WO2019073601A1 - Unmanned flying body control method and unmanned flying body - Google Patents

Unmanned flying body control method and unmanned flying body Download PDF

Info

Publication number
WO2019073601A1
WO2019073601A1 PCT/JP2017/037222 JP2017037222W WO2019073601A1 WO 2019073601 A1 WO2019073601 A1 WO 2019073601A1 JP 2017037222 W JP2017037222 W JP 2017037222W WO 2019073601 A1 WO2019073601 A1 WO 2019073601A1
Authority
WO
WIPO (PCT)
Prior art keywords
ring
air vehicle
unmanned air
overhead wire
flight
Prior art date
Application number
PCT/JP2017/037222
Other languages
French (fr)
Japanese (ja)
Inventor
谷口 正和
大原 久征
Original Assignee
中国電力株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国電力株式会社 filed Critical 中国電力株式会社
Priority to PCT/JP2017/037222 priority Critical patent/WO2019073601A1/en
Priority to JP2018506350A priority patent/JP6394833B1/en
Publication of WO2019073601A1 publication Critical patent/WO2019073601A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U50/00Propulsion; Power supply
    • B64U50/30Supply or distribution of electrical power
    • B64U50/34In-flight charging
    • B64U50/35In-flight charging by wireless transmission, e.g. by induction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C13/00Control systems or transmitting systems for actuating flying-control surfaces, lift-increasing flaps, air brakes, or spoilers
    • B64C13/02Initiating means
    • B64C13/16Initiating means actuated automatically, e.g. responsive to gust detectors
    • B64C13/18Initiating means actuated automatically, e.g. responsive to gust detectors using automatic pilot
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C25/00Alighting gear
    • B64C25/32Alighting gear characterised by elements which contact the ground or similar surface 
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D27/00Arrangement or mounting of power plants in aircraft; Aircraft characterised by the type or position of power plants
    • B64D27/02Aircraft characterised by the type or position of power plants
    • B64D27/24Aircraft characterised by the type or position of power plants using steam or spring force
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D41/00Power installations for auxiliary purposes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/10Rotorcrafts
    • B64U10/13Flying platforms
    • B64U10/14Flying platforms with four distinct rotor axes, e.g. quadcopters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U50/00Propulsion; Power supply
    • B64U50/10Propulsion
    • B64U50/19Propulsion using electrically powered motors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Definitions

  • the present invention relates to a method of controlling an unmanned air vehicle and an unmanned air vehicle.
  • Patent Document 1 "provides a transportation system using an unmanned air vehicle which has enhanced the convenience by extending the range in which it can deliver by breaking restrictions such as distance and time," "receive power supply and three-dimensional.
  • a transport system using a movable unmanned air vehicle wherein the unmanned air vehicle flies while mounting a container for storing a load to be transported, and the container supplies power to the unmanned air vehicle.
  • the storage unit for storing the storage unit is provided, and the storage unit provided in the container is charged at the relay base when not moving.
  • Patent Document 2 "provides an overhead electric wire inspection system and method using an unmanned aerial vehicle capable of automatically performing an inspection of a tree approaching an overhead electric wire, etc.”, "of an overhead electric wire while autonomously flying An unmanned helicopter equipped with a flight control system for flying to an inspection point and an information collecting system for collecting various information including images of the inspection point and distance measurement data, controlling the flight of the unmanned helicopter, and various kinds from the unmanned helicopter A three-dimensional image created by creating a three-dimensional image from an image of inspection points and distance measurement data collected by a control center equipped with a flight control and information collection system that collects and processes information, and an information collection system of an unmanned helicopter Processing means such as approaching trees to check if there is an abnormality in the overhead electric wire at the check point based on the processed three-dimensional image , Various data to be used for inspection in close trees such inspection means are described as. "And a stored memory.
  • Patent Document 3 takes out the induction current from the overhead wire flowing to the ground wire of the overhead wire, performs direct current conversion to charge the storage battery, and uses the storage battery as a power source", "for the ground wire of the overhead wire
  • a current transformer with a ground wire as a primary winding is provided for current extraction, and the current transformer is provided in a long shape along the ground wire to take out the induction current of the overhead wire flowing through the ground wire. ing.
  • Patent Document 4 relates to a power supply CT configured to include a core into which a distribution line is inserted and a secondary winding (a primary winding corresponds to a distribution line to be measured) wound around the core. Have been described.
  • Non-Patent Document 1 describes a “drone highway concept” that supports a safe flight of a drone by creating a three-dimensional map based on position and height data such as transmission towers and overhead wires.
  • Non-Patent Document 2 describes a power supply device for an aeronautical fault lamp utilizing an induced current flowing in an overhead ground line.
  • Patent Documents 1 and 2 when it is intended to use an unmanned air vehicle (drone or the like) for services such as transportation system and overhead wire inspection, the capacity and weight of the power storage device (battery) are used. The problem is that the flight distance and flight time are limited. Recently, as described in Non-Patent Document 1, a "drone highway concept" has been proposed that allows a drone to fly safely and reliably to a destination by using an overhead wire as a "guidepost". However, in this case, how to supply power to the unmanned air vehicle during long distance flight becomes a problem.
  • the present invention has been made in view of the above background, and it is an object of the present invention to provide a method of controlling an unmanned air vehicle, and an unmanned air vehicle, which can be made to fly safely while securing the flight distance and flight time. There is.
  • one of the present inventions is a thrust generator, a flight control device for controlling the thrust generator, an annular ring body capable of opening and closing a part of the ring, and the ring body
  • a current generating device having a conductive coil wound around the ring, a ring switching device for opening and closing a part of the ring of the ring body, electric power based on current generated in the conductive coil as the thrust generating device or the flight control device
  • a control method of an unmanned aerial vehicle comprising the steps of: the unmanned aerial vehicle flying to approach an overhead electric wire; and a part of the ring of the ring body while flying.
  • the unmanned air vehicle can be made to fly over a long distance or a long time without accessing the charging station or the like, and the work such as the inspection of the transmission and distribution equipment can be efficiently performed.
  • the buoyancy is lost due to insufficient storage capacity of the power storage device (battery) or failure or if a gust of wind occurs, the unmanned air vehicle may fall or deviate from the flight route because the ring body is applied to the overhead wire. Can prevent the unmanned air vehicle from flying safely.
  • Another one of the present inventions is the control method of the above-mentioned unmanned aerial vehicle, wherein the unmanned aerial vehicle flies along the overhead electric wire with the overhead electric wire accommodated inside the ring. Run.
  • Another one of the present inventions is the control method of the above-mentioned unmanned aerial vehicle, wherein the unmanned aerial vehicle comprises an imaging device for photographing the surroundings, and the unmanned aerial vehicle accommodates an overhead wire inside the ring.
  • the step of photographing the overhead wire is further performed while flying in the above state.
  • Another one of the present inventions is a control method of the above-mentioned unmanned air vehicle, wherein the current generator is configured using a feedthrough current transformer.
  • Another aspect of the present invention is a thrust generator, a flight control device for controlling the thrust generator, an annular ring body capable of opening and closing a part of the ring, and a conductive coil wound around the ring body Based on the current generated in the conductive coil by the electromagnetic induction action of the current flowing through the overhead electric wire housed in the ring, the ring switching device for opening and closing a part of the ring of the ring body, and
  • An unmanned aerial vehicle comprising a power supply device for supplying power to the thrust generator or the flight control device, wherein control for flying to approach an overhead wire, part of the ring of the ring body while flying Control to open an electric wire inside the ring, control to close a part of the ring while flying, and the electric current based on the electric current generated in the conductive coil by the electromagnetic induction action of the electric current flowing through the electric electric wire
  • the performing control supplied to the thrust generating apparatus or the flight control system.
  • Another one of the present inventions is the unmanned aerial vehicle, wherein control is performed to fly along the overhead electric wire with the overhead electric wire housed inside the ring.
  • Another one of the present inventions is the unmanned aerial vehicle, comprising an imaging device for imaging the surroundings, and controlling the imaging of the overhead electric wire while flying with the overhead electric wire housed inside the ring. Do.
  • the captured image of the transmission and distribution equipment such as overhead electric wire is efficiently acquired. be able to.
  • Another one of the present inventions is the unmanned aerial vehicle, wherein the current generator is constructed using a feedthrough current transformer.
  • Another one of the present inventions is the unmanned aerial vehicle, wherein a pedestal portion provided with the flight control device, and a predetermined length extending from the pedestal portion in the outer peripheral direction of the pedestal portion, the thrust generating device Are provided, and a plurality of leg supports provided extending downward of the pedestal portion, and the current generating device is a part of the ring in a space surrounded by the plurality of leg supports. Is provided downward.
  • Another one of the present inventions is the unmanned aerial vehicle, wherein a pedestal portion provided with the flight control device, and a predetermined length extending from the pedestal portion in the outer peripheral direction of the pedestal portion, the thrust generating device Are provided, and the current generating device is provided above the pedestal portion with a part of the ring facing upward.
  • the power supply device is a storage device for supplying power to the thrust generator or the flight control device, and power based on a current generated in the conductive coil.
  • a charge control device that supplies the power storage device.
  • the unmanned air vehicle can be made to fly safely while securing the flight distance and flight time.
  • FIGS. 1 and 2 show the appearance of the unmanned air vehicle 3 described as an embodiment of the present invention.
  • FIG. 1 is a front view of the unmanned air vehicle 3
  • FIG. 2 is a perspective view of the unmanned air vehicle 3 as viewed obliquely from the front and above.
  • the unmanned air vehicle 3 checks transmission and distribution equipment (for example, performs state diagnosis of overhead cables, power transmission towers, power poles, etc. (checks of scratches, arc marks, bird damage, presence of approaching trees, etc.).
  • the unmanned air vehicle 3 is, for example, a multicopter (bicopter, tricopter, quadcopter, hexacopter, octocopter, etc.), a helicopter, an airplane, a flight robot or the like.
  • the unmanned air vehicle 3 is a quadcopter capable of flying by remote control and capable of autonomous flight with an autonomous control mechanism.
  • the unmanned aerial vehicle 3 extends horizontally at angles of 45 °, 135 °, 225 °, and 315 ° from the pedestal portion 31 and the pedestal portion 31 as the basic skeleton (frame), respectively.
  • a leg 33 (including a leg support 331 and a horizontal leg 332 described later, also referred to as a skid) provided to extend downward (-z direction) of the pedestal 31.
  • the arm 32 and the leg 33 are configured using, for example, a tubular (cylindrical, square tubular or the like) or a truss-like member. These are made of, for example, resin, metal or the like.
  • the pedestal portion 31 has a structure (two upper and lower stages in this example) having a plurality of plates in the vertical direction (z-axis direction).
  • the leg 33 is fixed to the lower end of the leg support 331 and two leg supports 331 extending downward by a predetermined length while extending from the pedestal 31 in the left and right direction ( ⁇ x axis direction) respectively, and a horizontal leg 332 extending in a predetermined length (for example, a length in the front-rear direction (y-axis direction) of the unmanned aerial vehicle 3) in the y-axis direction.
  • a flight control device 250 and an imaging device 282 are provided in the upper stage of the pedestal portion 31.
  • a battery 260 power storage device
  • a charge control device 82 described later, and the like are provided in the lower part of the pedestal portion 31. These are fixed to the pedestal portion 31 using, for example, a double-sided tape, a surface fastener, a screw or the like.
  • a power motor 255 (a thrust generating device) is provided with the direction of the rotation axis thereof directed in the vertical direction (z-axis direction).
  • a propeller 271 (rotor) is attached to the rotation shaft of each power motor 255.
  • a motor control device 254 is connected to each power motor 255.
  • FIG. 3 is a diagram for explaining the structure and principle of the current generator 41.
  • the current generator 41 constitutes, together with the charge control unit 82 and the battery 260, a power supply unit 240 for supplying drive power to each component of the unmanned air vehicle 3.
  • the current generator 41 includes an annular (ring-shaped) ring body 411 made of a magnetic material, and a conductive coil 412 wound along the ring body 411. Both ends of the conductive coil 412 are connected to the input terminal of the charge control device 82.
  • the ring body 411 is coupled to the overhead wire 2 so that the overhead wire 2 is penetrated and accommodated in the hole 415 inside the ring.
  • a current (induced current) is generated in the conductive coil 412 by the electromagnetic induction action by the current flowing through the overhead wire 2, and this current is input to the charge control device 82.
  • the charge control device 82 converts alternating current input through the conductive coil 412 into direct current and uses it as a charging current of the battery 260.
  • Such a configuration of the current generator 41 can also be realized, for example, using an existing feed-through CT (power transformer (Current Transformer)) for power supply (for example, Patent Documents See Patent Document 2).
  • the inner surface of the ring body 411 is made of a material having a small coefficient of friction with the overhead wire 2. Therefore, the unmanned aerial vehicle 3 can fly (move) along the overhead wire 2 while the ring body 411 is coupled to the overhead wire 2.
  • the shape of the ring body 411 is not necessarily limited, for example, it is preferable to make it the shape (for example, ring shape, elliptical ring shape, etc.) which does not produce friction easily with the overhead electric wire 2 accommodated in a ring.
  • FIG. 4 shows the hardware configuration (block diagram) of the unmanned air vehicle 3 and the transmitter 6 used by the user.
  • the unmanned air vehicle 3 includes a flight control device 250, a thrust generator 270, a power supply device 240 (current generator 41, charge controller 82, battery 260), a ring opening and closing device 42, and an imaging device. It has 282.
  • the components of the unmanned air vehicle 3 (a thrust generator 270, a flight controller 250, a ring opening and closing device 42, and an imaging device 282) operate with the power supplied from the power supply device 240.
  • the drive power may be supplied to each of the above-described configurations from the battery 260 or directly from the charge control device 82.
  • the thrust generator 270 includes a motor controller 254 and a power motor 255.
  • a motor control device 254 also referred to as an ESC (Electronic Speed Controller), an amplifier or the like) controls the rotation of the power motor 255 by, for example, control of the magnitude of the electrical resistance value or PWM (Pulse Width Modulation) control.
  • the motor controller 254 generates thrust for flight.
  • the control circuit 251 controls the rotation speed of each of the plurality of power motors 255 based on the information input from the various sensors 253 to operate (posture (pitch, roll, yaw), move (advances) of the unmanned air vehicle 3. , Backward movement, left and right movement, up and down) etc.).
  • the power motor 255 is an electric motor, for example, a brushless motor.
  • the thrust generator 270 may be an engine (internal combustion engine).
  • the flight control device 250 includes a control circuit 251, a wireless communication device 252, various sensors 253, various interfaces (hereinafter referred to as various I / Fs 258), and a communication circuit 259.
  • the control circuit 251 includes a processor (CPU, MPU or the like) and a storage device (RAM, ROM, NVRAM, external storage or the like), and functions as an information processing apparatus.
  • the control circuit 251 may be realized, for example, as a microcomputer (microcomputer) in which a processor and a storage element are integrally packaged.
  • the various sensors 253 include, for example, a gyro sensor (angular velocity sensor), a three-axis acceleration sensor, a barometric pressure sensor, a magnetic sensor, an ultrasonic sensor, a depth camera (Time of Flight (TOF) camera, stereo camera, laser radar ( LiDAR: Laser imaging Detection and Ranging, infrared depth sensor, ultrasonic sensor, etc., GPS signal (GPS: Grobal Positioning System) receiver (hereinafter also referred to as GPS), pressure-sensitive sensor, infrared sensor, etc.
  • GPS Grobal Positioning System
  • the gyro sensor outputs, for example, a signal indicating an angular velocity of inclination and rotation of the unmanned air vehicle 3 in front, rear, left, and right.
  • the three-axis acceleration sensor detects, for example, the acceleration of the unmanned air vehicle 3 (acceleration in each of front, rear, left, right, up, and down directions).
  • the barometric pressure sensor outputs a signal indicating the barometric pressure.
  • the information of the barometric pressure sensor is used, for example, when obtaining the altitude, the elevating speed, and the like of the unmanned air vehicle 3.
  • the magnetic sensor outputs, for example, a signal indicating the direction in which the aircraft axis of the unmanned air vehicle 3 is currently facing.
  • the ultrasonic sensor outputs, for example, a signal indicating the distance between the unmanned air vehicle 3 and surrounding objects (transmission and distribution equipment, obstacles, ground, etc.).
  • the depth camera outputs information indicating the distance to an object present around the unmanned air vehicle 3.
  • the GPS signal receiver outputs information indicating the current position of the unmanned air vehicle 3.
  • the current position of the unmanned air vehicle 3 can be specified in real time with an error of about several centimeters by using the GPS signal transmitted from the Quasi-Zenith satellite received by the GPS signal receiver (GPS) .
  • the pressure sensor is provided, for example, at a predetermined position of the leg 33 of the unmanned air vehicle 3, and outputs a signal indicating that a predetermined portion of the unmanned air vehicle 3 has touched another object.
  • the wireless communication device 252 wirelessly communicates directly or indirectly with the transmitter 6 present at a remote location.
  • the wireless communication device 252 receives the wireless signal transmitted from the transmitter 6 and inputs the content of the received wireless signal to the control circuit 251.
  • the transmitter 6 may be provided with a video reception display device (FPV (First Persons View) device or the like) for displaying the video sent from the unmanned air vehicle 3 in real time.
  • FV First Persons View
  • the various I / F 258 is an interface for receiving information from the user and providing information to the user, and includes, for example, a push button, a switch, a touch panel, an LED, a speaker, and the like.
  • the communication circuit 259 is a communication circuit (SPI (Serial Peripheral Interface), I2C, and the like for communicating with other components of the unmanned air vehicle 3 (motor control device 254, charge control device 82, ring opening and closing device 42, imaging device 282, etc.). (Inter-Integrated Circuit), circuits which communicate by RS-232C, USB (Universal Serial Bus), etc.
  • SPI Serial Peripheral Interface
  • I2C Inter-Integrated Circuit
  • the battery 260 is, for example, a lithium polymer secondary battery, an electric double layer capacitor (electric double layer capacitor), a lithium ion secondary battery or the like.
  • the voltage between terminals of the battery 260 is notified from the charge control device 82 to the control circuit 251, and the control circuit 251 grasps the remaining amount of the battery 260 based on the voltage between terminals.
  • the ring opening / closing device 42 controls opening / closing of the ring body 411 when attaching the ring body 411 to the overhead wire 2 (one of the rings of the ring body 411 for inserting and removing the overhead wire 2 into and out of the ring hole 415 of the ring body 411). It includes a mechanism (a servomotor controlled by the control circuit 251, a mechanical opening / closing mechanism, etc.) for performing opening / closing control of the introduction port 416 provided in the unit.
  • the ring body 411 is formed of a pair of left and right semicircular members, and the ring opening / closing device 42 forms the introduction port 416 of the overhead wire 2 below the ring body 411 by splitting the ring body 411 into two. Structure.
  • the imaging device 282 communicates with, for example, a camera (video camera or digital camera), a camera control mechanism, a gimbal (biaxial gimbal, triaxial gimbal, etc.) for keeping the photographing direction of the camera constant, and a ground station. Communication devices and the like.
  • the imaging device 282 captures an image of an object that is an inspection target (the overhead wire 2, a transmission tower, or the like), and wirelessly transmits the captured image (image data) to the ground station.
  • the image received from the unmanned air vehicle 3 is analyzed by image processing, AI (Artificial Intelligence), etc. to grasp the state of the inspection object.
  • the photographing device 282 may have a function of recording (recording) a photographed video (video data) on a recording medium.
  • FIG. 5 shows functions (software configuration) of the control circuit 251.
  • the control circuit 251 includes an attitude control unit 511, a steering control unit 512, a flight control unit 513, a ring opening / closing device control unit 515, and an imaging device control unit 516. These functions are realized, for example, by the processor of the control circuit 251 reading and executing a program stored in the storage device of the control circuit 251.
  • the control circuit 251 stores map information 531 and a flight path 532.
  • the map information 531 includes three-dimensional map information.
  • the flight route 532 includes information indicating a route (a route including an inspection route) connecting the departure point to the final landing point.
  • the attitude control unit 511 controls the attitude of the unmanned air vehicle 3 by controlling the motor control device 254 (power motor 255) according to the signals input from the various sensors 253.
  • the steering control unit 512 controls the motor control device 254 (power motor 255) according to the signal input from the wireless communication device 252, and controls the operation (movement, rotation, rise, fall, etc.) of the unmanned air vehicle 3. .
  • the flight control unit 513 controls the thrust generator 270 based on the information acquired from the various sensors 253 to perform autonomous flight control of the unmanned air vehicle 3.
  • This autonomous flight control may be performed automatically or semi-automatically using, for example, AI technology.
  • the flight control unit 513 controls the thrust generating device 270 in accordance with the instruction from the transmitter 6 received by the wireless communication device 252, and thereby the flying attitude and operation of the unmanned air vehicle 3 Control.
  • the flight control unit 513 performs unmanned flight along a preset flight path (a departure point, an inspection route, and a flight path connecting each landing point) based on signals (for example, GPS signals) input from various sensors 253. Make the body 3 fly.
  • the flight path may be manually set or automatically set using AI technology or the like.
  • the flight control unit 513 grasps the distance between the overhead electric wire 2 with high accuracy and in real time based on the signals input from the various sensors 253.
  • the ring opening / closing device controller 515 controls the opening / closing of the ring opening / closing device 42 (for example, controls the servomotor of the ring opening / closing device 42).
  • the photographing device control unit 516 controls the operation (the start and stop of photographing, photographing direction, zoom magnification control, and the like) of the photographing device 282.
  • FIG. 6 shows the configuration (hardware configuration) of the charge control device 82 shown in FIG.
  • the charge control device 82 includes a charge control circuit 711 and a communication circuit 712.
  • the charge control circuit 711 includes a circuit for efficiently charging the battery 260, a monitoring circuit of the voltage between the terminals of the battery 260, various protection circuits, and the like.
  • the charge control circuit 711 efficiently supplies the received power to the battery 260 while charging the battery 260 while monitoring the voltage between the terminals of the battery 260.
  • the charge control circuit 711 charges the battery 260 while performing, for example, control of a CVCC (Constant Voltage. Constant Current) system.
  • CVCC Constant Voltage. Constant Current
  • the communication circuit 712 communicates with the communication circuit 259 of the flight control device 250.
  • the charge control circuit 711 transmits the information of the battery 260 to the control circuit 251 through the communication circuit 712.
  • the unmanned aerial vehicle 3 charges the battery 260 using the current induced in the conductive coil 412 by the electromagnetic induction action of the current flowing through the overhead wire 2.
  • the unmanned aerial vehicle 3 approaches the overhead wire 2 from above the overhead wire 2 while flying, and is coupled to the overhead wire 2 by accommodating the overhead wire 2 in the hole 415 of the ring body 411 of the ring body 411.
  • FIG. 7 is a view for explaining the procedure for accommodating the overhead wire 2 inside the ring body 411 while the unmanned air vehicle 3 is flying.
  • the unmanned air vehicle 3 first approaches the overhead wire 2 from above as shown in (a). Subsequently, as shown in (b), the unmanned aerial vehicle 3 opens a part of the ring of the ring 411 and descends, and accommodates the overhead wire 2 in the hole 415 of the ring 411. Then, the unmanned air vehicle 3 closes the ring body 411 and couples with the overhead wire 2 as shown in (c).
  • the unmanned air vehicle 3 is along the direction in which the overhead wire 2 extends while charging the battery 260 by the current generated by the electromagnetic induction by the current flowing through the overhead wire 2. Fly and check the overhead electric wire 2 etc. (for example, take photographs of transmission / distribution facilities to be checked and surrounding conditions). During the flight along the overhead wire 2, the unmanned air vehicle 3 is controlled based on the information acquired from the various sensors 253 so that the separation distance from the overhead wire 2 is at an appropriate position.
  • the unmanned air vehicle 3 can move smoothly along the overhead wire 2.
  • the ring body 411 hangs on the overhead wire 2. Therefore, the unmanned air vehicle 3 never falls or deviates from the flight route.
  • FIG. 9 is a flow chart for explaining the process performed by the unmanned air vehicle 3 on a flight for inspection (hereinafter, referred to as flight control process S900).
  • the flight control processing S900 will be described below with reference to FIG.
  • the unmanned air vehicle 3 stores the flight path 532 by the user's registration operation or the like (S911), and charges the battery 260 using a charging facility provided on the ground ( Perform pre-flight charging) (S912).
  • the unmanned air vehicle 3 takes off the departure point and starts flying along the flight path 532 (S913).
  • the unmanned air vehicle 3 grasps the current position of itself in real time based on the information of various sensors 253 such as GPS, and determines whether or not it approaches the overhead wire 2 (S914). For example, when the distance between the current position and the overhead wire 2 becomes equal to or less than a predetermined distance, the unmanned air vehicle 3 determines that the overhead wire 2 approaches.
  • the unmanned air vehicle 3 couples the ring body 411 to the overhead wire 2 according to the above-described procedure shown in FIG. 7 (S915).
  • the unmanned air vehicle 3 starts flying along the overhead wire 2 based on the information acquired from the various sensors 253, and checks the transmission and distribution equipment (photographs of the overhead wire 2 and the photographed image (image data)). Transmission to the ground station etc.) is started (S916).
  • the unmanned air vehicle 3 When the inspection is started, the unmanned air vehicle 3 flies along the overhead wire 2 and determines in real time whether it is time to leave the overhead wire 2 (S917). Note that the timing at which the flight from the overhead electric wire 2 occurs is, for example, when the unmanned air vehicle 3 approaches an obstacle (a power transmission tower, a difficult snowfall ring, a twist prevention damper, etc.) or It comes when the inspection of the inspection target section is completed.
  • an obstacle a power transmission tower, a difficult snowfall ring, a twist prevention damper, etc.
  • the unmanned air vehicle 3 When the timing for detaching from the overhead wire 2 arrives (S917: YES), the unmanned air vehicle 3 opens the ring body 411 and detaches from the overhead wire 2 (S918). If the timing for leaving the overhead wire 2 has not arrived (S917: NO), the unmanned air vehicle 3 continues to fly along the overhead wire 2 as it is.
  • the unmanned aerial vehicle 3 determines whether or not a return timing has arrived (S919).
  • the return timing may be reached, for example, when all scheduled inspections have been completed, when any failure occurs, or when a return instruction is received from the ground station.
  • the unmanned air vehicle 3 can receive power supply from the overhead wire 2 while flying, and the flight distance of the unmanned air vehicle 3 (flight time ) Can be extended. Therefore, for example, the unmanned air vehicle 3 can be made to fly over a long distance or for a long time without accessing a charging station or the like, and work such as inspection of transmission and distribution facilities can be performed efficiently.
  • ring body 411 is applied to overhead wire 2, so that unmanned air vehicle 3 may fall or deviate from the flight route. It is possible to prevent the unmanned air vehicle 3 from flying safely.
  • the unmanned air vehicle 3 can be efficiently and safely flying far.
  • the unmanned air vehicle 3 approaches from above the overhead wire 2 and couples the ring body 411 to the overhead wire 2.
  • the ring body 411 may be provided on the upper portion of the flying object 3 and approach the overhead wire 2 from below the overhead wire 2 while flying to couple the ring body 411 to the overhead wire 2. In this way, for example, imaging can be performed from the lower side of the overhead wire 2.
  • each of the configurations, function units, processing units, processing means, etc. described above may be realized by hardware, for example, by designing part or all of them with an integrated circuit.
  • Each configuration, function, etc. described above may be realized by software by a processor interpreting and executing a program that realizes each function.
  • Information such as a program, a table, and a file for realizing each function can be placed in a memory, a hard disk, a recording device such as a solid state drive (SSD), or a recording medium such as an IC card, an SD card, or a DVD.
  • SSD solid state drive
  • control lines and information lines indicate what is considered to be necessary for explanation, and not all control lines and information lines on mounting are necessarily shown. For example, in practice it may be considered that almost all configurations are mutually connected.
  • the arrangement of the various functional units in the embodiment described above is merely an example.
  • the arrangement form of the various functional units can be changed to an optimum arrangement form in terms of hardware and software performance, processing efficiency, communication efficiency, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

The present invention meets flying distance and flying time requirements while effecting safe flight for an unmanned flying body. This unmanned flying body comprises: a thrust generating device; a flight control device that controls the thrust generating device; a current generating device that has an annular ring body with an openable/closable section therealong and a conductive coil wound around the ring body; a ring opening/closing device that opens and closes the section of the ring body; and a power supply device that supplies, to the thrust generating device or the flight control device, electric power from current generated in the conductive coil by means of electromagnetic induction by current flowing through an overhead power line accommodated inside the ring. This unmanned flying body carries out: control for approaching the overhead power line by means of flight; control for opening the section of the ring in-flight and accommodating the overhead power line inside the ring; control for closing the section of the ring in-flight; and control for supplying, to the thrust generating device or the flight control device, the electric power from the current generated in the conductive coil by means of electromagnetic induction by the current flowing through the overhead power line accommodated inside the ring.

Description

無人飛行体の制御方法、及び無人飛行体Control method of unmanned air vehicle and unmanned air vehicle
 本発明は、無人飛行体の制御方法、及び無人飛行体に関する。 The present invention relates to a method of controlling an unmanned air vehicle and an unmanned air vehicle.
 特許文献1には、「距離や時間などの制約を打ち破り配達できる範囲を広げて利便性を高めた無人飛行体を用いた輸送システムを提供する。」、「電力供給を受けて3次元的な移動が可能な無人飛行体を用いた輸送システムであって、前記無人飛行体は、輸送対象の荷物を収納するコンテナを装着しながら飛行し、該コンテナには前記無人飛行体に供給される電力を蓄えるための蓄電部が設けられ、前記コンテナに設けられた前記蓄電部は、非移動時に中継基地で充電される。」と記載されている。 Patent Document 1 "provides a transportation system using an unmanned air vehicle which has enhanced the convenience by extending the range in which it can deliver by breaking restrictions such as distance and time," "receive power supply and three-dimensional. A transport system using a movable unmanned air vehicle, wherein the unmanned air vehicle flies while mounting a container for storing a load to be transported, and the container supplies power to the unmanned air vehicle. The storage unit for storing the storage unit is provided, and the storage unit provided in the container is charged at the relay base when not moving.
 特許文献2には、「架空電線への接近樹木の点検などを自動的に行うことができる無人飛行体を用いた架空電線点検システムおよび方法を提供する。」、「自律飛行しつつ架空電線の点検箇所まで飛行するための飛行制御系および点検箇所の画像並びに距離測定データを含む各種情報を収集するための情報収集系を備える無人ヘリコプターと、無人ヘリコプターの飛行を制御するとともに無人ヘリコプターからの各種情報を収集して処理する飛行制御・情報収集系を備える管制センターと、無人ヘリコプターの情報収集系により収集された点検箇所の画像および距離測定データから3次元画像を作成し、作成した3次元画像を処理し、処理された3次元画像に基づいて点検箇所の架空電線に異常があるか否かを点検する接近樹木等点検手段と、接近樹木等点検手段における点検に使用される各種データが記憶された記憶装置とを具備する。」と記載されている。 Patent Document 2 "provides an overhead electric wire inspection system and method using an unmanned aerial vehicle capable of automatically performing an inspection of a tree approaching an overhead electric wire, etc.", "of an overhead electric wire while autonomously flying An unmanned helicopter equipped with a flight control system for flying to an inspection point and an information collecting system for collecting various information including images of the inspection point and distance measurement data, controlling the flight of the unmanned helicopter, and various kinds from the unmanned helicopter A three-dimensional image created by creating a three-dimensional image from an image of inspection points and distance measurement data collected by a control center equipped with a flight control and information collection system that collects and processes information, and an information collection system of an unmanned helicopter Processing means such as approaching trees to check if there is an abnormality in the overhead electric wire at the check point based on the processed three-dimensional image , Various data to be used for inspection in close trees such inspection means are described as. "And a stored memory.
 特許文献3には、「架空電線のグランドワイヤに流れる架空電線からの誘導電流をとり出し、直流変換して蓄電池を充電し、蓄電池を電源として利用する。」、「架空電線のグランドワイヤには電流とり出し用としてグランドワイヤを1次巻線とする電流変成器を設け、電流変成器はグランドワイヤに沿って長形状に設け、グランドワイヤに流れる架空電線の誘導電流をとり出す」と記載されている。 Patent Document 3 "takes out the induction current from the overhead wire flowing to the ground wire of the overhead wire, performs direct current conversion to charge the storage battery, and uses the storage battery as a power source", "for the ground wire of the overhead wire A current transformer with a ground wire as a primary winding is provided for current extraction, and the current transformer is provided in a long shape along the ground wire to take out the induction current of the overhead wire flowing through the ground wire. ing.
 特許文献4には、配電線を内挿するコアと、このコアに巻回された二次巻線(一次巻線は、測定対象の配電線が相当)を備えて構成された電源用CTについて記載されている。 Patent Document 4 relates to a power supply CT configured to include a core into which a distribution line is inserted and a secondary winding (a primary winding corresponds to a distribution line to be measured) wound around the core. Have been described.
 非特許文献1には、送電鉄塔や架空電線などの位置・高さのデータを基に3次元の地図を作り、ドローンの安全飛行を支援する「ドローンハイウェイ構想」について記載されている。 Non-Patent Document 1 describes a “drone highway concept” that supports a safe flight of a drone by creating a three-dimensional map based on position and height data such as transmission towers and overhead wires.
 非特許文献2には、架空地線に流れる誘導電流を活用した航空障害灯用電源装置について記載されている。 Non-Patent Document 2 describes a power supply device for an aeronautical fault lamp utilizing an induced current flowing in an overhead ground line.
特開2017-105242号公報JP, 2017-105242, A 特開2005-265699号公報Japanese Patent Application Publication No. 2005-265699 特開昭49-95159号公報JP-A-49-95159 特開2004-103791号公報JP 2004-103791
 特許文献1,2にも記載されているように、輸送システムや架空電線の点検等の業務に無人飛行体(ドローン等)を利用しようとする場合には蓄電装置(バッテリ)の容量と重量により飛行距離や飛行時間が制限されてしまうことが課題となる。また昨今、非特許文献1に記載されているように、架空電線を「道しるべ」として利用し、ドローンが目的地まで安全かつ確実に飛行できるようにする「ドローンハイウェイ構想」なるものが提案されているが、この場合には長距離飛行時に無人飛行体への電力供給をどのようにして行うかが課題となる。 As described in Patent Documents 1 and 2, when it is intended to use an unmanned air vehicle (drone or the like) for services such as transportation system and overhead wire inspection, the capacity and weight of the power storage device (battery) are used. The problem is that the flight distance and flight time are limited. Recently, as described in Non-Patent Document 1, a "drone highway concept" has been proposed that allows a drone to fly safely and reliably to a destination by using an overhead wire as a "guidepost". However, in this case, how to supply power to the unmanned air vehicle during long distance flight becomes a problem.
 本発明はこうした背景に鑑みてなされたものであり、飛行距離や飛行時間を確保しつつ安全に飛行させることが可能な、無人飛行体の制御方法、及び無人飛行体を提供することを目的としている。 The present invention has been made in view of the above background, and it is an object of the present invention to provide a method of controlling an unmanned air vehicle, and an unmanned air vehicle, which can be made to fly safely while securing the flight distance and flight time. There is.
 上記目的を達成するための本発明のうちの一つは、推力発生装置と、前記推力発生装置を制御する飛行制御装置と、環の一部を開閉可能な環状のリング体、及び前記リング体に巻回された導電コイルを有する電流発生装置と、前記リング体の前記環の一部を開閉するリング開閉装置と、前記導電コイルに生じる電流に基づく電力を前記推力発生装置又は前記飛行制御装置に供給する電力供給装置と、を備えた無人飛行体の制御方法であって、前記無人飛行体が、飛行して架空電線に接近するステップ、飛行しつつ前記リング体の前記環の一部を開いて前記環の内側に架空電線を収容するステップ、飛行しつつ前記環の一部を閉じるステップ、及び、前記架空電線を流れる電流の電磁誘導作用により前記導電コイルに生じる電流に基づく前記電力を前記推力発生装置又は前記飛行制御装置に供給するステップ、を実行する。 In order to achieve the above object, one of the present inventions is a thrust generator, a flight control device for controlling the thrust generator, an annular ring body capable of opening and closing a part of the ring, and the ring body A current generating device having a conductive coil wound around the ring, a ring switching device for opening and closing a part of the ring of the ring body, electric power based on current generated in the conductive coil as the thrust generating device or the flight control device A control method of an unmanned aerial vehicle, comprising the steps of: the unmanned aerial vehicle flying to approach an overhead electric wire; and a part of the ring of the ring body while flying. The steps of opening and housing an overhead wire inside the ring, closing a portion of the ring while flying, and the current based on the current generated in the conductive coil by the electromagnetic induction action of the current flowing through the overhead wire. Supplying a force to the thrust generating apparatus or the flight control device, for execution.
 本発明によれば、架空電線を流れる電流の電磁誘導作用により導電コイルに生じる電流に基づく電力を推力発生装置又は飛行制御装置に供給するので、飛行しながら架空電線から電力供給を受けることができ、無人飛行体の飛行距離や飛行時間を延ばすことができる。そのため、例えば、充電ステーション等にアクセスすることなく、無人飛行体を長距離又は長時間にわたって飛行させることができ、送配電設備の点検等の作業を効率よく行うことができる。また蓄電装置(バッテリ)の残量不足や故障により浮力を失った場合や突風が発生した場合にはリング体が架空電線に掛かるため、無人飛行体が落下したり飛行ルートを逸脱してしまうのを防ぐことができ、無人飛行体を安全に飛行させることができる。このように本発明によれば、飛行距離や飛行時間を確保しつつ安全に無人飛行体を飛行させることができる。 According to the present invention, since power based on the current generated in the conductive coil by the electromagnetic induction action of the current flowing through the overhead wire is supplied to the thrust generator or flight control device, power can be supplied from the overhead wire while flying. , Can extend the flight distance and flight time of a drone. Therefore, for example, the unmanned air vehicle can be made to fly over a long distance or a long time without accessing the charging station or the like, and the work such as the inspection of the transmission and distribution equipment can be efficiently performed. In addition, if the buoyancy is lost due to insufficient storage capacity of the power storage device (battery) or failure or if a gust of wind occurs, the unmanned air vehicle may fall or deviate from the flight route because the ring body is applied to the overhead wire. Can prevent the unmanned air vehicle from flying safely. Thus, according to the present invention, it is possible to safely fly an unmanned air vehicle while securing the flight distance and flight time.
 本発明の他の一つは、上記無人飛行体の制御方法であって、前記無人飛行体が、前記環の内側に前記架空電線を収容した状態で前記架空電線に沿って飛行するステップを更に実行する。 Another one of the present inventions is the control method of the above-mentioned unmanned aerial vehicle, wherein the unmanned aerial vehicle flies along the overhead electric wire with the overhead electric wire accommodated inside the ring. Run.
 本発明の他の一つは、上記無人飛行体の制御方法であって、前記無人飛行体は、周囲を撮影する撮影装置を備え、前記無人飛行体が、前記環の内側に架空電線を収容した状態で飛行しつつ前記架空電線を撮影するステップを更に実行する。 Another one of the present inventions is the control method of the above-mentioned unmanned aerial vehicle, wherein the unmanned aerial vehicle comprises an imaging device for photographing the surroundings, and the unmanned aerial vehicle accommodates an overhead wire inside the ring. The step of photographing the overhead wire is further performed while flying in the above state.
 本発明の他の一つは、上記無人飛行体の制御方法であって、前記電流発生装置は、貫通型の変流器を用いて構成される。 Another one of the present inventions is a control method of the above-mentioned unmanned air vehicle, wherein the current generator is configured using a feedthrough current transformer.
 本発明の他の一つは、推力発生装置と、前記推力発生装置を制御する飛行制御装置と、環の一部を開閉可能な環状のリング体、及び前記リング体に巻回された導電コイルを有する電流発生装置と、前記リング体の前記環の一部を開閉するリング開閉装置と、前記環の内側に収容された架空電線を流れる電流の電磁誘導作用により前記導電コイルに生じる電流に基づく電力を前記推力発生装置又は前記飛行制御装置に供給する電力供給装置と、を備える無人飛行体であって、飛行して架空電線に接近する制御、飛行しつつ前記リング体の前記環の一部を開いて前記環の内側に架空電線を収容する制御、飛行しつつ前記環の一部を閉じる制御、及び、前記架空電線を流れる電流の電磁誘導作用により前記導電コイルに生じる電流に基づく前記電力を前記推力発生装置又は前記飛行制御装置に供給する制御、を行う。 Another aspect of the present invention is a thrust generator, a flight control device for controlling the thrust generator, an annular ring body capable of opening and closing a part of the ring, and a conductive coil wound around the ring body Based on the current generated in the conductive coil by the electromagnetic induction action of the current flowing through the overhead electric wire housed in the ring, the ring switching device for opening and closing a part of the ring of the ring body, and An unmanned aerial vehicle comprising a power supply device for supplying power to the thrust generator or the flight control device, wherein control for flying to approach an overhead wire, part of the ring of the ring body while flying Control to open an electric wire inside the ring, control to close a part of the ring while flying, and the electric current based on the electric current generated in the conductive coil by the electromagnetic induction action of the electric current flowing through the electric electric wire The performing control, supplied to the thrust generating apparatus or the flight control system.
 本発明の他の一つは、上記無人飛行体であって、前記環の内側に前記架空電線を収容した状態で前記架空電線に沿って飛行する制御を行う。 Another one of the present inventions is the unmanned aerial vehicle, wherein control is performed to fly along the overhead electric wire with the overhead electric wire housed inside the ring.
 本発明の他の一つは、上記無人飛行体であって、周囲を撮影する撮影装置を備え、前記環の内側に前記架空電線を収容した状態で飛行しつつ前記架空電線を撮影する制御を行う。 Another one of the present inventions is the unmanned aerial vehicle, comprising an imaging device for imaging the surroundings, and controlling the imaging of the overhead electric wire while flying with the overhead electric wire housed inside the ring. Do.
 本発明によれば、送配電設備の点検等の作業に際し、架空電線からの電力供給を受けて飛行距離や飛行時間を確保しつつ、架空電線等の送配電設備の撮影映像を効率よく取得することができる。 According to the present invention, at the time of work such as inspection of transmission and distribution equipment, while receiving the power supply from the overhead electric wire and securing the flight distance and flight time, the captured image of the transmission and distribution equipment such as overhead electric wire is efficiently acquired. be able to.
 本発明の他の一つは、上記無人飛行体であって、前記電流発生装置は、貫通型の変流器を用いて構成される。 Another one of the present inventions is the unmanned aerial vehicle, wherein the current generator is constructed using a feedthrough current transformer.
 本発明の他の一つは、上記無人飛行体であって、前記飛行制御装置が設けられる台座部と、前記台座部から当該台座部の外周方向に所定長さで延出し、前記推力発生装置が設けられる複数のアームと、前記台座部の下方に延出して設けられる複数の脚支柱と、を備え、前記電流発生装置は、前記複数の脚支柱によって囲まれる空間に、前記環の一部を下方に向けて設けられる。 Another one of the present inventions is the unmanned aerial vehicle, wherein a pedestal portion provided with the flight control device, and a predetermined length extending from the pedestal portion in the outer peripheral direction of the pedestal portion, the thrust generating device Are provided, and a plurality of leg supports provided extending downward of the pedestal portion, and the current generating device is a part of the ring in a space surrounded by the plurality of leg supports. Is provided downward.
 本発明の他の一つは、上記無人飛行体であって、前記飛行制御装置が設けられる台座部と、前記台座部から当該台座部の外周方向に所定長さで延出し、前記推力発生装置が設けられる複数のアームと、を備え、前記電流発生装置は、前記台座部の上方に前記環の一部を上方に向けて設けられる。 Another one of the present inventions is the unmanned aerial vehicle, wherein a pedestal portion provided with the flight control device, and a predetermined length extending from the pedestal portion in the outer peripheral direction of the pedestal portion, the thrust generating device Are provided, and the current generating device is provided above the pedestal portion with a part of the ring facing upward.
 本発明の他の一つは、上記無人飛行体であって、前記電力供給装置は、前記推力発生装置又は前記飛行制御装置に電力を供給する蓄電装置と、前記導電コイルに生じる電流に基づく電力を前記蓄電装置に供給する充電制御装置と、を更に備える。 Another one of the present inventions is the unmanned aerial vehicle, wherein the power supply device is a storage device for supplying power to the thrust generator or the flight control device, and power based on a current generated in the conductive coil. And a charge control device that supplies the power storage device.
 その他、本願が開示する課題、及びその解決方法は、発明を実施するための形態の欄、及び図面により明らかにされる。 In addition, the subject which this application discloses, and its solution method are clarified by the column of the form for inventing, and drawing.
 本発明によれば、飛行距離や飛行時間を確保しつつ無人飛行体を安全に飛行させることができる。 According to the present invention, the unmanned air vehicle can be made to fly safely while securing the flight distance and flight time.
無人飛行体の正面図である。It is a front view of a drone. 無人飛行体を正面斜め上方から眺めた斜視図である。It is the perspective view which looked at the unmanned aerial vehicle from the front slanting upper part. 電流発生装置の構造及び原理を説明する図である。It is a figure explaining the structure and principle of an electric current generator. 無人飛行体のハードウェア構成(ブロック図)並びに送信機を示す図である。It is a figure which shows the hardware constitutions (block diagram) of an unmanned aerial vehicle, and a transmitter. 制御回路が備える機能(ソフトウェア構成)を示す図である。It is a figure which shows the function (software structure) with which a control circuit is provided. 充電制御装置の構成(ハードウェア構成)を示す図である。It is a figure which shows the structure (hardware structure) of a charge control apparatus. 無人飛行体が飛行しながらリング体の内側に架空電線を収容する手順を説明する図である。It is a figure explaining the procedure which accommodates an overhead wire inside a ring while a drone flies. 無人飛行体が架空電線の点検を行いつつバッテリを充電している様子を示す図である。It is a figure which shows a mode that the unmanned aerial vehicle is charging a battery, inspecting an overhead electric wire. 飛行制御処理を説明するフローチャートである。It is a flow chart explaining flight control processing. 無人飛行体の他の構成を示す図である。It is a figure which shows the other structure of a unmanned air vehicle.
 以下、発明を実施するための形態について説明する。尚、以下の説明において、同一の又は類似する構成について共通の符号を付して説明を省略することがある。 Hereinafter, modes for carrying out the invention will be described. In the following description, the same or similar components may be denoted by the same reference numerals and the description thereof may be omitted.
 図1及び図2に本発明の一実施形態として説明する無人飛行体3の外観を示している。図1は無人飛行体3の正面図、図2は無人飛行体3を正面斜め上方から眺めた斜視図である。無人飛行体3は、送配電設備の点検(例えば、架空電線、送電鉄塔、電柱等の状態診断(傷、アーク痕、鳥害、接近樹木の有無の確認等))を行う。 FIGS. 1 and 2 show the appearance of the unmanned air vehicle 3 described as an embodiment of the present invention. FIG. 1 is a front view of the unmanned air vehicle 3, and FIG. 2 is a perspective view of the unmanned air vehicle 3 as viewed obliquely from the front and above. The unmanned air vehicle 3 checks transmission and distribution equipment (for example, performs state diagnosis of overhead cables, power transmission towers, power poles, etc. (checks of scratches, arc marks, bird damage, presence of approaching trees, etc.).
 無人飛行体3は、例えば、マルチコプタ(バイコプタ(bicopter)トリコプタ(tricopter)、クアッドコプタ(quadcopter)、ヘキサコプタ(hexacopter)、オクトコプタ(octocopter)等)、ヘリコプタ、飛行機、飛行ロボット等である。尚、以下の説明において、無人飛行体3は、遠隔制御による飛行が可能であり、かつ、自律制御機構を備えて自律飛行が可能なクアッドコプタであるものとする。 The unmanned air vehicle 3 is, for example, a multicopter (bicopter, tricopter, quadcopter, hexacopter, octocopter, etc.), a helicopter, an airplane, a flight robot or the like. In the following description, the unmanned air vehicle 3 is a quadcopter capable of flying by remote control and capable of autonomous flight with an autonomous control mechanism.
 無人飛行体3は、その基本骨格(フレーム)として、台座部31と、台座部31から+y方向を基準として、夫々、45°、135°、225°、315°の角度で水平方向に延出する4つのアーム32と、台座部31の下方(-z方向)に延出して設けられる脚部33(後述の脚支柱331,水平脚332を含む。スキッドとも称される。)と、を備える。アーム32や脚部33は、例えば、筒状(円筒状、角筒状等)やトラス状の部材を用いて構成される。これらは例えば樹脂や金属等を素材として構成される。 The unmanned aerial vehicle 3 extends horizontally at angles of 45 °, 135 °, 225 °, and 315 ° from the pedestal portion 31 and the pedestal portion 31 as the basic skeleton (frame), respectively. And a leg 33 (including a leg support 331 and a horizontal leg 332 described later, also referred to as a skid) provided to extend downward (-z direction) of the pedestal 31. . The arm 32 and the leg 33 are configured using, for example, a tubular (cylindrical, square tubular or the like) or a truss-like member. These are made of, for example, resin, metal or the like.
 台座部31は、上下方向(z軸方向)に複数段の板材を有する構造(本例では上下2段)になっている。脚部33は、台座部31から夫々左右方向(±x軸方向)に開脚しつつ下方に所定長さで延出する2本の脚支柱331と、脚支柱331の下端に固定され水平(y軸方向)に所定長さ(例えば、無人飛行体3の前後方向(y軸方向)の長さ)で延出する水平脚332とを有する。 The pedestal portion 31 has a structure (two upper and lower stages in this example) having a plurality of plates in the vertical direction (z-axis direction). The leg 33 is fixed to the lower end of the leg support 331 and two leg supports 331 extending downward by a predetermined length while extending from the pedestal 31 in the left and right direction (± x axis direction) respectively, and a horizontal leg 332 extending in a predetermined length (for example, a length in the front-rear direction (y-axis direction) of the unmanned aerial vehicle 3) in the y-axis direction.
 台座部31の上段には、飛行制御装置250や撮影装置282が設けられている。また台座部31の下段には、バッテリ260(蓄電装置)や後述の充電制御装置82等が設けられている。これらは例えば、両面テープ、面ファスナ、ネジ等を用いて台座部31に固定される。 A flight control device 250 and an imaging device 282 are provided in the upper stage of the pedestal portion 31. In the lower part of the pedestal portion 31, a battery 260 (power storage device), a charge control device 82 described later, and the like are provided. These are fixed to the pedestal portion 31 using, for example, a double-sided tape, a surface fastener, a screw or the like.
 4つのアーム32の夫々の端部近傍には、その回転軸の方向を上下方向(z軸方向)に向けて動力モータ255(推力発生装置)が設けられている。各動力モータ255の回転軸にはプロペラ271(回転翼)が取り付けられている。各動力モータ255にはモータ制御装置254が接続されている。 In the vicinity of the end of each of the four arms 32, a power motor 255 (a thrust generating device) is provided with the direction of the rotation axis thereof directed in the vertical direction (z-axis direction). A propeller 271 (rotor) is attached to the rotation shaft of each power motor 255. A motor control device 254 is connected to each power motor 255.
 台座部31の下方には、台座部31の下段と2本の脚支柱331とで囲まれる空間Sが形成されており、この空間Sに電流発生装置41とリング開閉装置42とが設けられている。 Below the pedestal portion 31, a space S surrounded by the lower portion of the pedestal portion 31 and the two leg supports 331 is formed, and a current generator 41 and a ring opening / closing device 42 are provided in the space S. There is.
 図3は電流発生装置41の構造及び原理を説明する図である。電流発生装置41は、充電制御装置82及びバッテリ260とともに、無人飛行体3の各構成に駆動電力を供給する電力供給装置240を構成する。 FIG. 3 is a diagram for explaining the structure and principle of the current generator 41. As shown in FIG. The current generator 41 constitutes, together with the charge control unit 82 and the battery 260, a power supply unit 240 for supplying drive power to each component of the unmanned air vehicle 3.
 同図に示すように、電流発生装置41は、磁性材料からなる環状(リング状)のリング体411と、リング体411に沿って巻回された導電コイル412とを含む。導電コイル412の両端部は充電制御装置82の入力端子に接続される。 As shown in the figure, the current generator 41 includes an annular (ring-shaped) ring body 411 made of a magnetic material, and a conductive coil 412 wound along the ring body 411. Both ends of the conductive coil 412 are connected to the input terminal of the charge control device 82.
 リング体411は、その環の内側の孔415に架空電線2を貫通させて収容するように架空電線2に結合する。リング体411が架空電線2に結合した状態では、架空電線2を流れる電流による電磁誘導作用により導電コイル412に電流(誘導電流)が生じ、この電流は充電制御装置82に入力される。 The ring body 411 is coupled to the overhead wire 2 so that the overhead wire 2 is penetrated and accommodated in the hole 415 inside the ring. In a state in which the ring body 411 is coupled to the overhead wire 2, a current (induced current) is generated in the conductive coil 412 by the electromagnetic induction action by the current flowing through the overhead wire 2, and this current is input to the charge control device 82.
 充電制御装置82は、導電コイル412を通じて入力される交流を直流に変換してバッテリ260の充電電流として利用する。尚、このような電流発生装置41の構成は、例えば、既存の貫通型の電源用CT(変流器(Current Transformer))を用いて実現することもできる(例えば、特許文献3,4、非特許文献2を参照)。 The charge control device 82 converts alternating current input through the conductive coil 412 into direct current and uses it as a charging current of the battery 260. Such a configuration of the current generator 41 can also be realized, for example, using an existing feed-through CT (power transformer (Current Transformer)) for power supply (for example, Patent Documents See Patent Document 2).
 リング体411の内側表面は、架空電線2との間の摩擦係数が小さな素材からなる。そのため、無人飛行体3は、リング体411を架空電線2と結合した状態のまま、架空電線2に沿って飛行(移動)することができる。リング体411の形状は必ずしも限定されないが、例えば、環内に収容される架空電線2との間で摩擦が生じにくい形状(例えば、円環状や楕円環状等)とすることが好ましい。 The inner surface of the ring body 411 is made of a material having a small coefficient of friction with the overhead wire 2. Therefore, the unmanned aerial vehicle 3 can fly (move) along the overhead wire 2 while the ring body 411 is coupled to the overhead wire 2. Although the shape of the ring body 411 is not necessarily limited, for example, it is preferable to make it the shape (for example, ring shape, elliptical ring shape, etc.) which does not produce friction easily with the overhead electric wire 2 accommodated in a ring.
 図4に、無人飛行体3のハードウェア構成(ブロック図)並びにユーザが利用する送信機6を示している。同図に示すように、無人飛行体3は、飛行制御装置250、推力発生装置270、電力供給装置240(電流発生装置41、充電制御装置82、バッテリ260)、リング開閉装置42、及び撮影装置282を備える。尚、無人飛行体3の各構成(推力発生装置270、飛行制御装置250、リング開閉装置42、及び撮影装置282)は、電力供給装置240から供給される電力によって動作する。上記各構成への駆動電力の供給は、バッテリ260から行ってもよいし、充電制御装置82から直接行ってもよい。 FIG. 4 shows the hardware configuration (block diagram) of the unmanned air vehicle 3 and the transmitter 6 used by the user. As shown in the figure, the unmanned air vehicle 3 includes a flight control device 250, a thrust generator 270, a power supply device 240 (current generator 41, charge controller 82, battery 260), a ring opening and closing device 42, and an imaging device. It has 282. The components of the unmanned air vehicle 3 (a thrust generator 270, a flight controller 250, a ring opening and closing device 42, and an imaging device 282) operate with the power supplied from the power supply device 240. The drive power may be supplied to each of the above-described configurations from the battery 260 or directly from the charge control device 82.
 推力発生装置270は、モータ制御装置254及び動力モータ255を備える。モータ制御装置254(ESC(Electronic Speed Controller)、アンプ等とも称される。)は、例えば、電気抵抗値の大きさの制御やPWM(Pulse Width Modulation)制御によって動力モータ255の回転を制御する。モータ制御装置254は、飛行のための推力を発生する。制御回路251は、各種センサ253から入力される情報に基づき複数の動力モータ255の夫々の回転数を制御することにより、無人飛行体3の動作(姿勢(ピッチ、ロール、ヨー)、移動(前進、後退、左右移動、上昇、下降)等)を制御する。動力モータ255は、電動モータであり、例えば、ブラシレスモータである。尚、推力発生装置270は、エンジン(内燃機関)によるものであってもよい。 The thrust generator 270 includes a motor controller 254 and a power motor 255. A motor control device 254 (also referred to as an ESC (Electronic Speed Controller), an amplifier or the like) controls the rotation of the power motor 255 by, for example, control of the magnitude of the electrical resistance value or PWM (Pulse Width Modulation) control. The motor controller 254 generates thrust for flight. The control circuit 251 controls the rotation speed of each of the plurality of power motors 255 based on the information input from the various sensors 253 to operate (posture (pitch, roll, yaw), move (advances) of the unmanned air vehicle 3. , Backward movement, left and right movement, up and down) etc.). The power motor 255 is an electric motor, for example, a brushless motor. The thrust generator 270 may be an engine (internal combustion engine).
 飛行制御装置250は、制御回路251、無線通信装置252、各種センサ253、各種インタフェース(以下、各種I/F258と称する。)、及び通信回路259を含む。 The flight control device 250 includes a control circuit 251, a wireless communication device 252, various sensors 253, various interfaces (hereinafter referred to as various I / Fs 258), and a communication circuit 259.
 制御回路251は、プロセッサ(CPU、MPU等)や記憶装置(RAM、ROM、NVRAM、外部記憶装置等)を含んで構成され、情報処理装置として機能する。制御回路251は、例えば、プロセッサ及び記憶素子が一体的にパッケージングされたマイクロコンピュータ(マイコン)として実現されるものであってもよい。 The control circuit 251 includes a processor (CPU, MPU or the like) and a storage device (RAM, ROM, NVRAM, external storage or the like), and functions as an information processing apparatus. The control circuit 251 may be realized, for example, as a microcomputer (microcomputer) in which a processor and a storage element are integrally packaged.
 各種センサ253は、例えば、ジャイロセンサ(角速度センサ)、3軸加速度センサ、気圧センサ、磁気センサ、超音波センサ、深度カメラ(タイムオブフライト(TOF: Time Of Flight)カメラ、ステレオカメラ、レーザレーダ(LiDAR: Laser imaging Detection and Ranging)、赤外線深度センサ、超音波センサ等)、GPS信号(GPS:Grobal Positioning System)の受信装置(以下、GPSとも称する。)、感圧センサ、赤外線センサ等である。 The various sensors 253 include, for example, a gyro sensor (angular velocity sensor), a three-axis acceleration sensor, a barometric pressure sensor, a magnetic sensor, an ultrasonic sensor, a depth camera (Time of Flight (TOF) camera, stereo camera, laser radar ( LiDAR: Laser imaging Detection and Ranging, infrared depth sensor, ultrasonic sensor, etc., GPS signal (GPS: Grobal Positioning System) receiver (hereinafter also referred to as GPS), pressure-sensitive sensor, infrared sensor, etc.
 ジャイロセンサは、例えば、無人飛行体3の前後左右の傾きや回転の角速度を示す信号を出力する。3軸加速度センサは、例えば、無人飛行体3の加速度(前後左右上下の各方向の加速度)を検出する。気圧センサは、気圧を示す信号を出力する。気圧センサの情報は、例えば、無人飛行体3の高度や昇降速度等を求める際に用いられる。磁気センサは、例えば、無人飛行体3の機軸が現在向いている方位を示す信号を出力する。 The gyro sensor outputs, for example, a signal indicating an angular velocity of inclination and rotation of the unmanned air vehicle 3 in front, rear, left, and right. The three-axis acceleration sensor detects, for example, the acceleration of the unmanned air vehicle 3 (acceleration in each of front, rear, left, right, up, and down directions). The barometric pressure sensor outputs a signal indicating the barometric pressure. The information of the barometric pressure sensor is used, for example, when obtaining the altitude, the elevating speed, and the like of the unmanned air vehicle 3. The magnetic sensor outputs, for example, a signal indicating the direction in which the aircraft axis of the unmanned air vehicle 3 is currently facing.
 超音波センサは、例えば、無人飛行体3と周囲の物体(送配電設備、障害物、地面等)との間の距離を示す信号を出力する。深度カメラは、無人飛行体3の周囲に存在する物体までの距離を示す情報を出力する。 The ultrasonic sensor outputs, for example, a signal indicating the distance between the unmanned air vehicle 3 and surrounding objects (transmission and distribution equipment, obstacles, ground, etc.). The depth camera outputs information indicating the distance to an object present around the unmanned air vehicle 3.
 GPS信号の受信装置(GPS)は、無人飛行体3の現在位置を示す情報を出力する。例えば、GPS信号の受信装置(GPS)が受信した、準天頂衛星から送られてくるGPS信号を用いることで、数cm程度の誤差で無人飛行体3の現在位置をリアルタイムに特定することができる。 The GPS signal receiver (GPS) outputs information indicating the current position of the unmanned air vehicle 3. For example, the current position of the unmanned air vehicle 3 can be specified in real time with an error of about several centimeters by using the GPS signal transmitted from the Quasi-Zenith satellite received by the GPS signal receiver (GPS) .
 感圧センサは、例えば、無人飛行体3の脚部33の所定位置に設けられ、無人飛行体3の所定部位が他の物体に接触したことを示す信号を出力する。 The pressure sensor is provided, for example, at a predetermined position of the leg 33 of the unmanned air vehicle 3, and outputs a signal indicating that a predetermined portion of the unmanned air vehicle 3 has touched another object.
 無線通信装置252は、遠隔地に存在する送信機6と直接的又は間接的に無線通信する。無線通信装置252は、送信機6から送られてくる無線信号を受信し、受信した無線信号の内容を制御回路251に入力する。送信機6は、無人飛行体3から送られてくる映像をリアルタイムに表示する映像受信表示装置(FPV(First Persons View)装置等)を備えていてもよい。 The wireless communication device 252 wirelessly communicates directly or indirectly with the transmitter 6 present at a remote location. The wireless communication device 252 receives the wireless signal transmitted from the transmitter 6 and inputs the content of the received wireless signal to the control circuit 251. The transmitter 6 may be provided with a video reception display device (FPV (First Persons View) device or the like) for displaying the video sent from the unmanned air vehicle 3 in real time.
 各種I/F258は、ユーザからの情報の受け付けやユーザへの情報提供を行うためのインタフェースであり、例えば、プッシュボタン、スイッチ、タッチパネル、LED、スピーカ等を含む。 The various I / F 258 is an interface for receiving information from the user and providing information to the user, and includes, for example, a push button, a switch, a touch panel, an LED, a speaker, and the like.
 通信回路259は、無人飛行体3の他の構成(モータ制御装置254、充電制御装置82、リング開閉装置42、撮影装置282等)と通信するための通信回路(SPI(Serial Peripheral Interface)、I2C(Inter-Integrated Circuit),RS-232CやUSB(Universal Serial Bus)等)により通信する回路等)を含む。 The communication circuit 259 is a communication circuit (SPI (Serial Peripheral Interface), I2C, and the like for communicating with other components of the unmanned air vehicle 3 (motor control device 254, charge control device 82, ring opening and closing device 42, imaging device 282, etc.). (Inter-Integrated Circuit), circuits which communicate by RS-232C, USB (Universal Serial Bus), etc.
 バッテリ260は、例えば、リチウムポリマー二次電池、電気二重層キャパシタ(電気二重層コンデンサ)、リチウムイオン二次電池等である。バッテリ260の端子間電圧は充電制御装置82から制御回路251に通知され、制御回路251は上記端子間電圧に基づきバッテリ260の残量を把握する。 The battery 260 is, for example, a lithium polymer secondary battery, an electric double layer capacitor (electric double layer capacitor), a lithium ion secondary battery or the like. The voltage between terminals of the battery 260 is notified from the charge control device 82 to the control circuit 251, and the control circuit 251 grasps the remaining amount of the battery 260 based on the voltage between terminals.
 リング開閉装置42は、リング体411を架空電線2に装着する際にリング体411の開閉制御(リング体411の環の孔415に架空電線2を出し入れするための、リング体411の環の一部に設けられる導入口416の開閉制御)を行うための機構(制御回路251によって制御されるサーボモータ、機械式開閉機構等)を含む。本例ではリング体411は半円状の左右一対の部材からなり、リング開閉装置42は、リング体411を二つ割れさせることによりリング体411の下方側に架空電線2の導入口416を形成する構造である。 The ring opening / closing device 42 controls opening / closing of the ring body 411 when attaching the ring body 411 to the overhead wire 2 (one of the rings of the ring body 411 for inserting and removing the overhead wire 2 into and out of the ring hole 415 of the ring body 411). It includes a mechanism (a servomotor controlled by the control circuit 251, a mechanical opening / closing mechanism, etc.) for performing opening / closing control of the introduction port 416 provided in the unit. In this example, the ring body 411 is formed of a pair of left and right semicircular members, and the ring opening / closing device 42 forms the introduction port 416 of the overhead wire 2 below the ring body 411 by splitting the ring body 411 into two. Structure.
 撮影装置282は、例えば、カメラ(ビデオカメラやデジタルカメラ)、カメラ制御機構、カメラの撮影方向を一定に保つためのジンバル(Gimbal)(2軸ジンバル、3軸ジンバル等)、地上局と通信するための通信装置等を含む。撮影装置282は、点検対象(架空電線2や送電鉄塔等)である物体の映像を撮影し、撮影した映像(映像データ)を地上局に無線伝送する。尚、地上局では、例えば、無人飛行体3から受信した映像について、画像処理やAI(Artificial Intelligence)による解析等を行って点検対象の状態を把握する。撮影装置282は、撮影した映像(映像データ)を記録媒体に記録(録画)する機能を備えていてもよい。 The imaging device 282 communicates with, for example, a camera (video camera or digital camera), a camera control mechanism, a gimbal (biaxial gimbal, triaxial gimbal, etc.) for keeping the photographing direction of the camera constant, and a ground station. Communication devices and the like. The imaging device 282 captures an image of an object that is an inspection target (the overhead wire 2, a transmission tower, or the like), and wirelessly transmits the captured image (image data) to the ground station. In the ground station, for example, the image received from the unmanned air vehicle 3 is analyzed by image processing, AI (Artificial Intelligence), etc. to grasp the state of the inspection object. The photographing device 282 may have a function of recording (recording) a photographed video (video data) on a recording medium.
 図5に、制御回路251が備える機能(ソフトウェア構成)を示している。同図に示すように、制御回路251は、姿勢制御部511、操舵制御部512、飛行制御部513、リング開閉装置制御部515、及び撮影装置制御部516を備える。これらの機能は、例えば、制御回路251のプロセッサが、制御回路251の記憶装置に格納されているプログラムを読み出して実行することにより実現される。 FIG. 5 shows functions (software configuration) of the control circuit 251. As shown in the figure, the control circuit 251 includes an attitude control unit 511, a steering control unit 512, a flight control unit 513, a ring opening / closing device control unit 515, and an imaging device control unit 516. These functions are realized, for example, by the processor of the control circuit 251 reading and executing a program stored in the storage device of the control circuit 251.
 また同図に示すように、制御回路251は、地図情報531及び飛行経路532を記憶する。地図情報531は3次元の地図情報を含む。飛行経路532は、出発地点から最終の着陸地点までを結ぶ経路(点検ルートを含む経路)を示す情報を含む。 As shown in the figure, the control circuit 251 stores map information 531 and a flight path 532. The map information 531 includes three-dimensional map information. The flight route 532 includes information indicating a route (a route including an inspection route) connecting the departure point to the final landing point.
 姿勢制御部511は、各種センサ253から入力される信号に応じてモータ制御装置254(動力モータ255)を制御して無人飛行体3の姿勢制御を行う。 The attitude control unit 511 controls the attitude of the unmanned air vehicle 3 by controlling the motor control device 254 (power motor 255) according to the signals input from the various sensors 253.
 操舵制御部512は、無線通信装置252から入力される信号に応じてモータ制御装置254(動力モータ255)を制御し、無人飛行体3の動作(移動、回転、上昇、下降等)を制御する。 The steering control unit 512 controls the motor control device 254 (power motor 255) according to the signal input from the wireless communication device 252, and controls the operation (movement, rotation, rise, fall, etc.) of the unmanned air vehicle 3. .
 飛行制御部513は、各種センサ253から取得される情報に基づき推力発生装置270を制御して無人飛行体3の自律的な飛行制御を行う。この自律的な飛行制御は、例えば、AI技術を利用して自動又は半自動で行われるものであってもよい。手動制御等の受動的な制御時、飛行制御部513は、無線通信装置252が受信した送信機6からの指示に応じて推力発生装置270を制御することにより無人飛行体3の飛行姿勢や動作を制御する。 The flight control unit 513 controls the thrust generator 270 based on the information acquired from the various sensors 253 to perform autonomous flight control of the unmanned air vehicle 3. This autonomous flight control may be performed automatically or semi-automatically using, for example, AI technology. At the time of passive control such as manual control, the flight control unit 513 controls the thrust generating device 270 in accordance with the instruction from the transmitter 6 received by the wireless communication device 252, and thereby the flying attitude and operation of the unmanned air vehicle 3 Control.
 飛行制御部513は、各種センサ253から入力される信号(例えば、GPS信号)に基づき、予め設定された飛行経路(出発地点、点検ルート、及び各着陸地点を結ぶ飛行経路)に沿って無人飛行体3を飛行させる。飛行経路は、手動設定されたものでもよいしAI技術等を用いて自動設定されたものでもよい。また飛行制御部513は、各種センサ253から入力される信号に基づき、架空電線2との間の距離を高精度かつリアルタイムに把握する。 The flight control unit 513 performs unmanned flight along a preset flight path (a departure point, an inspection route, and a flight path connecting each landing point) based on signals (for example, GPS signals) input from various sensors 253. Make the body 3 fly. The flight path may be manually set or automatically set using AI technology or the like. In addition, the flight control unit 513 grasps the distance between the overhead electric wire 2 with high accuracy and in real time based on the signals input from the various sensors 253.
 リング開閉装置制御部515は、リング開閉装置42の開閉を制御(例えば、リング開閉装置42のサーボモータを制御)する。 The ring opening / closing device controller 515 controls the opening / closing of the ring opening / closing device 42 (for example, controls the servomotor of the ring opening / closing device 42).
 撮影装置制御部516は、撮影装置282の動作(撮影の開始や停止、撮影方向、ズーム倍率制御等)を制御する。 The photographing device control unit 516 controls the operation (the start and stop of photographing, photographing direction, zoom magnification control, and the like) of the photographing device 282.
 図6は、図4に示した充電制御装置82の構成(ハードウェア構成)を示している。同図に示すように、充電制御装置82は、充電制御回路711及び通信回路712を備える。充電制御回路711は、バッテリ260の充電を効率よく行うための回路、バッテリ260の端子間電圧の監視回路、各種保護回路等を備える。充電制御回路711は、バッテリ260の端子間電圧を監視しつつ受電電力をバッテリ260に効率よく供給してバッテリ260の充電を行う。充電制御回路711は、例えば、CVCC(Constant Voltage. Constant Current)方式の制御を行いつつバッテリ260を充電する。 FIG. 6 shows the configuration (hardware configuration) of the charge control device 82 shown in FIG. As shown in the figure, the charge control device 82 includes a charge control circuit 711 and a communication circuit 712. The charge control circuit 711 includes a circuit for efficiently charging the battery 260, a monitoring circuit of the voltage between the terminals of the battery 260, various protection circuits, and the like. The charge control circuit 711 efficiently supplies the received power to the battery 260 while charging the battery 260 while monitoring the voltage between the terminals of the battery 260. The charge control circuit 711 charges the battery 260 while performing, for example, control of a CVCC (Constant Voltage. Constant Current) system.
 通信回路712は、飛行制御装置250の通信回路259と通信する。充電制御回路711は、通信回路712を介してバッテリ260の情報を制御回路251に伝える。 The communication circuit 712 communicates with the communication circuit 259 of the flight control device 250. The charge control circuit 711 transmits the information of the battery 260 to the control circuit 251 through the communication circuit 712.
 前述したように、無人飛行体3は、架空電線2を流れる電流の電磁誘導作用により導電コイル412に誘起される電流を利用してバッテリ260を充電する。無人飛行体3は、飛行しつつ架空電線2の上方から架空電線2に近づきリング体411の環の孔415に架空電線2を収容することにより架空電線2と結合する。 As described above, the unmanned aerial vehicle 3 charges the battery 260 using the current induced in the conductive coil 412 by the electromagnetic induction action of the current flowing through the overhead wire 2. The unmanned aerial vehicle 3 approaches the overhead wire 2 from above the overhead wire 2 while flying, and is coupled to the overhead wire 2 by accommodating the overhead wire 2 in the hole 415 of the ring body 411 of the ring body 411.
 図7は、無人飛行体3が飛行しながらリング体411の内側に架空電線2を収容する手順を説明する図である。無人飛行体3は、まず(a)に示すように架空電線2に上方から近づく。続いて(b)に示すように、無人飛行体3は、リング体411の環の一部を開いて下降し、リング体411の孔415に架空電線2を収容する。そして無人飛行体3は(c)に示すようにリング体411を閉じて架空電線2と結合する。 FIG. 7 is a view for explaining the procedure for accommodating the overhead wire 2 inside the ring body 411 while the unmanned air vehicle 3 is flying. The unmanned air vehicle 3 first approaches the overhead wire 2 from above as shown in (a). Subsequently, as shown in (b), the unmanned aerial vehicle 3 opens a part of the ring of the ring 411 and descends, and accommodates the overhead wire 2 in the hole 415 of the ring 411. Then, the unmanned air vehicle 3 closes the ring body 411 and couples with the overhead wire 2 as shown in (c).
 図8に示すように、架空電線2に結合した後、無人飛行体3は架空電線2を流れる電流による電磁誘導作用により生じる電流によりバッテリ260を充電しつつ架空電線2が延出する方向に沿って飛行し、架空電線2等の点検(例えば、点検対象である送配電設備や周辺状況の撮影)を行う。尚、架空電線2に沿って飛行中、無人飛行体3は、各種センサ253から取得される情報に基づき、架空電線2からの離隔距離が適正位置になるように制御する。 As shown in FIG. 8, after being coupled to the overhead wire 2, the unmanned air vehicle 3 is along the direction in which the overhead wire 2 extends while charging the battery 260 by the current generated by the electromagnetic induction by the current flowing through the overhead wire 2. Fly and check the overhead electric wire 2 etc. (for example, take photographs of transmission / distribution facilities to be checked and surrounding conditions). During the flight along the overhead wire 2, the unmanned air vehicle 3 is controlled based on the information acquired from the various sensors 253 so that the separation distance from the overhead wire 2 is at an appropriate position.
前述したように、リング体411の内側表面は、架空電線2との間の摩擦係数が小さな素材からなるので、無人飛行体3は架空電線2に沿ってスムーズに移動することができる。尚、このように無人飛行体3が架空電線2に結合した状態において、例えば、バッテリ260の不足や故障により浮力が失われたり突風が吹いた場合でも、リング体411が架空電線2に掛かっているので無人飛行体3は落下したり飛行ルートを逸脱してしまうようなことはない。 As described above, since the inner surface of the ring body 411 is made of a material having a small coefficient of friction with the overhead wire 2, the unmanned air vehicle 3 can move smoothly along the overhead wire 2. In the state where the unmanned air vehicle 3 is coupled to the overhead wire 2 in this manner, for example, even if the buoyancy is lost or the gust blows due to a shortage or failure of the battery 260, the ring body 411 hangs on the overhead wire 2. Therefore, the unmanned air vehicle 3 never falls or deviates from the flight route.
 無人飛行体3は、送電鉄塔等の飛行の妨げとなる物体が近づいてくると、図7に示した手順を逆に辿ることによりリング体411を架空電線2の結合を解いて架空電線2から離脱する。 When the unmanned air vehicle 3 approaches the transmission transmission tower or the like, the reverse operation of the procedure shown in FIG. break away.
 図9は、無人飛行体3が、点検のための飛行に際して行う処理(以下、飛行制御処理S900と称する。)を説明するフローチャートである。以下、同図とともに飛行制御処理S900について説明する。 FIG. 9 is a flow chart for explaining the process performed by the unmanned air vehicle 3 on a flight for inspection (hereinafter, referred to as flight control process S900). The flight control processing S900 will be described below with reference to FIG.
 同図に示すように、まず出発地において、無人飛行体3はユーザの登録操作等により飛行経路532を記憶し(S911)、地上に設けられている充電設備を利用してバッテリ260の充電(飛行前充電)を行う(S912)。 As shown in the figure, first, at the departure point, the unmanned air vehicle 3 stores the flight path 532 by the user's registration operation or the like (S911), and charges the battery 260 using a charging facility provided on the ground ( Perform pre-flight charging) (S912).
 続いて、無人飛行体3は、出発地を離陸し、飛行経路532に沿って飛行を開始する(S913)。飛行中、無人飛行体3は、GPS等の各種センサ253の情報に基づきリアルタイムに自身の現在位置を把握し、架空電線2に接近したか否かを判定する(S914)。無人飛行体3は、例えば、現在位置と架空電線2までの距離が予め設定された距離以下となった場合に架空電線2に接近したと判定する。 Subsequently, the unmanned air vehicle 3 takes off the departure point and starts flying along the flight path 532 (S913). During the flight, the unmanned air vehicle 3 grasps the current position of itself in real time based on the information of various sensors 253 such as GPS, and determines whether or not it approaches the overhead wire 2 (S914). For example, when the distance between the current position and the overhead wire 2 becomes equal to or less than a predetermined distance, the unmanned air vehicle 3 determines that the overhead wire 2 approaches.
 無人飛行体3は、架空電線2に接近したと判定すると(S914:YES)、図7に示した前述した手順によりリング体411を架空電線2に結合する(S915)。 If it is determined that the unmanned air vehicle 3 approaches the overhead wire 2 (S914: YES), the unmanned air vehicle 3 couples the ring body 411 to the overhead wire 2 according to the above-described procedure shown in FIG. 7 (S915).
 続いて、無人飛行体3は、各種センサ253から取得される情報に基づき架空電線2に沿って飛行を開始し、送配電設備の点検(架空電線2の撮影及び撮影した映像(映像データ)の地上局への送信等)を開始する(S916)。 Subsequently, the unmanned air vehicle 3 starts flying along the overhead wire 2 based on the information acquired from the various sensors 253, and checks the transmission and distribution equipment (photographs of the overhead wire 2 and the photographed image (image data)). Transmission to the ground station etc.) is started (S916).
 点検を開始すると、無人飛行体3は、架空電線2に沿って飛行しつつ、架空電線2から離脱するタイミングが到来したか否かをリアルタイムに判定する(S917)。尚、架空電線2から離脱するタイミングは、例えば、無人飛行体3が障害物(送電鉄塔、難着雪リング、捻れ防止ダンパ等)に接近した場合や、現在位置が予め飛行経路532に設定されている点検対象区間の点検が終了した場合等に到来する。 When the inspection is started, the unmanned air vehicle 3 flies along the overhead wire 2 and determines in real time whether it is time to leave the overhead wire 2 (S917). Note that the timing at which the flight from the overhead electric wire 2 occurs is, for example, when the unmanned air vehicle 3 approaches an obstacle (a power transmission tower, a difficult snowfall ring, a twist prevention damper, etc.) or It comes when the inspection of the inspection target section is completed.
 架空電線2から離脱するタイミングが到来すると(S917:YES)、無人飛行体3はリング体411を開いて架空電線2から離脱する(S918)。架空電線2から離脱するタイミングが到来していなければ(S917:NO)、無人飛行体3はそのまま架空電線2に沿って飛行を続ける。 When the timing for detaching from the overhead wire 2 arrives (S917: YES), the unmanned air vehicle 3 opens the ring body 411 and detaches from the overhead wire 2 (S918). If the timing for leaving the overhead wire 2 has not arrived (S917: NO), the unmanned air vehicle 3 continues to fly along the overhead wire 2 as it is.
 続いて、無人飛行体3は、帰投のタイミングが到来したか否かを判定する(S919)。尚、帰投のタイミングは、例えば、予定されていた全ての点検作業が終了した場合や何らかの障害が発生した場合、地上局から帰投指示を受信した場合等に到来する。 Subsequently, the unmanned aerial vehicle 3 determines whether or not a return timing has arrived (S919). The return timing may be reached, for example, when all scheduled inspections have been completed, when any failure occurs, or when a return instruction is received from the ground station.
 帰投のタイミングが到来していなければ(S919:NO)、処理はS914に戻り、無人飛行体3は点検のための飛行を続ける。帰投のタイミングが到来していれば(S919:YES)、処理はS920に進み、無人飛行体3は帰投のための飛行を開始し(S920)、着陸地の上空に到達すると着陸のための制御を行って着陸地に着陸する(S921)。 If the return timing has not come (S919: NO), the process returns to S914, and the unmanned air vehicle 3 continues the flight for inspection. If the return timing has come (S919: YES), the process proceeds to S920, and the unmanned air vehicle 3 starts the flight for return (S920), and when it reaches over the landing site, it controls the landing. To land on the landing site (S921).
 以上詳細に説明したように、本実施形態の構成及び方法によれば、無人飛行体3は、飛行しながら架空電線2から電力供給を受けることができ、無人飛行体3の飛行距離(飛行時間)を延ばすことができる。そのため、例えば、充電ステーション等にアクセスすることなく、無人飛行体3を長距離又は長時間にわたって飛行させることができ、送配電設備の点検等の作業を効率よく行うことができる。またバッテリ260の残量不足や故障により浮力を失った場合や突風が発生した場合にはリング体411が架空電線2に掛かるので無人飛行体3が落下したり飛行ルートを逸脱してしまうのを防ぐことができ、無人飛行体3を安全に飛行させることができる。このように本実施形態の構成及び方法によれば、飛行距離や飛行時間を確保しつつ安全に無人飛行体3を飛行させることができる。 As described above in detail, according to the configuration and method of the present embodiment, the unmanned air vehicle 3 can receive power supply from the overhead wire 2 while flying, and the flight distance of the unmanned air vehicle 3 (flight time ) Can be extended. Therefore, for example, the unmanned air vehicle 3 can be made to fly over a long distance or for a long time without accessing a charging station or the like, and work such as inspection of transmission and distribution facilities can be performed efficiently. In addition, when buoyancy is lost due to a shortage of remaining amount of battery 260 or failure or when a gust of wind occurs, ring body 411 is applied to overhead wire 2, so that unmanned air vehicle 3 may fall or deviate from the flight route. It is possible to prevent the unmanned air vehicle 3 from flying safely. As described above, according to the configuration and method of the present embodiment, it is possible to safely fly the unmanned air vehicle 3 while securing the flight distance and flight time.
 また本実施形態の構成及び方法を、例えば、架空電線2を「道しるべ」として利用する「ドローンハイウェイ構想」に適用した場合には、架空電線2に沿って飛行しながらバッテリ260を充電することができ、無人飛行体3を効率よく安全に遠方まで飛行させることができる。 When the configuration and method of the present embodiment are applied to, for example, a "drone highway concept" that uses the overhead wire 2 as a "guide indicator", charging the battery 260 while flying along the overhead wire 2 Thus, the unmanned air vehicle 3 can be efficiently and safely flying far.
 ところで、以上の説明は、本発明の理解を容易にするためのものであり、本発明を限定するものではない。本発明はその趣旨を逸脱することなく、変更、改良され得ると共に本発明にはその等価物が含まれることは勿論である。例えば、上記の実施の形態は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、上記実施形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。 The above description is intended to facilitate understanding of the present invention, and is not intended to limit the present invention. It goes without saying that the present invention can be modified and improved without departing from the gist thereof and includes the equivalents thereof. For example, the above embodiments have been described in detail in order to explain the present invention in an easy-to-understand manner, and are not necessarily limited to those having all the described configurations. Moreover, it is possible to add, delete, and replace other configurations with respect to part of the configurations of the above embodiments.
 例えば、以上の実施形態では、無人飛行体3は架空電線2の上方から近づいてリング体411を架空電線2に結合する構成であったが、例えば図10に示すように電流発生装置41を無人飛行体3の上部に設け、飛行しつつ架空電線2の下方から架空電線2に近づいてリング体411を架空電線2に結合する構成としてもよい。このようにすれば、例えば、架空電線2の下方側から撮影を行うことができる。 For example, in the above embodiment, the unmanned air vehicle 3 approaches from above the overhead wire 2 and couples the ring body 411 to the overhead wire 2. For example, as shown in FIG. The ring body 411 may be provided on the upper portion of the flying object 3 and approach the overhead wire 2 from below the overhead wire 2 while flying to couple the ring body 411 to the overhead wire 2. In this way, for example, imaging can be performed from the lower side of the overhead wire 2.
 また上記の各構成、機能部、処理部、処理手段等は、それらの一部または全部を、例えば、集積回路で設計する等によりハードウェアで実現してもよい。上記の各構成、機能等は、プロセッサがそれぞれの機能を実現するプログラムを解釈し、実行することによりソフトウェアで実現してもよい。各機能を実現するプログラム、テーブル、ファイル等の情報は、メモリやハードディスク、SSD(Solid State Drive)等の記録装置、またはICカード、SDカード、DVD等の記録媒体に置くことができる。 In addition, each of the configurations, function units, processing units, processing means, etc. described above may be realized by hardware, for example, by designing part or all of them with an integrated circuit. Each configuration, function, etc. described above may be realized by software by a processor interpreting and executing a program that realizes each function. Information such as a program, a table, and a file for realizing each function can be placed in a memory, a hard disk, a recording device such as a solid state drive (SSD), or a recording medium such as an IC card, an SD card, or a DVD.
 上記の各図において、制御線や情報線は説明上必要と考えられるものを示しており、必ずしも実装上の全ての制御線や情報線を示しているとは限らない。例えば、実際にはほとんど全ての構成が相互に接続されていると考えてもよい。 In each of the above-mentioned drawings, control lines and information lines indicate what is considered to be necessary for explanation, and not all control lines and information lines on mounting are necessarily shown. For example, in practice it may be considered that almost all configurations are mutually connected.
 以上に説明した実施形態における各種機能部の配置形態は一例に過ぎない。各種機能部の配置形態は、ハードウェアやソフトウェアの性能、処理効率、通信効率等の観点から最適な配置形態に変更し得る。 The arrangement of the various functional units in the embodiment described above is merely an example. The arrangement form of the various functional units can be changed to an optimum arrangement form in terms of hardware and software performance, processing efficiency, communication efficiency, and the like.
2 架空電線、3 無人飛行体、31 台座部、41 電流発生装置、42 リング開閉装置、82 充電制御装置、240 電力供給装置、250 飛行制御装置、251 制御回路、260 バッテリ、270 推力発生装置、282 撮影装置、411 リング体、412 導電コイル、415 孔、416 導入口、513 飛行制御部、515 リング開閉装置制御部、532 飛行経路、711 充電制御回路、S900 飛行制御処理 Reference Signs List 2 overhead electric wire, 3 unmanned aerial vehicle, 31 pedestal, 41 current generator, 42 ring switch, 82 charge controller, 240 power supply, 250 flight controller, 251 control circuit, 260 battery, 270 thrust generator, 282 imaging device, 411 ring body, 412 conductive coil, 415 hole, 416 inlet, 513 flight control unit, 515 ring opening / closing device control unit, 532 flight path, 711 charge control circuit, S900 flight control processing

Claims (11)

  1.  推力発生装置と、
     前記推力発生装置を制御する飛行制御装置と、
     環の一部を開閉可能な環状のリング体、及び前記リング体に巻回された導電コイルを有する電流発生装置と、
     前記リング体の前記環の一部を開閉するリング開閉装置と、
     前記導電コイルに生じる電流に基づく電力を前記推力発生装置又は前記飛行制御装置に供給する電力供給装置と、
     を備えた無人飛行体の制御方法であって、
     前記無人飛行体が、
     飛行して架空電線に接近するステップ、
     飛行しつつ前記リング体の前記環の一部を開いて前記環の内側に架空電線を収容するステップ、
     飛行しつつ前記環の一部を閉じるステップ、及び、
     前記架空電線を流れる電流の電磁誘導作用により前記導電コイルに生じる電流に基づく前記電力を前記推力発生装置又は前記飛行制御装置に供給するステップ、
     を実行する、無人飛行体の制御方法。
    A thrust generator,
    A flight control device for controlling the thrust generator;
    A current generating device having an annular ring body capable of opening and closing a part of the ring, and a conductive coil wound around the ring body;
    A ring opening and closing device for opening and closing a part of the ring of the ring body;
    A power supply device for supplying power based on a current generated in the conductive coil to the thrust generator or the flight control device;
    A method of controlling a unmanned air vehicle comprising
    The unmanned air vehicle is
    Step to fly and approach overhead wires,
    Opening part of the ring of the ring body while flying to accommodate an overhead wire inside the ring;
    Closing part of the ring while flying;
    Supplying the power based on the current generated in the conductive coil by the electromagnetic induction action of the current flowing through the overhead wire to the thrust generator or the flight control device;
    How to control the unmanned air vehicle to perform.
  2.  請求項1に記載の無人飛行体の制御方法であって、
     前記無人飛行体が、前記環の内側に前記架空電線を収容した状態で前記架空電線に沿って飛行するステップを更に実行する、
     無人飛行体の制御方法。
    The control method of a unmanned air vehicle according to claim 1, wherein
    Performing the step of flying along the overhead wire with the unmanned aerial vehicle housing the overhead wire inside the ring;
    Control method of unmanned air vehicle.
  3.  請求項1又は2に記載の無人飛行体の制御方法であって、
     前記無人飛行体は、周囲を撮影する撮影装置を備え、
     前記無人飛行体が、前記環の内側に架空電線を収容した状態で飛行しつつ前記架空電線を撮影するステップを更に実行する、
     無人飛行体の制御方法。
    The control method of the unmanned air vehicle according to claim 1 or 2,
    The unmanned air vehicle comprises an imaging device for imaging the surroundings,
    The unmanned air vehicle further executes the step of photographing the overhead wire while flying with the overhead wire housed inside the ring.
    Control method of unmanned air vehicle.
  4.  請求項1又は2に記載の無人飛行体の制御方法であって、
     前記電流発生装置は、貫通型の変流器を用いて構成される、
     無人飛行体の制御方法。
    The control method of the unmanned air vehicle according to claim 1 or 2,
    The current generator is configured using a feedthrough current transformer.
    Control method of unmanned air vehicle.
  5.  推力発生装置と、
     前記推力発生装置を制御する飛行制御装置と、
     環の一部を開閉可能な環状のリング体、及び前記リング体に巻回された導電コイルを有する電流発生装置と、
     前記リング体の前記環の一部を開閉するリング開閉装置と、
     前記環の内側に収容された架空電線を流れる電流の電磁誘導作用により前記導電コイルに生じる電流に基づく電力を前記推力発生装置又は前記飛行制御装置に供給する電力供給装置と、
     を備える無人飛行体であって、
     飛行して架空電線に接近する制御、
     飛行しつつ前記リング体の前記環の一部を開いて前記環の内側に架空電線を収容する制御、
     飛行しつつ前記環の一部を閉じる制御、及び、
     前記架空電線を流れる電流の電磁誘導作用により前記導電コイルに生じる電流に基づく前記電力を前記推力発生装置又は前記飛行制御装置に供給する制御、
     を行う、無人飛行体。
    A thrust generator,
    A flight control device for controlling the thrust generator;
    A current generating device having an annular ring body capable of opening and closing a part of the ring, and a conductive coil wound around the ring body;
    A ring opening and closing device for opening and closing a part of the ring of the ring body;
    A power supply device for supplying power to the thrust generator or the flight control device based on the current generated in the conductive coil by the electromagnetic induction action of the current flowing through the overhead wire housed inside the ring;
    Unmanned air vehicle with
    Control to fly and approach overhead wires,
    Controlling to open a part of the ring of the ring body while flying and to accommodate an overhead wire inside the ring;
    Control to close part of the ring while flying, and
    A control for supplying the power to the thrust generator or the flight control device based on the current generated in the conductive coil by the electromagnetic induction action of the current flowing through the overhead wire.
    Do unmanned air vehicle.
  6.  請求項5に記載の無人飛行体であって、
     前記環の内側に前記架空電線を収容した状態で前記架空電線に沿って飛行する制御を行う、
     無人飛行体。
    The unmanned aerial vehicle according to claim 5, wherein
    Control to fly along the overhead wire with the overhead wire housed inside the ring
    Unmanned air vehicle.
  7.  請求項5又は6に記載の無人飛行体であって、
     周囲を撮影する撮影装置を備え、
     前記環の内側に前記架空電線を収容した状態で飛行しつつ前記架空電線を撮影する制御を行う、
     無人飛行体。
    The unmanned air vehicle according to claim 5 or 6,
    It has a shooting device that shoots the surroundings,
    Control to photograph the overhead wire while flying with the overhead wire housed inside the ring
    Unmanned air vehicle.
  8.  請求項5又は6に記載の無人飛行体の制御方法であって、
     前記電流発生装置は、貫通型の変流器を用いて構成される、
     無人飛行体。
    The control method of the unmanned air vehicle according to claim 5 or 6,
    The current generator is configured using a feedthrough current transformer.
    Unmanned air vehicle.
  9.  請求項5又は6に記載の無人飛行体であって、
     前記飛行制御装置が設けられる台座部と、
     前記台座部から当該台座部の外周方向に所定長さで延出し、前記推力発生装置が設けられる複数のアームと、
     前記台座部の下方に延出して設けられる複数の脚支柱と、
     を備え、
     前記電流発生装置は、前記複数の脚支柱によって囲まれる空間に、前記環の一部を下方に向けて設けられる、
     無人飛行体。
    The unmanned air vehicle according to claim 5 or 6,
    A pedestal portion provided with the flight control device;
    A plurality of arms extending from the pedestal in a circumferential direction of the pedestal by a predetermined length and provided with the thrust generator;
    A plurality of leg supports provided extending downward of the pedestal;
    Equipped with
    The current generator is provided in a space surrounded by the plurality of leg supports with a part of the ring directed downward.
    Unmanned air vehicle.
  10.  請求項5又は6に記載の無人飛行体であって、
     前記飛行制御装置が設けられる台座部と、
     前記台座部から当該台座部の外周方向に所定長さで延出し、前記推力発生装置が設けられる複数のアームと、
     を備え、
     前記電流発生装置は、前記台座部の上方に前記環の一部を上方に向けて設けられる、
     無人飛行体。
    The unmanned air vehicle according to claim 5 or 6,
    A pedestal portion provided with the flight control device;
    A plurality of arms extending from the pedestal in a circumferential direction of the pedestal by a predetermined length and provided with the thrust generator;
    Equipped with
    The current generator is provided above the pedestal with a portion of the ring facing upward.
    Unmanned air vehicle.
  11.  請求項5又は6に記載の無人飛行体の制御方法であって、
     前記電力供給装置は、
     前記推力発生装置又は前記飛行制御装置に電力を供給する蓄電装置と、
     前記導電コイルに生じる電流に基づく電力を前記蓄電装置に供給する充電制御装置と、
     を更に備える、
     無人飛行体。
    The control method of the unmanned air vehicle according to claim 5 or 6,
    The power supply device
    A power storage device for supplying power to the thrust generator or the flight control device;
    A charge control device for supplying power to the power storage device based on current generated in the conductive coil;
    Further comprising
    Unmanned air vehicle.
PCT/JP2017/037222 2017-10-13 2017-10-13 Unmanned flying body control method and unmanned flying body WO2019073601A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2017/037222 WO2019073601A1 (en) 2017-10-13 2017-10-13 Unmanned flying body control method and unmanned flying body
JP2018506350A JP6394833B1 (en) 2017-10-13 2017-10-13 Method for controlling unmanned air vehicle and unmanned air vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/037222 WO2019073601A1 (en) 2017-10-13 2017-10-13 Unmanned flying body control method and unmanned flying body

Publications (1)

Publication Number Publication Date
WO2019073601A1 true WO2019073601A1 (en) 2019-04-18

Family

ID=63668492

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/037222 WO2019073601A1 (en) 2017-10-13 2017-10-13 Unmanned flying body control method and unmanned flying body

Country Status (2)

Country Link
JP (1) JP6394833B1 (en)
WO (1) WO2019073601A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019123495A (en) * 2017-11-16 2019-07-25 ザ・ボーイング・カンパニーThe Boeing Company Charging rechargeable battery of unmanned aerial vehicle in flight using high voltage power line
CN110155322A (en) * 2019-04-23 2019-08-23 国网山东省电力公司临沂供电公司 A kind of external force damage prevention warning lamp-mounting device and method
CZ309375B6 (en) * 2020-02-10 2022-10-19 Vysoká škola báňská - Technická univerzita Ostrava Fakulta elektrotechniky a informatiky Unmanned aerial vehicle with induction power supply

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4343992A3 (en) * 2016-11-22 2024-06-19 Hydro-Québec Unmanned aerial vehicle for monitoring an electrical line
WO2020082364A1 (en) * 2018-10-26 2020-04-30 深圳市大疆创新科技有限公司 Unmanned aerial vehicle control method and device, unmanned aerial vehicle, and computer readable storage medium
JP7222692B2 (en) * 2018-12-19 2023-02-15 一般財団法人電力中央研究所 drone

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07236221A (en) * 1994-02-22 1995-09-05 Chugoku Electric Power Co Inc:The Wire marker lamp
US7318564B1 (en) * 2004-10-04 2008-01-15 The United States Of America As Represented By The Secretary Of The Air Force Power line sentry charging
JP2016107843A (en) * 2014-12-08 2016-06-20 Jfeスチール株式会社 Three-dimensional shape measurement method and device using multicopter
JP2016135046A (en) * 2015-01-21 2016-07-25 株式会社日立ハイテクファインシステムズ Inspection device and inspection method
US9421869B1 (en) * 2015-09-25 2016-08-23 Amazon Technologies, Inc. Deployment and adjustment of airborne unmanned aerial vehicles

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4397261B2 (en) * 2004-03-26 2010-01-13 中国電力株式会社 Unmanned aerial vehicle using levitation gas
JP2006027448A (en) * 2004-07-16 2006-02-02 Chugoku Electric Power Co Inc:The Aerial photographing method and device using unmanned flying body
JP2015177729A (en) * 2014-03-18 2015-10-05 株式会社日立ハイテクファインシステムズ Overhead wire inspection apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07236221A (en) * 1994-02-22 1995-09-05 Chugoku Electric Power Co Inc:The Wire marker lamp
US7318564B1 (en) * 2004-10-04 2008-01-15 The United States Of America As Represented By The Secretary Of The Air Force Power line sentry charging
JP2016107843A (en) * 2014-12-08 2016-06-20 Jfeスチール株式会社 Three-dimensional shape measurement method and device using multicopter
JP2016135046A (en) * 2015-01-21 2016-07-25 株式会社日立ハイテクファインシステムズ Inspection device and inspection method
US9421869B1 (en) * 2015-09-25 2016-08-23 Amazon Technologies, Inc. Deployment and adjustment of airborne unmanned aerial vehicles

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019123495A (en) * 2017-11-16 2019-07-25 ザ・ボーイング・カンパニーThe Boeing Company Charging rechargeable battery of unmanned aerial vehicle in flight using high voltage power line
JP7296202B2 (en) 2017-11-16 2023-06-22 ザ・ボーイング・カンパニー Charging Rechargeable Batteries in In-Flight Unmanned Aerial Vehicles Using High-Voltage Power Lines
CN110155322A (en) * 2019-04-23 2019-08-23 国网山东省电力公司临沂供电公司 A kind of external force damage prevention warning lamp-mounting device and method
CZ309375B6 (en) * 2020-02-10 2022-10-19 Vysoká škola báňská - Technická univerzita Ostrava Fakulta elektrotechniky a informatiky Unmanned aerial vehicle with induction power supply

Also Published As

Publication number Publication date
JPWO2019073601A1 (en) 2019-11-14
JP6394833B1 (en) 2018-09-26

Similar Documents

Publication Publication Date Title
JP7052299B2 (en) How to control unmanned aircraft and unmanned aircraft
JP6394833B1 (en) Method for controlling unmanned air vehicle and unmanned air vehicle
JP6954044B2 (en) How to control an unmanned aircraft
US11214371B2 (en) Payload delivery system with spool braking device
US10906662B2 (en) Method and system for recycling motor power of a movable object
EP3717353B1 (en) System for mid-air payload retrieval by a uav
CN111527028B (en) System and method for automated picking up of cargo by UAVs
JP6954021B2 (en) How to control an unmanned aircraft
US20160221683A1 (en) Hybrid Power Systems for Vehicle with Hybrid Flight Modes
CN107735317B (en) UAV with barometric pressure sensor and method for separately arranging barometric pressure sensor in UAV
JP6179689B1 (en) Unmanned air vehicle, power receiving coil unit, and charging system
CN109070759A (en) For being able to carry out the docking recharging station of the unmanned vehicle of ground moving
CN104995575B (en) A kind of data processing method, device and aircraft
JP2019081526A (en) Flight method of unmanned flying object, and inspection method of power transmission facility utilizing unmanned flying object
US11851176B1 (en) Injection molded wing structure for aerial vehicles
JP6693635B1 (en) Aircraft power supply device
CN112188981A (en) Method for unmanned aerial vehicle to automatically pick up package
WO2016059953A1 (en) Electric power supply system
CN114845934A (en) System and method for stopping movement of an operating member
CN206515674U (en) A kind of onboard flight control device of eight axles unmanned plane
JP7275612B2 (en) Aircraft landing port and aircraft landing method
JP2021084621A (en) Power supply device for flight vehicle
WO2023121942A1 (en) Package retrieval system with channel to engage payload retriever
CN108910038A (en) A kind of primary-secondary type unmanned plane device
CN108583888A (en) A kind of large-scale unmanned plane device of inside small unmanned plane containing there are four

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018506350

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17928777

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17928777

Country of ref document: EP

Kind code of ref document: A1