図である。また、図2は、本発明におけるマルチコプタのグリップ部を示す図である。図中、(a)はグリッパー開放時、(b)はグリッパー閉鎖時をそれぞれ示す。さらに、図3は、本発明におけるマルチコプタがパイプにグリップし静止した状態を示す図である。図中の符号1はマルチコプタ、2はフレーム、3はプロペラ、4はスキッド、5は制御装置、6はGPSアンテナ、7はレーザースキャナー、8はグリッパー、および9はパイプをそれぞれ表す。   FIG. 1 is a diagram showing an example of a device configuration for carrying out the present invention. Moreover, FIG. 2 is a figure which shows the grip part of the multicopter in this invention. In the figure, (a) shows when the gripper is opened, and (b) shows when the gripper is closed. Further, FIG. 3 is a view showing a state where the multicopter in the present invention is gripped on the pipe and is stationary. In the figure, reference numeral 1 is a multicopter, 2 is a frame, 3 is a propeller, 4 is a skid, 5 is a control device, 6 is a GPS antenna, 7 is a laser scanner, 8 is a gripper, and 9 is a pipe.

マルチコプタ1には、フレーム2の先端にプロペラ3が取り付けられている。図1ではプロペラを4枚持つクワッドコプタを示しているが、6枚や8枚であっても良い。そして、マルチコプタ1の下方には、着陸用の足であるスキッド4が取り付けられている。   A propeller 3 is attached to the tip of the frame 2 in the multicopter 1. Although FIG. 1 shows a quadcopter having four propellers, it may be six or eight. A skid 4 that is a landing foot is attached below the multicopter 1.

そして、マルチコプタ1には、3軸のジャイロと3方向の加速度計により、機体の姿勢と方位を計測・制御する、IMU(慣性計測装置)(図示せず)が搭載されている。また、GPSアンテナ6により経度・緯度を計測し、機体の位置制御が行われ、高度については気圧計(図示せず)により計測・制御される。その他として、障害物との距離を検出する測域センサなどを搭載するようにしても良い。   The multicopter 1 is equipped with an IMU (inertial measurement device) (not shown) that measures and controls the attitude and orientation of the airframe using a three-axis gyro and a three-direction accelerometer. Further, the longitude and latitude are measured by the GPS antenna 6 to control the position of the aircraft, and the altitude is measured and controlled by a barometer (not shown). In addition, you may make it mount the ranging sensor etc. which detect the distance with an obstruction.

バッテリー((図示せず)を含めこれらの計測制御器の配置位置は変更可能であるが、図1および3では機体の下方に制御装置5として収納している。ただし、GPSアンテナ6については、位置信号を捕捉しやすくするために機体の上方に取り付けてある。レーザースキャナー7は、機体の下方に取り付け、一般にはジンバル(図示せず)に載せてレーザースキャナーの対象物に対する向き(チルト、ロール)を制御する。   The position of these measurement controllers including the battery (not shown) can be changed, but in Figures 1 and 3, it is housed as a controller 5 below the fuselage, except for the GPS antenna 6. The laser scanner 7 is mounted below the fuselage to make it easy to capture the position signal, and is mounted below the fuselage, generally mounted on a gimbal (not shown) and oriented to the laser scanner object (tilt, roll). ) To control.

そして、マルチコプタのグリッパー8は、図3に示すパイプ9にマルチコプタ1をぶら下げて固定すべく機体の上部に設置しているが、設置箇所は、マルチコプタ1を固定するパイプ9の状況などにより適宜変更可能である。グリッパー8は、地上側のコントローラ(図示せず)からサーボモータ等(図示せず)を操作して閉じたり開いたりすることができる。図2の(a)にはグリッパーが開いた状態を、図2の(b)にはグリッパーが閉じた状態をそれぞれ示す。   The multi-copper gripper 8 is installed on the upper part of the machine body to hang and fix the multi-copter 1 to the pipe 9 shown in FIG. 3, but the installation location is appropriately changed depending on the situation of the pipe 9 that fixes the multi-copter 1. Is possible. The gripper 8 can be closed and opened by operating a servo motor or the like (not shown) from a controller (not shown) on the ground side. FIG. 2A shows a state where the gripper is opened, and FIG. 2B shows a state where the gripper is closed.

マルチコプタ1を離陸させ、工場内の高所でグリップできる場所、例えばパイプ9に到達したらグリッパー8を閉じて固定した状態にする。図3は、本発明におけるマルチコプタがパイプにグリップし固定した様子を示している。   The multicopter 1 is taken off, and when it reaches a place where it can be gripped at a high place in the factory, for example, the pipe 9, the gripper 8 is closed and fixed. FIG. 3 shows the multicopter according to the present invention gripped and fixed to the pipe.

グリッパー8は離陸時に開放していても良いし、閉じた状態で離陸して、所定の場所に到着したときに開放してから閉じるようにしても良い。また、グリップする場所は既存設備の一部であっても良いし、専用のポールを設置しても良い。   The gripper 8 may be opened at the time of takeoff, or may be taken off in a closed state and opened and closed when it arrives at a predetermined location. Further, the gripping location may be a part of existing equipment, or a dedicated pole may be installed.

このように構造物にグリップしマルチコプタの姿勢を静止した状態で、レーザースキャナーの測定を実施することで、レーザースキャナーの位置が変動せず誤差の少ない点群データが得られる。また、グリップした状態ではプロペラの回転を止めることができるため、機体のバッテリーの消耗を防ぐことができ、より多くの計測時間を稼ぐことができる。また、スキャン点を細かくすることによって、計測精度の向上も図ることができる。   By measuring the laser scanner in such a state that the structure is gripped and the position of the multicopter is stationary, the position of the laser scanner does not change and point cloud data with less error can be obtained. In addition, since the propeller can be stopped in the gripped state, the battery of the aircraft can be prevented from being consumed, and more measurement time can be earned. In addition, the measurement accuracy can be improved by making the scan points fine.

図4は、マルチコプタを用いた3次元形状計測方法の処理フロー例を示す図である。先ず、Step01にて、対象物を上空から望むことができるポールなどの所定の構造物の近くまで、マルチコプタを飛行させてホバリング状態とする。   FIG. 4 is a diagram illustrating a processing flow example of a three-dimensional shape measurement method using a multicopter. First, in Step 01, the multicopter is made to fly to near a predetermined structure such as a pole where the object can be viewed from above, and is brought into a hovering state.

次に、Step02にて、マルチコプタに取り付けられたグリッパーを地上側のコントローラ(図示せず)から遠隔操作で開閉して、マルチコプタを前記構造物の一部に固定しマルチコプタの姿勢を静止したのち、プロペラの回転を停止する。   Next, in Step 02, the gripper attached to the multicopter is remotely opened and closed from a controller (not shown) on the ground side, the multicopter is fixed to a part of the structure, and the posture of the multicopter is stopped. Stop the rotation of the propeller.

そして、Step03にて、取り付けたレーザースキャナーにより上空から対象物までの点群データを取得する。さらに、Step04にて、レーザースキャナーまでの距離として取得した点群データを演算処理して、対象物の3次元形状データを得る。   In Step 03, point cloud data from the sky to the object is acquired by the attached laser scanner. Further, in Step 04, the point cloud data acquired as the distance to the laser scanner is arithmetically processed to obtain the three-dimensional shape data of the object.

計測終了後、再度プロペラを回転させ、姿勢を保った状態で、マルチコプタに取り付けられたグリッパーを地上側のコントローラ(図示せず)から遠隔操作で開閉して、構造物に固定していたマルチコプタを解除する(Step05)。そして、コントローラの操作もしくは自動にて、所定位置にマルチコプタを帰還飛行させて一連の処理を終了する(Step06)。   After the measurement is completed, rotate the propeller again and keep the posture, open and close the gripper attached to the multicopter remotely from the controller on the ground (not shown), and fix the multicopter fixed to the structure. Release (Step 05). Then, the multicopter is caused to fly back to a predetermined position by operating the controller or automatically, and a series of processing is completed (Step 06).

なお、以上の説明は、レーザースキャナーを用いた場合について行ってきたが、カメラを用いたステレオ写真でも同様に行うことができる。また、3次元形状を得るための演算は、上記のように測定と共に行っても良いし、飛行終了後にオフラインで実施するようにしても良い。   Although the above explanation has been given for the case where a laser scanner is used, the same can be done for a stereo photograph using a camera. The calculation for obtaining the three-dimensional shape may be performed together with the measurement as described above, or may be performed offline after the flight is completed.

本発明の効果を確認するために、マルチコプタに搭載したレーザースキャナーによる計測を実施した。プロペラ枚数:8、フレーム長:1000mm、飛行制御:IMUとGPS、ホバリング精度:±0.5m、バッテリー:リチウムポリマー6セル、レーザースキャナー:位相差方式、レーザースキャナー用ジンバル:2軸、グリッパー把持力:200N、グリッパー開閉ストローク:280mm、および機体総重量:12kgのマルチコプタを用いて、地上に設置された幅1m、長さ2mの平板を形状測定対象とした。   In order to confirm the effect of the present invention, measurement was performed with a laser scanner mounted on a multicopter. Number of propellers: 8, Frame length: 1000mm, Flight control: IMU and GPS, Hovering accuracy: ± 0.5m, Battery: Lithium polymer 6 cell, Laser scanner: Phase difference method, Laser scanner gimbal: 2-axis, Gripper gripping force: Using a multicopter of 200 N, gripper opening / closing stroke: 280 mm, and total body weight: 12 kg, a flat plate with a width of 1 m and a length of 2 m installed on the ground was used as a shape measurement target.

マルチコプタは離陸後、計測対象から20m離れた位置にある煙突(高さ60m)の中間デッキ(高さ30m)にある手すりに到達しグリップした後、プロペラの回転を停止し、計測対象を幅方向にスキャンした。これに対して、煙突の中間デッキ前でグリップせずにホバリングした状態で計測対象をスキャンしたものを比較例とした。レーザースキャナーのスキャン条件は、比較例と本発明で同じとした。   After taking off, the multicopter reaches the handrail on the intermediate deck (height 30m) of the chimney (height 60m) located 20m away from the object to be measured, and then stops the rotation of the propeller and moves the object to be measured in the width direction. Scanned. On the other hand, what scanned the measurement object in the state which hovered without grip in front of the intermediate deck of a chimney was made into the comparative example. The scanning conditions of the laser scanner were the same in the comparative example and the present invention.

スキャンした点群データから平板のデータを選択し、最小2乗法により平面フィッティングを行った。そして、求めた平面と計測点との距離を求め、その標準偏差を算出した。図5は、平面と計測点までの距離データ((a)比較例、(b)本発明)を示す図である。それぞれの標準偏差の結果は、比較例では120.69mmに対して、本発明では1.89 mmであった。本発明では比較例に比べて、標準偏差の値が小さく、精度良く計測できたことが判った。   Flat plate data was selected from the scanned point cloud data, and plane fitting was performed by the method of least squares. And the distance of the calculated | required plane and a measurement point was calculated | required, and the standard deviation was computed. FIG. 5 is a diagram showing distance data ((a) comparative example, (b) present invention) between a plane and a measurement point. The result of each standard deviation was 1.89 mm in the present invention compared to 120.69 mm in the comparative example. In the present invention, it was found that the standard deviation value was smaller than that of the comparative example, and the measurement was possible with high accuracy.

このように、本発明のグリップ機能でマルチコプタを上空で静止させることにより、レーザースキャナーで計測した点群データの精度が向上した。   Thus, the accuracy of the point cloud data measured with the laser scanner was improved by making the multicopter stand still in the sky with the grip function of the present invention.

1 マルチコプタ
2 フレーム
3 プロペラ
4 スキッド
5 制御装置
6 GPSアンテナ
7 レーザースキャナー
8 グリッパー
9 パイプ
DESCRIPTION OF SYMBOLS 1 Multicopter 2 Frame 3 Propeller 4 Skid 5 Control apparatus 6 GPS antenna 7 Laser scanner 8 Gripper 9 Pipe

Claims (2)

複数のプロペラを備えたマルチコプタに搭載したレーザースキャナーによって上空から対象物の点群データを取得し3次元形状を計測する、マルチコプタを用いた3次元形状計測方法であって、
対象物を上空から望むことができる所定の構造物の近くまで、前記マルチコプタを飛行させてホバリング状態とし、前記マルチコプタに取り付けられたグリッパーを遠隔操作で開閉して、前記マルチコプタを前記構造物の一部に固定したのち、前記レーザースキャナー対象物の点群データを取得することを特徴とするマルチコプタを用いた3次元形状計測方法。
A three-dimensional shape measurement method using a multi-copter that acquires point cloud data of an object from the sky by a laser scanner mounted on a multi-copter equipped with a plurality of propellers and measures a three-dimensional shape,
The multicopter is made to fly to the vicinity of a predetermined structure where an object can be viewed from above, and is hovered. A gripper attached to the multicopter is remotely opened and closed, and the multicopter is moved to one of the structures. A method for measuring a three-dimensional shape using a multicopter, wherein point cloud data of the laser scanner object is acquired after being fixed to a part.
複数のプロペラを備えたマルチコプタに搭載したレーザースキャナーによって上空から対象物の点群データを取得し3次元形状を計測する、マルチコプタを用いた3次元形状計測装置であって、
前記マルチコプタに取り付けられ、対象物を上空から望むことができる所定の構造物の近くまで前記マルチコプタを飛行させてホバリング状態で、遠隔操作で開閉することによって前記マルチコプタを前記構造物の一部に固定するグリッパーを具備することを特徴とするマルチコプタを用いた3次元形状計測装置。
A three-dimensional shape measuring apparatus using a multicopter that acquires point cloud data of an object from the sky by a laser scanner mounted on a multicopter equipped with a plurality of propellers and measures a three-dimensional shape,
The multicopter is fixed to a part of the structure by remotely operating and opening the multicopter near the predetermined structure that is attached to the multicopter and can see the object from above. A three-dimensional shape measuring apparatus using a multicopter, characterized by comprising a gripper that performs the above-described operation.
JP2014247527A 2014-12-08 2014-12-08 Three-dimensional shape measuring method and apparatus using multicopter Expired - Fee Related JP6179502B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014247527A JP6179502B2 (en) 2014-12-08 2014-12-08 Three-dimensional shape measuring method and apparatus using multicopter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014247527A JP6179502B2 (en) 2014-12-08 2014-12-08 Three-dimensional shape measuring method and apparatus using multicopter

Publications (2)

Publication Number Publication Date
JP2016107843A true JP2016107843A (en) 2016-06-20
JP6179502B2 JP6179502B2 (en) 2017-08-16

Family

ID=56121592

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014247527A Expired - Fee Related JP6179502B2 (en) 2014-12-08 2014-12-08 Three-dimensional shape measuring method and apparatus using multicopter

Country Status (1)

Country Link
JP (1) JP6179502B2 (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6143311B1 (en) * 2016-06-02 2017-06-07 有限会社エム・エイ・シー Drone safety flight system
JP2017141662A (en) * 2016-02-11 2017-08-17 株式会社長大 Inspection device and inspection method
JP2017218142A (en) * 2017-02-20 2017-12-14 有限会社エム・エイ・シー Flight safety system of drone
JP6262318B1 (en) * 2016-11-30 2018-01-17 阪神高速技術株式会社 Cable inspection device
WO2018016514A1 (en) * 2016-07-22 2018-01-25 株式会社プロドローン Attitude stabilization device and unmanned airplane equipped with same
WO2018043665A1 (en) * 2016-09-02 2018-03-08 国立研究開発法人宇宙航空研究開発機構 Leg part structural body and flying body using same
JP2018052429A (en) * 2016-09-30 2018-04-05 株式会社エンルートM’s Unmanned work device, method for the same and program
KR20180048405A (en) * 2016-10-31 2018-05-10 더 보잉 컴파니 Method and system for non-destructive testing using an unmanned aerial vehicle
JP2018070079A (en) * 2016-11-02 2018-05-10 株式会社プロドローン Unmanned aircraft
JP6394833B1 (en) * 2017-10-13 2018-09-26 中国電力株式会社 Method for controlling unmanned air vehicle and unmanned air vehicle
CN108657895A (en) * 2017-03-27 2018-10-16 株式会社日立大厦系统 Guider, elevator check device and elevator examination method
KR20190001861A (en) * 2017-06-28 2019-01-07 주식회사 에스오에스랩 LiDAR scanning device using propeller driven motor of unmanned aerial vehicle and unmanned aerial vehicle comprising it
CN109268695A (en) * 2018-10-26 2019-01-25 浙江管迈环境科技有限公司 A kind of pipeline draws inspection equipment
JP2019167106A (en) * 2017-11-06 2019-10-03 株式会社エアロネクスト Air vehicle and air vehicle control method
CN110626514A (en) * 2019-10-29 2019-12-31 中国石油大学(华东) Amphibious four-rotor unmanned aerial vehicle with multiple perch structures
KR20200005286A (en) * 2018-07-06 2020-01-15 포항공과대학교 산학협력단 Gripper for unmanned aerial vehicle
CN110944909A (en) * 2017-07-27 2020-03-31 株式会社爱隆未来 Rotorcraft
JP2020098126A (en) * 2018-12-17 2020-06-25 日本電信電話株式会社 Facility state detection apparatus, facility state detection method, and program
JPWO2019155854A1 (en) * 2018-02-07 2021-01-28 国立大学法人大阪大学 Multicopter system and baggage delivery method
CN115071975A (en) * 2022-07-05 2022-09-20 国网湖北省电力有限公司黄冈供电公司 News tracking unmanned aerial vehicle and method based on power grid event occurrence
US11786991B2 (en) 2017-11-28 2023-10-17 Fanuc Corporation Laser machine using flying body
WO2024088762A1 (en) 2022-10-27 2024-05-02 Inventio Ag Method for controlling a drone within a shaft

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0724751A (en) * 1989-02-13 1995-01-27 Toshiba Corp Inspection work robot
JP2006024161A (en) * 2004-07-09 2006-01-26 Topcon Corp Model forming device and model forming method
US7318564B1 (en) * 2004-10-04 2008-01-15 The United States Of America As Represented By The Secretary Of The Air Force Power line sentry charging

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0724751A (en) * 1989-02-13 1995-01-27 Toshiba Corp Inspection work robot
JP2006024161A (en) * 2004-07-09 2006-01-26 Topcon Corp Model forming device and model forming method
US7318564B1 (en) * 2004-10-04 2008-01-15 The United States Of America As Represented By The Secretary Of The Air Force Power line sentry charging

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017141662A (en) * 2016-02-11 2017-08-17 株式会社長大 Inspection device and inspection method
JP2017214037A (en) * 2016-06-02 2017-12-07 有限会社エム・エイ・シー Safety flight system for drone
JP6143311B1 (en) * 2016-06-02 2017-06-07 有限会社エム・エイ・シー Drone safety flight system
WO2018016514A1 (en) * 2016-07-22 2018-01-25 株式会社プロドローン Attitude stabilization device and unmanned airplane equipped with same
JPWO2018043665A1 (en) * 2016-09-02 2019-03-22 国立研究開発法人宇宙航空研究開発機構 Leg structure and projectile using the same
WO2018043665A1 (en) * 2016-09-02 2018-03-08 国立研究開発法人宇宙航空研究開発機構 Leg part structural body and flying body using same
JP2018052429A (en) * 2016-09-30 2018-04-05 株式会社エンルートM’s Unmanned work device, method for the same and program
KR20180048405A (en) * 2016-10-31 2018-05-10 더 보잉 컴파니 Method and system for non-destructive testing using an unmanned aerial vehicle
JP2018105846A (en) * 2016-10-31 2018-07-05 ザ・ボーイング・カンパニーThe Boeing Company Method and system for non-destructive testing using unmanned aerial vehicle
KR102397883B1 (en) 2016-10-31 2022-05-12 더 보잉 컴파니 Method and system for non-destructive testing using an unmanned aerial vehicle
JP2018070079A (en) * 2016-11-02 2018-05-10 株式会社プロドローン Unmanned aircraft
JP2018090990A (en) * 2016-11-30 2018-06-14 阪神高速技術株式会社 Cable inspection device
JP6262318B1 (en) * 2016-11-30 2018-01-17 阪神高速技術株式会社 Cable inspection device
JP2017218142A (en) * 2017-02-20 2017-12-14 有限会社エム・エイ・シー Flight safety system of drone
CN108657895A (en) * 2017-03-27 2018-10-16 株式会社日立大厦系统 Guider, elevator check device and elevator examination method
KR20190001861A (en) * 2017-06-28 2019-01-07 주식회사 에스오에스랩 LiDAR scanning device using propeller driven motor of unmanned aerial vehicle and unmanned aerial vehicle comprising it
KR102009024B1 (en) * 2017-06-28 2019-08-08 주식회사 에스오에스랩 LiDAR scanning device using propeller driven motor of unmanned aerial vehicle and unmanned aerial vehicle comprising it
CN110944909B (en) * 2017-07-27 2023-06-06 盐城辉空科技有限公司 Rotorcraft
CN110944909A (en) * 2017-07-27 2020-03-31 株式会社爱隆未来 Rotorcraft
WO2019073601A1 (en) * 2017-10-13 2019-04-18 中国電力株式会社 Unmanned flying body control method and unmanned flying body
JP6394833B1 (en) * 2017-10-13 2018-09-26 中国電力株式会社 Method for controlling unmanned air vehicle and unmanned air vehicle
JP2019172259A (en) * 2017-11-06 2019-10-10 株式会社エアロネクスト Flying body and method for controlling flying body
JP2019167106A (en) * 2017-11-06 2019-10-03 株式会社エアロネクスト Air vehicle and air vehicle control method
US11786991B2 (en) 2017-11-28 2023-10-17 Fanuc Corporation Laser machine using flying body
JP7175511B2 (en) 2018-02-07 2022-11-21 国立大学法人大阪大学 Multi-copter system and baggage delivery method
JPWO2019155854A1 (en) * 2018-02-07 2021-01-28 国立大学法人大阪大学 Multicopter system and baggage delivery method
KR102105907B1 (en) * 2018-07-06 2020-04-29 포항공과대학교 산학협력단 Gripper for unmanned aerial vehicle
KR20200005286A (en) * 2018-07-06 2020-01-15 포항공과대학교 산학협력단 Gripper for unmanned aerial vehicle
CN109268695A (en) * 2018-10-26 2019-01-25 浙江管迈环境科技有限公司 A kind of pipeline draws inspection equipment
JP2020098126A (en) * 2018-12-17 2020-06-25 日本電信電話株式会社 Facility state detection apparatus, facility state detection method, and program
JP7074043B2 (en) 2018-12-17 2022-05-24 日本電信電話株式会社 Equipment status detector, equipment status detection method, and program
CN110626514B (en) * 2019-10-29 2021-01-15 中国石油大学(华东) Amphibious four-rotor unmanned aerial vehicle with multiple perch structures
CN110626514A (en) * 2019-10-29 2019-12-31 中国石油大学(华东) Amphibious four-rotor unmanned aerial vehicle with multiple perch structures
CN115071975A (en) * 2022-07-05 2022-09-20 国网湖北省电力有限公司黄冈供电公司 News tracking unmanned aerial vehicle and method based on power grid event occurrence
WO2024088762A1 (en) 2022-10-27 2024-05-02 Inventio Ag Method for controlling a drone within a shaft

Also Published As

Publication number Publication date
JP6179502B2 (en) 2017-08-16

Similar Documents

Publication Publication Date Title
JP6179502B2 (en) Three-dimensional shape measuring method and apparatus using multicopter
US11801938B2 (en) Aircraft control apparatus, control system and control method
CN106124517B (en) The multi-rotor unmanned aerial vehicle detection platform system of detection structure part surface crack and its method for detection structure part surface crack
JP6239619B2 (en) Flying camera with a string assembly for positioning and interaction
US20210325885A1 (en) Methods for Maintaining Difficult-to-Access Structures Using Unmanned Aerial Vehicles
JP5618840B2 (en) Aircraft flight control system
EP2772725B1 (en) Aerial Photographing System
JP5775632B2 (en) Aircraft flight control system
DK2702382T3 (en) METHOD AND SYSTEM FOR INSPECTION OF A SURFACE ERROR FOR MATERIAL ERROR
JP6658532B2 (en) Control device, control method, and flying object device
EP3315406A1 (en) Method and system for non-destructive testing using an unmanned aerial vehicle
JP6390013B2 (en) Control method for small unmanned aerial vehicles
JP6262318B1 (en) Cable inspection device
KR101884402B1 (en) Unmaned aerial vehicle accuracy landing system
JP2012071645A (en) Automatic taking-off and landing system
JP6957304B2 (en) Overhead line photography system and overhead line photography method
US10331120B2 (en) Remote control device, control system and method of controlling
CN109031312A (en) Flying platform positioning device and localization method suitable for chimney inside processing
KR20140037998A (en) Flight apparatus for checking structure
WO2018214005A1 (en) Method for controlling agricultural unmanned aerial vehicle, flight controller, and agricultural unmanned airplane
JP2017059955A (en) Imaging system and computer program
CN112638770B (en) Safe unmanned aerial vehicle
JP7078601B2 (en) Information processing equipment, information processing methods, and programs
AU2022203829B2 (en) Stereo abort of unmanned aerial vehicle deliveries
US20240019876A1 (en) Tether-Based Wind Estimation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160725

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170405

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170411

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170526

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170620

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170703

R150 Certificate of patent or registration of utility model

Ref document number: 6179502

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees