JP2016103611A - Boron nitride resin composite circuit board - Google Patents

Boron nitride resin composite circuit board Download PDF

Info

Publication number
JP2016103611A
JP2016103611A JP2014242473A JP2014242473A JP2016103611A JP 2016103611 A JP2016103611 A JP 2016103611A JP 2014242473 A JP2014242473 A JP 2014242473A JP 2014242473 A JP2014242473 A JP 2014242473A JP 2016103611 A JP2016103611 A JP 2016103611A
Authority
JP
Japan
Prior art keywords
boron nitride
resin
sintered body
nitride sintered
impregnated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014242473A
Other languages
Japanese (ja)
Other versions
JP6189822B2 (en
Inventor
太樹 西
Hiroki Nishi
太樹 西
秀樹 広津留
Hideki Hirotsuru
秀樹 広津留
市川 恒希
Koki Ichikawa
恒希 市川
脩平 野中
Shuhei Nonaka
脩平 野中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denka Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denka Co Ltd filed Critical Denka Co Ltd
Priority to JP2014242473A priority Critical patent/JP6189822B2/en
Publication of JP2016103611A publication Critical patent/JP2016103611A/en
Application granted granted Critical
Publication of JP6189822B2 publication Critical patent/JP6189822B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Production Of Multi-Layered Print Wiring Board (AREA)
  • Structure Of Printed Boards (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Led Device Packages (AREA)
  • Ceramic Products (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a boron nitride resin composite circuit board which can exhibit a high heat dissipation by remarkably reducing heat resistance between a circuit metal and a plate-like resin-impregnated boron nitride sintered compact.SOLUTION: A boron nitride resin composite circuit board is obtained by forming a circuit metal on both principal faces of a plate-like resin-impregnated boron nitride sintered compact through an adhesion layer. The plate-like resin-impregnated boron nitride sintered compact includes: 40-80 vol.% of a boron nitride sintered compact which includes boron nitride particles having an average longer diameter of 5-50 μm and bonded to each other in three dimensions, and has an indentation hardness of 1.5 GPa or less according to a nanoindentation method; and 60-20 vol.% of a resin. The plate-like resin-impregnated boron nitride sintered compact has a plate thickness of 0.10-1.5 mm; the arithmetic average roughness Ra of the circuit metal on the side of the adhesion layer is 0.15-3.0 μm; and a contact rate between the circuit metal and the plate-like resin-impregnated boron nitride sintered compact, which is to be defined below, is 5% or more.SELECTED DRAWING: Figure 1

Description

本発明は、優れた放熱特性、絶縁性、耐熱サイクル特性を兼ね備えた回路基板に関する。 The present invention relates to a circuit board having excellent heat dissipation characteristics, insulating properties, and heat cycle characteristics.

パワーデバイス、両面放熱トランジスタ、サイリスタ、CPU等の発熱性電子部品では、使用時に発生する熱を如何に効率的に放熱するかが重要な課題となっている。従来から、このような放熱対策としては、(1)発熱性電子部品を実装する回路基板の絶縁層を高熱伝導化する、(2)発熱性電子部品又は発熱性電子部品を実装した回路基板を電気絶縁性の熱インターフェース材(ThermalInterface Materials)を介してヒートシンクに取り付ける、ことが一般的に行われてきた。回路基板の絶縁層及び熱インターフェース材としては、シリコーン樹脂やエポキシ樹脂にセラミックス粉末を添加して熱硬化させた放熱部材が主に使用されている。 In heat-generating electronic components such as power devices, double-sided heat dissipation transistors, thyristors, and CPUs, how to efficiently dissipate heat generated during use is an important issue. Conventionally, as such heat radiation countermeasures, (1) an insulating layer of a circuit board on which a heat generating electronic component is mounted has a high thermal conductivity, and (2) a heat generating electronic component or a circuit board on which a heat generating electronic component is mounted. It has been common practice to attach to a heat sink via an electrically insulating thermal interface material (Thermal Interface Materials). As an insulating layer and a thermal interface material of a circuit board, a heat radiating member obtained by adding a ceramic powder to a silicone resin or an epoxy resin and thermosetting it is mainly used.

近年、発熱性電子部品内の回路の高速・高集積化、及び発熱性電子部品の回路基板への実装密度の増加に伴って、電子機器内部の発熱密度及び精密化が年々増加している。そのため、従来にも増して高い熱伝導率を有し、熱を効率的に逃がすことのできる放熱部材が求められており、熱伝導率の高い窒化アルミニウム粉末等を樹脂に添加して熱硬化させた絶縁層が注目されている。しかし、樹脂にセラミックス粉末を添加した系では、セラミックス粒子間に存在する樹脂層由来の熱抵抗により、高熱伝導率の絶縁層が得られにくいという課題がある。 In recent years, with the increase in the speed and high integration of circuits in heat-generating electronic components and the increase in the mounting density of heat-generating electronic components on circuit boards, the heat generation density and precision inside electronic devices are increasing year by year. Therefore, there is a need for a heat radiating member that has higher thermal conductivity than that of the prior art, and that can efficiently release heat, and heat curing is performed by adding aluminum nitride powder or the like having high thermal conductivity to the resin. Insulating layers are attracting attention. However, in a system in which ceramic powder is added to a resin, there is a problem that it is difficult to obtain an insulating layer with high thermal conductivity due to the thermal resistance derived from the resin layer existing between the ceramic particles.

そこで、特にエレベーター、車両、ハイブリッドカー等といったパワーモジュール用途には、熱伝導率の点から、アルミナ、ベリリア、窒化ケイ素、窒化アルミニウム等のセラミックス焼結体が用いられる。これらのセラミックス焼結体は、板状のセラミックス基板に加工後、銅やアルミニウム等の回路金属や放熱板をろう材で接合し回路基板として用いられる。これらは、樹脂にセラミックス粉末を添加した系を絶縁層とする回路基板に対し、優れた絶縁性および放熱性等を有することから、高放熱性電子部品を搭載するための回路基板として使用されている。近年では、半導体素子の高集積化、高周波化、高出力化等に伴う半導体素子からの発熱量の増加に対し、高い熱伝導率を有する窒化アルミニウム焼結体や窒化ケイ素焼結体の回路基板が使用されている。特に、窒化アルミニウム回路基板は、窒化ケイ素回路基板と比較して熱伝導率が高いため、高放熱性電子部品を搭載するための回路基板として好適である。 In view of thermal conductivity, ceramic sintered bodies such as alumina, beryllia, silicon nitride, and aluminum nitride are used particularly for power module applications such as elevators, vehicles, and hybrid cars. These ceramic sintered bodies are used as a circuit board after being processed into a plate-like ceramic substrate and then joining a circuit metal such as copper or aluminum or a heat sink with a brazing material. These are used as circuit boards for mounting highly heat-dissipating electronic components because they have excellent insulation and heat dissipation, etc., for circuit boards with insulating layers made of ceramic powder added to resin. Yes. In recent years, circuit boards of aluminum nitride sintered bodies and silicon nitride sintered bodies having high thermal conductivity in response to an increase in the amount of heat generated from semiconductor elements due to higher integration, higher frequency, higher output, etc. of semiconductor elements Is used. In particular, since the aluminum nitride circuit board has a higher thermal conductivity than the silicon nitride circuit board, it is suitable as a circuit board for mounting a high heat dissipation electronic component.

しかし、窒化アルミニウム回路基板は、高い熱伝導率を有する反面、(1)窒化アルミニウムの線熱膨張係数が回路金属と比較し低いことから、電子部品実装後の熱サイクルが付加された際の熱応力により、窒化アルミニウムと回路金属間で剥離が発生すること、(2)窒化アルミニウムの機械的強度や靭性等が低いことから、電子部品実装後の振動・落下による衝撃により窒化アルミニウムにクラックが発生し、回路基板としての機械的及び電気的信頼性が低下すること、(3)窒化ホウ素等のマシンナブル・セラミックスと比較し機械加工性が劣ると言う難点がある。特に、自動車や電気鉄道、工作機械やロボット等の苛酷な荷重、振動及び熱的条件下で適用されるパワーモジュールに使用する場合には、この難点が顕著となってきている。このため、電子部品搭載用のセラミックス回路基板としては、信頼性の向上が求められている。 However, while the aluminum nitride circuit board has high thermal conductivity, (1) the linear thermal expansion coefficient of aluminum nitride is lower than that of the circuit metal. Therefore, the heat generated when a thermal cycle after mounting electronic components is added. Due to stress, peeling occurs between aluminum nitride and circuit metal, and (2) because the mechanical strength and toughness of aluminum nitride are low, cracks occur in aluminum nitride due to vibration and drop impact after mounting electronic components. However, the mechanical and electrical reliability of the circuit board is lowered, and (3) the machinability is inferior compared to machinable ceramics such as boron nitride. In particular, when used for power modules applied under severe loads, vibrations and thermal conditions such as automobiles, electric railways, machine tools and robots, this difficulty has become prominent. For this reason, improvement in reliability is demanded as a ceramic circuit board for mounting electronic components.

そのため、セラミックス焼結体の気孔中に樹脂を含浸し、上記の(1)線膨張率の制御、(2)耐衝撃性の向上、(3)機械加工性の向上、を図ったセラミックス樹脂複合体を用いた回路基板が注目されている。 Therefore, the ceramic resin composite in which the pores of the ceramic sintered body are impregnated with resin to achieve the above (1) control of linear expansion coefficient, (2) improvement of impact resistance, and (3) improvement of machinability. A circuit board using a body is drawing attention.

また、セラミックスとしては、(1)高熱伝導率(粒子の面内方向(a軸方向)の熱伝導率が400W/(m・K)と窒化アルミニウムや窒化ケイ素より高い)、(2)高絶縁性、(3)高い機械加工性(モース硬度は、石膏、黒鉛と同等の2)、(4)誘電率が低いこと、等の電気絶縁材料として優れた性質を有している六方晶窒化ホウ素(hexagonal Boron Nitride)粉末が注目されている。 As ceramics, (1) high thermal conductivity (the thermal conductivity in the in-plane direction (a-axis direction) of the particles is 400 W / (m · K), which is higher than that of aluminum nitride or silicon nitride), and (2) high insulation. (3) High machinability (Mohs hardness is equivalent to that of gypsum and graphite 2), (4) Hexagonal boron nitride having excellent properties as an electrical insulating material such as low dielectric constant (Hexagonal Boron Nitride) powder has attracted attention.

特許文献1では、多孔質窒化アルミニウム焼結体の気孔が有機物で充填されている回路基板用基材が開示されている。高熱伝導性、低誘電率および高強度の回路基板用基材であるため回路基板に好適に用いることができることが記載されている。しかし、回路基板用基材としては高熱伝導率であるが、金属箔との接着に関する記載技術は見当たらず、待望されている。また、窒化アルミニウムを使用しているため誘電率は最も低い値でも5.3と高く、伝送信号の遅れ及びノイズ抑制に関して課題があった(段落0044参照)。 Patent Document 1 discloses a substrate for a circuit board in which pores of a porous aluminum nitride sintered body are filled with an organic substance. It is described that since it is a substrate for circuit boards having high thermal conductivity, low dielectric constant and high strength, it can be suitably used for circuit boards. However, although it has a high thermal conductivity as a substrate for a circuit board, no description technique relating to adhesion to a metal foil is found, and it is highly desired. In addition, since aluminum nitride is used, the dielectric constant is as high as 5.3 even at the lowest value, and there are problems regarding transmission signal delay and noise suppression (see paragraph 0044).

特許文献2では、無機連続気孔焼結体(I) からなる厚み0.2〜10mmの焼結基板に熱硬化性樹脂を真空含浸した樹脂含浸焼結基板 に金属箔を重ね積層成形してなる金属箔張複合セラミックス板が開示されている。そして、高周波用のアンテナ、高周波用パーツモジュール、その他の基板や半導体チップの直接搭載用など基板として好適に用いることができることが記載されている。また、金属箔との接着に関する記載技術については、樹脂含浸焼結基板と金属箔との接着層を形成する熱硬化した樹脂層が実質的に無いか又はその厚みが10μm以下であることが記載されている(段落0020参照)。しかし、接着の構造が、接着用の金属箔裏面の凹凸表面の凸部がセラミックス表面に接触、さらに焼結基板(II)の気孔内に進入した構造であり、セラミックス焼結体の変形によるものでないため、金属箔裏面の凹凸表面の凸部が樹脂含浸焼結基板内に侵入した際、セラミックスの一次粒子と直接接触することができず、金属箔張複合セラミックス板としての熱抵抗が大きくなる懸念がある(段落0021参照)。さらに、金属箔張複合セラミックス板としての熱抵抗の記載は無い(段落0099の表3参照)。また、誘電率は最も低い値でも4.9と高く、伝送信号の遅れ及びノイズ抑制に関して課題があった(段落0095参照)。 In Patent Document 2, a metal foil is laminated and molded on a resin-impregnated sintered substrate obtained by vacuum-impregnating a thermosetting resin on a 0.2 to 10 mm-thick sintered substrate made of an inorganic continuous pore sintered body (I). A metal foil-clad composite ceramic plate is disclosed. It is also described that it can be suitably used as a substrate such as a high frequency antenna, a high frequency part module, another substrate or a semiconductor chip for direct mounting. Moreover, about the description technique regarding adhesion | attachment with metal foil, it describes that the thermosetting resin layer which forms the contact bonding layer of a resin impregnation sintered board | substrate and metal foil is substantially absent, or the thickness is 10 micrometers or less. (See paragraph 0020). However, the bonding structure is a structure in which the convex part of the uneven surface on the back of the metal foil for bonding is in contact with the ceramic surface, and further enters the pores of the sintered substrate (II), which is due to deformation of the ceramic sintered body Therefore, when the convex part of the uneven surface on the back side of the metal foil penetrates into the resin-impregnated sintered substrate, it cannot directly contact the primary particles of the ceramic, and the thermal resistance as a metal foil-clad composite ceramic plate increases. There are concerns (see paragraph 0021). Furthermore, there is no description of thermal resistance as a metal foil-clad composite ceramic plate (see Table 3 in paragraph 0099). In addition, the dielectric constant is as high as 4.9 even at the lowest value, and there are problems with regard to transmission signal delay and noise suppression (see paragraph 0095).

特許文献3では、連続気孔セラミックス板に熱硬化性樹脂を含侵した基板の片面或いは両面に銅箔を重ねて積層成形してなる銅張樹脂複合セラミックス板の製造方法が開示されている。熱膨張率差に基づく過大な応力発生の抑制およびその分布を制御し、銅板のはがれ、基板のひび割れや歪みの発生を抑制しているため、大電流用のプリント配線板として好適に用いることができることが記載されている。しかし、連続気孔セラミックス板に熱硬化性樹脂を含侵した基板と銅箔を接着する樹脂層の厚さが5〜20μmであるため(段落0016参照)、銅張樹脂複合セラミックス板の熱抵抗が高くなるという課題があった。 Patent Document 3 discloses a method for producing a copper-clad resin composite ceramic plate obtained by laminating a copper foil on one or both sides of a substrate impregnated with a thermosetting resin on a continuous pore ceramic plate. Suppressing excessive stress generation based on the difference in thermal expansion coefficient and controlling its distribution to suppress the peeling of the copper plate, cracking and distortion of the substrate, so it can be suitably used as a printed wiring board for large currents It describes what you can do. However, since the thickness of the resin layer for adhering the copper foil and the substrate impregnated with the thermosetting resin to the continuous pore ceramic plate is 5 to 20 μm (see paragraph 0016), the thermal resistance of the copper-clad resin composite ceramic plate is There was a problem of becoming higher.

特許文献4では、高熱伝導性セラミックス粒子と樹脂とを含有するセラミックス−樹脂複合材料の成形体を、高熱伝導性セラミックス粒子の平均粒子径以下の厚さに切断して得た熱伝導性絶縁シート表面に、樹脂接着剤を介して金属箔を接着することを特徴とする銅箔付き熱伝導性絶縁基板が開示されている。熱伝導性絶縁シートの熱伝導率が高いため、放熱性並びに絶縁性を要求される電子回路基板として好適に用いることができることが記載されている。しかし、樹脂接着剤の厚さが1〜5μmであるため(段落0031参照)、銅張樹脂複合セラミックス板の熱抵抗が高くなるという課題があった。 In Patent Document 4, a thermally conductive insulating sheet obtained by cutting a molded body of a ceramic-resin composite material containing highly thermally conductive ceramic particles and a resin into a thickness equal to or less than the average particle diameter of the highly thermally conductive ceramic particles. A thermally conductive insulating substrate with a copper foil is disclosed in which a metal foil is bonded to the surface via a resin adhesive. It is described that since the thermal conductivity of the thermally conductive insulating sheet is high, it can be suitably used as an electronic circuit board that requires heat dissipation and insulation. However, since the thickness of the resin adhesive is 1 to 5 μm (see paragraph 0031), there is a problem that the thermal resistance of the copper-clad resin composite ceramic plate is increased.

また、六方晶窒化ホウ素粉末よりなる窒化ホウ素焼結体は、誘電率がセラミックス粉末の中では最も低いことが知られている。さらに、モース硬度は、石膏、黒鉛と同等の2であるため、窒化アルミニウムや窒化ケイ素やそれらと他のセラミックスとの複合体と異なり、変形し易いという特徴を持つ。したがって、セラミックス樹脂複合体として板状樹脂含浸窒化ホウ素焼結体を用いて、回路金属の接着層側の凹凸との凸部と、窒化ホウ素焼結体の一次粒子との接触を制御することにより、金属箔とセラミックス樹脂複合体間の熱抵抗をさらに低くすることが可能である。しかし、このような観点に立った技術の提案は今まで見られない。 Further, it is known that a boron nitride sintered body made of hexagonal boron nitride powder has the lowest dielectric constant among ceramic powders. Furthermore, since the Mohs hardness is 2 which is equivalent to gypsum and graphite, it has a feature that it is easily deformed unlike aluminum nitride, silicon nitride, and composites of these with other ceramics. Therefore, by using a plate-like resin-impregnated boron nitride sintered body as a ceramic resin composite, by controlling the contact between the convexities of the unevenness on the adhesive layer side of the circuit metal and the primary particles of the boron nitride sintered body Further, it is possible to further reduce the thermal resistance between the metal foil and the ceramic resin composite. However, no technical proposals from this point of view have been found so far.

特開平8−91960号公報JP-A-8-91960 特開平8−244163号公報JP-A-8-244163 特開2011−166040号公報JP 2011-166040 A 特開2013−258296号公報JP 2013-258296 A

本発明は、上記の従来技術に鑑み、パワーデバイスなどの発熱性電子部品の熱を放熱部材に伝達するための回路基板として好適に用いられ、特に回路金属と板状樹脂含浸窒化ホウ素焼結体間の熱抵抗を低減し、高放熱性を発現する窒化ホウ素樹脂複合体回路基板を提供することを課題とする。  The present invention is suitably used as a circuit board for transmitting heat of a heat-generating electronic component such as a power device to a heat radiating member in view of the above prior art, and in particular, a circuit metal and a plate-like resin-impregnated boron nitride sintered body. It is an object of the present invention to provide a boron nitride resin composite circuit board that reduces the thermal resistance between them and exhibits high heat dissipation.

上記の課題を解決するために、本発明においては、以下の手段を採用する。
(1)板状樹脂含浸窒化ホウ素焼結体の両主面に接着層を介して回路金属を形成してなる窒化ホウ素樹脂複合体回路基板であって、板状樹脂含浸窒化ホウ素焼結体は平均長径5〜50μmの窒化ホウ素粒子が3次元に結合し、且つナノインデンテーション法による押し込み硬さが1.5GPa以下の窒化ホウ素焼結体40〜80体積%と、樹脂60〜20体積%を有し、板状樹脂含浸窒化ホウ素焼結体の板厚が0.10〜1.5mmであり、回路金属の接着層側の算術平均粗さRaが0.15〜3.0μmであり、以下で定義される回路金属と板状樹脂含浸窒化ホウ素焼結体との接触率が5%以上であることを特徴とする窒化ホウ素樹脂複合体回路基板。
[接触率の定義]
窒化ホウ素樹脂複合体回路基板を断面加工後、板状樹脂含浸窒化ホウ素焼結体と接着層と回路金属の接着界面を走査型電子顕微鏡で観察及び測定することで、下記式(1)により接触率を算出する。尚、観察する断面の面数は10面以上とし、接触率の値は平均値とする。
接触率=[(回路金属と樹脂含浸窒化ホウ素焼結体との接触長さ)/(回路金属と樹脂含浸窒化ホウ素焼結体との接触長さ+接着層と樹脂含浸窒化ホウ素焼結体との接着長さ)]×100・・・・・式(1)
(2)板状樹脂含浸窒化ホウ素焼結体の粉末X線回折法による黒鉛化指数(GI、Graphitization Index)が4.0以下であることを特徴とする前記(1)に記載の窒化ホウ素樹脂複合体回路基板。
(3)回路金属が銅又はアルミニウムであることを特徴とする前記(1)又は(2)に記載の窒化ホウ素樹脂複合体回路基板。
(4)前記(1)〜(3)のいずれか一項に記載の窒化ホウ素樹脂複合体回路基板を用いることを特徴とするパワーモジュール。
(5)前記(1)〜(3)のいずれか一項に記載の窒化ホウ素樹脂複合体回路基板と、回路金属上に半田層を介して設けられたLEDを有する発光装置。
In order to solve the above problems, the following means are adopted in the present invention.
(1) A boron nitride resin composite circuit board in which a circuit metal is formed on both main surfaces of a plate-like resin-impregnated boron nitride sintered body via an adhesive layer, and the plate-like resin-impregnated boron nitride sintered body is Boron nitride particles having an average major axis of 5 to 50 μm bonded three-dimensionally and having an indentation hardness of 1.5 GPa or less by a nanoindentation method are 40 to 80% by volume, and resin is 60 to 20% by volume. The plate-like resin-impregnated boron nitride sintered body has a plate thickness of 0.10 to 1.5 mm, an arithmetic average roughness Ra on the adhesive layer side of the circuit metal is 0.15 to 3.0 μm, and A boron nitride resin composite circuit board having a contact ratio of 5% or more between the circuit metal defined in (1) and the plate-like resin-impregnated boron nitride sintered body.
[Definition of contact rate]
After processing the cross-section of the boron nitride resin composite circuit board, the contact interface between the plate-like resin-impregnated boron nitride sintered body, the adhesive layer, and the circuit metal is observed and measured with a scanning electron microscope, and contacted by the following formula (1) Calculate the rate. Note that the number of cross-sectional surfaces to be observed is 10 or more, and the contact ratio value is an average value.
Contact rate = [(contact length between circuit metal and resin-impregnated boron nitride sintered body) / (contact length between circuit metal and resin-impregnated boron nitride sintered body + adhesive layer and resin-impregnated boron nitride sintered body] Adhesive length)] × 100 (1)
(2) The boron nitride resin as described in (1) above, wherein the plate-like resin-impregnated boron nitride sintered body has a graphitization index (GI) by a powder X-ray diffraction method of 4.0 or less. Composite circuit board.
(3) The boron nitride resin composite circuit board according to (1) or (2), wherein the circuit metal is copper or aluminum.
(4) A power module using the boron nitride resin composite circuit board according to any one of (1) to (3).
(5) A light-emitting device comprising the boron nitride resin composite circuit board according to any one of (1) to (3) and an LED provided on a circuit metal via a solder layer.

本発明の窒化ホウ素樹脂複合体回路基板は、窒化ホウ素焼結体が柔らかい(モース硬度は、石膏、黒鉛と同等の2)ため、回路金属との加熱加圧接着の際に変形する。具体的には、加熱加圧時に回路金属の接着層側の凹凸の凸部が板状樹脂含浸窒化ホウ素焼結体中に侵入する際に、窒化ホウ素焼結体を変形させながら侵入する。そのため、回路金属の接着層側の凹凸の凸部が窒化ホウ素焼結体の一次粒子に直接接触し、回路金属と板状樹脂含浸窒化ホウ素焼結体間の熱抵抗が劇的に低減することから、高放熱性を発現するという効果を奏する。 Since the boron nitride sintered body of the boron nitride resin composite circuit board of the present invention is soft (Mohs hardness is 2 that is equivalent to gypsum and graphite), it is deformed during heat-pressure bonding with a circuit metal. Specifically, when the convex and concave portions on the adhesive layer side of the circuit metal enter the plate-like resin-impregnated boron nitride sintered body during heating and pressurization, the boron nitride sintered body enters while deforming. Therefore, the convex and concave portions on the circuit metal adhesive layer side are in direct contact with the primary particles of the boron nitride sintered body, and the thermal resistance between the circuit metal and the plate-like resin-impregnated boron nitride sintered body is dramatically reduced. Therefore, the effect of exhibiting high heat dissipation is achieved.

本発明の窒化ホウ素樹脂複合体回路基板の断面の概念図の一例である。It is an example of the conceptual diagram of the cross section of the boron nitride resin composite circuit board of this invention. 本発明の窒化ホウ素樹脂複合体回路基板の断面のSEM写真の一例である。It is an example of the SEM photograph of the cross section of the boron nitride resin composite circuit board of this invention. 本発明の窒化ホウ素焼結体のナノインデンテーション法による押し込み硬さの 測定の一例である。It is an example of the indentation hardness measurement by the nanoindentation method of the boron nitride sintered compact of this invention.

本発明では、窒化ホウ素焼結体と樹脂からなる複合体を「樹脂含浸窒化ホウ素焼結体」、樹脂含浸窒化ホウ素焼結体の樹脂を灰化させて得た成形体を「窒化ホウ素成型体」と定義する。窒化ホウ素成形体は、樹脂含浸窒化ホウ素焼結体を大気中650〜1000℃で1hr焼成し、樹脂成分を灰化させることで得ることができる。また、一次粒子同士が焼結により結合した状態で2個以上集合した状態を「窒化ホウ素焼結体」と定義する。焼結による結合は、走査型電子顕微鏡(例えば「JSM−6010LA」(日本電子社製))を用いて、窒化ホウ素粒子の断面の一次粒子同士の結合部分を観察することにより評価することができる。観察の前処理として、窒化ホウ素粒子を樹脂で包埋後、CP(クロスセクションポリッシャー)法により加工し、試料台に固定した後にオスミウムコーティングを行った。観察倍率は1500倍である。 In the present invention, a composite comprising a boron nitride sintered body and a resin is “resin-impregnated boron nitride sintered body”, and a molded body obtained by ashing the resin of the resin-impregnated boron nitride sintered body is “boron nitride molded body”. Is defined. The boron nitride molded body can be obtained by firing the resin-impregnated boron nitride sintered body in the atmosphere at 650 to 1000 ° C. for 1 hour and ashing the resin component. In addition, a state where two or more primary particles are aggregated in a state of being bonded by sintering is defined as “boron nitride sintered body”. Bonding by sintering can be evaluated by observing a bonding portion between primary particles of a cross section of boron nitride particles using a scanning electron microscope (for example, “JSM-6010LA” (manufactured by JEOL Ltd.)). . As pretreatment for observation, boron nitride particles were embedded in a resin, processed by CP (cross section polisher) method, fixed on a sample stage, and then coated with osmium. The observation magnification is 1500 times.

本発明の窒化ホウ素焼結体は、平均長径が5〜50μmの窒化ホウ素粒子が3次元に結合した組織を有し、ナノインデンテーション法による押し込み硬さが1.5GPa以下であって、この窒化ホウ素焼結体に樹脂を含浸させた樹脂含浸窒化ホウ素焼結体を厚さ0.10〜1.5mmの板状にし、接着層側の算術平均粗さRaが0.15〜3.0μmの回路金属の凹凸との凸部と、窒化ホウ素焼結体の一次粒子とを直接接触させることにより、回路基板に好適に用いることができる。このように設計された回路基板はこれまで存在せず、低熱抵抗(高放熱性)、優れた絶縁性、耐熱サイクル特性、誘電特性を確保するために非常に重要な因子である。 The boron nitride sintered body of the present invention has a structure in which boron nitride particles having an average major axis of 5 to 50 μm are three-dimensionally bonded, and the indentation hardness by the nanoindentation method is 1.5 GPa or less. A resin-impregnated boron nitride sintered body obtained by impregnating a boron sintered body with a resin is formed into a plate shape having a thickness of 0.10 to 1.5 mm, and an arithmetic average roughness Ra on the adhesive layer side is 0.15 to 3.0 μm. By directly contacting the projections of the circuit metal with the bumps and the primary particles of the boron nitride sintered body, it can be suitably used for a circuit board. A circuit board designed in this way has never existed, and is a very important factor for ensuring low thermal resistance (high heat dissipation), excellent insulating properties, heat cycle characteristics, and dielectric characteristics.

従来技術との大きな違いは以下の2点が挙げられる。1点目は、本発明の樹脂含浸窒化ホウ素焼結体は、窒化ホウ素粒子が焼結により3次元に結合した窒化ホウ素焼結体からなるため、窒化ホウ素粒子間に熱伝導率の低い樹脂層が存在せず、セラミックス−樹脂複合体としては、熱伝導率が非常に高いことである。3次元の結合はSEM等で観察されるような単なる接触ではなく、樹脂含浸窒化ホウ素焼結体の樹脂成分を灰化させて得た窒化ホウ素成型体の3点曲げ強さ及び熱伝導率を測定することにより評価することができる。窒化ホウ素粉末と樹脂とを混合して製造される従来の樹脂含浸窒化ホウ素焼結体は、窒化ホウ素同士の3次元な結合力が弱いため樹脂成分の灰化後に残存した窒化ホウ素は、粉体化して形状を保つことができず、または形状を保った場合においても熱伝導率が要求特性を満たさない。2点目は、上記の窒化ホウ素焼結体が柔らかさ、回路金属の接着層側の表面の凹凸の大きさ、回路金属の接着層側の表面の凹凸と窒化ホウ素焼結体の接触量を特定の範囲に制御することにより、板状樹脂含浸窒化ホウ素焼結体と回路金属間の熱抵抗が劇的に低下することである。 There are the following two major differences from the prior art. The first point is that the resin-impregnated boron nitride sintered body of the present invention is composed of a boron nitride sintered body in which boron nitride particles are three-dimensionally bonded by sintering, and therefore a resin layer having low thermal conductivity between the boron nitride particles. Is present, and the ceramic-resin composite has a very high thermal conductivity. Three-dimensional bonding is not a simple contact as observed by SEM, but the three-point bending strength and thermal conductivity of a boron nitride molded body obtained by ashing the resin component of a resin-impregnated boron nitride sintered body. It can be evaluated by measuring. The conventional resin-impregnated boron nitride sintered body produced by mixing boron nitride powder and resin has a weak three-dimensional bonding force between the boron nitrides. The shape cannot be maintained and the shape cannot be maintained, or even when the shape is maintained, the thermal conductivity does not satisfy the required characteristics. Second, the boron nitride sintered body is soft, the size of the irregularities on the surface of the adhesive layer side of the circuit metal, and the contact amount between the irregularities on the surface of the adhesive layer side of the circuit metal and the boron nitride sintered body. By controlling to a specific range, the thermal resistance between the plate-like resin-impregnated boron nitride sintered body and the circuit metal is dramatically reduced.

<平均長径の定義・評価方法>
平均長径は、観察の前処理として、窒化ホウ素焼結体を樹脂で包埋後、CP(クロスセクションポリッシャー)法により加工し、試料台に固定した後にオスミウムコーティングを行った。その後、走査型電子顕微鏡、例えば「JSM−6010LA」(日本電子社製)にてSEM像を撮影し、得られた断面の粒子像を画像解析ソフトウェア、例えば「A像くん」(旭化成エンジニアリング社製)に取り込み、測定することができる。この際の画像の倍率は100倍、画像解析の画素数は1510万画素であった。マニュアル測定で、得られた任意の粒子100個の長径を求めその平均値を平均長径とした。窒化ホウ素成形体も同様に測定を行った。
<Definition and evaluation method of average major axis>
For the average major axis, as a pretreatment for observation, a boron nitride sintered body was embedded in a resin, processed by a CP (cross section polisher) method, fixed to a sample stage, and then coated with osmium. Thereafter, an SEM image is taken with a scanning electron microscope, for example, “JSM-6010LA” (manufactured by JEOL Ltd.), and the obtained cross-sectional particle image is image analysis software, for example, “A Image-kun” (manufactured by Asahi Kasei Engineering Co., Ltd.). ) And can be measured. The magnification of the image at this time was 100 times, and the number of pixels for image analysis was 15.1 million pixels. The major axis of 100 arbitrary particles obtained was obtained by manual measurement, and the average value was defined as the average major axis. The boron nitride molded body was measured in the same manner.

<窒化ホウ素焼結体の割合>
板状樹脂含浸窒化ホウ素焼結体中の窒化ホウ素焼結体は40〜80体積%の範囲内である。40体積%より小さいと熱伝導率の低い樹脂の割合が増えるため、熱伝導率が低下する。80体積%より大きいと窒化ホウ素成型体の気孔径が小さくなり樹脂含浸が不完全状態となるために、窒化ホウ素成型体自身の強度は向上するものの、樹脂による強度増加の効果が小さくなり、樹脂含浸窒化ホウ素焼結体としての強度は低下する。さらには、板状樹脂含浸窒化ホウ素焼結体中の気孔により絶縁破壊電圧が低下する。板状樹脂含浸窒化ホウ素焼結体中の窒化ホウ素焼結体の割合(体積%)は、以下に示す窒化ホウ素成型体のかさ密度と気孔率の測定より求めることができる。
窒化ホウ素成型体かさ密度(D)=質量/体積
窒化ホウ素成形体気孔率=(1−(D/2.28))×100=樹脂の割合
窒化ホウ素焼結体の割合=100−樹脂の割合
<Percentage of sintered boron nitride>
The boron nitride sintered body in the plate-like resin-impregnated boron nitride sintered body is in the range of 40 to 80% by volume. If it is less than 40% by volume, the proportion of the resin having a low thermal conductivity increases, so the thermal conductivity decreases. If it exceeds 80% by volume, the pore diameter of the boron nitride molded body becomes small and the resin impregnation becomes incomplete, so that the strength of the boron nitride molded body itself is improved, but the effect of increasing the strength by the resin is reduced. The strength of the impregnated boron nitride sintered body is lowered. Furthermore, the dielectric breakdown voltage decreases due to pores in the plate-like resin-impregnated boron nitride sintered body. The ratio (volume%) of the boron nitride sintered body in the plate-like resin-impregnated boron nitride sintered body can be determined by measuring the bulk density and porosity of the boron nitride molded body shown below.
Boron nitride molded body bulk density (D) = mass / volume boron nitride molded body porosity = (1− (D / 2.28)) × 100 = ratio of resin ratio of boron nitride sintered body = 100−ratio of resin

<板厚>
板状樹脂含浸窒化ホウ素焼結体の板厚については、0.10〜1.5mmである。好ましくは、0.15〜0.7mmである。板厚が0.10mm未満では、板状樹脂含浸窒化ホウ素焼結体の絶縁破壊電圧が低下してしまい回路基板として用いる場合に好ましくなく、加えて、強度低下による耐熱サイクル特性低下の問題がある。1.5mmを超えると、板厚方向の熱抵抗が大きくなりすぎ、回路基板としての放熱特性が低下して好ましくない。
<Thickness>
The plate thickness of the plate-like resin-impregnated boron nitride sintered body is 0.10 to 1.5 mm. Preferably, it is 0.15-0.7 mm. When the plate thickness is less than 0.10 mm, the dielectric breakdown voltage of the plate-like resin-impregnated boron nitride sintered body is lowered, which is not preferable when used as a circuit board. In addition, there is a problem of deterioration in heat cycle characteristics due to strength reduction. . If it exceeds 1.5 mm, the thermal resistance in the plate thickness direction becomes too large, and the heat dissipation characteristics as a circuit board deteriorate, which is not preferable.

<BN焼結体の硬さ・評価方法>
窒化ホウ素焼結体の硬さについては、ナノインデンテーション法による押し込み硬さが1.5GPa以下である。1.5GPaより大きいと、回路金属の接着層側の凹凸の凸部が窒化ホウ素焼結体の一次粒子に直接接触した際の窒化ホウ素焼結体の変形が十分でないため、熱抵抗が大きくなり、放熱性が悪化する。また、下限については特に制限は無いが、押し込み硬さ小さくなると材料の曲げ強度も小さくなるため、含浸の際のハンドリングを考慮すると0.1MPa程度が実際的である。また、材料の曲げ強度は押し込み硬さにと正の相関関係にあり、本発明の窒化ホウ素焼結体にあっては、1〜40MPaである。窒化ホウ素焼結体の硬さとは、樹脂含浸窒化ホウ素焼結体の表面近傍の窒化ホウ素焼結体の硬さである。具体的には樹脂含浸窒化ホウ素焼結体の樹脂成分を灰化させて得た窒化ホウ素成型体の表面近傍の硬さを、ISO14577に規定されている、ナノインデンター法により、例えば「ナノレンジインデンテーションテスター HM500」(フィッシャー・インストルメンツ社製)を用いて、下記の計算式より算出する。
押し込み硬さ(Hit)=Fmax÷Aρ
ρ=24.50(hmax−ε(hmax−h))
max:最大試験荷重
ρ:接触投影面積
ε:圧子の幾何学形状による補正係数(ダイヤモンド ビッカース圧子は0.75)
<Hardness and evaluation method of BN sintered body>
As for the hardness of the boron nitride sintered body, the indentation hardness by the nanoindentation method is 1.5 GPa or less. If it is greater than 1.5 GPa, the deformation of the boron nitride sintered body is not sufficiently deformed when the convex and concave portions on the adhesive layer side of the circuit metal are in direct contact with the primary particles of the boron nitride sintered body, so the thermal resistance increases. , Heat dissipation deteriorates. The lower limit is not particularly limited, but when the indentation hardness is reduced, the bending strength of the material is also reduced. Therefore, about 0.1 MPa is practical in consideration of handling during impregnation. Further, the bending strength of the material has a positive correlation with the indentation hardness, and is 1 to 40 MPa in the boron nitride sintered body of the present invention. The hardness of the boron nitride sintered body is the hardness of the boron nitride sintered body near the surface of the resin-impregnated boron nitride sintered body. Specifically, the hardness in the vicinity of the surface of the boron nitride molded body obtained by ashing the resin component of the resin-impregnated boron nitride sintered body is measured by, for example, “Nanorange” by the nanoindenter method defined in ISO14577. Using an indentation tester HM500 (manufactured by Fischer Instruments), the calculation is performed according to the following formula.
Indentation hardness (H it ) = F max ÷ A ρ
A ρ = 24.50 (h max −ε (h max −h r )) 2
F max : Maximum test load A ρ : Projected contact area ε: Correction factor according to the geometry of the indenter (diamond Vickers indenter is 0.75)

<黒鉛化指数(GI)>
黒鉛化指数(GI:Graphitization Index)はX線回折図の(100)面、(101)面及び(102)面のピークの積分強度比すなわち面積比を、GI=〔面積{(100)+(101)}〕/〔面積(102)〕、によって求めることがでる{J.Thomas,et.al,J.Am.Chem.Soc.84,4619(1962)}。完全に結晶化したものでは、GIは1.60になるとされているが、高結晶性でかつ粒子が十分に成長した鱗片形状の六方晶窒化ホウ素粉末の場合、粒子が配向しやすいためGIはさらに小さくなる。すなわち、GIは鱗片形状の六方晶窒化ホウ素粉末の結晶性の指標であり、この値が小さいほど結晶性が高い。本発明の樹脂含浸窒化ホウ素焼結体においては、GIは4.0以下が好ましい。GIが4.0より大きいということは、窒化ホウ素一次粒子の結晶性が低いことを意味し、樹脂含浸窒化ホウ素焼結体の熱伝導率が低下する。GIは原料である六方晶窒化ホウ素粉末粒子の配合量、カルシウム化合物の添加量及び焼成温度によって制御することができる。
<Graphitization index (GI)>
The graphitization index (GI) is the integrated intensity ratio of the peaks of the (100) plane, (101) plane, and (102) plane of the X-ray diffraction diagram, that is, the area ratio, GI = [area {(100) + ( 101)}] / [area (102)] {J. Thomas, et. al, J. et al. Am. Chem. Soc. 84, 4619 (1962)}. When fully crystallized, the GI is supposed to be 1.60. However, in the case of a hexagonal boron nitride powder having a high crystallinity and having sufficiently grown particles, the GI is easy to orient. It becomes even smaller. That is, GI is an index of crystallinity of the scale-shaped hexagonal boron nitride powder, and the smaller this value, the higher the crystallinity. In the resin-impregnated boron nitride sintered body of the present invention, GI is preferably 4.0 or less. The fact that GI is larger than 4.0 means that the crystallinity of the boron nitride primary particles is low, and the thermal conductivity of the resin-impregnated boron nitride sintered body is lowered. GI can be controlled by the amount of hexagonal boron nitride powder particles, the amount of calcium compound added, and the firing temperature.

<黒鉛化指数(GI)の評価方法>
GIの測定は、例えば、「D8ADVANCE Super Speed」(ブルカー・エイエックスエス社製)を用いて測定できる。測定の前処理として、窒化ホウ素焼結体をメノウ乳鉢により粉砕し、得られた粉末をプレス成型した。X線は、成型体の面内方向の平面の法線に対して、互いに対称となるように照射した。測定時は、X線源はCuKα線を用い、管電圧は45kV、管電流は360mAである。
<Evaluation method of graphitization index (GI)>
The GI can be measured using, for example, “D8ADVANCE Super Speed” (manufactured by Bruker AXS). As a pretreatment for the measurement, the boron nitride sintered body was pulverized with an agate mortar, and the obtained powder was press-molded. X-rays were irradiated so as to be symmetric with respect to the normal line of the plane in the in-plane direction of the molded body. At the time of measurement, CuKα ray is used as the X-ray source, the tube voltage is 45 kV, and the tube current is 360 mA.

<窒化ホウ素純度及びその評価方法>
更に、本発明の窒化ホウ素焼結体においては、その窒化ホウ素純度が95質量%以上であることが好ましい。窒化ホウ素純度は、窒化ホウ素粉末をアルカリ分解後ケルダール法による水蒸気蒸留を行い、留出液中の全窒素を中和適定することによって測定することができる。
<Boron nitride purity and its evaluation method>
Furthermore, in the boron nitride sintered body of the present invention, the boron nitride purity is preferably 95% by mass or more. The boron nitride purity can be measured by subjecting the boron nitride powder to alkali decomposition after steam distillation by the Kjeldahl method and neutralizing the total nitrogen in the distillate.

<窒化ホウ素粉末の平均粒径の定義・評価方法>
本発明の窒化ホウ素−樹脂複合体の出発原料となる窒化ホウ素粉末の平均粒径は、レーザー回折光散乱法による粒度分布測定において、累積粒度分布の累積値50%の粒径である。粒度分布測定機としては、例えば「MT3300EX」(日機装社製)にて測定することができる。測定に際しては、溶媒には水、分散剤としてはヘキサメタリン酸を用い、前処理として、30秒間、ホモジナイザーを用いて20Wの出力をかけて分散処理させた。水の屈折率には1.33、窒化ホウ素粉末の屈折率については1.80を用いた。一回当たりの測定時間は30秒である。
<Definition and evaluation method of average particle size of boron nitride powder>
The average particle size of the boron nitride powder used as the starting material of the boron nitride-resin composite of the present invention is a particle size of 50% of the cumulative value of the cumulative particle size distribution in the particle size distribution measurement by the laser diffraction light scattering method. As a particle size distribution measuring device, for example, “MT3300EX” (manufactured by Nikkiso Co., Ltd.) can be used for measurement. In the measurement, water was used as a solvent, hexametaphosphoric acid was used as a dispersant, and a pretreatment was performed for 30 seconds using a homogenizer with an output of 20 W for dispersion treatment. The refractive index of water was 1.33, and the refractive index of boron nitride powder was 1.80. The measurement time per time is 30 seconds.

<窒化ホウ素焼結体の焼結条件>
更に、本発明の窒化ホウ素焼結体は、1600℃以上で1時間以上焼結させて製造することが好ましい。焼結を行わないと、気孔径が小さく、樹脂の含浸が困難となる。焼結温度が1600℃より低いと、窒化ホウ素の結晶性が十分向上せず、樹脂含浸窒化ホウ素焼結体の熱伝導率が低下する恐れがある。焼結温度の上限については、特に制限はないが、経済性を考慮すると上限としては、2200℃程度が実際的である。また、焼結時間が1時間より小さいと、窒化ホウ素の結晶性が十分向上せず、窒化ホウ素樹脂成形体の熱伝導率が低下する恐れがある。焼結時間の上限については、特に制限はないが、経済性を考慮すると上限としては、30時間程度が実際的である。また、焼結は、窒化ホウ素成型体の酸化を防止する目的で、窒素又はヘリウム又はアルゴン雰囲気下で行うことが好ましい。
<Sintering conditions of boron nitride sintered body>
Furthermore, the boron nitride sintered body of the present invention is preferably produced by sintering at 1600 ° C. or higher for 1 hour or longer. Without sintering, the pore diameter is small and impregnation of the resin becomes difficult. When the sintering temperature is lower than 1600 ° C., the crystallinity of boron nitride is not sufficiently improved, and the thermal conductivity of the resin-impregnated boron nitride sintered body may be lowered. Although there is no restriction | limiting in particular about the upper limit of sintering temperature, About 2200 degreeC is practical as an upper limit when economical efficiency is considered. On the other hand, if the sintering time is less than 1 hour, the crystallinity of boron nitride is not sufficiently improved, and the thermal conductivity of the boron nitride resin molded body may be lowered. Although there is no restriction | limiting in particular about the upper limit of sintering time, About 30 hours is practical as an upper limit when economical efficiency is considered. In addition, the sintering is preferably performed in an atmosphere of nitrogen, helium, or argon for the purpose of preventing oxidation of the boron nitride molded body.

<窒化ホウ素成形体焼結時の昇温速度>
更に、本発明の窒化ホウ素成形体の焼結工程おいては、300〜600℃までの昇温速度を40℃/分以下とすることが好ましい。昇温速度が40℃/分より大きいと、有機バインダーの急激な分解により窒化ホウ素粒子の焼結性に分布が生じ、特性にバラつきが大きくなり信頼性が低下する恐れがある。昇温速度の上限については、特に制限はないが、経済性を考慮すると下限としては、5℃/分程度が実際的である。
<Temperature increase rate during sintering of boron nitride compact>
Furthermore, in the sintering process of the boron nitride molded body of the present invention, it is preferable that the temperature rising rate from 300 to 600 ° C. is 40 ° C./min or less. If the rate of temperature rise is greater than 40 ° C./min, the boron nitride particles will be distributed due to the rapid decomposition of the organic binder, resulting in large variations in properties and reduced reliability. Although there is no restriction | limiting in particular about the upper limit of temperature increase rate, About 5 degree-C / min is practical as a lower limit considering economical efficiency.

<板状樹脂含浸窒化ホウ素焼結体>
次に、本発明の板状樹脂含浸窒化ホウ素焼結体について説明する。本発明の板状樹脂含浸窒化ホウ素焼結体は、窒化ホウ素焼結体に、樹脂を含浸し、硬化させた樹脂含浸窒化ホウ素焼結体を得た後、マルチワイヤーソー等の装置を用い、任意の厚みに切り出して板状樹脂含浸窒化ホウ素焼結体を好適に製造することができる。樹脂の含浸は、真空含浸、3〜300MPaでの加圧含浸、室温〜150℃までの加熱含浸又はそれらの組合せの含浸で行うことができる。真空含浸時の圧力は、10mmHg以下が好ましく、1mmHg以下が更に好ましい。加圧含浸では、圧力3MPa以下では窒化ホウ素焼結体の内部まで樹脂が十分含浸できず、300MPa以上では設備が大規模になるためコスト的に不利である。加熱含浸では室温以下では含浸される樹脂が限定され、窒化ホウ素焼結体の内部まで樹脂が十分含浸できず、150℃以上では設備に更なる耐熱性を寄与する必要がありコスト的に不利である。マルチワイヤーソー等の加工装置を用いることにより、任意の厚みに対して大量に切り出す事が可能となり、切削後の面粗度も良好な値を示す。また、切り出しの際、硬化させた樹脂含浸窒化ホウ素焼結体の向きを変えることで任意の方向に対して優位な熱伝導率を有した板状樹脂含浸窒化ホウ素焼結体を得ることも容易である。
<Plate-shaped resin-impregnated boron nitride sintered body>
Next, the plate-like resin-impregnated boron nitride sintered body of the present invention will be described. The plate-like resin-impregnated boron nitride sintered body of the present invention is obtained by impregnating a resin into the boron nitride sintered body and obtaining a cured resin-impregnated boron nitride sintered body, and then using an apparatus such as a multi-wire saw. A plate-shaped resin-impregnated boron nitride sintered body can be suitably produced by cutting into an arbitrary thickness. The impregnation of the resin can be performed by vacuum impregnation, pressure impregnation at 3 to 300 MPa, heat impregnation from room temperature to 150 ° C., or a combination thereof. The pressure during vacuum impregnation is preferably 10 mmHg or less, and more preferably 1 mmHg or less. In the pressure impregnation, if the pressure is 3 MPa or less, the resin cannot be sufficiently impregnated to the inside of the boron nitride sintered body, and if it is 300 MPa or more, the equipment becomes large, which is disadvantageous in terms of cost. In the heat impregnation, the resin to be impregnated is limited at room temperature or lower, the resin cannot be sufficiently impregnated into the inside of the boron nitride sintered body, and at 150 ° C. or higher, it is necessary to contribute further heat resistance to the equipment, which is disadvantageous in terms of cost. is there. By using a processing apparatus such as a multi-wire saw, it becomes possible to cut out a large amount with respect to an arbitrary thickness, and the surface roughness after cutting shows a good value. It is also easy to obtain a plate-shaped resin-impregnated boron nitride sintered body having superior thermal conductivity in any direction by changing the direction of the cured resin-impregnated boron nitride sintered body at the time of cutting. It is.

<樹脂との複合>
次に、本発明の窒化ホウ素焼結体と樹脂との複合方法について説明する。本発明の樹脂含浸窒化ホウ素焼結体は、窒化ホウ素焼結体に、樹脂を含浸し、硬化させることで好適に製造することができる。樹脂の含浸は、真空含浸、1〜300MPaでの加圧含浸、又はそれらの組合せの含浸で行うことができる。真空含浸時の圧力は、1000Pa以下が好ましく、100Pa以下が更に好ましい。加圧含浸では、圧力1MPa以下では窒化ホウ素焼結体の内部まで樹脂が十分含浸できず、300MPa以上では設備が大規模になるためコスト的に不利である。樹脂の粘度を低下させることで、窒化ホウ素焼結体の内部まで樹脂を含浸させる目的で、加圧時に30〜300℃に加熱すると更に好ましい。
<Composite with resin>
Next, a composite method of the boron nitride sintered body and the resin of the present invention will be described. The resin-impregnated boron nitride sintered body of the present invention can be suitably produced by impregnating a boron nitride sintered body with a resin and curing it. The resin impregnation can be performed by vacuum impregnation, pressure impregnation at 1 to 300 MPa, or impregnation thereof. The pressure during vacuum impregnation is preferably 1000 Pa or less, and more preferably 100 Pa or less. In the pressure impregnation, if the pressure is 1 MPa or less, the resin cannot be sufficiently impregnated to the inside of the boron nitride sintered body, and if it is 300 MPa or more, the equipment becomes large and disadvantageous in terms of cost. For the purpose of impregnating the resin into the boron nitride sintered body by reducing the viscosity of the resin, it is more preferable to heat to 30 to 300 ° C. during pressurization.

<樹脂>
樹脂としては、例えばエポキシ樹脂、シリコーン樹脂、シアネート樹脂、ベンゾオキサジン樹脂、ビスマレイミド樹脂、シリコーンゴム、アクリル樹脂、フェノール樹脂、メラミン樹脂、ユリア樹脂、不飽和ポリエステル、フッ素樹脂、ポリイミド等の熱硬化性樹脂を用いることができる。これらの樹脂は、単独で使用しても、2種以上を組み合わせて使用してもよい。これら樹脂、特に熱硬化性樹脂には適宜、硬化剤、硬化促進剤、シランカップリング剤、さらには濡れ性やレベリング性の向上及び粘度低下を促進して含浸・硬化時の欠陥の発生を低減する添加剤を含有することができる。この添加剤としては、例えば、消泡剤、表面調整剤、湿潤分散剤等がある。また、樹脂が、酸化アルミニウム、酸化ケイ素、酸化亜鉛、窒化ケイ素、窒化アルミニウム、水酸化アルミニウム、窒化ホウ素の群から選ばれた1種又は2種以上のセラミックス粉末を含むと一層好ましい。窒化ホウ素焼結体の気孔中に、セラミックス粒子を充填することができるので、結果として樹脂含浸窒化ホウ素焼結体の熱伝導率を向上させることができる。樹脂は、必要に応じて溶剤で希釈して使用しても良い。溶剤としては、例えば、エタノール及びイソプロパノール等のアルコール類、2−メトキシエタノール、1−メトキシエタノール、2−エトキシエタノール、1−エトキシ−2−プロパノール、2−ブトキシエタノール、2−(2−メトキシエトキシ)エタノール、2−(2−エトキシエトキシ)エタノール及び2−(2−ブトキシエトキシ)エタノール等のエーテルアルコール類、エチレングリコールモノメチルエーテル、エチレングリコールモノブチルエーテル等のグリコールエーテル類、アセトン、メチルエチルケトン、メチルイソブチルケトン及びジイソブチルケトンケトン等のケトン類、トルエン及びキシレン等の炭化水素類が挙げられる。なお、これらの溶剤は、単独で使用しても、2種以上を組み合わせて使用してもよい。
<Resin>
Examples of the resin include thermosetting resins such as epoxy resin, silicone resin, cyanate resin, benzoxazine resin, bismaleimide resin, silicone rubber, acrylic resin, phenol resin, melamine resin, urea resin, unsaturated polyester, fluororesin, and polyimide. Resin can be used. These resins may be used alone or in combination of two or more. For these resins, especially thermosetting resins, curing agents, curing accelerators, silane coupling agents, as well as improving wettability and leveling properties and promoting viscosity reduction, reduce the occurrence of defects during impregnation and curing. Additive may be contained. Examples of the additive include an antifoaming agent, a surface conditioner, and a wetting and dispersing agent. More preferably, the resin contains one or more ceramic powders selected from the group consisting of aluminum oxide, silicon oxide, zinc oxide, silicon nitride, aluminum nitride, aluminum hydroxide, and boron nitride. Since the ceramic particles can be filled in the pores of the boron nitride sintered body, the thermal conductivity of the resin-impregnated boron nitride sintered body can be improved as a result. The resin may be diluted with a solvent as necessary. Examples of the solvent include alcohols such as ethanol and isopropanol, 2-methoxyethanol, 1-methoxyethanol, 2-ethoxyethanol, 1-ethoxy-2-propanol, 2-butoxyethanol, and 2- (2-methoxyethoxy). Ethers such as ethanol, 2- (2-ethoxyethoxy) ethanol and 2- (2-butoxyethoxy) ethanol, glycol ethers such as ethylene glycol monomethyl ether and ethylene glycol monobutyl ether, acetone, methyl ethyl ketone, methyl isobutyl ketone and Examples include ketones such as diisobutyl ketone ketone, and hydrocarbons such as toluene and xylene. In addition, these solvents may be used alone or in combination of two or more.

<窒化ホウ素樹脂複合体回路基板>
本発明の窒化ホウ素樹脂複合体回路基板は、板状樹脂含浸窒化ホウ素焼結体の両主面に回路金属を接着し、回路パターンを形成することで製造することができる。回路金属の材料としては、電気伝導性および熱伝導率の点から、銅又はアルミニウムが好ましい。特性面だけを考えると銀、金等も使用可能であるが、価格面およびその後の回路形成等に問題がある。回路金属の板厚は0.05〜1.5mmが好ましい。板厚0.05mm未満では、パワーモジュール用の回路基板として用いる場合に、十分な導電性を確保することができず、回路金属部分が発熱する等の問題があり好ましくない。1.5mmを超えると回路金属自体の熱抵抗が大きくなり、回路基板の放熱特性が低下するため好ましくない。
<Boron nitride resin composite circuit board>
The boron nitride resin composite circuit board of the present invention can be manufactured by bonding a circuit metal to both main surfaces of a plate-like resin-impregnated boron nitride sintered body to form a circuit pattern. The material for the circuit metal is preferably copper or aluminum from the viewpoint of electrical conductivity and thermal conductivity. Considering only the characteristics, silver, gold, etc. can be used, but there are problems in terms of price and subsequent circuit formation. The plate thickness of the circuit metal is preferably 0.05 to 1.5 mm. When the plate thickness is less than 0.05 mm, when used as a circuit board for a power module, sufficient conductivity cannot be ensured, and there is a problem that a circuit metal part generates heat, which is not preferable. If it exceeds 1.5 mm, the thermal resistance of the circuit metal itself is increased, and the heat dissipation characteristics of the circuit board are deteriorated.

<回路金属>
回路金属の接着層側の表面はサンドブラスト、エッチング等の表面処理により凹凸を形成することが望ましい。具体的には、算術平均粗さRaが0.15〜3.0μmであり、0.2〜2.0μmであることが望ましい。0.15μm未満では、凹凸の凸部が板状樹脂含浸窒化ホウ素焼結体中に充分に浸入することができないため、熱抵抗が大きくなり所望の放熱特性を得ることが出来ない。さらには、充分な接着強度を得ることが出来ないため熱サイクル試験後に剥離が発生する。3.0μmを超えると、絶縁破壊電圧が低下するため好ましくない。
<Circuit metal>
It is desirable to form irregularities on the surface of the circuit metal on the adhesive layer side by surface treatment such as sandblasting or etching. Specifically, the arithmetic average roughness Ra is 0.15 to 3.0 μm, and preferably 0.2 to 2.0 μm. If the thickness is less than 0.15 μm, the uneven projections cannot sufficiently penetrate into the plate-like resin-impregnated boron nitride sintered body, so that the thermal resistance increases and the desired heat dissipation characteristics cannot be obtained. Furthermore, since sufficient adhesive strength cannot be obtained, peeling occurs after the thermal cycle test. If it exceeds 3.0 μm, the dielectric breakdown voltage decreases, which is not preferable.

<回路金属の算術平均粗さの測定方法>
回路金属の接着層側の表面の算術平均粗さRaは、表面粗さ測定器、例えば「SEF 580−G18」(小坂研究所社製)を用いて、JIS B0601(2001)に準拠して測定することができる。
<Measurement method of arithmetic average roughness of circuit metal>
The arithmetic average roughness Ra of the surface of the adhesive layer side of the circuit metal is measured according to JIS B0601 (2001) using a surface roughness measuring instrument such as “SEF 580-G18” (manufactured by Kosaka Laboratory). can do.

<接着層>
回路金属と板状樹脂含浸窒化ホウ素焼結体の接着には、エポキシ樹脂を回路金属の接着層側、板状樹脂含浸窒化ホウ素焼結体の両面もしくはいずれか一方に塗布し、回路金属を積層後に加熱加圧硬化することで窒化ホウ素樹脂複合体回路基板が得られる。また、回路材と板状樹脂含浸窒化ホウ素焼結体の接着には、エポキシ樹脂を各種コーターによってシート状に形成し、適切な硬化状態まで硬化したエポキシ樹脂シートを用いることが出来る。ここでいう適切な硬化状態とは、加熱すると溶融し接着性を発現する、半硬化した状態である。エポキシ樹脂シートを必要な大きさに切断し、回路材と樹脂含浸窒化ホウ素焼結体の間に設置し、加熱加圧硬化することにより、窒化ホウ素樹脂複合体回路基板が得られる。さらには、板状樹脂含浸窒化ホウ素焼結体中の樹脂に半硬化のエポキシ樹脂を用いることで、エポキシ樹脂の塗布やエポキシ樹脂シートを用いずとも、加熱溶融したエポキシ樹脂のしみ出しにより、回路金属と板状樹脂含浸窒化ホウ素焼結体を接着することができる。接着に用いるエポキシ樹脂の接着層の厚さは、10μm未満であることが望ましい。さらには、回路金属の接着層側の凹凸未満の厚さ、具体的には1μm未満であることが望ましい。さらには、回路金属の接着層側の凹凸が全て板状樹脂含浸窒化ホウ素焼結体中に侵入しており、接着層の厚さが測定できない場合もある。
エポキシ樹脂としては、例えばビスフェノールA型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールA型の水素添加エポキシ樹脂、ポリプロピレングリコール型エポキシ樹脂、ポリテトラメチレングリコール型エポキシ樹脂、ナフタレン型エポキシ樹脂、フェニルメタン型エポキシ樹脂、テトラキスフェノールメタン型エポキシ樹脂、ビフェニル型エポキシ樹脂、トリアジン核を骨格に有するエポキシ樹脂、およびビスフェノールAアルキレンオキサイド付加物型のエポキシ樹脂等が挙げられ、これらを複数組み合わせて用いることもできる。なお、本明細書におけるエポキシ樹脂とは、後述の硬化剤と反応しうる未反応のエポキシ基を含んだ硬化前のプレポリマーのことをいう。
これらエポキシ樹脂には適宜、硬化剤、硬化促進剤、シランカップリング剤、さらには濡れ性やレベリング性の向上及び粘度低下を促進して含浸・硬化時の欠陥の発生を低減する添加剤を含有することができる。この添加剤としては、例えば、消泡剤、表面調整剤、湿潤分散剤等がある。また、樹脂が、酸化アルミニウム、酸化ケイ素、酸化亜鉛、窒化ケイ素、窒化アルミニウム、窒化ホウ素、水酸化アルミニウムの群から選ばれた1種又は2種以上のセラミックス粉末を含むと一層好ましい。
<Adhesive layer>
To bond the circuit metal and the plate-like resin-impregnated boron nitride sintered body, the epoxy resin is applied to the adhesive layer side of the circuit metal, or both sides of the plate-like resin-impregnated boron nitride sintered body, and the circuit metal is laminated. A boron nitride resin composite circuit board is obtained by subsequent heat and pressure curing. For bonding the circuit material and the plate-like resin-impregnated boron nitride sintered body, an epoxy resin sheet formed by forming various epoxy resins into a sheet shape with various coaters and curing to an appropriate cured state can be used. The appropriate cured state here is a semi-cured state that melts when heated and develops adhesiveness. A boron nitride resin composite circuit board is obtained by cutting the epoxy resin sheet to a required size, placing it between the circuit material and the resin-impregnated boron nitride sintered body, and curing by heating and pressing. Furthermore, by using a semi-cured epoxy resin for the resin in the plate-like resin-impregnated boron nitride sintered body, the circuit of the heat-melted epoxy resin oozes out without using an epoxy resin coating or an epoxy resin sheet. The metal and the plate-like resin-impregnated boron nitride sintered body can be bonded. The thickness of the adhesive layer of the epoxy resin used for adhesion is desirably less than 10 μm. Furthermore, it is desirable that the thickness is less than the unevenness on the adhesive layer side of the circuit metal, specifically less than 1 μm. Furthermore, all the irregularities on the adhesive layer side of the circuit metal have penetrated into the plate-like resin-impregnated boron nitride sintered body, and the thickness of the adhesive layer may not be measured.
Examples of the epoxy resin include bisphenol A type epoxy resin, bisphenol S type epoxy resin, bisphenol F type epoxy resin, bisphenol A type hydrogenated epoxy resin, polypropylene glycol type epoxy resin, polytetramethylene glycol type epoxy resin, and naphthalene type epoxy. Resin, phenylmethane type epoxy resin, tetrakisphenolmethane type epoxy resin, biphenyl type epoxy resin, epoxy resin having triazine nucleus in the skeleton, and bisphenol A alkylene oxide adduct type epoxy resin, etc. It can also be used. In addition, the epoxy resin in this specification means the prepolymer before hardening containing the unreacted epoxy group which can react with the below-mentioned hardening | curing agent.
These epoxy resins contain appropriate curing agents, curing accelerators, silane coupling agents, and additives that reduce the occurrence of defects during impregnation and curing by improving wettability and leveling properties and promoting viscosity reduction. can do. Examples of the additive include an antifoaming agent, a surface conditioner, and a wetting and dispersing agent. More preferably, the resin contains one or more ceramic powders selected from the group consisting of aluminum oxide, silicon oxide, zinc oxide, silicon nitride, aluminum nitride, boron nitride, and aluminum hydroxide.

<接触率>
回路金属の接着層側の凹凸と板状樹脂含浸窒化ホウ素焼結体との接触率は5%以上である。望ましくは、20%以上である。5%未満では、加熱加圧時に回路金属の接着層側の凹凸の凸部が板状樹脂含浸窒化ホウ素焼結体中に侵入する際の窒化ホウ素焼結体の変形や、接着層側の凹凸の凸部の窒化ホウ素焼結体の一次粒子への接触が十分でなく、回路金属と板状樹脂含浸窒化ホウ素焼結体間の熱抵抗が大きくなるため好ましくない。尚、回路金属の接着層側の凹凸と板状樹脂含浸窒化ホウ素焼結体との接触率は、回路金属と樹脂含浸窒化ホウ素焼結体との接触長さと、接着層と樹脂含浸窒化ホウ素焼結体との接着長さより、以下で定義する式(1)より求めることができる。
[接触率の定義と測定方法]
窒化ホウ素樹脂複合体回路基板をダイヤモンドカッターで断面加工後、CP(クロスセクションポリッシャー)法により加工し、試料台に固定した後にオスミウムコーティングを行った。そして、板状樹脂含浸窒化ホウ素焼結体と接着層と回路金属の接着界面を走査型電子顕微鏡(例えば「JSM−6010LA」(日本電子社製))で観察及び測定することで、下記式(1)により接触率を算出する(観察倍率は350倍)。尚、観察する断面の面数は10面以上とし、接触率の値は平均値とする。
接触率=[(回路金属と樹脂含浸窒化ホウ素焼結体との接触長さ)/(回路金属と樹脂含浸窒化ホウ素焼結体との接触長さ+接着層と樹脂含浸窒化ホウ素焼結体との接着長さ)]×100・・・・・(1)
なお、回路金属と樹脂含浸窒化ホウ素焼結体との接触は、前記の走査型電子顕微鏡にて
観察した際に、エネルギー分散型X線分光分析(SEM−EDS)による元素マッピングにより接着層の有無を確認することにより判断することが出来る。回路金属と樹脂含浸窒化ホウ素焼結体との接触長さとは、図1及び図2の4{回路金属と樹脂含浸窒化ホウ素焼結体との接触長さ(一箇所)}を、観察断面の回路金属の各凸部について合計した長さである。接着層と樹脂含浸窒化ホウ素焼結体との接着長さとは、図1及び図2の5{接着層と樹脂含浸窒化ホウ素焼結体との接着長さ(一箇所)}を、観察断面の回路金属の各凹部について合計した長さである。また、図1及び図2の4{回路金属と樹脂含浸窒化ホウ素焼結体との接触長さ(一箇所)}と5{接着層と樹脂含浸窒化ホウ素焼結体との接着長さ(一箇所)}は直線とする。
<Contact rate>
The contact ratio between the unevenness on the adhesive layer side of the circuit metal and the plate-like resin-impregnated boron nitride sintered body is 5% or more. Desirably, it is 20% or more. If it is less than 5%, the deformation of the boron nitride sintered body or the unevenness on the adhesive layer side when the uneven part on the adhesive layer side of the circuit metal enters the plate-like resin-impregnated boron nitride sintered body during heating and pressurization. This is not preferable because the protrusions of the boron nitride sintered body are not sufficiently in contact with the primary particles, and the thermal resistance between the circuit metal and the plate-like resin-impregnated boron nitride sintered body increases. Note that the contact ratio between the unevenness on the adhesive layer side of the circuit metal and the plate-shaped resin-impregnated boron nitride sintered body is the contact length between the circuit metal and the resin-impregnated boron nitride sintered body, and the contact length between the adhesive layer and the resin-impregnated boron nitride sintered body. It can obtain | require from Formula (1) defined below from the adhesion length with a tie.
[Definition of contact rate and measurement method]
The boron nitride resin composite circuit board was processed with a diamond cutter, processed with a CP (cross section polisher) method, fixed on a sample stage, and then coated with osmium. Then, by observing and measuring the bonding interface between the plate-like resin-impregnated boron nitride sintered body, the adhesive layer, and the circuit metal with a scanning electron microscope (for example, “JSM-6010LA” (manufactured by JEOL Ltd.)), the following formula ( The contact ratio is calculated by 1) (observation magnification is 350 times). Note that the number of cross-sectional surfaces to be observed is 10 or more, and the contact ratio value is an average value.
Contact rate = [(contact length between circuit metal and resin-impregnated boron nitride sintered body) / (contact length between circuit metal and resin-impregnated boron nitride sintered body + adhesive layer and resin-impregnated boron nitride sintered body] Adhesive length)] × 100 (1)
The contact between the circuit metal and the resin-impregnated boron nitride sintered body is determined by the presence or absence of an adhesive layer by elemental mapping by energy dispersive X-ray spectroscopic analysis (SEM-EDS) when observed with the scanning electron microscope. It can be judged by confirming. The contact length between the circuit metal and the resin-impregnated boron nitride sintered body is the {4 contact length between the circuit metal and the resin-impregnated boron nitride sintered body (one place)} in FIG. 1 and FIG. It is the total length for each convex part of the circuit metal. The adhesion length between the adhesive layer and the resin-impregnated boron nitride sintered body is 5 (the adhesive length between the adhesive layer and the resin-impregnated boron nitride sintered body (one place)) in FIG. 1 and FIG. This is the total length for each recess of the circuit metal. Further, 4 {contact length between circuit metal and resin-impregnated boron nitride sintered body (one place)} and 5 {adhesion length between adhesive layer and resin-impregnated boron nitride sintered body (one )} Is a straight line.

<回路形成>
本発明の窒化ホウ素樹脂複合体回路基板は、回路パターンを形成するため、回路金属にエッチングレジストを塗布してエッチングする。エッチングレジストに関して特に制限はなく、例えば、一般に使用されている紫外線硬化型や熱硬化型のものが使用できる。エッチングレジストの塗布方法に関しては特に制限はなく、例えばスクリーン印刷法等の公知の塗布方法が採用できる。回路パターンを形成するために回路金属のエッチング処理を行う。エッチング液に関しても特に制限はなく、一般に使用されている塩化第二鉄溶液や塩化第二銅溶液、硫酸、過酸化水素水等が使用できるが、好ましいものとして、塩化第二鉄溶液や塩化第二銅溶液が挙げられる。回路形成後エッチングレジストの剥離を行うが、剥離方法は特に限定されずアルカリ水溶液に浸漬させる方法などが一般的である。また、予めパタ−ン形状に加工した回路金属を樹脂含浸窒化ホウ素焼結体に接着することにより回路パターンを形成することもできる。
<Circuit formation>
The boron nitride resin composite circuit board of the present invention is etched by applying an etching resist to the circuit metal in order to form a circuit pattern. There is no restriction | limiting in particular regarding an etching resist, For example, the ultraviolet curing type and thermosetting type generally used can be used. There is no restriction | limiting in particular about the coating method of an etching resist, For example, well-known coating methods, such as a screen printing method, are employable. A circuit metal etching process is performed to form a circuit pattern. There is no particular restriction on the etching solution, and generally used ferric chloride solution, cupric chloride solution, sulfuric acid, hydrogen peroxide solution, etc. can be used. A dicopper solution is mentioned. The etching resist is stripped after the circuit is formed, but the stripping method is not particularly limited, and a method of immersing in an alkaline aqueous solution is common. Further, the circuit pattern can be formed by adhering a circuit metal previously processed into a pattern shape to the resin-impregnated boron nitride sintered body.

<めっき>
本発明の窒化ホウ素樹脂複合体回路基板は、必要に応じて、回路金属部にめっき皮膜を形成する。めっき材質については、特に制限はなく、一般的にはニッケルめっきが用いられる。めっき方法についても、無電解めっき、電気めっき等が採用できる。更に、蒸着、スパッタリング、溶射等により金属皮膜を形成することもできる。また、必要に応じて、回路金属部に半田レジストを塗布する場合もある。
<Plating>
The boron nitride resin composite circuit board of the present invention forms a plating film on the circuit metal part as necessary. The plating material is not particularly limited, and nickel plating is generally used. As the plating method, electroless plating, electroplating, or the like can be employed. Furthermore, a metal film can be formed by vapor deposition, sputtering, thermal spraying, or the like. Further, a solder resist may be applied to the circuit metal part as necessary.

以下、本発明を実施例、比較例をあげて更に具体的に説明する。
<窒化ホウ素焼結体の作製>
平均粒径0.5μm(酸素含有量1.9質量%、窒化ホウ素純度97.1質量%)、0.8μm(酸素含有量1.8質量%、窒化ホウ素純度97.2質量%)及び6.0μm(酸素含有量1.5質量%、窒化ホウ素純度97.6質量%)であるアモルファス窒化ホウ素粉末、平均粒径3.4μm(酸素含有量0.4質量%、窒化ホウ素純度98.6質量%)、4.5μm(酸素含有量0.3質量%、窒化ホウ素純度99.0質量%)、18.0μm(酸素含有量0.3質量%、窒化ホウ素純度99.1質量%)、30.0μm(酸素含有量0.2質量%、窒化ホウ素純度99.2質量%)及び40.0μm(酸素含有量0.1質量%、窒化ホウ素純度99.5質量%)である六方晶窒化ホウ素粉末、及び炭酸カルシウム(「PC−700」白石工業社製)とホウ酸を、表1に示す配合量で公知の技術を用いて混合粉末とした。そして、この成型用の混合粉末を用いて、5MPaの圧力で金型を用いてブロック状に成型した。得られたブロック成型体をCIP(冷間等方圧加圧法)装置(「ADW800」 神戸製鋼所社製)により圧力が10〜150MPaの間で処理を行った後、バッチ式高周波炉(「FTH−300−1H」 富士電波工業社製)にて窒素流量10L/min、焼結温度2100℃、保持時間10hrで焼結させることで表1に示す9種類の窒化ホウ素焼結体(A〜K)を得た。
Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples.
<Preparation of sintered boron nitride>
Average particle size 0.5 μm (oxygen content 1.9% by mass, boron nitride purity 97.1% by mass), 0.8 μm (oxygen content 1.8% by mass, boron nitride purity 97.2% by mass) and 6 Amorphous boron nitride powder of 0.0 μm (oxygen content 1.5% by mass, boron nitride purity 97.6% by mass), average particle size 3.4 μm (oxygen content 0.4% by mass, boron nitride purity 98.6) Mass%), 4.5 μm (oxygen content 0.3 mass%, boron nitride purity 99.0 mass%), 18.0 μm (oxygen content 0.3 mass%, boron nitride purity 99.1 mass%), Hexagonal nitriding of 30.0 μm (oxygen content 0.2 mass%, boron nitride purity 99.2 mass%) and 40.0 μm (oxygen content 0.1 mass%, boron nitride purity 99.5 mass%) Boron powder and calcium carbonate ("PC-700" manufactured by Shiroishi Kogyo Co., Ltd.) Boric acid, and a mixed powder using techniques known in the amounts shown in Table 1. Then, this mixed powder for molding was molded into a block shape using a mold at a pressure of 5 MPa. The obtained block molded body was treated with a CIP (cold isostatic pressing method) apparatus (“ADW800” manufactured by Kobe Steel, Ltd.) at a pressure of 10 to 150 MPa, and then a batch type high frequency furnace (“FTH”). -300-1H "Nine types of boron nitride sintered bodies (A to K) shown in Table 1 by sintering at a flow rate of nitrogen of 10 L / min, a sintering temperature of 2100 ° C, and a holding time of 10 hours by Fuji Radio Industry Co., Ltd. )

<エポキシ樹脂の真空含浸、実施例1〜11及び比較例1〜10>
得られた窒化ホウ素焼結体A〜Kへ樹脂含浸を行った。窒化ホウ素焼結体及びエポキシ樹脂と硬化剤(「ボンドE205」コニシ社製)の混合物を、真空含浸装置(「G−555AT−R」 協真エンジニアリング社製)を用いて、圧力1mmHgの真空中で10分間脱気した後、真空下で窒化ホウ素焼結体をエポキシ樹脂と硬化剤の混合物中に浸漬し、20分間含浸した。その後、大気圧下で、温度150℃で60分間加熱して樹脂を硬化させ、樹脂含浸窒化ホウ素焼結体を得た。
<Vacuum impregnation of epoxy resin, Examples 1 to 11 and Comparative Examples 1 to 10>
The obtained boron nitride sintered bodies A to K were impregnated with a resin. A boron nitride sintered body and a mixture of an epoxy resin and a curing agent (“Bond E205” manufactured by Konishi Co., Ltd.) are used in a vacuum at a pressure of 1 mmHg using a vacuum impregnation apparatus (“G-555AT-R” manufactured by Kyoshin Engineering Co., Ltd.). After degassing for 10 minutes, the boron nitride sintered body was immersed in a mixture of an epoxy resin and a curing agent under vacuum and impregnated for 20 minutes. Thereafter, the resin was cured by heating at 150 ° C. for 60 minutes under atmospheric pressure to obtain a resin-impregnated boron nitride sintered body.

<板状樹脂含浸窒化ホウ素焼結体の作成〜回路形成〜めっき、実施例1〜10及び比較例1〜9>
得られた樹脂含浸窒化ホウ素焼結体をマルチワイヤーソー又はマシニングセンターを用いて、表2の実施例及び表3の比較例の各種厚さの板状に加工した。得られた板状樹脂含浸窒化ホウ素焼結体の両主面に、接着層としてエポキシ樹脂(「JER828」三菱化学社製)100質量部と硬化剤(「VH−4150」 DIC社製)60質量部と硬化促進剤(「TPP」北興化学社製)3質量部をプラネタリーミキサーで15分間攪拌して得られるエポキシ樹脂組成物を10μmの厚さで塗布した。その後、板状樹脂含浸窒化ホウ素焼結体の両主面に、表2及び3で示す様々な表面粗さの回路金属の銅板(厚さ1.0mm)を、圧力5MPa、加熱温度180℃、加熱時間3時間の条件で加熱プレス接着し、回路金属の銅板を接着した複合体を得た。回路金属の銅板を接着した複合体は、回路金属の銅板表面に、回路パターン状にエッチングレジストを印刷、紫外線硬化した後、塩化銅を含むエッチング液で回路金属をエッチングして回路金属パターンを形成し、アルカリ水溶液にてエッチングレジストを除去した。その後、回路金属パターン表面にニッケルめっき層をめっき処理により形成して、窒化ホウ素樹脂複合体回路基板を作製した。
<Preparation of plate-like resin-impregnated boron nitride sintered body-circuit formation-plating, Examples 1-10 and Comparative Examples 1-9>
The obtained resin-impregnated boron nitride sintered body was processed into plates of various thicknesses in the examples in Table 2 and the comparative examples in Table 3 using a multi-wire saw or a machining center. On both main surfaces of the obtained plate-like resin-impregnated boron nitride sintered body, 100 parts by mass of an epoxy resin (“JER828” manufactured by Mitsubishi Chemical Corporation) and 60 parts by mass of a curing agent (“VH-4150” manufactured by DIC) are used as an adhesive layer. The epoxy resin composition obtained by agitating 15 parts of a part and 3 parts by mass of a curing accelerator (“TPP” manufactured by Hokuko Chemical Co., Ltd.) with a planetary mixer for 15 minutes was applied to a thickness of 10 μm. Thereafter, on both main surfaces of the plate-like resin-impregnated boron nitride sintered body, circuit metal copper plates (thickness 1.0 mm) having various surface roughnesses shown in Tables 2 and 3, pressure 5 MPa, heating temperature 180 ° C., Heat press bonding was performed under the condition of a heating time of 3 hours to obtain a composite having a circuit metal copper plate bonded thereto. The composite with the circuit metal copper plate bonded is printed on the surface of the circuit metal copper plate with an etching resist in a circuit pattern, UV cured, and then the circuit metal is etched with an etchant containing copper chloride to form a circuit metal pattern. Then, the etching resist was removed with an alkaline aqueous solution. Thereafter, a nickel plating layer was formed on the surface of the circuit metal pattern by plating to prepare a boron nitride resin composite circuit board.

<熱抵抗の評価>
測定用試料としてエッチング前の窒化ホウ素樹脂複合体回路基板の試験片を10×10mmの正方形に切断した。測定はASTM D5470に準拠して行い、試験片の裏表の温度差ΔT(℃)と熱源の消費電力Q(W)試験片の熱抵抗値(A=ΔT/Q;℃/W)を求めた。得られた窒化ホウ素樹脂複合体回路基板の熱抵抗の評価結果を表2と3に示す。
<Evaluation of thermal resistance>
A test piece of a boron nitride resin composite circuit board before etching as a measurement sample was cut into a 10 × 10 mm square. The measurement was performed in accordance with ASTM D5470, and the temperature difference ΔT (° C.) between the front and back sides of the test piece and the power consumption Q (W) of the heat source were measured and the thermal resistance value (A = ΔT / Q; ° C./W) of the test piece was obtained. . Tables 2 and 3 show the thermal resistance evaluation results of the obtained boron nitride resin composite circuit board.

<絶縁破壊電圧の評価>
窒化ホウ素樹脂複合体回路基板の絶縁破壊電圧をJIS C 2110に準拠して測定した。得られた窒化ホウ素−樹脂複合体回路基の絶縁破壊電圧の評価結果を表2と3に示す。
<Evaluation of dielectric breakdown voltage>
The breakdown voltage of the boron nitride resin composite circuit board was measured according to JIS C2110. The evaluation results of the dielectric breakdown voltage of the obtained boron nitride-resin composite circuit base are shown in Tables 2 and 3.

<耐熱サイクル1000回後の回路金属の接着状態の評価>
窒化ホウ素樹脂複合体回路基板をJIS C 0025に準拠して耐熱サイクル処理した。−40℃にて30分、125℃にて30分を1サイクルとする耐熱サイクル試験にて1000サイクル繰り返し試験を行った後、外観及び超音波探傷装置にて回路金属の接着状態を確認した。得られた窒化ホウ素樹脂複合体回路基板の接着状態の評価結果を表2と3に示す。
<Evaluation of adhesion state of circuit metal after 1000 heat-resistant cycles>
The boron nitride resin composite circuit board was subjected to a heat cycle treatment in accordance with JIS C 0025. After 1000 cycles of the heat cycle test with one cycle of -40 ° C. for 30 minutes and 125 ° C. for 30 minutes, the appearance and the adhesion state of the circuit metal were confirmed with an ultrasonic flaw detector. Tables 2 and 3 show the evaluation results of the adhesion state of the obtained boron nitride resin composite circuit board.

<誘電率評法>
シート上に銅ペーストを印刷・乾燥し、電極を形成した試料を用い、温度25℃、周波数1MHzの条件下にて、JISC6481に準じて測定を実施し、静電容量(X;F)を求めた。測定器には、LCRメータ(「HP4284」横河・ヒューレット・パッカード社製)を用いた。比誘電率(E)は、静電容量(X;F)とシートの厚み(Y;m)と電極の面積(Z;m)と真空の誘電率(8.85×10−12;F/m)から、E=X×Y/(Z×8.85×10−12)の式を用いて、算出した。
<Dielectric constant rating>
Using a sample on which a copper paste is printed and dried on a sheet and an electrode is formed, measurement is performed in accordance with JISC6481 under conditions of a temperature of 25 ° C. and a frequency of 1 MHz, and the capacitance (X; F) is obtained. It was. An LCR meter (“HP4284” manufactured by Yokogawa / Hewlett Packard) was used as the measuring instrument. The relative dielectric constant (E) is the capacitance (X; F), sheet thickness (Y; m), electrode area (Z; m 2 ), and vacuum dielectric constant (8.85 × 10 −12 ; F / M) was calculated using the equation E = X × Y / (Z × 8.85 × 10 −12 ).



実施例と比較例の対比から明らかなように、本発明の窒化ホウ素樹脂複合体回路基板は、放熱特性、絶縁性、耐熱サイクル特性、誘電特性に優れている。   As is clear from the comparison between the examples and the comparative examples, the boron nitride resin composite circuit board of the present invention is excellent in heat dissipation characteristics, insulating properties, heat cycle characteristics, and dielectric characteristics.

本発明の窒化ホウ素樹脂複合体回路基板は、パワーデバイスなどの発熱性電子部品の回路基板として好適に用いられ、特に車載用途等の高信頼性が要求される高出力のパワーモジュールに用いられる。 The boron nitride resin composite circuit board of the present invention is suitably used as a circuit board for heat-generating electronic components such as power devices, and is particularly used for high-output power modules that require high reliability such as in-vehicle applications.

1 板状樹脂含浸窒化ホウ素焼結体
2 接着層
3 回路金属
4 回路金属と樹脂含浸窒化ホウ素焼結体との接触長さ(一箇所)
5 接着層と樹脂含浸窒化ホウ素焼結体との接着長さ(一箇所)
1 Plate-like resin-impregnated boron nitride sintered body 2 Adhesive layer 3 Circuit metal 4 Contact length between circuit metal and resin-impregnated boron nitride sintered body (one place)
5 Adhesive length between adhesive layer and resin-impregnated boron nitride sintered body (one location)

Claims (5)

板状樹脂含浸窒化ホウ素焼結体の両主面に接着層を介して回路金属を形成してなる窒化ホウ素樹脂複合体回路基板であって、板状樹脂含浸窒化ホウ素焼結体は平均長径5〜50μmの窒化ホウ素粒子が3次元に結合し、且つナノインデンテーション法による押し込み硬さが1.5GPa以下の窒化ホウ素焼結体40〜80体積%と、樹脂60〜20体積%を有し、板状樹脂含浸窒化ホウ素焼結体の板厚が0.10〜1.5mmであり、回路金属の接着層側の算術平均粗さRaが0.15〜3.0μmであり、以下で定義される回路金属と板状樹脂含浸窒化ホウ素焼結体との接触率が5%以上であることを特徴とする窒化ホウ素樹脂複合体回路基板。
[接触率の定義]
窒化ホウ素樹脂複合体回路基板を断面加工後、板状樹脂含浸窒化ホウ素焼結体と接着層と回路金属の接着界面を走査型電子顕微鏡で観察及び測定することで、下記式(1)により接触率を算出する。尚、観察する断面の面数は10面以上とし、接触率の値は平均値とする。
接触率=[(回路金属と樹脂含浸窒化ホウ素焼結体との接触長さ)/(回路金属と樹脂含浸窒化ホウ素焼結体との接触長さ+接着層と樹脂含浸窒化ホウ素焼結体との接着長さ)]×100・・・・・(1)
A boron nitride resin composite circuit board in which a circuit metal is formed on both main surfaces of a plate-like resin-impregnated boron nitride sintered body via an adhesive layer, and the plate-like resin-impregnated boron nitride sintered body has an average major axis of 5 Boron nitride particles having a particle size of ~ 50 μm bonded three-dimensionally and having an indentation hardness by a nanoindentation method of 1.5 GPa or less, 40-80% by volume, and resin, 60-20% by volume, The plate thickness of the plate-like resin-impregnated boron nitride sintered body is 0.10 to 1.5 mm, the arithmetic average roughness Ra on the adhesive layer side of the circuit metal is 0.15 to 3.0 μm, and is defined below. A boron nitride resin composite circuit board having a contact ratio of 5% or more between the circuit metal and the plate-like resin-impregnated boron nitride sintered body.
[Definition of contact rate]
After processing the cross-section of the boron nitride resin composite circuit board, the contact interface between the plate-like resin-impregnated boron nitride sintered body, the adhesive layer, and the circuit metal is observed and measured with a scanning electron microscope, and contacted by the following formula (1) Calculate the rate. Note that the number of cross-sectional surfaces to be observed is 10 or more, and the contact ratio value is an average value.
Contact rate = [(contact length between circuit metal and resin-impregnated boron nitride sintered body) / (contact length between circuit metal and resin-impregnated boron nitride sintered body + adhesive layer and resin-impregnated boron nitride sintered body] Adhesive length)] × 100 (1)
板状樹脂含浸窒化ホウ素焼結体の粉末X線回折法による黒鉛化指数(GI、Graphitization Index)が4.0以下であることを特徴とする請求項1に記載の窒化ホウ素樹脂複合体回路基板。 2. The boron nitride resin composite circuit board according to claim 1, wherein the plate-like resin-impregnated boron nitride sintered body has a graphitization index (GI) by a powder X-ray diffraction method of 4.0 or less. . 回路金属が銅又はアルミニウムであることを特徴とする請求項1又は2に記載の窒化ホウ素樹脂複合体回路基板。 3. The boron nitride resin composite circuit board according to claim 1, wherein the circuit metal is copper or aluminum. 請求項1〜3のいずれか一項に記載の窒化ホウ素樹脂複合体回路基板を用いることを特徴とするパワーモジュール。 A power module using the boron nitride resin composite circuit board according to claim 1. 請求項1〜3のいずれか一項に記載の窒化ホウ素樹脂複合体回路基板と、回路金属上に半田層を介して設けられたLEDを有する発光装置。

A light-emitting device comprising the boron nitride resin composite circuit board according to claim 1 and an LED provided on a circuit metal via a solder layer.

JP2014242473A 2014-11-28 2014-11-28 Boron nitride resin composite circuit board Active JP6189822B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014242473A JP6189822B2 (en) 2014-11-28 2014-11-28 Boron nitride resin composite circuit board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014242473A JP6189822B2 (en) 2014-11-28 2014-11-28 Boron nitride resin composite circuit board

Publications (2)

Publication Number Publication Date
JP2016103611A true JP2016103611A (en) 2016-06-02
JP6189822B2 JP6189822B2 (en) 2017-08-30

Family

ID=56089665

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014242473A Active JP6189822B2 (en) 2014-11-28 2014-11-28 Boron nitride resin composite circuit board

Country Status (1)

Country Link
JP (1) JP6189822B2 (en)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190046828A (en) * 2016-08-02 2019-05-07 덴카 주식회사 Heat dissipation structure of electric circuit device
WO2019111978A1 (en) 2017-12-05 2019-06-13 デンカ株式会社 Nitride ceramic resin composite body
KR20190096940A (en) * 2016-12-28 2019-08-20 타츠타 전선 주식회사 Heat dissipation board, heat dissipation circuit assembly, and manufacturing method thereof
WO2019172345A1 (en) * 2018-03-07 2019-09-12 デンカ株式会社 Temporarily bonded body composed of ceramic resin complex and metal plate and method for manufacturing same, and transporter comprising said temporarily bonded body and delivery method using same
CN112425271A (en) * 2018-07-18 2021-02-26 三菱综合材料株式会社 Metal base substrate
WO2021079918A1 (en) 2019-10-23 2021-04-29 デンカ株式会社 Composite sheet and method for manufacturing same, and laminate and method for manufacturing same
JP2021116202A (en) * 2020-01-24 2021-08-10 デンカ株式会社 Hexagonal boron nitride powder, and sintered body raw material composition
WO2021200969A1 (en) * 2020-03-31 2021-10-07 デンカ株式会社 Boron nitride sintered body, composite, methods for producing same, and heat dissipation member
WO2021200966A1 (en) * 2020-03-31 2021-10-07 デンカ株式会社 Boron nitride sintered body, complex, and heat dissipation member
WO2021200971A1 (en) * 2020-03-31 2021-10-07 デンカ株式会社 Boron nitride sintered body, complex, method for manufacturing these, and heat dissipation member
CN113597672A (en) * 2019-03-29 2021-11-02 电化株式会社 Composite, method for producing composite, laminate, and method for producing laminate
WO2021241699A1 (en) * 2020-05-29 2021-12-02 デンカ株式会社 Cured sheet and method for producing same
WO2021241700A1 (en) * 2020-05-29 2021-12-02 デンカ株式会社 Cured sheet and method for producing same
WO2022071294A1 (en) 2020-09-29 2022-04-07 デンカ株式会社 Method for evaluating adhesion reliability and heat radiation performance of composite, and composite
WO2022071236A1 (en) 2020-09-29 2022-04-07 デンカ株式会社 Composite sheet and method for manufacturing same, and layered body and method for manufacturing same
WO2022071293A1 (en) 2020-09-29 2022-04-07 デンカ株式会社 Composite sheet and method for producing same, and multilayer body and method for producing same, and power device
WO2022071247A1 (en) 2020-09-29 2022-04-07 デンカ株式会社 Composite sheet and manufacturing method thereof, and laminate and manufacturing method thereof
WO2022071304A1 (en) 2020-09-29 2022-04-07 デンカ株式会社 Composite sheet, laminate, and evaluation method for estimating adhesiveness of composite sheet
WO2022210089A1 (en) * 2021-03-30 2022-10-06 デンカ株式会社 Circuit board and method of production therefor
WO2023162705A1 (en) * 2022-02-28 2023-08-31 デンカ株式会社 Composite sheet and laminate
WO2024018637A1 (en) * 2022-07-22 2024-01-25 株式会社レゾナック Thermally conductive sheet, heat dissipation device, and method for producing thermally conductive sheet
WO2024048206A1 (en) * 2022-08-30 2024-03-07 デンカ株式会社 Laminate, method for producing laminate, laminated substrate, and method for producing laminated substrate
WO2024134904A1 (en) * 2022-12-23 2024-06-27 株式会社レゾナック Thermally conductive sheet, heat dissipation device, and method for producing thermally conductive sheet

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62123924U (en) * 1986-01-29 1987-08-06
JP2009024126A (en) * 2007-07-23 2009-02-05 Nitto Denko Corp Polymer composition, thermally-conductive sheet, highly thermally-conductive adhesive sheet with metal foil, highly thermally-conductive adhesive sheet with metal plate, metal-based circuit board and power module
WO2013054852A1 (en) * 2011-10-11 2013-04-18 日立金属株式会社 Silicon nitride substrate and method for manufacturing silicon nitride substrate
JP2014162697A (en) * 2013-02-27 2014-09-08 Denki Kagaku Kogyo Kk Boron nitride molding, and production method and application of the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62123924U (en) * 1986-01-29 1987-08-06
JP2009024126A (en) * 2007-07-23 2009-02-05 Nitto Denko Corp Polymer composition, thermally-conductive sheet, highly thermally-conductive adhesive sheet with metal foil, highly thermally-conductive adhesive sheet with metal plate, metal-based circuit board and power module
WO2013054852A1 (en) * 2011-10-11 2013-04-18 日立金属株式会社 Silicon nitride substrate and method for manufacturing silicon nitride substrate
JP2014162697A (en) * 2013-02-27 2014-09-08 Denki Kagaku Kogyo Kk Boron nitride molding, and production method and application of the same

Cited By (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109791918A (en) * 2016-08-02 2019-05-21 电化株式会社 The radiator structure of circuit device
KR102382407B1 (en) 2016-08-02 2022-04-01 덴카 주식회사 Heat dissipation structure of electric circuit device
KR20190046828A (en) * 2016-08-02 2019-05-07 덴카 주식회사 Heat dissipation structure of electric circuit device
CN109791918B (en) * 2016-08-02 2023-09-29 电化株式会社 Heat radiation structure of circuit device
KR102268410B1 (en) 2016-12-28 2021-06-22 타츠타 전선 주식회사 Heat dissipation substrate, heat dissipation circuit structure, and manufacturing method thereof
KR20190096940A (en) * 2016-12-28 2019-08-20 타츠타 전선 주식회사 Heat dissipation board, heat dissipation circuit assembly, and manufacturing method thereof
KR20200090166A (en) 2017-12-05 2020-07-28 덴카 주식회사 Nitride-based ceramics resin composite
US11492299B2 (en) 2017-12-05 2022-11-08 Denka Company Limited Nitride ceramic resin composite body
WO2019111978A1 (en) 2017-12-05 2019-06-13 デンカ株式会社 Nitride ceramic resin composite body
WO2019172345A1 (en) * 2018-03-07 2019-09-12 デンカ株式会社 Temporarily bonded body composed of ceramic resin complex and metal plate and method for manufacturing same, and transporter comprising said temporarily bonded body and delivery method using same
US20200406586A1 (en) * 2018-03-07 2020-12-31 Denka Company Limited Temporary bonding body of ceramic resin composite and metal plate, method for producing same, object to be transported including the temporary bonding body, and method for transporting same
US12083784B2 (en) * 2018-03-07 2024-09-10 Denka Company Limited Temporary bonding body of ceramic resin composite and metal plate, method for producing same, object to be transported including the temporary bonding body, and method for transporting same
JP7258845B2 (en) 2018-03-07 2023-04-17 デンカ株式会社 TEMPORARY BOND OF CERAMIC-RESIN COMPOSITE AND METAL PLATE, MANUFACTURING METHOD THEREOF, TRANSPORT BODY INCLUDING SAME TEMPORARY BOND, AND TRANSPORT METHOD OF THE SAME
JPWO2019172345A1 (en) * 2018-03-07 2021-03-11 デンカ株式会社 Temporary adhesive between ceramic resin composite and metal plate, its manufacturing method, transporter including the temporary adhesive, and its transport method
CN112425271A (en) * 2018-07-18 2021-02-26 三菱综合材料株式会社 Metal base substrate
CN113597672B (en) * 2019-03-29 2024-06-11 电化株式会社 Composite, method for producing composite, laminate, and method for producing laminate
CN113597672A (en) * 2019-03-29 2021-11-02 电化株式会社 Composite, method for producing composite, laminate, and method for producing laminate
US11912011B2 (en) 2019-10-23 2024-02-27 Denka Company Limited Composite sheet and method for manufacturing same, and laminate and method for manufacturing same
WO2021079918A1 (en) 2019-10-23 2021-04-29 デンカ株式会社 Composite sheet and method for manufacturing same, and laminate and method for manufacturing same
US20220410530A1 (en) * 2019-10-23 2022-12-29 Denka Company Limited Composite sheet and method for manufacturing same, and laminate and method for manufacturing same
JP7317737B2 (en) 2020-01-24 2023-07-31 デンカ株式会社 Hexagonal boron nitride powder and raw material composition for sintered body
JP2021116202A (en) * 2020-01-24 2021-08-10 デンカ株式会社 Hexagonal boron nitride powder, and sintered body raw material composition
JP7566883B2 (en) 2020-03-31 2024-10-15 デンカ株式会社 Boron nitride sintered body, composite body, their manufacturing method, and heat dissipation member
WO2021200969A1 (en) * 2020-03-31 2021-10-07 デンカ株式会社 Boron nitride sintered body, composite, methods for producing same, and heat dissipation member
WO2021200966A1 (en) * 2020-03-31 2021-10-07 デンカ株式会社 Boron nitride sintered body, complex, and heat dissipation member
CN115335348B (en) * 2020-03-31 2023-12-19 电化株式会社 Boron nitride sintered body, composite body, method for producing same, and heat radiation member
WO2021200971A1 (en) * 2020-03-31 2021-10-07 デンカ株式会社 Boron nitride sintered body, complex, method for manufacturing these, and heat dissipation member
CN115335348A (en) * 2020-03-31 2022-11-11 电化株式会社 Boron nitride sintered body, composite body, method for producing same, and heat-dissipating member
WO2021241700A1 (en) * 2020-05-29 2021-12-02 デンカ株式会社 Cured sheet and method for producing same
WO2021241699A1 (en) * 2020-05-29 2021-12-02 デンカ株式会社 Cured sheet and method for producing same
WO2022071236A1 (en) 2020-09-29 2022-04-07 デンカ株式会社 Composite sheet and method for manufacturing same, and layered body and method for manufacturing same
JP7080427B1 (en) * 2020-09-29 2022-06-03 デンカ株式会社 Evaluation method for estimating the adhesiveness of composite sheets, laminated bodies, and composite sheets
CN116134005A (en) * 2020-09-29 2023-05-16 电化株式会社 Method for evaluating adhesion reliability and heat dissipation performance of composite body, and composite body
WO2022071294A1 (en) 2020-09-29 2022-04-07 デンカ株式会社 Method for evaluating adhesion reliability and heat radiation performance of composite, and composite
WO2022071293A1 (en) 2020-09-29 2022-04-07 デンカ株式会社 Composite sheet and method for producing same, and multilayer body and method for producing same, and power device
JPWO2022071294A1 (en) * 2020-09-29 2022-04-07
WO2022071247A1 (en) 2020-09-29 2022-04-07 デンカ株式会社 Composite sheet and manufacturing method thereof, and laminate and manufacturing method thereof
JP7257592B2 (en) 2020-09-29 2023-04-13 デンカ株式会社 Method for evaluating adhesion reliability and heat dissipation performance of composite
WO2022071304A1 (en) 2020-09-29 2022-04-07 デンカ株式会社 Composite sheet, laminate, and evaluation method for estimating adhesiveness of composite sheet
EP4206165A4 (en) * 2020-09-29 2024-02-14 Denka Company Limited Method for evaluating adhesion reliability and heat radiation performance of composite, and composite
WO2022210089A1 (en) * 2021-03-30 2022-10-06 デンカ株式会社 Circuit board and method of production therefor
JP7374391B1 (en) * 2022-02-28 2023-11-06 デンカ株式会社 Composite sheets and laminates
WO2023162705A1 (en) * 2022-02-28 2023-08-31 デンカ株式会社 Composite sheet and laminate
WO2024018637A1 (en) * 2022-07-22 2024-01-25 株式会社レゾナック Thermally conductive sheet, heat dissipation device, and method for producing thermally conductive sheet
WO2024048206A1 (en) * 2022-08-30 2024-03-07 デンカ株式会社 Laminate, method for producing laminate, laminated substrate, and method for producing laminated substrate
WO2024134904A1 (en) * 2022-12-23 2024-06-27 株式会社レゾナック Thermally conductive sheet, heat dissipation device, and method for producing thermally conductive sheet

Also Published As

Publication number Publication date
JP6189822B2 (en) 2017-08-30

Similar Documents

Publication Publication Date Title
JP6189822B2 (en) Boron nitride resin composite circuit board
JP6313766B2 (en) Boron nitride-resin composite circuit board, boron nitride-resin composite heat sink integrated circuit board
KR102306153B1 (en) ceramic resin composite
US11034623B2 (en) Thermal conductive member and heat dissipation structure including the same
JP7145876B2 (en) Nitride ceramic resin composite
JP6170486B2 (en) Ceramic resin composite circuit board and power semiconductor module using the same
JP6351585B2 (en) Resin-impregnated boron nitride sintered body and use thereof
JP6262522B2 (en) Resin-impregnated boron nitride sintered body and use thereof
JP6023474B2 (en) Thermally conductive insulating sheet, metal base substrate and circuit board, and manufacturing method thereof
JP2012253167A (en) Thermally conductive insulation sheet, metal base substrate and circuit board
JP6285155B2 (en) Heat dissipation member and its use
KR102172294B1 (en) Epoxy resin composite and printed circuit board comprising the same
JP2023510581A (en) thermosetting thermally conductive dielectric composite
WO2023190236A1 (en) Composite and production method therefor, and assembly, circuit substrate, and power module
JP7165844B2 (en) Composite sheet and its manufacturing method, and laminate and its manufacturing method
JP7176159B2 (en) Composite sheet and its manufacturing method, and laminate and its manufacturing method
JP2008187107A (en) Wiring board
JP2014175611A (en) Laminate for circuit board, circuit board, and process of manufacturing laminate for circuit board

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160916

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170629

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170725

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170803

R150 Certificate of patent or registration of utility model

Ref document number: 6189822

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250