JP2016044666A - Exhaust heat recovery device of internal combustion engine - Google Patents

Exhaust heat recovery device of internal combustion engine Download PDF

Info

Publication number
JP2016044666A
JP2016044666A JP2014172221A JP2014172221A JP2016044666A JP 2016044666 A JP2016044666 A JP 2016044666A JP 2014172221 A JP2014172221 A JP 2014172221A JP 2014172221 A JP2014172221 A JP 2014172221A JP 2016044666 A JP2016044666 A JP 2016044666A
Authority
JP
Japan
Prior art keywords
exhaust
flow path
exhaust gas
internal combustion
combustion engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014172221A
Other languages
Japanese (ja)
Inventor
仁 若松
Hitoshi Wakamatsu
仁 若松
克己 八木
Katsumi Yagi
克己 八木
周一 長谷
Shuichi Hase
周一 長谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sango Co Ltd
Original Assignee
Sango Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sango Co Ltd filed Critical Sango Co Ltd
Priority to JP2014172221A priority Critical patent/JP2016044666A/en
Publication of JP2016044666A publication Critical patent/JP2016044666A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

PROBLEM TO BE SOLVED: To provide an exhaust heat recovery device of internal combustion engine including exhaust gas recirculation equipment in which an efficient heat-recovery can be carried out without damaging exhaust efficiency.SOLUTION: This invention comprises a main exhaust channel 11 for feeding exhaust gas of an internal combustion engine; a bypass channel 12 branched from this main exhaust channel and merging with the main exhaust channel; a heat exchanger 10 placed at the bypass channel to feed exhaust gas in the bypass channel to perform a heat exchanging operation with cooling medium of the internal combustion engine; and a valve device 20 at a downstream side of the heat exchanger to open or close the main exhaust channel and the bypass channel. The bypass channel between this valve device and the heat exchanger is communicated with and connected to exhaust gas recirculation equipment through a recirculation channel 13.SELECTED DRAWING: Figure 2

Description

本発明は、自動車の内燃機関の排気熱回収装置に関し、特に、排気ガス再循環装置を備えた内燃機関に好適な排気熱回収装置に係る。   The present invention relates to an exhaust heat recovery device for an internal combustion engine of an automobile, and more particularly to an exhaust heat recovery device suitable for an internal combustion engine equipped with an exhaust gas recirculation device.

自動車の内燃機関において、冷間始動時のように冷却媒体の温度が低い場合に、内燃機関の排気ガスの熱を利用して冷却媒体を加熱する装置が知られている。これに関し、内燃機関の排気ガスを導入する主排気流路と、この主排気流路から分岐する迂回流路に介装され、迂回流路内の排気ガスを導入し冷却媒体と熱交換を行う熱交換器を備えた排気熱回収装置が注目されている。例えば特許文献1には、「排気ガスが排出される排気管部と、前記排気管部から分岐されて前記排気管部の上方に設置され、前記排気ガスと冷却媒体との間で熱交換を行う排熱回収器と、前記排熱回収器に前記冷却媒体を導入する冷却配管と、前記排気管部の横側に設置され、前記排気管部に導入される前記排気ガスの流路を前記排気管部と前記排熱回収器とのいずれか一方に切換える切換弁を駆動するアクチュエータとを備えた排熱回収装置」が開示されている(特許文献1の段落〔0006〕に記載)。   2. Description of the Related Art In an internal combustion engine of an automobile, there is known an apparatus that heats a cooling medium using the heat of exhaust gas from the internal combustion engine when the temperature of the cooling medium is low, such as during cold start. In this regard, the main exhaust passage for introducing the exhaust gas of the internal combustion engine and a bypass passage branched from the main exhaust passage are introduced, and the exhaust gas in the bypass passage is introduced to exchange heat with the cooling medium. An exhaust heat recovery device equipped with a heat exchanger has attracted attention. For example, Patent Document 1 discloses that an “exhaust pipe part from which exhaust gas is exhausted, a branch from the exhaust pipe part and installed above the exhaust pipe part, and heat exchange between the exhaust gas and the cooling medium. An exhaust heat recovery device to be performed; a cooling pipe for introducing the cooling medium into the exhaust heat recovery device; and an exhaust gas flow path installed on the side of the exhaust pipe portion and introduced into the exhaust pipe portion. An "exhaust heat recovery apparatus including an actuator that drives a switching valve that switches to either the exhaust pipe portion or the exhaust heat recovery device" is disclosed (described in paragraph [0006] of Patent Document 1).

また、排気ガスの一部を吸気側に還流させる排気ガス再循環装置(EGR)が装着された内燃機関が知られているが、近時、燃料消費率の観点から吸気充填効率を向上すべく、再循環用排気ガスを冷却するため排気ガス再循環流路に熱交換器を介装することが行われており、この熱交換器はEGRクーラと呼ばれている。例えば、特許文献2には、「熱機関から排出される排気を大気側に導く排気管と、少なくとも排気から熱を回収する廃熱回収器と、廃熱回収器にて冷却された排気を熱機関の吸気側に戻す排気再循環管とを備える」熱機関の排気装置が開示されている(特許文献2の段落〔0006〕に記載。但し、付記された符合は省略)。   Also, an internal combustion engine equipped with an exhaust gas recirculation device (EGR) that recirculates part of the exhaust gas to the intake side is known. Recently, in order to improve intake charging efficiency from the viewpoint of fuel consumption rate. In order to cool the exhaust gas for recirculation, a heat exchanger is provided in the exhaust gas recirculation flow path, and this heat exchanger is called an EGR cooler. For example, Patent Document 2 states that “an exhaust pipe that guides exhaust discharged from a heat engine to the atmosphere side, a waste heat recovery unit that recovers heat from at least the exhaust, and heat exhaust that has been cooled by the waste heat recovery unit. An exhaust device for a heat engine is disclosed (including an exhaust gas recirculation pipe returning to the intake side of the engine) (described in paragraph [0006] of Patent Document 2; however, the reference numerals are omitted).

更に、特許文献3には、排熱回収システムに関し、排気ガスの熱を回収して暖気促進等に供することを目的とし、上記のEGRクーラを排熱回収器として使用することが提案されている(特許文献3の段落〔0003〕、〔0004〕、〔0009〕等に記載)。尚、特許文献4には、「内燃機関に接続される排気流路を構成する少なくとも二つの流路を備えた内燃機関の排気装置において、単一の弁部材によって流路切換を行うと共に各々の流路面積調整を適切に行い得る排気装置」が開示されている(特許文献4の段落〔0014〕に記載。   Furthermore, Patent Document 3 relates to an exhaust heat recovery system, and proposes to use the above-mentioned EGR cooler as an exhaust heat recovery unit for the purpose of recovering heat of exhaust gas and providing it for warm-up promotion and the like. (Described in paragraphs [0003], [0004], [0009], etc. of Patent Document 3). Patent Document 4 states that “in an exhaust system of an internal combustion engine having at least two flow paths that constitute an exhaust flow path connected to the internal combustion engine, the flow is switched by a single valve member and each An “exhaust device capable of appropriately adjusting the flow path area” is disclosed (described in paragraph [0014] of Patent Document 4).

特開2014−095362号公報JP 2014-095362 A 特開2003−193832号公報JP 2003-193832 A 特開2005−273582号公報JP 2005-273582 A 特許第4486963号公報Japanese Patent No. 4486963

上記の特許文献2においては、燃焼加熱機能を備えた排気熱回収装置から排出される低温の排気ガスを再循環用排気ガスとして活用し、EGRクーラを廃止することが提案されているが、特許文献2に記載の排気装置においては、特許文献1に記載のように主排気流路と、これを迂回し熱交換器が介装される迂回流路とが完全には分離しておらず、また、両流路を切り換える弁装置は配設されていない。このため、熱交換器による熱回収が不要な機関暖気後においては、触媒の下流側から排出される排気ガスを排気管及び消音器に直接排出できず、中回転乃至高回転時の出力が低くなる。また、中回転乃至高回転時の高温の排気ガスが熱交換器に導入されることになるので、冷却系への負担が大となる。   In the above-mentioned Patent Document 2, it is proposed to use the low-temperature exhaust gas discharged from the exhaust heat recovery device having a combustion heating function as the exhaust gas for recirculation and eliminate the EGR cooler. In the exhaust system described in Document 2, as described in Patent Document 1, the main exhaust channel and the bypass channel that bypasses this and the heat exchanger is interposed are not completely separated, Moreover, the valve apparatus which switches both flow paths is not arrange | positioned. For this reason, after engine warm-up that does not require heat recovery by a heat exchanger, the exhaust gas discharged from the downstream side of the catalyst cannot be discharged directly to the exhaust pipe and the silencer, and the output during medium to high rotation is low. Become. In addition, since the high-temperature exhaust gas at the time of medium rotation or high rotation is introduced into the heat exchanger, the burden on the cooling system becomes large.

一方、特許文献3に記載の排気装置においては、EGRクーラを廃熱回収器として使用することが提案されているが、上記の迂回流路に介装される熱交換器は備えておらず、従って当然ながら、当該熱交換器とEGRクーラとの関係には言及されていない。尚、主排気流路と迂回流路の二つの流路に関し、何れを主排気流路としてもよく、例えば特許文献4においては、上記とは逆の関係で用いられている。   On the other hand, in the exhaust device described in Patent Document 3, it has been proposed to use an EGR cooler as a waste heat recovery device, but it does not include a heat exchanger interposed in the bypass channel, Therefore, as a matter of course, the relationship between the heat exchanger and the EGR cooler is not mentioned. Note that any of the two flow paths, ie, the main exhaust flow path and the bypass flow path, may be used as the main exhaust flow path. For example, in Patent Document 4, they are used in the reverse relationship.

そこで、本発明は、排気ガス再循環装置を備えた内燃機関の排気熱回収装置において、内燃機関の性能に影響する排気効率を損なうことなく、効率的な熱回収を行い得る排気熱回収装置を提供することを課題とする。   Therefore, the present invention provides an exhaust heat recovery device for an internal combustion engine equipped with an exhaust gas recirculation device, which can perform efficient heat recovery without impairing the exhaust efficiency that affects the performance of the internal combustion engine. The issue is to provide.

上記の課題を達成するため、本発明は、排気ガス再循環装置を備えた内燃機関の排気ガスを導入する主排気流路と、該主排気流路から分岐し当該主排気流路に合流する迂回流路と、該迂回流路に介装され、当該迂回流路内の排気ガスを導入し前記内燃機関の冷却媒体と熱交換を行う熱交換器と、該熱交換器の下流側で前記主排気流路及び前記迂回流路を開閉する弁装置を備え、該弁装置と前記熱交換器との間の前記迂回流路を前記排気ガス再循環装置に連通接続するように構成したものである。   To achieve the above object, the present invention provides a main exhaust passage for introducing exhaust gas of an internal combustion engine equipped with an exhaust gas recirculation device, a branch from the main exhaust passage, and joins the main exhaust passage. A bypass flow path, a heat exchanger interposed in the bypass flow path, introducing exhaust gas in the bypass flow path and exchanging heat with the cooling medium of the internal combustion engine, and the downstream side of the heat exchanger A valve device that opens and closes a main exhaust passage and the bypass passage, and is configured to communicate and connect the bypass passage between the valve device and the heat exchanger to the exhaust gas recirculation device; is there.

上記の排気熱回収装置において、前記弁装置は、前記主排気流路を開閉する第1の弁部材と、前記迂回流路を開閉する第2の弁部材を備えたものとするとよい。   In the exhaust heat recovery apparatus, the valve device may include a first valve member that opens and closes the main exhaust passage and a second valve member that opens and closes the bypass passage.

あるいは、前記弁装置は、前記主排気流路及び前記迂回流路の一方を閉塞した状態で、他方の流路面積を連続的に設定する単一の弁部材を備えたものとしてもよい。更に、前記単一の弁部材を前記内燃機関の運転状態に応じて駆動し、前記主排気流路及び前記迂回流路の流路切換を行うと共に、前記主排気流路及び前記迂回流路の各々の流路面積調整を行う制御装置を備えたものとするとよい。   Alternatively, the valve device may include a single valve member that continuously sets the other channel area in a state in which one of the main exhaust channel and the bypass channel is closed. Further, the single valve member is driven according to the operating state of the internal combustion engine, and the main exhaust passage and the bypass passage are switched, and the main exhaust passage and the bypass passage are switched. It is preferable to provide a control device that adjusts each channel area.

本発明は上述のように構成されているので以下の効果を奏する。即ち、本発明の排気熱回収装置においては、熱交換器の下流側で主排気流路及び迂回流路を開閉する弁装置を備え、弁装置と熱交換器との間の迂回流路を排気ガス再循環装置に連通接続するように構成されているので、排気効率を損なうことなく、効率的な熱回収を行うことができる。特に、従前のEGRクーラを必要とすることなく、常時適切な再循環用排気ガスを供給し得るので、排気装置全体の小型化が可能となる。   Since this invention is comprised as mentioned above, there exist the following effects. That is, the exhaust heat recovery apparatus of the present invention includes a valve device that opens and closes the main exhaust flow path and the bypass flow path on the downstream side of the heat exchanger, and exhausts the bypass flow path between the valve device and the heat exchanger. Since it is configured to communicate with the gas recirculation device, efficient heat recovery can be performed without impairing the exhaust efficiency. In particular, since the appropriate exhaust gas for recirculation can be always supplied without the need for a conventional EGR cooler, the exhaust system as a whole can be downsized.

上記の排気熱回収装置において、弁装置は、主排気流路を開閉する第1の弁部材と、迂回流路を開閉する第2の弁部材を備えたものとすれば、内燃機関の運転状態に応じて排気流路及び迂回流路を適宜切り換えることができる。尚、この流路切換に拘らず、弁装置と熱交換器との間の迂回流路から再循環用排気ガスを常時供給することができる。   In the above exhaust heat recovery apparatus, if the valve device includes a first valve member that opens and closes the main exhaust passage and a second valve member that opens and closes the bypass passage, the operating state of the internal combustion engine Accordingly, the exhaust flow path and the bypass flow path can be appropriately switched. Regardless of the flow path switching, the recirculation exhaust gas can always be supplied from the bypass flow path between the valve device and the heat exchanger.

あるいは、弁装置を、主排気流路及び迂回流路の一方を閉塞した状態で、他方の流路面積を連続的に設定する単一の弁部材を備えたものとすれば、単一の弁部材のみによって主排気流路及び迂回流路を開閉すると共に、各流路の流路面積を容易に調整し得る構成とすることができる。   Alternatively, if the valve device includes a single valve member that continuously sets the area of the other flow path in a state where one of the main exhaust flow path and the bypass flow path is closed, a single valve The main exhaust flow path and the bypass flow path can be opened and closed only by the members, and the flow area of each flow path can be easily adjusted.

更に、上記の排気熱回収装置において、単一の弁部材を内燃機関の運転状態に応じて駆動し、主排気流路及び迂回流路の流路切換を行うと共に、主排気流路及び迂回流路の各々の流路面積調整を行う制御装置を備えたものとすれば、例えば内燃機関の低回転乃至中回転時において、適宜排気絞りを行い消音機能を付加することが可能となる。   Further, in the exhaust heat recovery apparatus, the single valve member is driven in accordance with the operating state of the internal combustion engine, and the main exhaust passage and the bypass passage are switched, and the main exhaust passage and the bypass flow are switched. If a control device that adjusts the flow area of each of the paths is provided, for example, when the internal combustion engine is running at low or medium speed, it is possible to appropriately reduce the exhaust and add a silencing function.

本発明の一実施形態に係る排気熱回収装置を備えた排気装置の正面図である。It is a front view of the exhaust apparatus provided with the exhaust heat recovery apparatus which concerns on one Embodiment of this invention. 本発明の一実施形態に係る排気熱回収装置における主排気流路の全閉状態を示す断面図である。It is sectional drawing which shows the fully closed state of the main exhaust flow path in the exhaust heat recovery apparatus which concerns on one Embodiment of this invention. 本発明の一実施形態に係る排気熱回収装置における迂回流路の略全閉状態を示す断面図である。It is sectional drawing which shows the substantially fully closed state of the detour flow path in the exhaust heat recovery apparatus which concerns on one Embodiment of this invention. 本発明の他の実施形態に係る排気熱回収装置における主排気流路の全閉状態を示す断面図である。It is sectional drawing which shows the fully closed state of the main exhaust flow path in the exhaust heat recovery apparatus which concerns on other embodiment of this invention. 本発明の他の実施形態に係る排気熱回収装置における迂回流路の略全閉状態を示す断面図である。It is sectional drawing which shows the substantially fully closed state of the detour flow path in the exhaust heat recovery apparatus which concerns on other embodiment of this invention. 本発明の更に他の実施形態に係る排気熱回収装置における主排気流路の全閉状態を示す断面図である。It is sectional drawing which shows the fully closed state of the main exhaust flow path in the exhaust heat recovery apparatus which concerns on further another embodiment of this invention. 本発明の更に他の実施形態に係る排気熱回収装置における迂回流路の全閉状態を示す断面図である。It is sectional drawing which shows the fully closed state of the detour flow path in the exhaust heat recovery apparatus which concerns on further another embodiment of this invention. 本発明の別の実施形態に係る排気熱回収装置における再循環用排気ガスの流量制御状態を示す断面図である。It is sectional drawing which shows the flow control state of the exhaust gas for recirculation in the exhaust heat recovery apparatus which concerns on another embodiment of this invention. 従来の排気熱回収装置を備えた排気装置の正面図である。It is a front view of the exhaust apparatus provided with the conventional exhaust heat recovery apparatus.

以下、本発明の望ましい実施形態について図面を参照して説明する。図1は本発明の一実施形態に係る排気熱回収装置を備えた排気装置の全体構成を示すもので、排気ガス再循環装置EGRを備えた内燃機関ENGにヘッドフランジHFを介して排気管EP1が接続され、この排気管EP1に触媒コンバータCCが接続されている。この触媒コンバータCCは排気管EP2を介して排気熱回収装置1に接続され、更に、排気管EP3を介して消音器(図示せず)に連結されている。尚、本実施形態の触媒コンバータCCは、従前の触媒コンバータと同様、スタート触媒コンバータ及びメイン触媒コンバータ(図9に示す)を内包しているが、これらについての説明は省略する。   Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. FIG. 1 shows the overall configuration of an exhaust system equipped with an exhaust heat recovery system according to an embodiment of the present invention. An exhaust pipe EP1 is connected to an internal combustion engine ENG equipped with an exhaust gas recirculation device EGR via a head flange HF. Is connected, and the catalytic converter CC is connected to the exhaust pipe EP1. The catalytic converter CC is connected to the exhaust heat recovery device 1 via an exhaust pipe EP2, and is further connected to a silencer (not shown) via an exhaust pipe EP3. The catalytic converter CC of the present embodiment includes a start catalytic converter and a main catalytic converter (shown in FIG. 9) as in the case of the conventional catalytic converter, but description thereof will be omitted.

排気管EP2は、図2及び図3に示す主排気流路11に接続され、これから分岐する迂回流路12内に熱交換器10が配設されると共に、熱交換器10の下流側で主排気流路11及び迂回流路12を開閉する弁装置20が設けられており、熱交換器10と弁装置20との間の迂回流路12が再循環流路13を介して排気ガス再循環装置EGRに連通接続されている。熱交換器10には迂回流路12内の排気ガスが導入されると共に、内燃機関ENGの冷却媒体が媒体導入口ECから導入され、排気ガスと冷却媒体との熱交換が行われ、熱交換後の排気ガスが再循環流路13に排出され、再循環用排気ガスとして排気ガス再循環装置EGRに供給される。尚、通常、排気ガス再循環装置EGRに還流される再循環用排気ガスの流量を調整するため、図1に示すようにEGRバルブEGVが装着されている。   The exhaust pipe EP2 is connected to the main exhaust flow path 11 shown in FIGS. 2 and 3, and the heat exchanger 10 is disposed in the bypass flow path 12 branched from the main exhaust flow path 11, and at the downstream side of the heat exchanger 10, A valve device 20 that opens and closes the exhaust flow path 11 and the bypass flow path 12 is provided, and the bypass flow path 12 between the heat exchanger 10 and the valve device 20 is recirculated through the recirculation flow path 13. It is connected in communication with the device EGR. The exhaust gas in the bypass channel 12 is introduced into the heat exchanger 10 and the cooling medium of the internal combustion engine ENG is introduced from the medium introduction port EC, and heat exchange between the exhaust gas and the cooling medium is performed. The later exhaust gas is discharged to the recirculation flow path 13 and supplied to the exhaust gas recirculation device EGR as exhaust gas for recirculation. Normally, an EGR valve EGV is mounted as shown in FIG. 1 in order to adjust the flow rate of the recirculation exhaust gas recirculated to the exhaust gas recirculation device EGR.

本実施形態の排気熱回収装置1は、図2及び図3に示すように、車両下方に配置されるロアハウジング1aと、これに接合され車両上方に配置されるアッパハウジング1bを有し、ロアハウジング1a内に主排気流路11が形成され、アッパハウジング1b内に迂回流路12が形成されると共に、熱交換器10が収容されている。熱交換器10は、内燃機関ENGの冷却媒体が循環する複数の冷却媒体流路(代表して10jで表す)を有し、これらの間を迂回流路12内の排気ガスが通過して熱交換が行われ、冷却媒体が加熱されて内燃機関ENGに還流されると共に、冷却された再循環用排気ガスが再循環流路13を介して排気ガス再循環装置EGR(図1)に供給される。   As shown in FIGS. 2 and 3, the exhaust heat recovery apparatus 1 of the present embodiment includes a lower housing 1 a disposed below the vehicle, and an upper housing 1 b joined to the upper housing 1 b and disposed above the vehicle. A main exhaust passage 11 is formed in the housing 1a, a bypass passage 12 is formed in the upper housing 1b, and a heat exchanger 10 is accommodated. The heat exchanger 10 has a plurality of cooling medium passages (typically represented by 10j) through which the cooling medium of the internal combustion engine ENG circulates, and the exhaust gas in the bypass passage 12 passes between them to generate heat. Exchange is performed, the cooling medium is heated and recirculated to the internal combustion engine ENG, and the cooled recirculation exhaust gas is supplied to the exhaust gas recirculation device EGR (FIG. 1) via the recirculation flow path 13. The

本実施形態の弁装置20は熱交換器10の下流側に配設され、主排気流路11の開口部11aを開閉する第1の弁部材21と、迂回流路12の開口部12aを開閉する第2の弁部材22を備えている。図2及び図3に示すように、第2の弁部材22は、第1の弁部材21に接合された円弧状のパイプで構成されており、ロアハウジング1aに支持されたピボット軸Cを中心に、第1の弁部材21と一体となって揺動するように構成されている。尚、弁装置20を駆動するアクチュエータについては従前と同様であるので説明を省略する。   The valve device 20 of the present embodiment is disposed on the downstream side of the heat exchanger 10, and opens and closes the first valve member 21 that opens and closes the opening 11 a of the main exhaust passage 11 and the opening 12 a of the bypass passage 12. The second valve member 22 is provided. As shown in FIGS. 2 and 3, the second valve member 22 is formed by an arc-shaped pipe joined to the first valve member 21, and is centered on a pivot shaft C supported by the lower housing 1 a. Further, the first valve member 21 is configured to swing integrally. Since the actuator for driving the valve device 20 is the same as before, the description thereof is omitted.

上記のように構成された排気熱回収装置1において、図2の態様は、内燃機関ENGの暖気過程(冷間時)において、排気熱回収優先とし、冷却媒体を早急に温めて暖機及び暖房に供する状態を示しており、主排気流路11が第1の弁部材21によって全閉状態とされると共に、迂回流路12が全開状態とされている。これにより、排気ガスの流れを矢印で示すように、排気管EP2から流入する排気ガスの全てが導入側の開口部12bから熱交換器10へ流入して積極的に熱回収(冷却)され、再循環用排気ガスとなって再循環流路13から排気ガス再循環装置EGRへ供給されると共に、排出側の開口部12aから主排気流路11内へ排出される。この場合において、迂回流路12が連通状態とされていても、必要とされる冷却済みの再循環用排気ガスが再循環流路13を介して確実に排気ガス再循環装置EGRに供給される。尚、暖気過程(冷間時)においては、第1の弁部材21によって主排気流路11が全閉状態となるのが好ましいが、排気ガスの完全遮断が必須ではないので、主排気流路11の排気流量が必要量だけ絞られていれば、必ずしも全閉状態とする必要はなく、若干開いた状態でも構わない。   In the exhaust heat recovery apparatus 1 configured as described above, the embodiment shown in FIG. 2 prioritizes exhaust heat recovery in the warming-up process (in the cold state) of the internal combustion engine ENG, and warms up and heats up the cooling medium quickly. The main exhaust passage 11 is fully closed by the first valve member 21 and the bypass passage 12 is fully open. As a result, as shown by the arrow of the flow of exhaust gas, all of the exhaust gas flowing in from the exhaust pipe EP2 flows into the heat exchanger 10 through the opening 12b on the introduction side, and is actively recovered (cooled), The exhaust gas for recirculation is supplied from the recirculation flow path 13 to the exhaust gas recirculation device EGR, and is discharged into the main exhaust flow path 11 from the opening 12a on the discharge side. In this case, even if the bypass flow path 12 is in a communication state, the required cooled recirculation exhaust gas is reliably supplied to the exhaust gas recirculation device EGR via the recirculation flow path 13. . In the warm-up process (during cold), it is preferable that the main exhaust passage 11 is fully closed by the first valve member 21, but it is not essential to completely shut off the exhaust gas. As long as the exhaust flow rate of 11 is reduced by a necessary amount, it is not always necessary to be in the fully closed state, and it may be in a slightly opened state.

一方、図3の態様は、内燃機関ENGの中回転乃至高回転時における、排気効率優先の状態を示すもので、主排気流路11が全開状態とされると共に、迂回流路12が第2の弁部材22によって略全閉状態とされている。これにより、排気ガスの殆どが主排気流路11から排気管EP3へ排出されるが、排気ガスの一部は開口部12bから熱交換器10に導入されて冷却され、再循環用排気ガスとなって再循環流路13から排気ガス再循環装置EGRへ供給される。この場合において、迂回流路12が第2の弁部材22によって略閉塞状態とされていても、必要とされる冷却済みの再循環用排気ガスは再循環流路13を介して確実に排気ガス再循環装置EGRに供給される。   On the other hand, the mode of FIG. 3 shows a state in which exhaust efficiency is prioritized during medium to high rotation of the internal combustion engine ENG. The main exhaust passage 11 is fully opened and the bypass passage 12 is the second. The valve member 22 is substantially fully closed. As a result, most of the exhaust gas is discharged from the main exhaust passage 11 to the exhaust pipe EP3, but a part of the exhaust gas is introduced into the heat exchanger 10 through the opening 12b and cooled, and the exhaust gas for recirculation and The recirculation flow path 13 is then supplied to the exhaust gas recirculation device EGR. In this case, even if the bypass flow path 12 is substantially closed by the second valve member 22, the required cooled recirculation exhaust gas is reliably exhausted via the recirculation flow path 13. It is supplied to the recirculation device EGR.

而して、本実施形態の排気熱回収装置1における熱交換器10は、図2及び図3の何れの状態においても、更にはその中間過程においても、熱回収を続けることになり、常時熱回収が行われる。この点に関し、従来の(切換式)排気熱回収装置においては、暖気後の熱回収は不要とされ、寧ろ熱交換器に対し排気ガスを如何に隔離して冷却媒体への熱交換を阻止するかが求められてきたが、本実施形態では常時熱回収を前提としており、そのような対策を講ずる必要はない。もっとも、常時熱回収化により、従来装置に比し水冷却システム、即ち、ラジエータ、水配管、切換弁等への熱負担は増えるが、従前のEGRクーラを廃止あるいは小型化することができ熱負荷減となるので、相殺されることになる。   Thus, the heat exchanger 10 in the exhaust heat recovery apparatus 1 of the present embodiment continues heat recovery in any state of FIG. 2 and FIG. Recovery is performed. In this regard, in the conventional (switchable) exhaust heat recovery device, heat recovery after warming is not required, but rather the exhaust gas is isolated from the heat exchanger to prevent heat exchange with the cooling medium. However, in this embodiment, heat recovery is always premised, and it is not necessary to take such measures. However, the constant heat recovery increases the heat burden on the water cooling system, ie, the radiator, water piping, and switching valve, compared to conventional devices, but the conventional EGR cooler can be abolished or miniaturized and the heat load can be reduced. It will be offset and will be offset.

次に、図4及び図5は、本発明の他の実施形態に係る排気熱回収装置1xを示すもので、ハウジング1c内に主排気流路111が形成されると共に、その周囲に迂回流路112が形成されており、これらの流路は排気流路110で合流し、熱交換器100は迂回流路112に介装されている。この熱交換器100も、内燃機関ENGの冷却媒体が循環する複数の冷却媒体流路(代表して100jで表す)を有し、これらの間を迂回流路112内の排気ガスが通過して熱交換が行われ、冷却媒体が加熱されて内燃機関ENGに還流されると共に、冷却された再循環用排気ガスが再循環流路113を介して排気ガス再循環装置EGRに供給されるが、本実施形態においては、主排気流路111を構成する筒体とハウジング1cの筒体部との間に熱交換器100が介装されている。このように構成することにより、図2及び図3に記載の実施形態に比し装置全体を小型に形成することができる。   4 and 5 show an exhaust heat recovery apparatus 1x according to another embodiment of the present invention, in which a main exhaust passage 111 is formed in a housing 1c and a bypass passage is formed around the main exhaust passage 111. 112 is formed, these flow paths merge at the exhaust flow path 110, and the heat exchanger 100 is interposed in the bypass flow path 112. This heat exchanger 100 also has a plurality of cooling medium passages (typically represented by 100j) through which the cooling medium of the internal combustion engine ENG circulates, and the exhaust gas in the bypass passage 112 passes between them. Heat exchange is performed, the cooling medium is heated and recirculated to the internal combustion engine ENG, and the cooled recirculation exhaust gas is supplied to the exhaust gas recirculation device EGR via the recirculation flow path 113. In the present embodiment, the heat exchanger 100 is interposed between the cylindrical body constituting the main exhaust flow path 111 and the cylindrical body portion of the housing 1c. By comprising in this way, the whole apparatus can be formed small compared with embodiment described in FIG.2 and FIG.3.

具体的には、図4に示すように、主排気流路111を構成する筒体の回りに、車両の左右方向で分割され、主排気流路111の軸を中心とする(側面視)円弧状に形成された一対の熱交換器100が配設されており、冷却媒体は、ハウジング1cの車両下方に設けられた導入口100iから導入され、複数の冷却媒体流路100jを経て、車両上方に設けられた排出口100kから内燃機関ENG(図1)に還流されるように構成されている。而して、排気管EP2から主排気流路111に流入する排気ガスは、導入側の開口部112bから冷却媒体流路100jの間を通過して熱交換が行われ、冷却媒体が加熱されて内燃機関ENGに還流されると共に、冷却された再循環用排気ガスが再循環流路113を介して排気ガス再循環装置EGR(図1)に供給される。   Specifically, as shown in FIG. 4, a circle that is divided in the left-right direction of the vehicle around the cylinder constituting the main exhaust passage 111 and that has the axis of the main exhaust passage 111 as the center (side view). A pair of arc-shaped heat exchangers 100 are disposed, and the cooling medium is introduced from an inlet 100i provided in the lower part of the vehicle in the housing 1c, and passes through a plurality of cooling medium flow paths 100j, and then the upper part of the vehicle. The exhaust port 100k provided in the engine is recirculated to the internal combustion engine ENG (FIG. 1). Thus, the exhaust gas flowing into the main exhaust flow path 111 from the exhaust pipe EP2 passes through the cooling medium flow path 100j from the opening 112b on the introduction side, heat exchange is performed, and the cooling medium is heated. While being recirculated to the internal combustion engine ENG, the cooled recirculation exhaust gas is supplied to the exhaust gas recirculation device EGR (FIG. 1) via the recirculation flow path 113.

本実施形態の弁装置120も、主排気流路111の開口部111aを開閉する第1の弁部材121と、迂回流路112の開口部112aを開閉する第2の弁部材122を備えている。図4及び図5に示すように、第2の弁部材122は、第1の弁部材121と一体的に形成された円弧状の湾曲部材で構成されており、ハウジング1cに支持されたピボット軸Cを中心に、第1の弁部材121と一体となって揺動し、開口部112aを開閉するように構成されている。尚、弁装置120を駆動するアクチュエータも従前と同様であるので説明を省略する。   The valve device 120 of the present embodiment also includes a first valve member 121 that opens and closes the opening 111a of the main exhaust flow path 111, and a second valve member 122 that opens and closes the opening 112a of the bypass flow path 112. . As shown in FIGS. 4 and 5, the second valve member 122 is composed of an arcuate curved member formed integrally with the first valve member 121, and is a pivot shaft supported by the housing 1c. It is configured to swing integrally with the first valve member 121 around C and open and close the opening 112a. Since the actuator for driving the valve device 120 is the same as before, the description thereof is omitted.

図4の態様は、内燃機関ENGの暖気過程(冷間時)において、排気熱回収優先とし、冷却媒体を早急に温めて暖機及び暖房に供する状態を示すもので、主排気流路111が第1の弁部材121によって全閉状態とされると共に、迂回流路112が全開状態とされている。これにより、排気ガスの全てが連通孔112bから熱交換器10へ流入して積極的に熱回収(冷却)され、再循環用排気ガスとなって再循環流路113を介して排気ガス再循環装置EGRへ供給されると共に、開口部112aから排気流路110内へ排出される。この場合において、迂回流路112が連通状態とされていても、必要とされる冷却済みの再循環用排気ガスが再循環流路113を介して確実に排気ガス再循環装置EGRに供給される。尚、本実施形態においても、暖気過程(冷間時)では、第1の弁部材121によって主排気流路111が全閉状態となるのが好ましいが、排気ガスの完全遮断が必須ではないので、主排気流路111の排気流量が必要量だけ絞られていれば、必ずしも全閉状態とする必要はなく、若干開いた状態でも構わない。   FIG. 4 shows a state in which exhaust heat recovery is prioritized in the warming-up process (when cold) of the internal combustion engine ENG, and the cooling medium is quickly warmed and used for warming up and heating. The first valve member 121 is fully closed, and the bypass flow path 112 is fully open. As a result, all of the exhaust gas flows into the heat exchanger 10 from the communication hole 112b and is actively recovered (cooled) to become exhaust gas for recirculation, and the exhaust gas is recirculated through the recirculation passage 113. While being supplied to the apparatus EGR, it is discharged into the exhaust passage 110 from the opening 112a. In this case, even if the bypass flow path 112 is in a communication state, the required cooled recirculation exhaust gas is reliably supplied to the exhaust gas recirculation device EGR via the recirculation flow path 113. . In this embodiment as well, in the warm-up process (during cold), it is preferable that the main exhaust passage 111 is fully closed by the first valve member 121, but it is not essential to completely shut off the exhaust gas. As long as the exhaust flow rate of the main exhaust passage 111 is reduced by a necessary amount, it is not necessarily required to be in the fully closed state, and may be slightly opened.

一方、図5の態様は、暖気過程終了後の内燃機関ENGの中回転乃至高回転時における、排気効率優先の状態を示すもので、主排気流路111が全開状態とされると共に、迂回流路112が第2の弁部材122によって略全閉状態とされている。これにより、排気ガスの殆どが主排気流路111から排気管EP3(図1)へ排出されるが、排気ガスの一部は連通孔112bから熱交換器100に導入されて冷却され、再循環用排気ガスとなって排気ガス再循環装置EGRへ供給される。この場合において、迂回流路112が第2の弁部材122によって略閉塞状態とされていても、必要とされる冷却済みの再循環用排気ガスは確実に排気ガス再循環装置EGRに供給される。而して、図4及び図5の何れの状態においても、更にはその中間過程においても、熱交換器100による熱回収が継続されることになり、常時回収が行われる。   On the other hand, the mode of FIG. 5 shows a state in which the exhaust efficiency is prioritized during the middle to high rotation of the internal combustion engine ENG after the warm-up process is finished. The path 112 is substantially fully closed by the second valve member 122. As a result, most of the exhaust gas is discharged from the main exhaust passage 111 to the exhaust pipe EP3 (FIG. 1), but part of the exhaust gas is introduced into the heat exchanger 100 through the communication hole 112b, cooled, and recirculated. The exhaust gas is supplied to the exhaust gas recirculation device EGR. In this case, even if the bypass flow path 112 is substantially closed by the second valve member 122, the required cooled recirculation exhaust gas is reliably supplied to the exhaust gas recirculation device EGR. . Thus, in any state of FIG. 4 and FIG. 5 and also in the intermediate process, heat recovery by the heat exchanger 100 is continued, and recovery is always performed.

以上のように、種々の構造の排気熱回収装置(1、1x)において、熱交換器10と、迂回流路(12、112)開閉用の弁装置(第2の弁部材12、122)との間に、再循環流路(13、113)を配設することにより、運転状態にかかわらず常に冷却済みの再循環用排気ガスを排気ガス再循環装置EGRに供給することができる。尚、図2乃至図5の弁装置は複数の弁部材によって主排気流路及び迂回流路を開閉するように構成されているが、単一の弁部材によって両流路を開閉すると共に、各流路の流路面積を調整し得るように構成することもできる。   As described above, in the exhaust heat recovery devices (1, 1x) having various structures, the heat exchanger 10 and the valve devices (second valve members 12, 122) for opening and closing the bypass channels (12, 112) are provided. By providing the recirculation flow path (13, 113) between them, the recirculated exhaust gas that has been cooled can be always supplied to the exhaust gas recirculation device EGR regardless of the operating state. 2 to 5 are configured to open and close the main exhaust flow path and the bypass flow path by a plurality of valve members, but both the flow paths are opened and closed by a single valve member. It can also comprise so that the flow-path area of a flow path can be adjusted.

図6及び図7は、本発明の更に他の実施形態に係る排気熱回収装置1yを示すもので、図2及び図3に示す実施形態における実質的に同一の要素については同一の符合を付している。本実施形態の弁装置200は、主排気流路11及び迂回流路12の一方を閉塞した状態(全閉状態)で、他方の流路面積を連続的に設定し得る単一の弁部材210で構成され、この弁部材210を内燃機関ENGの運転状態に応じて駆動し、主排気流路11及び迂回流路12の流路切換を行うと共に、主排気流路11及び迂回流路12の各々の流路面積調整を行うように構成されている。   6 and 7 show an exhaust heat recovery apparatus 1y according to still another embodiment of the present invention, and substantially the same elements in the embodiments shown in FIGS. 2 and 3 are denoted by the same reference numerals. doing. The valve device 200 of the present embodiment is a single valve member 210 that can continuously set the other channel area in a state where one of the main exhaust channel 11 and the bypass channel 12 is closed (fully closed state). The valve member 210 is driven in accordance with the operating state of the internal combustion engine ENG, and the main exhaust passage 11 and the bypass passage 12 are switched, and the main exhaust passage 11 and the bypass passage 12 are switched. Each channel area is adjusted.

本実施形態の弁部材210は、断面扇形状の弁体211から成り、この弁体211の要部分をピボット軸Cとして主排気流路11と迂回流路12との連結部に揺動自在に支持され、弁体211の外周壁面212が迂回流路12の内壁面及び主排気流路11の内壁面に摺動可能に配設されている。弁部材210はアクチュエータACTに連結され、このアクチュエータACTを介して、電子制御ユニットECUにより内燃機関ENGの運転状態に応じて駆動制御される。アクチュエータACTは、例えばステップモータ(図示せず)を有し、これが電子制御ユニットECUによって精密に回転駆動あるいは保持固定される。電子制御ユニットECUでは、各種センサ(酸素センサ、圧カセンサ、水温センサ、回転センサ、アクセル開度センサ等)の検出信号等に基づき、内燃機関ENGの運転状況、運転者のアクセルペダル等の操作状況、更には、車両姿勢や制動状況が監視され、所定のサイクルで、その時点における弁部材210の最適な位置が演算され、その位置まで回転し、あるいはその位置で停止するように、上記ステップモータの駆動信号が出力される。而して、上記のアクチュエータACT及び電子制御ユニットECUによって制御装置が構成され、主排気流路11と迂回流路12との間の流路切換(各流路の開閉)が行われると共に、主排気流路11及び迂回流路12の各々の流路面積調整が行われる。   The valve member 210 according to the present embodiment includes a valve body 211 having a fan-shaped cross section, and a pivotal portion C of the main part of the valve body 211 is swingable to a connecting portion between the main exhaust passage 11 and the bypass passage 12. The outer peripheral wall surface 212 of the valve body 211 is slidably disposed on the inner wall surface of the bypass channel 12 and the inner wall surface of the main exhaust channel 11. The valve member 210 is connected to the actuator ACT, and is driven and controlled by the electronic control unit ECU according to the operating state of the internal combustion engine ENG via the actuator ACT. The actuator ACT has, for example, a step motor (not shown), which is precisely rotated or held and fixed by the electronic control unit ECU. In the electronic control unit ECU, based on detection signals of various sensors (oxygen sensor, pressure sensor, water temperature sensor, rotation sensor, accelerator opening sensor, etc.), the operating status of the internal combustion engine ENG, the operating status of the driver's accelerator pedal, etc. Further, the stepping motor is monitored so that the vehicle posture and the braking situation are monitored, and in a predetermined cycle, the optimum position of the valve member 210 at that time is calculated and rotated to that position or stopped at that position. Drive signal is output. Thus, a control device is configured by the actuator ACT and the electronic control unit ECU, and the flow switching between the main exhaust flow path 11 and the bypass flow path 12 (opening and closing of each flow path) is performed. The flow area adjustment of each of the exhaust flow path 11 and the bypass flow path 12 is performed.

図6においては、主排気流路11が弁部材210によって全閉状態とされ、排気流路は迂回流路12側に切り換えられる。従って、排気ガスの全てが迂回流路12に導入され、熱交換器10で熱交換された後、開口部12cから主排気流路11に排出される。更に、本実施形態においては、主排気流路11が全閉状態に維持された状態で、弁部材210の駆動によって、出力要件及び消音要件に適合するように迂回流路12の流路面積が調整される。例えば、弁部材210と迂回流路12との間隙(b)が調整され、例えば弁部材210の「絞り機能」により「流量調節機能」が発揮される。尚、弁部材210は無段階に駆動し得るので、主排気流路11を全閉状態に維持した状態で、迂回流路12の流路面積を任意に調整することができる。   In FIG. 6, the main exhaust passage 11 is fully closed by the valve member 210, and the exhaust passage is switched to the bypass passage 12 side. Accordingly, all of the exhaust gas is introduced into the bypass flow path 12 and is heat-exchanged by the heat exchanger 10, and then discharged from the opening 12c to the main exhaust flow path 11. Furthermore, in this embodiment, the flow path area of the bypass flow path 12 is adjusted so as to meet the output requirements and the silencing requirements by driving the valve member 210 while the main exhaust flow path 11 is maintained in the fully closed state. Adjusted. For example, the gap (b) between the valve member 210 and the bypass channel 12 is adjusted, and for example, the “flow adjustment function” is exhibited by the “throttle function” of the valve member 210. Since the valve member 210 can be driven steplessly, the flow passage area of the bypass flow passage 12 can be arbitrarily adjusted with the main exhaust flow passage 11 maintained in a fully closed state.

図7の態様は、内燃機関ENGの暖機後の状態を示すもので、迂回流路12が弁部材210によって全閉状態とされ、排気流路は主排気流路11側に切り換えられる。従って、排気ガスの全てが主排気流路11に導入され、そのまま排出される。この場合において、本実施形態においては、迂回流路12が閉状態に維持された状態で、弁部材210の駆動によって、出力要件及び消音要件に適合するように主排気流路11の流路面積が調整される。例えば、図7の間隙(c)に示すように、主排気流路11の流路面積は、最大流路面積に比べ小さくなるように調整される。この状態においても、迂回流路12(及び再循環用排気ガス供給)を弁部材210によって任意に流量制御することができる。即ち、迂回流路12が全閉状態とされていても、再循環用排気ガスの供給を確保しつつ、主排気流路11の排気ガス流量(および流路抵抗)を任意に可変とすることができる。従って、内燃機関ENGの低回転乃至中回転時において、適宜排気絞りを行い、排気抵抗を付与することによる消音機能を付加することも可能となる。また、図8に示すように、弁部材210の回動によって開閉される位置に再循環流路13を設けることとすれば、再循環用排気ガスの流量までも制御することが可能となる。   7 shows a state after the internal combustion engine ENG is warmed up. The bypass flow path 12 is fully closed by the valve member 210, and the exhaust flow path is switched to the main exhaust flow path 11 side. Accordingly, all of the exhaust gas is introduced into the main exhaust passage 11 and is discharged as it is. In this case, in this embodiment, the flow passage area of the main exhaust flow passage 11 is adapted to meet the output requirements and the silencing requirements by driving the valve member 210 while the bypass flow passage 12 is maintained in the closed state. Is adjusted. For example, as shown in the gap (c) in FIG. 7, the flow area of the main exhaust flow path 11 is adjusted to be smaller than the maximum flow area. Even in this state, the bypass channel 12 (and the recirculation exhaust gas supply) can be arbitrarily controlled by the valve member 210. That is, even if the bypass flow path 12 is fully closed, the exhaust gas flow rate (and flow path resistance) of the main exhaust flow path 11 can be arbitrarily changed while ensuring the supply of the recirculation exhaust gas. Can do. Therefore, it is possible to add a noise reduction function by appropriately adjusting the exhaust throttle and imparting exhaust resistance during low to medium rotation of the internal combustion engine ENG. In addition, as shown in FIG. 8, if the recirculation flow path 13 is provided at a position that is opened and closed by the rotation of the valve member 210, it is possible to control even the flow rate of the recirculation exhaust gas.

以上のように、図6及び図7の何れの態様においても、主排気流路11と迂回流路12に対する全開状態と全閉状態の切換(開閉)だけでなく、その間の流量(全閉状態にない側の流量)も弁部材210にて制御することで任意の流量制御が可能となり、以下の制御が可能となる。即ち、図6の状態における再循環用排気ガス供給量の制御が可能となる。また、図7の状態において、走行状態に応じた排気絞りによる消音制御が可能となる。更に、内燃機関ENG始動直後の冷間時に発生しがちな排気異音を抑制するため、始動直後の一定時間だけ図7の開度(c)を最小とする制御も可能となる。而して、基本的には内燃機関ENGに装着されたEGRバルブ(図1のEGV)によって再循環用排気ガスの流量制御が行われるが、その補助として、再循環用排気ガス供給量の制御を行うことができる。しかも、複数の弁部材でなく単一の弁部材210で切換制御が可能であるため、機構が簡潔で確実に作動を行い得ると共に、コスト及び重量面でも有効である。尚、前述の実施形態と同様、主排気流路11及び迂回流路12は必ずしも全閉状態とする必要はなく、若干開いた状態でも構わない。   As described above, in any of the modes of FIGS. 6 and 7, not only switching (opening / closing) between the fully open state and the fully closed state with respect to the main exhaust flow path 11 and the bypass flow path 12 but also the flow rate between them (fully closed state). The flow rate on the side that is not present) is also controlled by the valve member 210, whereby arbitrary flow rate control is possible, and the following control is possible. That is, the recirculation exhaust gas supply amount in the state of FIG. 6 can be controlled. Further, in the state shown in FIG. 7, it is possible to perform noise reduction control by the exhaust throttle according to the traveling state. Further, in order to suppress the exhaust noise that tends to occur during the cold immediately after the start of the internal combustion engine ENG, it is possible to perform the control that minimizes the opening degree (c) of FIG. 7 for a certain time immediately after the start. Thus, the flow rate of the recirculation exhaust gas is basically controlled by the EGR valve (EGV in FIG. 1) mounted on the internal combustion engine ENG. As an auxiliary, the control of the recirculation exhaust gas supply amount is performed. It can be performed. In addition, since the switching control is possible with a single valve member 210 instead of a plurality of valve members, the mechanism can be operated simply and reliably, and it is also effective in terms of cost and weight. Note that, as in the above-described embodiment, the main exhaust passage 11 and the bypass passage 12 do not necessarily need to be fully closed, and may be slightly open.

図9は従来の排気熱回収装置を備えた排気装置を示すもので、排気管EP1にスタート触媒コンバータ(SC)が接続されると共に、これから離隔した位置にメイン触媒コンバータ(MC)が接続されている。このメイン触媒コンバータ(MC)は排気管EP2を介して排気熱回収装置(HEA)に接続され、更に、排気管EP3を介して消音器(MF)に連結されている。そして、スタート触媒コンバータ(SC)の下流側がEGRクーラ(図9にEGCで示す)を介して排気ガス再循環装置(図9では省略)に連通接続されている。而して、図9に示す排気装置と、図1に示す本発明の実施形態とを対比すれば明らかなように、図1に示す排気熱回収装置1によれば、図9に示す排気熱回収装置(HEA)及びEGRクーラ(EGC)の両者を包含し小型軽量化が可能となるに留まらず、前述のように効率的且つ適切に排気再循環を行うことができる。   FIG. 9 shows an exhaust system equipped with a conventional exhaust heat recovery device. A start catalytic converter (SC) is connected to the exhaust pipe EP1, and a main catalytic converter (MC) is connected to a position away from the start catalytic converter (SC). Yes. The main catalytic converter (MC) is connected to an exhaust heat recovery device (HEA) via an exhaust pipe EP2, and is further connected to a silencer (MF) via an exhaust pipe EP3. The downstream side of the start catalytic converter (SC) is connected to an exhaust gas recirculation device (not shown in FIG. 9) via an EGR cooler (indicated by EGC in FIG. 9). Thus, as is apparent from a comparison between the exhaust device shown in FIG. 9 and the embodiment of the present invention shown in FIG. 1, according to the exhaust heat recovery device 1 shown in FIG. 1, the exhaust heat shown in FIG. In addition to including both the recovery device (HEA) and the EGR cooler (EGC), it is possible not only to reduce the size and weight, but also to efficiently and appropriately perform exhaust gas recirculation as described above.

1,1x,1y 排気熱回収装置
10,100 熱交換器
11,111 主排気流路
12,112 迂回流路
13,113 再循環流路
20,120,200 弁装置
21,121 第1の弁部材
22,122 第2の弁部材
210 弁部材
ENG 内燃機関
EGR 排気ガス再循環装置
CC 触媒コンバータ
1, 1x, 1y Exhaust heat recovery device 10, 100 Heat exchanger 11, 111 Main exhaust passage 12, 112 Detour passage 13, 113 Recirculation passage 20, 120, 200 Valve device 21, 121 First valve member 22, 122 Second valve member 210 Valve member ENG Internal combustion engine EGR Exhaust gas recirculation device CC Catalytic converter

Claims (4)

排気ガス再循環装置を備えた内燃機関の排気ガスを導入する主排気流路と、該主排気流路から分岐し当該主排気流路に合流する迂回流路と、該迂回流路に介装され、当該迂回流路内の排気ガスを導入し前記内燃機関の冷却媒体と熱交換を行う熱交換器と、該熱交換器の下流側で前記主排気流路及び前記迂回流路を開閉する弁装置を備え、該弁装置と前記熱交換器との間の前記迂回流路を前記排気ガス再循環装置に連通接続したことを特徴とする内燃機関の排気熱回収装置。   A main exhaust passage for introducing exhaust gas of an internal combustion engine equipped with an exhaust gas recirculation device; a bypass passage branched from the main exhaust passage and joined to the main exhaust passage; and an intervening passage in the bypass passage A heat exchanger that introduces exhaust gas in the bypass flow path and exchanges heat with the cooling medium of the internal combustion engine, and opens and closes the main exhaust flow path and the bypass flow path on the downstream side of the heat exchanger. An exhaust heat recovery device for an internal combustion engine comprising a valve device, wherein the bypass flow path between the valve device and the heat exchanger is connected to the exhaust gas recirculation device. 前記弁装置は、前記主排気流路を開閉する第1の弁部材と、前記迂回流路を開閉する第2の弁部材を備えたことを特徴とする請求項1記載の内燃機関の排気熱回収装置。   2. The exhaust heat of the internal combustion engine according to claim 1, wherein the valve device includes a first valve member that opens and closes the main exhaust passage and a second valve member that opens and closes the bypass passage. Recovery device. 前記弁装置は、前記主排気流路及び前記迂回流路の一方を閉塞した状態で、他方の流路面積を連続的に設定する単一の弁部材を備えたことを特徴とする請求項1記載の内燃機関の排気熱回収装置。   2. The valve device according to claim 1, further comprising a single valve member configured to continuously set a flow path area of the other while closing one of the main exhaust flow path and the bypass flow path. An exhaust heat recovery apparatus for an internal combustion engine as described. 前記単一の弁部材を前記内燃機関の運転状態に応じて駆動し、前記主排気流路及び前記迂回流路の流路切換を行うと共に、前記主排気流路及び前記迂回流路の各々の流路面積調整を行う制御装置を備えたことを特徴とする請求項3記載の内燃機関の排気熱回収装置。   The single valve member is driven according to the operating state of the internal combustion engine, and the main exhaust passage and the bypass passage are switched, and each of the main exhaust passage and the bypass passage is switched. The exhaust heat recovery device for an internal combustion engine according to claim 3, further comprising a control device for adjusting a flow path area.
JP2014172221A 2014-08-27 2014-08-27 Exhaust heat recovery device of internal combustion engine Pending JP2016044666A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014172221A JP2016044666A (en) 2014-08-27 2014-08-27 Exhaust heat recovery device of internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014172221A JP2016044666A (en) 2014-08-27 2014-08-27 Exhaust heat recovery device of internal combustion engine

Publications (1)

Publication Number Publication Date
JP2016044666A true JP2016044666A (en) 2016-04-04

Family

ID=55635445

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014172221A Pending JP2016044666A (en) 2014-08-27 2014-08-27 Exhaust heat recovery device of internal combustion engine

Country Status (1)

Country Link
JP (1) JP2016044666A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018103898A1 (en) 2016-12-09 2018-06-14 Faurecia Systemes D'echappement Exhaust heat recuperation device, with improved sealing
CN110080858A (en) * 2018-01-26 2019-08-02 双叶产业株式会社 Exhaust gas heat recovery device
WO2019225150A1 (en) 2018-05-22 2019-11-28 カルソニックカンセイ株式会社 Exhaust heat recovery device
JP2020067079A (en) * 2018-10-26 2020-04-30 フタバ産業株式会社 Exhaust heat recovery unit
JP2020066998A (en) * 2018-10-22 2020-04-30 フタバ産業株式会社 Exhaust heat recovery unit
US11002171B2 (en) 2017-06-09 2021-05-11 Faurecia Emissions Control Technologies, Usa, Llc Exhaust heat recovery and acoustic valve with exhaust gas recirculation features
US11022069B2 (en) 2018-12-07 2021-06-01 Tenneco Automotive Operating Company Inc. Exhaust gas heat recovery system
JP2021088981A (en) * 2019-12-06 2021-06-10 マレリ株式会社 Exhaust heat recovery device
US11041459B2 (en) 2018-12-07 2021-06-22 Tenneco Automotive Operating Company Inc. Exhaust gas heat recovery system
WO2022092151A1 (en) * 2020-11-02 2022-05-05 東京ラヂエーター製造株式会社 Egr cooler and vehicular exhaust-heat recovery device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006006385A1 (en) * 2004-07-07 2006-01-19 Sango Co., Ltd. Exhaust device of internal combustion engine
JP2009030569A (en) * 2007-07-30 2009-02-12 Futaba Industrial Co Ltd Exhaust heat recovery device
JP2009127547A (en) * 2007-11-26 2009-06-11 Toyota Motor Corp Control device for internal combustion engine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006006385A1 (en) * 2004-07-07 2006-01-19 Sango Co., Ltd. Exhaust device of internal combustion engine
JP2009030569A (en) * 2007-07-30 2009-02-12 Futaba Industrial Co Ltd Exhaust heat recovery device
JP2009127547A (en) * 2007-11-26 2009-06-11 Toyota Motor Corp Control device for internal combustion engine

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020513504A (en) * 2016-12-09 2020-05-14 フォルシア・システム・デシャプモン Exhaust heat recovery device with improved sealing
FR3060053A1 (en) * 2016-12-09 2018-06-15 Faurecia Systemes D'echappement HEAT RECOVERY DEVICE WITH EXHAUST, IMPROVED SEALING
KR20180067390A (en) * 2016-12-09 2018-06-20 포르시아 쥐스뗌 데샤피망 An exhaust heat recovery device, having an improved tightness
CN108223085A (en) * 2016-12-09 2018-06-29 佛吉亚排气系统有限公司 Exhaust gas heat recovery device with improved leakproofness
KR101970871B1 (en) * 2016-12-09 2019-04-22 포르시아 쥐스뗌 데샤피망 An exhaust heat recovery device, having an improved tightness
WO2018103898A1 (en) 2016-12-09 2018-06-14 Faurecia Systemes D'echappement Exhaust heat recuperation device, with improved sealing
CN108223085B (en) * 2016-12-09 2021-08-10 佛吉亚排气系统有限公司 Exhaust heat recovery device with improved sealability
US10557394B2 (en) 2016-12-09 2020-02-11 Faurecia Systemes D'echappement Exhaust heat recovery device having an improved tightness
US11002171B2 (en) 2017-06-09 2021-05-11 Faurecia Emissions Control Technologies, Usa, Llc Exhaust heat recovery and acoustic valve with exhaust gas recirculation features
CN110080858A (en) * 2018-01-26 2019-08-02 双叶产业株式会社 Exhaust gas heat recovery device
CN110080858B (en) * 2018-01-26 2021-04-06 双叶产业株式会社 Exhaust heat recovery device
CN112154258A (en) * 2018-05-22 2020-12-29 马瑞利株式会社 Exhaust heat recovery device
WO2019225150A1 (en) 2018-05-22 2019-11-28 カルソニックカンセイ株式会社 Exhaust heat recovery device
US11105243B2 (en) 2018-05-22 2021-08-31 Marelli Corporation Exhaust heat recovery apparatus
CN112154258B (en) * 2018-05-22 2022-02-11 马瑞利株式会社 Exhaust heat recovery device
JP2020066998A (en) * 2018-10-22 2020-04-30 フタバ産業株式会社 Exhaust heat recovery unit
JP2020067079A (en) * 2018-10-26 2020-04-30 フタバ産業株式会社 Exhaust heat recovery unit
US11022069B2 (en) 2018-12-07 2021-06-01 Tenneco Automotive Operating Company Inc. Exhaust gas heat recovery system
US11041459B2 (en) 2018-12-07 2021-06-22 Tenneco Automotive Operating Company Inc. Exhaust gas heat recovery system
JP2021088981A (en) * 2019-12-06 2021-06-10 マレリ株式会社 Exhaust heat recovery device
JP7201575B2 (en) 2019-12-06 2023-01-10 マレリ株式会社 Exhaust heat recovery device
WO2022092151A1 (en) * 2020-11-02 2022-05-05 東京ラヂエーター製造株式会社 Egr cooler and vehicular exhaust-heat recovery device

Similar Documents

Publication Publication Date Title
JP2016044666A (en) Exhaust heat recovery device of internal combustion engine
US8359845B2 (en) Exhaust heat recovery and exhaust gas recirculation with common heat exchanger
US8567182B2 (en) Vehicle exhaust heat recovery system and method of managing exhaust heat
US8413434B2 (en) Exhaust heat recovery for transmission warm-up
JP4486963B2 (en) Exhaust device for internal combustion engine
WO2014132798A1 (en) Engine intake air cooling device and cooling method
JP6125051B2 (en) Integrated heat exchanger for automobile
WO2013031287A1 (en) Waste heat utilization device
JP6358938B2 (en) Exhaust heat recovery device
GB2429763A (en) Cooling system comprising heat exchangers for motor vehicle cold start operation
JP2002019456A (en) Internal combustion engine provided with exhaust gas conduit and exhaust gas heat exchanger
JP4802992B2 (en) Exhaust gas recirculation device for internal combustion engine
JP5262788B2 (en) Control device for an internal combustion engine with a supercharger
JPH10266902A (en) Exhaust gas circulating device
JP2008101496A (en) Exhaust system heat exchanger
JP2007270702A (en) Exhaust heat recovery device with muffling function
JP6610622B2 (en) Control device for heat exchange system
JP2008163773A (en) Exhaust manifold, egr device, and exhaust gas utilizing apparatus
JP2007132309A (en) Exhaust gas cooling device for exhaust gas re-circulation device
JP4269772B2 (en) Vehicle cooling system
JP5617721B2 (en) Control device for supercharged engine with EGR device
JP2007113559A (en) Silencer for internal combustion engine
JP2012082723A (en) Cooling device of internal combustion engine
JPH10281016A (en) Exhaust gas recirculation device
JP2012184754A (en) Cooling system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170321

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180301

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180327

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180420

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20180426

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20180608