JP2016102446A - Exhaust heat recovery device - Google Patents

Exhaust heat recovery device Download PDF

Info

Publication number
JP2016102446A
JP2016102446A JP2014241032A JP2014241032A JP2016102446A JP 2016102446 A JP2016102446 A JP 2016102446A JP 2014241032 A JP2014241032 A JP 2014241032A JP 2014241032 A JP2014241032 A JP 2014241032A JP 2016102446 A JP2016102446 A JP 2016102446A
Authority
JP
Japan
Prior art keywords
exhaust
flow path
heat recovery
flow passage
passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014241032A
Other languages
Japanese (ja)
Other versions
JP6358938B2 (en
Inventor
敏博 柴田
Toshihiro Shibata
敏博 柴田
太田 真志
Shinji Ota
真志 太田
孝司 加藤
Koji Kato
孝司 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sango Co Ltd
Original Assignee
Sango Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sango Co Ltd filed Critical Sango Co Ltd
Priority to JP2014241032A priority Critical patent/JP6358938B2/en
Publication of JP2016102446A publication Critical patent/JP2016102446A/en
Application granted granted Critical
Publication of JP6358938B2 publication Critical patent/JP6358938B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Exhaust Silencers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an exhaust heat recovery device enabling selection of each flow passage and flow rate control and capable of attaining efficient heat recovery and thermoelectric generation, by a simple flow passage constitution and a single control valve.SOLUTION: An exhaust heat recovery device of an internal combustion engine includes a main exhaust flow passage 2 introducing exhaust gas, a detour flow passage 3 branching from the main exhaust flow passage 2 and made confluent at a confluence part 5, and a valve device 10 opening/closing the main exhaust flow passage 2 and the detour flow passage 3 at the confluence part 5. In the detour flow passage 3, a heat exchanger 7 performing heat exchange with exhaust gas and a thermoelectric generation device 6 are included. The valve device 10 is a single valve member that consecutively the area of one flow passage of the main exhaust flow passage 2 and the detour flow passage 3 in a state of closing the other flow passage.SELECTED DRAWING: Figure 1

Description

本発明は、自動車の内燃機関等の排気熱回収装置に関する。   The present invention relates to an exhaust heat recovery device for an internal combustion engine of an automobile.

従来、内燃機関で動く自動車の総合的な熱効率の向上のために、内燃機関の排気熱を熱交換器で回収し冷却媒体を加熱して暖機促進や暖房性能向上に供する排気熱回収装置を、排気管に介装することが多用されている。また、排気熱を直接電気へ変換し、補機駆動やバッテリー充電に供する熱電発電装置を排気管に介装することも提案されている。そこで、排気熱の更なる有効活用の観点から、熱交換器と熱電発電装置を両方とも排気管に介装する統合型の排気熱回収装置も考え得るが、互いに必要とされる運転領域が異なること、あるいは、両方とも必要としない運転領域(バイパス域)も存在することから、各装置への排気ガスおよび冷却媒体の供給を上手く制御する必要があり、その実現は困難となっている。   Conventionally, in order to improve the overall thermal efficiency of an automobile running on an internal combustion engine, an exhaust heat recovery device that collects exhaust heat of the internal combustion engine with a heat exchanger and heats the cooling medium to promote warm-up and improve heating performance It is often used to interpose the exhaust pipe. In addition, it has also been proposed that a thermoelectric power generator for directly converting exhaust heat into electricity and driving an auxiliary machine or charging a battery is provided in the exhaust pipe. Therefore, from the viewpoint of further effective use of exhaust heat, an integrated exhaust heat recovery device in which both the heat exchanger and the thermoelectric generator are interposed in the exhaust pipe can be considered, but the operation areas required for each other are different. However, since there is an operation region (bypass region) that does not require both, it is necessary to well control the supply of exhaust gas and cooling medium to each device, which is difficult to realize.

理想的には、(α)熱電発電装置を介装する流路、(β)熱交換器を介装する流路、(γ)(α)(β)とも迂回して流れるバイパス流路、の三流路を独立して備え、三流路を選択的に切り替え得るとともに選択した複数流路における流量割合を連続的に分配制御できるような排気熱回収装置があれば好適であるが、そのような複数の独立流路および切り替えバルブを具備する大型システムは制御が困難となる上に、重量やスペースにおいて車両搭載上も著しく制限を受けるため、実現性が乏しい。   Ideally, (α) a flow path interposing a thermoelectric generator, (β) a flow path interposing a heat exchanger, and (γ), (α), and a bypass flow path that bypasses both (β) It is preferable to have an exhaust heat recovery device that is provided with three flow paths independently and that can selectively switch the three flow paths and that can continuously distribute and control the flow rate ratio in the selected multiple flow paths. The large system having the independent flow path and the switching valve is difficult to control, and the vehicle mounting in terms of weight and space is remarkably limited.

そのような問題の一解決策として特許文献1においては、単一の筐体内に熱交換器と熱電発電装置(熱電発電素子)と板状バルブ体(開閉弁)とを備え、筐体内の排気ガスの流れを板状バルブ体の姿勢によって向きを変えることで、熱交換器と熱電発電素子への排気ガスの当たり方を変えて、疑似的に上記(α)(β)(γ)のような各流路を現出させる排気熱回収装置が開示されている。尚、特許文献2には、「内燃機関に接続される排気流路を構成する少なくとも二つの流路を備えた内燃機関の排気装置において、単一の弁部材によって流路切換を行うと共に各々の流路面積調整を適切に行い得る排気装置」が開示されている(特許文献2の段落〔0014〕に記載)。   As a solution to such a problem, in Patent Document 1, a heat exchanger, a thermoelectric power generation device (thermoelectric power generation element), and a plate valve body (open / close valve) are provided in a single housing, and the exhaust in the housing is exhausted. By changing the direction of the gas flow according to the posture of the plate-like valve body, the way the exhaust gas hits the heat exchanger and the thermoelectric power generation element is changed, and the above (α), (β), and (γ) are simulated. In addition, an exhaust heat recovery device that makes each of the flow paths appear is disclosed. Patent Document 2 states that “in an exhaust system of an internal combustion engine having at least two flow paths constituting an exhaust flow path connected to the internal combustion engine, the flow path is switched by a single valve member and each An “exhaust device capable of appropriately adjusting the flow path area” is disclosed (described in paragraph [0014] of Patent Document 2).

特許第3767509号公報Japanese Patent No. 3767509 特許第4486963号公報Japanese Patent No. 4486963

しかしながら、特許文献1に開示される排気熱回収装置においては、上述の(α)(β)(γ)のような独立した流路を確保できないとともに、各流路におけるガス流量分配を大雑把にしか調節できないため、要求を満たせていない。   However, in the exhaust heat recovery apparatus disclosed in Patent Document 1, an independent flow path such as the above (α) (β) (γ) cannot be secured, and gas flow distribution in each flow path is only roughly. The request cannot be met because it cannot be adjusted.

実際の車両運転状態においては、内燃機関の高負荷運転時には、熱交換器と熱電発電素子には排気ガスを接触させることなく主排気流路(バイパス流路)にだけ流すことで、内燃機関の出力性能を確保するとともに過剰な熱回収および熱電発電を回避したい。しかしながら特許文献1の排熱回収装置によっては、内燃機関の高負荷時においても熱交換器と熱電発電素子に高温大流量のガスが当たってしまうため、熱交換器においては冷却水の沸騰が、熱電発電装置においては熱電発電素子への熱害が懸念される。もちろん、流路抵抗を最小にして内燃機関の出力性能を稼ぎたいとの本来目的も達成できない。   In an actual vehicle operation state, when the internal combustion engine is operated at a high load, the exhaust gas is not brought into contact with the heat exchanger and the thermoelectric power generation element, but is allowed to flow only in the main exhaust passage (bypass passage). We want to ensure output performance and avoid excessive heat recovery and thermoelectric generation. However, depending on the exhaust heat recovery device of Patent Document 1, since a high-temperature and large-flow gas hits the heat exchanger and the thermoelectric power generation element even at a high load of the internal combustion engine, boiling of the cooling water occurs in the heat exchanger. In the thermoelectric generator, there is a concern about heat damage to the thermoelectric generator. Of course, the original purpose of achieving the output performance of the internal combustion engine by minimizing the channel resistance cannot be achieved.

また、内燃機関の低負荷乃至中負荷運転領域においては、熱回収および熱電発電に必要な熱量分だけの排気ガスを両者へ接触させるとともに、それ以上の不要な排気ガスは主排気流路へ流すというような各流路における流量調節(分配制御)が必要であるところ、特許文献1の排熱回収装置のような単一空間内における流向制御では実現が不可能である。さらに、主排気流路を内燃機関の運転状態によって絞り、消音要件を優先させるような制御も実現できない。   Further, in the low load to medium load operation region of the internal combustion engine, exhaust gas corresponding to the amount of heat necessary for heat recovery and thermoelectric power generation is brought into contact with both, and unnecessary exhaust gas beyond that flows to the main exhaust flow path. Such flow rate adjustment (distribution control) in each flow path is necessary, but cannot be realized by flow direction control in a single space like the exhaust heat recovery device of Patent Document 1. Furthermore, it is not possible to realize control in which the main exhaust flow path is throttled according to the operating state of the internal combustion engine to prioritize the silencing requirement.

そこで本発明は、簡略な流路構成及び単一の制御弁によって、各流路の選択とともに流量制御を可能とし、効率的な熱回収と熱電発電を実現し得る排気熱回収装置を提供することを課題とする。   Therefore, the present invention provides an exhaust heat recovery device that enables flow control as well as selection of each flow path by a simple flow path configuration and a single control valve, and can realize efficient heat recovery and thermoelectric generation. Is an issue.

上記の課題を達成するため、本発明に係る排気熱回収装置は、内燃機関の排気ガスを導入する主排気流路と、該主排気流路から分岐し当該主排気流路と合流部において合流する迂回流路と、前記合流部において前記主排気流路と前記迂回流路を開閉する弁装置とを備え、前記迂回流路には前記迂回流路内の排気ガスと熱交換をする熱交換器及び熱電発電装置を具備し、前記弁装置は前記主排気流路及び前記迂回流路の一方を閉塞した状態で他方の流路面積を連続的に設定する単一の弁部材で構成することとしたものである。   In order to achieve the above object, an exhaust heat recovery apparatus according to the present invention includes a main exhaust passage for introducing exhaust gas of an internal combustion engine, a branch from the main exhaust passage, and a junction at the junction with the main exhaust passage. And a valve device that opens and closes the main exhaust passage and the bypass passage at the junction, and the bypass passage has heat exchange for exchanging heat with the exhaust gas in the bypass passage. And the valve device is constituted by a single valve member that continuously sets the other flow passage area while closing one of the main exhaust flow passage and the bypass flow passage. It is what.

上記の排気熱回収装置において、前記単一の弁部材を前記内燃機関の運転状態に応じて駆動し、前記主排気流路及び前記迂回流路の流路切換を行うと共に、前記主排気流路及び前記迂回流路の各々の流路面積調整を行う制御装置を備えたものとするとよい。   In the exhaust heat recovery apparatus, the single valve member is driven in accordance with an operating state of the internal combustion engine, and the main exhaust passage and the bypass passage are switched, and the main exhaust passage And it is good to provide the control apparatus which adjusts each channel area of the said bypass channel.

また、前記熱交換器及び前記熱電装置に冷却媒体流路を具備し、前記内燃機関の冷却媒体を導入して熱交換を行うこととするとよい。   The heat exchanger and the thermoelectric device may include a cooling medium flow path, and heat exchange may be performed by introducing the cooling medium of the internal combustion engine.

本発明は上述のように構成されているので、以下の効果を奏する。即ち、本発明の排気熱回収装置においては、主排気流路及び迂回流路の一方を完全に閉塞した状態で他方流路の面積を連続的に設定する弁装置を合流部に備えるとともに、迂回流路に熱交換器と熱電素子を前後して配備したので、内燃機関の高負荷時には熱交換器と熱電発電素子には排気ガスを接触させることなく主排気流路にだけ流すことで内燃機関の出力性能を確保できるとともに、過剰な熱回収および熱電発電を回避できる。また、主排気流路を閉塞しながら迂回流路の流路面積を任意に設定できるので、内燃機関の運転状態に応じ熱回収量及び熱電発電量を設定できる。さらに、迂回流路と主排気流路へ同時に流しながらその配分も任意に設定できるので、内燃機関の運転状態に応じた要求状態に対応可能となる。   Since this invention is comprised as mentioned above, there exist the following effects. That is, in the exhaust heat recovery apparatus of the present invention, the merging portion is provided with a valve device that continuously sets the area of the other flow path in a state where one of the main exhaust flow path and the detour flow path is completely closed. Since the heat exchanger and the thermoelectric element are arranged in the flow path before and after the internal combustion engine, when the internal combustion engine is at a high load, the exhaust gas does not contact the heat exchanger and the thermoelectric power generation element without flowing into the internal combustion engine. Output performance can be secured, and excessive heat recovery and thermoelectric generation can be avoided. Further, since the flow passage area of the bypass flow passage can be arbitrarily set while closing the main exhaust flow passage, the heat recovery amount and the thermoelectric power generation amount can be set according to the operation state of the internal combustion engine. Furthermore, since the distribution can be arbitrarily set while simultaneously flowing to the bypass flow path and the main exhaust flow path, it becomes possible to cope with a request state according to the operation state of the internal combustion engine.

上記の排気熱回収装置において、単一の弁部材を内燃機関の運転状態に応じて駆動し、主排気流路及び迂回流路の流路切換を行うと共に、主排気流路及び迂回流路の各々の流路面積調整を行う制御装置を備えたものとすれば、熱回収及び熱電発電要求、内燃機関の出力性能要求、流路絞りによる消音要求等において、時々刻々の優先度に応じたトレードオフ制御が可能となる   In the exhaust heat recovery apparatus, the single valve member is driven in accordance with the operating state of the internal combustion engine, and the main exhaust passage and the bypass passage are switched, and the main exhaust passage and the bypass passage are switched. If a control device that adjusts the flow area of each channel is provided, a trade according to the priority of every moment in heat recovery and thermoelectric generation requirements, output performance requirements of internal combustion engines, noise reduction requirements by flow passage restriction, etc. Off control is possible

本発明の一実施形態に係る排気熱回収装置の暖機状態を示す断面図である。It is sectional drawing which shows the warming-up state of the exhaust heat recovery apparatus which concerns on one Embodiment of this invention. 本発明の一実施形態に係る排気熱回収装置の暖機後の通常運転状態を示す断面図である。It is sectional drawing which shows the normal driving | running state after warming-up of the exhaust heat recovery apparatus which concerns on one Embodiment of this invention. 本発明の一実施形態に係る排気熱回収装置の熱回収および熱電発電状態を示す断面図である。It is sectional drawing which shows the heat recovery of the exhaust heat recovery apparatus which concerns on one Embodiment of this invention, and a thermoelectric power generation state. 本発明の一実施形態に係る排気熱回収装置の消音要件優先状態を示す断面図である。It is sectional drawing which shows the silencing requirement priority state of the exhaust heat recovery apparatus which concerns on one Embodiment of this invention. 本発明の一実施形態に係る排気熱回収装置のバイパス状態を示す断面図である。It is sectional drawing which shows the bypass state of the exhaust heat recovery apparatus which concerns on one Embodiment of this invention. 本発明の他の実施形態に係る排気熱回収装置の暖機状態を示す断面図である。It is sectional drawing which shows the warming-up state of the exhaust heat recovery apparatus which concerns on other embodiment of this invention. 本発明の他の実施形態に係る排気熱回収装置の通常運転状態を示す断面図である。It is sectional drawing which shows the normal driving | running state of the exhaust heat recovery apparatus which concerns on other embodiment of this invention. 本発明の他の実施形態に係る排気熱回収装置のバイパス状態を示す断面図である。It is sectional drawing which shows the bypass state of the exhaust heat recovery apparatus which concerns on other embodiment of this invention. 本発明の更に他の実施形態に係る排気熱回収装置の暖機状態を示す断面図である。It is sectional drawing which shows the warming-up state of the exhaust heat recovery apparatus which concerns on further another embodiment of this invention. 本発明の更に他の実施形態に係る排気熱回収装置の通常運転状態を示す断面図である。It is sectional drawing which shows the normal driving | running state of the exhaust heat recovery apparatus which concerns on further another embodiment of this invention. 本発明の更に他の実施形態に係る排気熱回収装置の通常運転状態を示す断面図である。It is sectional drawing which shows the normal driving | running state of the exhaust heat recovery apparatus which concerns on further another embodiment of this invention.

以下、本発明の望ましい実施形態について図面を参照して説明する。図1乃至図5は本発明の一実施形態に係る排気熱回収装置を示すものである。図示しない内燃機関に接続された上流側排気管EP1と車両後方へ延びる下流側排気管EP2との間に、排気熱回収装置1が接続されている。これらの接続方法については、本実施形態のように接続部J1及びJ2において溶接等で直接接続することとしてもよいし、フランジや継手装置を介して着脱自在に接続することとしてもよい。尚、図面の左方が排気ガスの上流側で、図示しない内燃機関より触媒コンバータ等を経て、排気ガスが排気管EP1内を流下する。そして、図の右方が排気ガスの下流側となる。   Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. 1 to 5 show an exhaust heat recovery apparatus according to an embodiment of the present invention. An exhaust heat recovery device 1 is connected between an upstream exhaust pipe EP1 connected to an internal combustion engine (not shown) and a downstream exhaust pipe EP2 extending rearward of the vehicle. About these connection methods, it is good also as connecting directly by welding etc. in the connection parts J1 and J2 like this embodiment, and good also as connecting detachably via a flange or a coupling apparatus. The left side of the drawing is the upstream side of the exhaust gas, and the exhaust gas flows down from the internal combustion engine (not shown) through the catalytic converter and the like through the exhaust pipe EP1. The right side of the figure is the downstream side of the exhaust gas.

排気管EP1に接続する分岐部4において主排気流路2と迂回流路3とに分岐しており、両流路は下流の合流部5において合流する。合流部5内には、両流路の流れを選択し、かつ流量配分を制御し得る弁装置である単一の弁部材10が配されている。迂回流路3には、上流側に熱電発電装置6が、下流側に熱交換器7が、直列状に介装されている。即ち、本発明における排気熱回収装置は全ての実施形態ともに、熱電発電装置6及び熱交換器7を介装する迂回流路と両方とも介装しない主排気流路との二つの流路で構成される。   A branch section 4 connected to the exhaust pipe EP1 branches into a main exhaust flow path 2 and a bypass flow path 3, and both flow paths merge at a downstream junction section 5. A single valve member 10, which is a valve device that can select the flow of both flow paths and control the flow rate distribution, is disposed in the merge portion 5. In the detour channel 3, a thermoelectric generator 6 is interposed upstream and a heat exchanger 7 is interposed in series downstream. That is, the exhaust heat recovery apparatus according to the present invention is composed of two flow paths, a bypass flow path that interposes the thermoelectric generator 6 and the heat exchanger 7 and a main exhaust flow path that does not interpose both, in all the embodiments. Is done.

熱電発電装置6は、複数の熱電発電素子6aで熱交換フィン6bを挟持するとともに、熱電発電素子6aの外面には冷却媒体通路6cが設けられた構造である。迂回流路3を流れる排気ガスは熱交換フィン6b内を通過する際に熱交換し、その熱が熱電発電素子6aの内側面に伝達される。一方、熱電発電素子6aの外側面は冷却媒体流路6c内を流れる冷却媒体とも熱交換するが、ここにおいて、排気ガスからの伝熱と冷却媒体への伝熱の温度差ΔTが大きいほど、その発電量が大きくなる特性がある。熱交換器7は、複数の冷却フィン7aと複数の冷却媒体流路7bとが交互に積層されて熱交換器を形成しており、冷却フィン7aを通過する排気ガスが冷却媒体と熱交換する。尚、冷却媒体としては、内燃機関を冷却するための車両の冷却システムにて用いられるクーラント液をそのまま導入するのが好適であるが、その他の冷却媒体でも構わない。熱電発電素子としては、ゼーベック効果を利用したものが一般的であるが、上記の熱電発電素子6aは、それに限らず温度差によって発電する素子であればどのようなものでもよい。また、排気ガスは熱交換フィン6b内を通過するに従って温度が低下するので、温度変化に応じて上流側から下流側に向かって対応温度が異なる熱電発電素子を配置すれば、更に効率的な発電が可能となる。   The thermoelectric generator 6 has a structure in which a heat exchange fin 6b is sandwiched between a plurality of thermoelectric generators 6a, and a cooling medium passage 6c is provided on the outer surface of the thermoelectric generator 6a. The exhaust gas flowing through the bypass channel 3 exchanges heat when passing through the heat exchange fins 6b, and the heat is transmitted to the inner surface of the thermoelectric generator 6a. On the other hand, the outer surface of the thermoelectric generator 6a also exchanges heat with the cooling medium flowing in the cooling medium flow path 6c. Here, as the temperature difference ΔT between the heat transfer from the exhaust gas and the heat transfer to the cooling medium increases, The power generation amount is large. In the heat exchanger 7, a plurality of cooling fins 7a and a plurality of cooling medium flow paths 7b are alternately stacked to form a heat exchanger, and the exhaust gas passing through the cooling fins 7a exchanges heat with the cooling medium. . As the cooling medium, it is preferable to introduce the coolant liquid used in the vehicle cooling system for cooling the internal combustion engine as it is, but other cooling media may be used. As a thermoelectric power generation element, one using the Seebeck effect is generally used, but the thermoelectric power generation element 6a is not limited to this, and any element may be used as long as it generates power by a temperature difference. Further, since the temperature of the exhaust gas decreases as it passes through the heat exchange fins 6b, more efficient power generation can be achieved by arranging thermoelectric power generation elements having different corresponding temperatures from the upstream side to the downstream side according to the temperature change. Is possible.

熱電発電装置6の冷却媒体流路6cと熱交換器7の冷却媒体流路7bとは連通管8を介して連通されている。導入管6aから冷却媒体流路6cに入った冷却媒体は熱交換を経て連通管8へ排出され、連通管8を通って冷却媒体流路7bへ流入し、更に熱交換を経て導出管7cから排出されて、図示しない車両の冷却水流路へ供される。尚、冷却媒体を流す方向、すなわち冷却媒体流路6cと熱交換器7の冷却媒体流路7bのどちらへ先に冷却媒体を通すかについては、本実施形態に限らず適宜設定すればよいが、本実施形態のように、温度差ΔTを大きく確保するため低い温度の冷却媒体を導入したい熱電発電装置6へ先に通し、熱電発電装置6によって加熱された後の冷却媒体が、より多くの熱を回収したい熱交換器7へ流入するという順序が、合理的である。   The cooling medium flow path 6 c of the thermoelectric generator 6 and the cooling medium flow path 7 b of the heat exchanger 7 are communicated with each other via a communication pipe 8. The cooling medium entering the cooling medium flow path 6c from the introduction pipe 6a is discharged to the communication pipe 8 through heat exchange, flows into the cooling medium flow path 7b through the communication pipe 8, and further from the outlet pipe 7c through heat exchange. It is discharged and supplied to a cooling water flow path of a vehicle (not shown). Note that the direction in which the cooling medium flows, that is, which of the cooling medium flow path 6c and the cooling medium flow path 7b of the heat exchanger 7 first passes the cooling medium is not limited to this embodiment, and may be set as appropriate. As in this embodiment, in order to ensure a large temperature difference ΔT, a low-temperature cooling medium is first passed through the thermoelectric generator 6 where it is desired to introduce the cooling medium. The order of flowing heat into the heat exchanger 7 where it is desired to recover is reasonable.

弁部材10は断面扇形状であり、その要部分をピボット軸9により揺動自在に軸支され、弁部材10の外周壁面が迂回流路3の内壁面および主排気流路の内壁面に摺動自在に配設されている。弁部材10はアクチュエータACTに連結され、このアクチュエータACTを介して、電子制御ユニットECUにより内燃機関の運転状態に応じて駆動制御される。アクチュエータACTは、例えばステップモータ(図示せず)を有し、これが電子制御ユニットECUによって精密に回転駆動あるいは保持固定される。電子制御ユニットECUでは、各種センサ(酸素センサ、圧力センサ、水温センサ、回転センサ、アクセル開度センサ等)の検出信号等に基づき、内燃機関の運転状況、運転者のアクセルペダル等の操作状況、更には、車両姿勢や制動状況が監視され、所定のサイクルで、その時点における弁部材10の最適な位置が演算され、その位置まで回転し、あるいはその位置で停止するように、上記ステップモータの駆動信号が出力される。而して、上記のアクチュエータACT及び電子制御ユニットECUによって制御装置が構成され、主排気流路2と迂回流路3との間の流路切換(各流路の開閉)が行われると共に、主排気流路2および迂回流路3の各々の流路面積調整が行われる。尚、電子制御ユニットECUは、本システム専用に設置しても良いし、車両や内燃機関の電子制御ユニットに統合しても構わない。また、弁部材10の具体的な設定および駆動の詳細については、前掲の特許文献2に開示された弁部材を参考にすることができる。   The valve member 10 is fan-shaped in cross section, and its main part is pivotally supported by a pivot shaft 9 so that the outer peripheral wall surface of the valve member 10 slides on the inner wall surface of the detour channel 3 and the inner wall surface of the main exhaust channel. It is arranged freely. The valve member 10 is connected to an actuator ACT, and is driven and controlled according to the operating state of the internal combustion engine by the electronic control unit ECU via the actuator ACT. The actuator ACT has, for example, a step motor (not shown), which is precisely rotated or held and fixed by the electronic control unit ECU. In the electronic control unit ECU, based on detection signals of various sensors (oxygen sensor, pressure sensor, water temperature sensor, rotation sensor, accelerator opening sensor, etc.), the operating status of the internal combustion engine, the operating status of the driver's accelerator pedal, In addition, the vehicle posture and the braking situation are monitored, and in a predetermined cycle, the optimum position of the valve member 10 at that time is calculated and rotated to that position or stopped at that position. A drive signal is output. Thus, a control device is configured by the actuator ACT and the electronic control unit ECU, and the flow switching between the main exhaust flow path 2 and the bypass flow path 3 (opening and closing of each flow path) is performed. The flow area adjustment of each of the exhaust flow path 2 and the bypass flow path 3 is performed. The electronic control unit ECU may be installed exclusively for this system, or may be integrated with the electronic control unit of a vehicle or an internal combustion engine. In addition, regarding the specific setting and driving details of the valve member 10, the valve member disclosed in the above-mentioned Patent Document 2 can be referred to.

図1においては、主排気流路2が弁部材10によって全閉状態とされ、排気流路は迂回流路3側へ切り替えられる。従って、排気ガスaのすべてが迂回流路3に導入され、熱電発電装置6と熱交換器7にて熱交換された後、合流部5において主排気流路2へ排気ガスbとして排出される。更に、本実施形態においては、主排気流路2が全閉状態に維持された状態で、弁部材10の揺動駆動によって、出力要件及び消音要件に適合するように迂回流路3の流路面積が逐次調整される。例えば、弁部材10と迂回流路3との隙間を流れる排気ガスbの量が調整されると、弁部材10の「絞り機能」により「流量調節機能」が発揮される。尚、弁部材10は無段階に駆動し得るので、主排気流路2を全閉状態に維持した状態で、迂回流路3の流路面積を任意に調整することができる。   In FIG. 1, the main exhaust passage 2 is fully closed by the valve member 10, and the exhaust passage is switched to the bypass passage 3 side. Therefore, all of the exhaust gas a is introduced into the bypass flow path 3, and heat exchange is performed between the thermoelectric generator 6 and the heat exchanger 7, and then exhausted as the exhaust gas b to the main exhaust flow path 2 at the junction 5. . Further, in the present embodiment, the flow path of the bypass flow path 3 is adapted to meet the output requirements and the silencing requirements by the swing drive of the valve member 10 with the main exhaust flow path 2 maintained in the fully closed state. The area is adjusted sequentially. For example, when the amount of the exhaust gas b flowing through the gap between the valve member 10 and the bypass flow path 3 is adjusted, the “flow adjustment function” is exhibited by the “throttle function” of the valve member 10. Since the valve member 10 can be driven steplessly, the flow passage area of the bypass flow passage 3 can be arbitrarily adjusted with the main exhaust flow passage 2 maintained in a fully closed state.

図1の態様は、内燃機関の始動直後で内燃機関および冷却媒体が温まっていない冷間時、所謂暖機状態を示すもので、冷却媒体が一定温度に達するまでの暖機期間においては、早期に冷却媒体温度を向上させる要件が最優先される。従って、熱交換器7における熱回収が優先されるため、前述のように主排気流路2が、凹部11内に位置する弁部材10によって全閉状態とされ、排気流路は迂回流路3側へ切り替えられている。そして、排気ガスのすべてが迂回流路3に導入され、熱電発電装置6と熱交換器7にて熱交換された後、合流部5において主排気流路2へ排出される。この時、熱電発電装置6にて熱交換された排気ガスが熱交換器7へ流入することになるが、熱電発電素子自体は低熱伝導率のため熱回収量は微々たるものであり、悪影響はない。尚、暖機過程においては、弁部材10によって主排気流路2が全閉となるのが好ましいが、排気ガスの完全遮断が必須ではないので、主排気流路2の排気流量が必要なだけ絞られていれば、必ずしも全閉状態とする必要はなく、若干開いた状態でも構わない。   The mode of FIG. 1 shows a so-called warm-up state when the internal combustion engine and the cooling medium are not warmed immediately after the internal combustion engine is started. In the warm-up period until the cooling medium reaches a constant temperature, The requirement to improve the cooling medium temperature is given top priority. Accordingly, priority is given to heat recovery in the heat exchanger 7, so that the main exhaust passage 2 is fully closed by the valve member 10 located in the recess 11 as described above, and the exhaust passage is the bypass passage 3. It has been switched to the side. Then, all of the exhaust gas is introduced into the bypass flow path 3, heat exchanged by the thermoelectric generator 6 and the heat exchanger 7, and then discharged to the main exhaust flow path 2 at the junction 5. At this time, the exhaust gas heat-exchanged in the thermoelectric generator 6 flows into the heat exchanger 7, but the thermoelectric generator element itself has a low heat conductivity, so the heat recovery amount is very small, and the adverse effect is Absent. In the warm-up process, it is preferable that the main exhaust passage 2 is fully closed by the valve member 10, but since it is not essential to completely shut off the exhaust gas, only the exhaust flow rate of the main exhaust passage 2 is necessary. If it is narrowed down, it is not necessarily required to be in the fully closed state, and it may be in a slightly opened state.

図2の態様は、暖機が完了後の通常運転状態を示すものであり、内燃機関の中回転乃至高回転時の状態において適度な熱電発電および熱回収を実施するものである。この状態においては、弁部材10は主排気流路2と迂回流路3の両方に排気ガスを流せる範囲内で揺動し、時々刻々の優先要件に従い電子制御ユニットECUからの指示を受けて、各流路へ流す割合(配分)を決めている。すなわち、主排気流路2を流れる量eは隙間gによって決まり、迂回流路3を流れる量dは隙間fによって決まるので、これら両隙間の大きさをトレードオフ調整することで、熱電発電量および熱回収量と、消音量あるいは内燃機関の出力を適宜選択できる。   The mode of FIG. 2 shows a normal operation state after completion of warm-up, and implements appropriate thermoelectric power generation and heat recovery in a state of medium to high rotation speed of the internal combustion engine. In this state, the valve member 10 is swung within a range in which the exhaust gas can flow in both the main exhaust flow path 2 and the bypass flow path 3, and receives an instruction from the electronic control unit ECU according to the priority requirement from time to time. The ratio (distribution) that flows to each channel is determined. That is, the amount e flowing through the main exhaust passage 2 is determined by the gap g, and the amount d flowing through the bypass passage 3 is determined by the gap f. Therefore, by adjusting the size of both the gaps, The amount of heat recovery, the silence level, or the output of the internal combustion engine can be selected as appropriate.

このように本発明の排気熱回収装置によれば、前述の(α)(β)(γ)の独立した三流路とその切替弁を必要とせずに、特に(α:熱電発電素子を介装する流路)と(β:熱交換器を介装する流路)を統合し、二流路と単一の弁体だけの簡易な全体構成で、従来の課題を解決できる。更に、熱電発電および熱回収要件、消音要件、内燃機関出力要件を、車両側からの優先要求に従って統合的にトレードオフ制御することも可能となる。   As described above, according to the exhaust heat recovery apparatus of the present invention, the above-described three independent flow paths (α), (β), and (γ) are not required, and in particular (α: a thermoelectric power generation element is interposed). The conventional problem can be solved with a simple overall configuration including only two flow paths and a single valve body. Furthermore, it is also possible to perform integrated trade-off control on thermoelectric power generation and heat recovery requirements, noise reduction requirements, and internal combustion engine output requirements according to priority requests from the vehicle side.

図3および図4の態様は、暖機後の通常運転時においても図2のように両流路に排気ガスを流すことをせず、あえて片側の流路のみに流すことで優先する要件を満たすものである。例えば図3の態様は、迂回流路3を流れる排気ガス流量hを絞ることで熱電発電装置6および熱交換器7に流れる排気ガスの流速を遅くして、積極的に熱電発電量および熱回収量を増やすような制御形態である。また図4の態様は、主排気流路2のみに排気ガスを流し、かつ排気ガス流量iを絞っている。このようにすることで、熱電発電および熱回収が不要の状態における消音要件を優先させることができる。   3 and FIG. 4 does not allow exhaust gas to flow through both flow paths as in FIG. 2 even during normal operation after warming up, but it preferentially requires only flowing through one flow path. To meet. For example, in the embodiment of FIG. 3, the flow rate of the exhaust gas flowing through the thermoelectric generator 6 and the heat exchanger 7 is slowed down by restricting the exhaust gas flow rate h flowing through the bypass flow path 3, so that the thermoelectric power generation amount and the heat recovery are positively performed. It is a control form that increases the amount. In the embodiment of FIG. 4, the exhaust gas is allowed to flow only in the main exhaust flow path 2 and the exhaust gas flow rate i is reduced. By doing in this way, it can give priority to the silencing requirement in the state where thermoelectric generation and heat recovery are unnecessary.

図5の態様は、内燃機関の中回転乃至高回転時、あるいは高負荷時の状態を示すもので、主排気流路2が全開状態とされると共に、迂回流路3が全閉状態とされる。すなわち、前述の(γ)に対応する態様である。これにより、熱交換器と熱電発電素子に高温大流量の排気ガスを接触させることがなくなるので、熱交換器においては過度の熱回収および冷却水の沸騰を、熱電発電装置においては過度の発電や素子への熱害を、それぞれ防止できる。もちろん、主排気流路2(バイパス流路)にだけ抵抗なく排気ガスを流すことで、内燃機関の出力性能を確保することもできる。   The mode of FIG. 5 shows the state of the internal combustion engine during medium to high rotation or high load, and the main exhaust passage 2 is fully opened and the bypass passage 3 is fully closed. The That is, this is an aspect corresponding to the above-described (γ). As a result, the exhaust gas at a high temperature and high flow rate is not brought into contact with the heat exchanger and the thermoelectric power generation element, so that excessive heat recovery and boiling of the cooling water are performed in the heat exchanger, and excessive power generation and Heat damage to the elements can be prevented respectively. Of course, it is also possible to ensure the output performance of the internal combustion engine by flowing the exhaust gas without resistance only in the main exhaust passage 2 (bypass passage).

図6乃至図8は、本発明の第2の実施形態に係る排気熱回収装置1xを示すものであり、前述の第1の実施形態に対して、熱電発電装置6と熱交換器7の配置順序が逆となっている。即ち、迂回流路3における上流側に熱交換器7を配置すると共に下流側に熱電発電装置6を配置したものである。このような配置とすることにより、内燃機関から流下してきた排気ガスが直接熱交換器7に導入されるため、暖機時の冷却媒体の早期温度上昇に寄与する。尚、冷却媒体の導入順序については、第1の実施形態と同様に熱電発電装置6へ先に通し、熱電発電装置6によって加熱された後の冷却媒体が熱交換器7へ流入するという順序が、合理的であるが、必要に応じて適宜順序を入れ替えても構わない   6 to 8 show an exhaust heat recovery apparatus 1x according to the second embodiment of the present invention. The arrangement of the thermoelectric generator 6 and the heat exchanger 7 is different from that of the first embodiment. The order is reversed. That is, the heat exchanger 7 is arranged on the upstream side in the bypass flow path 3 and the thermoelectric generator 6 is arranged on the downstream side. With such an arrangement, the exhaust gas flowing down from the internal combustion engine is directly introduced into the heat exchanger 7, which contributes to an early temperature rise of the cooling medium during warm-up. As for the order of introduction of the cooling medium, the order in which the cooling medium after passing through the thermoelectric generator 6 and heated by the thermoelectric generator 6 flows into the heat exchanger 7 is the same as in the first embodiment. Reasonable, but you can change the order as needed

図6の態様は、第1の実施形態における図1の態様と同じ状態を示すものであり、内燃機関の暖機中の状態である。内燃機関から流下してきた排気ガスが直接熱交換器7に導入されるため、暖機時の冷却媒体の早期温度上昇に効果的である。   The mode of FIG. 6 shows the same state as the mode of FIG. 1 in the first embodiment, and is a state in which the internal combustion engine is warming up. Since the exhaust gas flowing down from the internal combustion engine is directly introduced into the heat exchanger 7, it is effective for an early temperature rise of the cooling medium during warm-up.

図7の態様は、第1の実施形態における図2の態様と同じ状態、すなわち暖機完了後の内燃機関の中回転乃至高回転時における状態を示すものであり、適度な熱電発電および熱回収を実施する状態である。この状態においては、弁部材10は主排気流路2と迂回流路3の両方に排気ガスを流せる範囲内で揺動し、時々刻々の優先要件に従い電子制御ユニットECUからの指示を受けて、各流路へ流す割合(配分)を決めている。この場合においても、熱電発電よりも熱回収を積極的に実施できる構造として有効である。   The mode of FIG. 7 shows the same state as the mode of FIG. 2 in the first embodiment, that is, the state at the time of medium to high rotation of the internal combustion engine after completion of warm-up, and appropriate thermoelectric power generation and heat recovery. Is a state in which In this state, the valve member 10 is swung within a range in which the exhaust gas can flow in both the main exhaust flow path 2 and the bypass flow path 3, and receives an instruction from the electronic control unit ECU according to the priority requirement from time to time. The ratio (distribution) that flows to each channel is determined. Even in this case, it is effective as a structure capable of positively recovering heat rather than thermoelectric power generation.

図8の態様は、第1の実施形態における図3の態様と同じ状態、すなわち内燃機関の中回転乃至高回転時、あるいは高負荷時の状態を示すもので、主排気流路2が全開状態とされると共に、迂回流路3が全閉状態とされる。この場合においては熱電発電装置6と熱交換器7の順序は関係が無いが、図3の態様と同様に、熱交換器においては過度の熱回収および冷却水の沸騰を、熱電発電装置においては過度の発電や素子への熱害を、それぞれ防止できると共に、主排気流路2(バイパス流路)にだけ抵抗なく排気ガスを流すことで、内燃機関の出力性能を確保することもできる。   The mode of FIG. 8 shows the same state as the mode of FIG. 3 in the first embodiment, that is, the state at the time of middle to high rotation of the internal combustion engine or at the time of high load. In addition, the bypass flow path 3 is fully closed. In this case, the order of the thermoelectric generator 6 and the heat exchanger 7 is irrelevant. However, in the heat exchanger, excessive heat recovery and boiling of the cooling water occur in the thermoelectric generator, as in the embodiment of FIG. Excessive power generation and thermal damage to the elements can be prevented, respectively, and the output performance of the internal combustion engine can be ensured by flowing the exhaust gas without resistance only in the main exhaust passage 2 (bypass passage).

図9乃至図11は、本発明の第3の実施形態に係る排気熱回収装置1yを示すものであり、前述の第1の実施形態に対して、冷却媒体の流路および制御が異なる。図9において、図示しない車両の冷却媒体通路から分岐してきた冷却媒体配管210が分岐211において第1導入管212および第2導入管213とに分かれ、第1導入管212は熱電発電装置6に、第2導入管213は熱交換器7へそれぞれ接続される。そして熱電発電装置6に接続された第1導出管214と熱交換器7に接続された第2導出管215は切換弁217に接続されている。冷却媒体の流れを切替える切換弁217は、第1導出管214内および第2導出管215内を流れて来る冷却媒体の流れを選択可能な所謂三方弁であり、第1導出管214からの冷却媒体と第2導出管215からの冷却媒体の流れについて、何れか一方を選択するか、あるいは両方を選択することが可能である。従って、熱電発電装置6と熱交換器7について、何れか一方のみに冷却媒体を流すことも、両方に冷却媒体を流すことも自在である。尚、三方弁の構造については周知であるため、図示を省略する。   FIGS. 9 to 11 show an exhaust heat recovery apparatus 1y according to a third embodiment of the present invention. The flow path and control of the cooling medium are different from those of the first embodiment. In FIG. 9, a cooling medium pipe 210 branched from a cooling medium passage of a vehicle (not shown) is divided into a first introduction pipe 212 and a second introduction pipe 213 at a branch 211, and the first introduction pipe 212 is connected to the thermoelectric generator 6. The second introduction pipes 213 are connected to the heat exchanger 7 respectively. The first lead-out pipe 214 connected to the thermoelectric generator 6 and the second lead-out pipe 215 connected to the heat exchanger 7 are connected to the switching valve 217. The switching valve 217 that switches the flow of the cooling medium is a so-called three-way valve that can select the flow of the cooling medium flowing in the first outlet pipe 214 and the second outlet pipe 215. One or both of the medium and the cooling medium flow from the second outlet pipe 215 can be selected. Therefore, with respect to the thermoelectric generator 6 and the heat exchanger 7, it is possible to flow the cooling medium only to either one or both. In addition, since the structure of a three-way valve is known, illustration is abbreviate | omitted.

図9の態様は、第1の実施形態における図1の態様と同じ状態であり、内燃機関の暖機中の状態である。暖機過程において早く車両の冷却媒体を昇熱させたいとの要求を優先して、切換弁217を操作して冷却媒体を熱交換器7のみに流す状態とし、熱電発電装置6には流さない。それにより、熱電発電装置6に冷却水の熱を奪われることがなくなるため、冷却媒体の早期温度上昇が促進される。   The mode of FIG. 9 is the same state as the mode of FIG. 1 in the first embodiment, and is a state in which the internal combustion engine is warming up. Prioritizing the request to heat up the vehicle coolant early in the warm-up process, the switching valve 217 is operated to allow the coolant to flow only to the heat exchanger 7 and not to the thermoelectric generator 6. . As a result, the heat of the cooling water is not taken away by the thermoelectric generator 6, so that an early temperature rise of the cooling medium is promoted.

図10の態様は、第1の実施形態における図2の態様と同じ状態であり、内燃機関の中回転乃至高回転時の状態において適度な熱発電および熱回収を実施するものである。この状態においては、切換弁217を操作して熱電発電装置6と熱交換器7の両方に冷却媒体を流す状態とする。低い温度の冷却媒体を直接導入したい熱電発電装置6が熱交換器7の影響を受けることがなくなり、発電効率を高めることができる。特に寒冷地などにおいては、熱交換器7における常時熱回収によって暖房補助としたいニーズがあり、本実施形態によれば、熱発電と常時熱回収を効率的に両立させることができる。   The mode of FIG. 10 is the same state as the mode of FIG. 2 in the first embodiment, and performs moderate thermoelectric generation and heat recovery in the middle to high rotation state of the internal combustion engine. In this state, the switching valve 217 is operated to allow the cooling medium to flow through both the thermoelectric generator 6 and the heat exchanger 7. The thermoelectric generator 6 that wants to directly introduce a low-temperature cooling medium is not affected by the heat exchanger 7, and the power generation efficiency can be increased. Particularly in cold districts, there is a need to provide heating assistance by constantly recovering heat in the heat exchanger 7, and according to this embodiment, thermoelectric power generation and always recovering heat can be efficiently made compatible.

一方、内燃機関の中回転乃至高回転時の状態において、熱回収する必要がなく、積極的に熱発電を実施したいような場合においては、図11の態様のように、切換弁217を操作して熱電発電装置6のみに冷却水を流し、熱交換器7への流入を止めると良い。但し、熱交換器7に排気ガスが流入し、熱交換器7内での冷却媒体が沸騰する懸念があるため、熱交換器7内で冷却媒体温度を何らかの手段で監視しておくことが好ましい。   On the other hand, when there is no need to recover heat in the middle to high rotation state of the internal combustion engine and it is desired to actively perform thermoelectric generation, the switching valve 217 is operated as shown in the embodiment of FIG. Thus, it is preferable to flow the cooling water only to the thermoelectric generator 6 and stop the flow into the heat exchanger 7. However, since there is a concern that the exhaust gas flows into the heat exchanger 7 and the cooling medium in the heat exchanger 7 boils, it is preferable to monitor the cooling medium temperature in the heat exchanger 7 by some means. .

1 、1x、1y 排気熱回収装置
2 主排気流路
3 迂回流路
4 分岐部
5 合流部
6 熱電発電装置
6a 熱電素子
6b 熱交換フィン
6c 冷却媒体流路
6d 導入管
7 熱交換器
7a 熱交換フィン
7b 冷却媒体流路
7c 導出管
8 連通管
9 ピボット軸
10 弁装置
11 凹部
210、216 冷却媒体配管
211 分岐
212 第1導入管
213 第2導入管
214 第1導出管
215 第2導出管
217 切換弁
DESCRIPTION OF SYMBOLS 1, 1x, 1y Exhaust heat recovery apparatus 2 Main exhaust flow path 3 Detour flow path 4 Branch part 5 Junction part 6 Thermoelectric generator 6a Thermoelectric element 6b Heat exchange fin 6c Cooling medium flow path 6d Induction pipe 7 Heat exchanger 7a Heat exchange Fin 7b Cooling medium flow path 7c Lead pipe 8 Communication pipe 9 Pivot shaft 10 Valve device 11 Recess 210, 216 Cooling medium pipe 211 Branch 212 First inlet pipe 213 Second inlet pipe 214 First outlet pipe 215 Second outlet pipe 217 Switching valve

Claims (3)

内燃機関の排気ガスを導入する主排気流路と、該主排気流路から分岐し当該主排気流路と合流部において合流する迂回流路と、前記合流部において前記主排気流路と前記迂回流路を開閉する弁装置とを備える排気熱回収装置において、前記迂回流路には前記迂回流路内の排気ガスと熱交換をする熱交換器及び熱電発電装置を具備し、前記弁装置は前記主排気流路及び前記迂回流路の一方を閉塞した状態で他方の流路面積を連続的に設定する単一の弁部材であることを特徴とする排気熱回収装置。   A main exhaust passage that introduces exhaust gas of the internal combustion engine, a bypass passage that branches from the main exhaust passage and joins at the junction with the main exhaust passage, and the main exhaust passage and the bypass at the junction In the exhaust heat recovery device comprising a valve device that opens and closes the flow path, the bypass flow path includes a heat exchanger and a thermoelectric generator that exchange heat with the exhaust gas in the bypass flow path, The exhaust heat recovery apparatus is a single valve member that continuously sets the area of the other flow path in a state where one of the main exhaust flow path and the bypass flow path is closed. 前記単一の弁部材を前記内燃機関の運転状態に応じて駆動し、前記主排気流路及び前記迂回流路の流路切換を行うと共に、前記主排気流路及び前記迂回流路の各々の流路面積調整を行う制御装置を備えたことを特徴とする請求項1記載の排気熱回収装置。   The single valve member is driven according to the operating state of the internal combustion engine, and the main exhaust passage and the bypass passage are switched, and each of the main exhaust passage and the bypass passage is switched. The exhaust heat recovery apparatus according to claim 1, further comprising a control device that adjusts a flow path area. 前記熱交換器及び前記熱電発電装置は冷却媒体の流路を具備し、前記内燃機関の冷却媒体を導入して熱交換を行うことを特徴とする請求項1又は2記載の排気熱回収装置。   The exhaust heat recovery apparatus according to claim 1 or 2, wherein the heat exchanger and the thermoelectric generator are provided with a cooling medium flow path to perform heat exchange by introducing the cooling medium of the internal combustion engine.
JP2014241032A 2014-11-28 2014-11-28 Exhaust heat recovery device Active JP6358938B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014241032A JP6358938B2 (en) 2014-11-28 2014-11-28 Exhaust heat recovery device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014241032A JP6358938B2 (en) 2014-11-28 2014-11-28 Exhaust heat recovery device

Publications (2)

Publication Number Publication Date
JP2016102446A true JP2016102446A (en) 2016-06-02
JP6358938B2 JP6358938B2 (en) 2018-07-18

Family

ID=56088547

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014241032A Active JP6358938B2 (en) 2014-11-28 2014-11-28 Exhaust heat recovery device

Country Status (1)

Country Link
JP (1) JP6358938B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016216281A1 (en) 2016-08-30 2018-03-01 HANON SYSTEMS, jusik hoesa bypass valve
KR20180134767A (en) * 2017-06-09 2018-12-19 포레시아 이미션스 컨트롤 테크놀로지스, 유에스에이, 엘엘씨 Exhaust heat recovery and acoustic valve
DE112017002622T5 (en) 2016-05-23 2019-03-28 Denso Corporation Heat Exchanger
KR20190123498A (en) * 2018-04-24 2019-11-01 현대자동차주식회사 Heat exchanger for vehicles
US11002171B2 (en) 2017-06-09 2021-05-11 Faurecia Emissions Control Technologies, Usa, Llc Exhaust heat recovery and acoustic valve with exhaust gas recirculation features
CN117570566A (en) * 2023-12-26 2024-02-20 华北水利水电大学 Heat recovery system of heating ventilation air conditioner

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1127969A (en) * 1997-07-08 1999-01-29 Science & Tech Agency Heat transffr rate controlled thermoelectric generator
DE10052953A1 (en) * 1999-10-28 2001-07-19 Avl List Gmbh External-ignition internal combustion engine, with control valve downstream of branch in region of branch junction
JP3767509B2 (en) * 2002-04-17 2006-04-19 株式会社デンソー Engine exhaust gas reuse device
JP2009127544A (en) * 2007-11-26 2009-06-11 Toyota Motor Corp Thermoelectric power generation system
JP2009528207A (en) * 2006-02-28 2009-08-06 バイエリッシェ モートーレン ウエルケ アクチエンゲゼルシャフト A motor vehicle equipped with a unit operated using fuel stored at cryogenic temperatures
JP4486963B2 (en) * 2004-07-07 2010-06-23 株式会社三五 Exhaust device for internal combustion engine
JP2015523489A (en) * 2012-05-08 2015-08-13 エーバーシュペッヒャー・エグゾースト・テクノロジー・ゲーエムベーハー・ウント・コンパニー・カーゲー Heat exchanger with thermoelectric generator

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1127969A (en) * 1997-07-08 1999-01-29 Science & Tech Agency Heat transffr rate controlled thermoelectric generator
DE10052953A1 (en) * 1999-10-28 2001-07-19 Avl List Gmbh External-ignition internal combustion engine, with control valve downstream of branch in region of branch junction
JP3767509B2 (en) * 2002-04-17 2006-04-19 株式会社デンソー Engine exhaust gas reuse device
JP4486963B2 (en) * 2004-07-07 2010-06-23 株式会社三五 Exhaust device for internal combustion engine
JP2009528207A (en) * 2006-02-28 2009-08-06 バイエリッシェ モートーレン ウエルケ アクチエンゲゼルシャフト A motor vehicle equipped with a unit operated using fuel stored at cryogenic temperatures
JP2009127544A (en) * 2007-11-26 2009-06-11 Toyota Motor Corp Thermoelectric power generation system
JP2015523489A (en) * 2012-05-08 2015-08-13 エーバーシュペッヒャー・エグゾースト・テクノロジー・ゲーエムベーハー・ウント・コンパニー・カーゲー Heat exchanger with thermoelectric generator

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112017002622T5 (en) 2016-05-23 2019-03-28 Denso Corporation Heat Exchanger
DE102016216281A1 (en) 2016-08-30 2018-03-01 HANON SYSTEMS, jusik hoesa bypass valve
KR20180134767A (en) * 2017-06-09 2018-12-19 포레시아 이미션스 컨트롤 테크놀로지스, 유에스에이, 엘엘씨 Exhaust heat recovery and acoustic valve
US10584623B2 (en) 2017-06-09 2020-03-10 Faurecia Emissions Control Technologies, Usa, Llc Exhaust heat recovery and acoustic valve
KR102114442B1 (en) * 2017-06-09 2020-05-22 포레시아 이미션스 컨트롤 테크놀로지스, 유에스에이, 엘엘씨 Exhaust heat recovery and acoustic valve
US11002171B2 (en) 2017-06-09 2021-05-11 Faurecia Emissions Control Technologies, Usa, Llc Exhaust heat recovery and acoustic valve with exhaust gas recirculation features
KR20190123498A (en) * 2018-04-24 2019-11-01 현대자동차주식회사 Heat exchanger for vehicles
CN110397493A (en) * 2018-04-24 2019-11-01 现代自动车株式会社 Heat exchanger for vehicle
CN110397493B (en) * 2018-04-24 2022-09-06 现代自动车株式会社 Heat exchanger for vehicle
KR102542945B1 (en) * 2018-04-24 2023-06-15 현대자동차주식회사 Heat exchanger for vehicles
CN117570566A (en) * 2023-12-26 2024-02-20 华北水利水电大学 Heat recovery system of heating ventilation air conditioner
CN117570566B (en) * 2023-12-26 2024-05-31 华北水利水电大学 Heat recovery system of heating ventilation air conditioner

Also Published As

Publication number Publication date
JP6358938B2 (en) 2018-07-18

Similar Documents

Publication Publication Date Title
JP6358938B2 (en) Exhaust heat recovery device
JP5018592B2 (en) Waste heat recovery device
US8413434B2 (en) Exhaust heat recovery for transmission warm-up
US8646262B2 (en) Unit for recovering and converting the thermal energy of the exhaust gases of an internal combustion engine of a vehicle
US7921640B2 (en) Exhaust gas waste heat recovery
JP5223389B2 (en) Cooling device for internal combustion engine
JP2016044666A (en) Exhaust heat recovery device of internal combustion engine
GB2429763A (en) Cooling system comprising heat exchangers for motor vehicle cold start operation
JP2008291690A (en) Cooling system
JP2004332596A (en) Thermoelectric generating set
JP2007247638A (en) Exhaust heat recovery device
JP2008101496A (en) Exhaust system heat exchanger
US8297238B2 (en) Variable cooling circuit for thermoelectric generator and engine and method of control
JP2016109018A (en) Exhaust heat recovery apparatus
JP4311272B2 (en) Cooling medium circulation device
JP6254822B2 (en) Engine exhaust heat recovery device
JP2004084882A (en) Oil temperature controller of transmission
JP6390463B2 (en) Thermoelectric generator
JP2001271644A (en) Method and device for adjusting engine oil temperature
JP2010169010A (en) Cooling device for internal combustion engine
JP5848906B2 (en) Vehicle heat exchange device
JP6171699B2 (en) Exhaust heat recovery unit
JP2007211715A (en) Valve mechanism and heat exchange system using the same
JP2006083784A (en) Engine exhaust heat utilizing device
JP3631521B2 (en) Cogeneration system cooling water circuit equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170608

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180328

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180403

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180514

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180619

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180619

R150 Certificate of patent or registration of utility model

Ref document number: 6358938

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250