JP2016100311A - 燃料電池の製造方法 - Google Patents

燃料電池の製造方法 Download PDF

Info

Publication number
JP2016100311A
JP2016100311A JP2014239012A JP2014239012A JP2016100311A JP 2016100311 A JP2016100311 A JP 2016100311A JP 2014239012 A JP2014239012 A JP 2014239012A JP 2014239012 A JP2014239012 A JP 2014239012A JP 2016100311 A JP2016100311 A JP 2016100311A
Authority
JP
Japan
Prior art keywords
fuel cell
organic matter
gas
fuel
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014239012A
Other languages
English (en)
Other versions
JP6210229B2 (ja
Inventor
祥 宇佐美
Sho Usami
祥 宇佐美
恵 八重樫
Megumi Yaegashi
恵 八重樫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2014239012A priority Critical patent/JP6210229B2/ja
Priority to KR1020150137409A priority patent/KR101822235B1/ko
Priority to CA2911538A priority patent/CA2911538C/en
Priority to DE102015119150.4A priority patent/DE102015119150B4/de
Priority to US14/947,663 priority patent/US9853309B2/en
Priority to CN201510831483.4A priority patent/CN105655597B/zh
Publication of JP2016100311A publication Critical patent/JP2016100311A/ja
Application granted granted Critical
Publication of JP6210229B2 publication Critical patent/JP6210229B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04225Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells during start-up
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/043Processes for controlling fuel cells or fuel cell systems applied during specific periods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/043Processes for controlling fuel cells or fuel cell systems applied during specific periods
    • H01M8/04302Processes for controlling fuel cells or fuel cell systems applied during specific periods applied during start-up
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/249Grouping of fuel cells, e.g. stacking of fuel cells comprising two or more groupings of fuel cells, e.g. modular assemblies
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2404Processes or apparatus for grouping fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Fuel Cell (AREA)

Abstract

【課題】アノード電極及びカソード電極双方の有機物を効率的に除去することのできる燃料電池の製造方法を提供する。【解決手段】高分子電解質と触媒層とを有する単セルを複数積層した燃料電池を準備する準備工程と、前記燃料電池から有機物を除去する除去工程と、を有する燃料電池の製造方法を提供する。この除去工程は、燃料電池の電圧を0Vに保ち触媒層から有機物を脱離させる第1の工程と、燃料電池内の温度を上げて脱離した有機物を蒸発させる第2の工程と、蒸発させた有機物を燃料電池から排気する第3の工程と、を備える。【選択図】図4

Description

本発明は、燃料電池の製造方法に関する。
燃料電池の一形態として固体高分子電解質型の燃料電池が知られている。こうした固体高分子電解質型の燃料電池においては、膜電極接合体(MEA)を空気(酸素)ガス流路および燃料(水素)ガス流路が形成されたセパレータで挟持して単セルを形成し、この単セルを複数積層させることにより燃料電池を形成している。
膜電極接合体(MEA)のアノード電極及びカソード電極には、製造時に有機物などの不純物が付着することが知られている(特許文献1)。そのため、特許文献1では、出荷時のエージング(燃料電池の初期慣らし運転)中に、カソード側に電源の正極を接続し、アノード側に電源の負極を接続して、カソード電極の電位をアノード電極に対して高めることで、カソード電極に付着した有機物を除去することが提案されている。
特開2009−199834号公報
しかしながら、上記方法では、アノード電極に付着した有機物を除去することはできない。したがって、そのまま出荷した場合は燃料電池の出力性能が低下してしまう。一方、アノード電極に付着した有機物を除去しようとすると別の除去工程が必要となり製造工程が煩雑になってしまう。
本発明は、以上の背景に鑑みてなされたものであり、アノード電極及びカソード電極双方の有機物を効率的に除去することのできる燃料電池の製造方法を提供することを目的とする。
上記課題を解決するために、本発明の好ましい一態様によれば、高分子電解質と触媒層とを有する単セルを複数積層した燃料電池を準備する準備工程と、前記燃料電池から有機物を除去する除去工程と、を有する燃料電池の製造方法であって、前記除去工程は、前記燃料電池の電圧を0Vに保ち前記触媒層から有機物を脱離させる第1の工程と、前記燃料電池内の温度を上げて前記脱離した有機物を蒸発させる第2の工程と、前記蒸発させた有機物を前記燃料電池から排気する第3の工程と、を備える。
上記製造方法によれば、燃料電池の電圧を0Vに保つので、アノード電極及びカソード電極双方の触媒層に付着した極性のある有機物(例えば、イソ酪酸)が触媒層から脱離する。次に、脱離した有機物は燃料電池内の温度が上昇することで蒸発する。次に、蒸発した有機物は燃料電池から排気される。これによりアノード電極及びカソード電極双方から有機物を効率的に除去することができる。
また、前記第3の工程は、前記燃料電池内をパージする工程である、ようにしてもよい。
パージによる排気するため、燃料電池を通常運転させて発生した水蒸気とともに洗い流すのに比べて、短時間で処理をすることができる。
また、前記3第工程の後に、前記燃料電池を発電させて生成水を作成し、前記生成水によって前記有機物を前記燃料電池から洗い流す第4の工程を備える、ようにしてもよい。
残留していた有機物は、運転により発生した生成水とともに蒸発又は洗い流されて、燃料電池から排出される。これにより、燃料電池内の有機物を更に減らすことができる。
また、前記除去工程後の前記燃料電池の最大出力が規格値未満の場合に、前記除去工程を繰り返す、ようにしてもよい。
一度の除去工程では電極の触媒層に付着した有機物が除去できない場合がある。上記方法によれば、燃料電池の最大出力が規格値に達しない場合は、再度の除去工程を繰り返し行うので、有機物の除去をより確実に行うことができる。
また、前記除去工程を2回以上行った後の前記燃料電池の最大出力が前回値より上昇しない場合、前記燃料電池に不良があると判別する、ようにしてもよい。
除去工程を2回以上経た後で燃料電池の最大出力が前回値よりも上昇しないような場合は、有機物による電極汚染以外の要因による可能性が高く、その後除去工程を繰り返しても燃料電池の性能の回復は見込まれない。上記方法によれば、このような場合には燃料電池に不良があると判断するので、有機物による電極汚染以外の不良を容易に判別することができ、不要な除去工程を続けることを回避できる。
本発明によれば、アノード電極及びカソード電極双方の有機物を効率的に除去可能な燃料電池の製造方法を提供することができる。
燃料電池システムの概略を示す説明図である。 燃料電池の単セルの構造を示す説明図である。 触媒層の高分子電解質と触媒担持カーボンとを模式的に示す説明図である。 有機物除去工程を説明するためのフローチャートである。 有機物除去のサイクル数と最大出力との関係を説明するためのグラフである。 有機物除去の時間と最大出力との関係を説明するためのグラフである。
以下、本発明の実施の形態について詳細に説明する。なお、図面の上下左右等の位置関係は、特に断らない限り、図面に示す位置関係に基づくものとする。また、図面の寸法比率は、図示の比率に限定されるものではない。さらに、以下の実施の形態は、本発明を説明するための例示であり、本発明をその実施の形態のみに限定する趣旨ではなく、本発明は、その要旨を逸脱しない限り、さまざまな変形が可能である。
(燃料電池システムの構成)
はじめに本実施形態に係る燃料電池システム10の全体構成について説明する。
燃料電池システム10は、例えば移動体としての燃料電池車両に搭載される車載電源システムとして機能するものであり、反応ガス(燃料ガス、酸化ガス)の供給を受けて発電する燃料電池20と、酸化ガスとしての空気を燃料電池20に供給するための酸化ガス供給系30と、燃料ガスとしての水素ガスを燃料電池20に供給するための燃料ガス供給系40と、電力の充放電を制御するための電力系50と、システム全体を統括制御するコントローラ60と、を備えている。
燃料電池20は、多数の単セルを直列に積層してなる固体高分子電解質型のスタックである。燃料電池20では、アノード電極において(1)式の酸化反応が生じ、カソード電極において(2)式の還元反応が生じる。燃料電池20全体としては(3)式の起電反応が生じる。
2 → 2H++2e- …(1)
(1/2)O2+2H++2e- → H2O …(2)
2+(1/2)O2 → H2O …(3)
図2は、燃料電池20を構成するセル21の分解斜視図である。セル21は、高分子電解質膜22と、アノード電極23と、カソード電極24と、セパレータ26、27とから構成されている。アノード電極23及びカソード電極24は、高分子電解質膜22を両側から挟んでサンドイッチ構造を形成している。高分子電解質膜22、アノード電極23、及びカソード電極24によって膜−電極結合体(MEA)25が形成されている。
高分子電解質膜22は、固体高分子材料、例えば、フッ素系樹脂により形成されたプロトン伝導性のイオン交換膜であり、湿潤状態で良好な電気伝導性を発揮する。
アノード電極23は、触媒層23aとガス拡散層23bを有している。同様に、カソード電極24は、触媒層24aとガス拡散層24bを有している。触媒層23a、24aは、図3に示すように触媒として機能する例えば白金系の貴金属粒子100を担持した触媒担持カーボン101と、高分子電解質102とを備えている。
貴金属粒子100の白金系の材料として、例えば金属触媒(Pt,Pt−Fe,Pt−Cr,Pt−Ni,Pt−Ruなど)を用いることができる。触媒担持カーボン101としては、例えば、カーボンブラックを用いることができる。
高分子電解質102として、例えばフッ素系樹脂であるパーフルオロカーボンスルホン酸ポリマーや、非フッ素系樹脂であるのBPSH(ポリアリーレンエーテルスルホン酸共重合体)などを有するプロトン伝導性のイオン交換樹脂などを用いることができる。パーフルオロカーボンスルホン酸ポリマーやBPSHは、スルホン酸基を備えている。すなわち、これらの樹脂は、イオン性を有しており、「アイオノマー(イオン+ポリマー)」とも呼ばれる。
触媒層23a、24aは、貴金属粒子100を担持した所定量の触媒担持カーボン101に、所定量の高分子電解質102を添加してペースト化し、高分子電解質膜22上にスクリーン印刷して形成される。なお、触媒層23a、24aは、他の方法、例えばスプレー塗工などを用いて形成されてもよい。
ガス拡散層23b、24bは、触媒層23a、24aの表面に形成され通気性と電子導電性とを併せ持ち、炭素繊維から成る糸で織成したカーボンクロス、カーボンペーパー、又はカーボンフェルトにより形成されている。
セパレータ26、27は、ガス不透過の導電性部材から構成され、アノード電極23、カソード電極24を両側から挟みつつ、アノード電極23及びカソード電極24との間にそれぞれ燃料ガス及び酸化ガスの流路を形成している。
セパレータ26には、断面凹状のリブ26aが形成されている。リブ26aにアノード電極23が当接することで、リブ26aの開口部は閉塞され、燃料ガス流路が形成される。セパレータ27には、断面凹状のリブ27aが形成されている。リブ27aにカソード電極24が当接することで、リブ27aの開口部は閉塞され、酸化ガス流路が形成されている。
図1に戻って説明を続ける。図1に示すように燃料電池20には、燃料電池20の出力電圧(FC電圧)を検出するための電圧センサ71と、出力電流(FC電流)を検出するための電流センサ72が取り付けられている。
酸化ガス供給系30は、燃料電池20のカソード電極24に供給される酸化ガスが流れる酸化ガス通路33と、燃料電池20から排出される酸化オフガスが流れる酸化オフガス通路34と、を有している。酸化ガス通路33には、フィルタ31を介して大気中から酸化ガスを取り込むエアコンプレッサ32と、エアコンプレッサ32により加圧される酸化ガスを加湿するための加湿器35と、燃料電池20への酸化ガス供給を遮断するための遮断弁A1と、が設けられている。
酸化オフガス通路34には、燃料電池20からの酸化オフガス排出を遮断するための遮断弁A2と、酸化ガス供給圧を調整するための背圧調整弁A3と、酸化ガス(ドライガス)と酸化オフガス(ウェットガス)との間で水分交換するための加湿器35と、が設けられている。
燃料ガス供給系40は、燃料ガス供給源41と、燃料ガス供給源41から燃料電池20のアノード電極23に供給される燃料ガスが流れる燃料ガス通路43と、燃料電池20から排出される燃料オフガスを燃料ガス通路43に帰還させるための循環通路44と、循環通路44内の燃料オフガスを燃料ガス通路43に圧送する循環ポンプ45と、循環通路44に分岐接続される排気排水通路46と、を有している。
燃料ガス供給源41は、例えば、高圧水素タンクや水素吸蔵合金などで構成され、高圧(例えば、35MPa乃至70MPa)の水素ガスを貯留する。遮断弁H1を開くと、燃料ガス供給源41から燃料ガス通路43に燃料ガスが流出する。燃料ガスは、レギュレータH2やインジェクタ42により、例えば、200kPa程度まで減圧されて、燃料電池20に供給される。
循環通路44には、燃料電池20からの燃料オフガス排出を遮断するための遮断弁H4と、循環通路44から分岐する排気排水通路46と、が接続されている。排気排水通路46には、排気排水弁H5が配設されている。排気排水弁H5は、コントローラ60からの指令によって作動することにより、循環通路44内の不純物を含む燃料オフガスと水分とを外部に排出(パージ)する。
排気排水弁H5を介して排出される燃料オフガスは、酸化オフガス通路34を流れる酸化オフガスと混合され、希釈器(図示せず)によって希釈される。循環ポンプ45は、循環系内の燃料オフガスをモータ駆動により燃料電池20に循環供給する。
電力系50は、DC/DCコンバータ51と、バッテリ(蓄電装置)52と、トラクションインバータ53と、トラクションモータ54と、補機類55とを備えている。DC/DCコンバータ51は、バッテリ52から供給される直流電圧を昇圧してトラクションインバータ53に出力する機能と、燃料電池20が発電した直流電力、又は回生制動によりトラクションモータ54が回収した回生電力を降圧してバッテリ52に充電する機能とを有する。
バッテリ52は、余剰電力の貯蔵源、回生制動時の回生エネルギ貯蔵源、燃料電池車両の加速又は減速に伴う負荷変動時のエネルギーバッファとして機能する。バッテリ52としては、例えば、ニッケル・カドミウム蓄電池、ニッケル・水素蓄電池、リチウム二次電池等の二次電池が好適である。バッテリ52には、その残容量であるSOC(State of charge)を検出するためのSOCセンサ73が取り付けられている。
トラクションインバータ53は、例えば、パルス幅変調方式で駆動されるPWMインバータであり、コントローラ60からの制御指令に従って、燃料電池20又はバッテリ52から出力される直流電圧を三相交流電圧に変換して、トラクションモータ54の回転トルクを制御する。トラクションモータ54は、例えば、三相交流モータであり、燃料電池車両の動力源を構成する。
補機類55は、燃料電池システム10内の各部に配置されている各モータ(例えば、ポンプ類などの動力源)や、これらのモータを駆動するためのインバータ類、更には各種の車載補機類(例えば、エアコンプレッサ、インジェクタ、冷却水循環ポンプ、ラジエータなど)を総称するものである。
コントローラ60は、CPU、ROM、RAM、及び入出力インタフェースを備えるコンピュータシステムであり、燃料電池システム10の各部を制御する。例えば、コントローラ60は、イグニッションスイッチから出力される起動信号IGを受信すると、燃料電池システム10の運転を開始し、アクセルセンサから出力されるアクセル開度信号ACCや、車速センサから出力される車速信号VCなどを基に、システム全体の要求電力を求める。システム全体の要求電力は、車両走行電力と補機電力との合計値である。
補機電力には、車載補機類(加湿器、エアコンプレッサ、水素ポンプ、及び冷却水循環ポンプ等)で消費される電力、車両走行に必要な装置(変速機、車輪制御装置、操舵装置、及び懸架装置等)で消費される電力、乗員空間内に配設される装置(空調装置、照明器具、及びオーディオ等)で消費される電力などが含まれる。
コントローラ60は、燃料電池20とバッテリ52とのそれぞれの出力電力の配分を決定し、燃料電池20の発電量が目標電力に一致するように、酸化ガス供給系30及び燃料ガス供給系40を制御するとともに、DC/DCコンバータ51を制御して、燃料電池20の出力電圧を調整することにより、燃料電池20の運転ポイント(出力電圧、出力電流)を制御する。
(燃料電池の検査工程)
燃料電池システム10の運転時には、燃料電池20において、上述の(1)式に示すように、アノード電極23で生成された水素イオンが高分子電解質膜22を透過してカソード電極24に移動し、カソード電極24に移動した水素イオンは、上述の(2)式に示すように、カソード電極24に供給されている酸化ガス中の酸素と電気化学反応を起こし、酸素の還元反応を生じさせ、水を生成する。
ここで膜電極接合体(MEA)のアノード電極23及びカソード電極24は、燃料電池20の製造中に有機物が付着して被毒してしまうことがある。例えば、本発明者らは、ブタノール(燃料電池20部品中のゴムに含まれるt−ブタノールや工場等の空気中に含まれるブタノール・ブタノン・ブタノール等)が、アノード電極23及びカソード電極24の触媒層23a、24a中の白金と反応することでイソ酪酸が生成され、触媒担持カーボン101と高分子電解質102との間の貴金属粒子100に吸着してしまうという知見を得た。この場合、触媒の活性が低下し、燃料電池20は所望の出力を発揮できなくなってしまう(以下、イソ酪酸等の有機物が触媒としての貴金属粒子100に吸着してしまうことを「有機コンタミ」ともいう)。
そこで、本実施の形態においては、燃料電池20の組立(準備工程)後の出荷前検査時に、燃料電池20から有機コンタミを除去する工程(除去工程)を行う。以下、図4乃至図6を用いてこの除去工程について詳細に説明する。
はじめに、燃料電池20内のアノード電極23側に水素、カソード電極24側に窒素又は水素を封入した状態で、燃料電池20の電圧を40度以上の環境で一定時間(少なくとも10分以上)0Vに保つ(ステップS1:第1の工程)。これにより、触媒に吸着した有機物(イソ酪酸)を脱離させる。
次に、アノード、カソードを封止した状態で温調した冷却水を供給することで、燃料電池20を昇温(少なくとも80℃以上)する(ステップS2:第2の工程)。これにより、脱離した有機物(イソ酪酸)を蒸発させる。
次に、燃料電池20のアノード電極23側及びカソード電極24側にそれぞれ水素、窒素を供給して、燃料電池20内をパージする(ステップS3:第3の工程)。これにより蒸発した有機物(イソ酪酸)が燃料電池20から排出される。また、パージによる処理のため、後述するステップS4の処理よりも短時間で処理をすることができる。
次に、燃料電池20を通常運転させる(ステップS4:第4の工程)。すなわち、アノード電極23に燃料ガスを供給し、カソード電極に酸化ガスを供給し発電を行う。これにより残留していた有機物(イソ酪酸)は、運転により発生した水蒸気(生成水)とともに蒸発又は洗い流されて、燃料電池20から排出される。これにより、燃料電池内の有機物を更に減らすことができる。また、発電の際には、燃料電池20の最大出力(電力)が計測される。ステップS3及びステップS4を組み合わせることにより、ステップS4を繰り返し行う処理に比べて短時間で処理をすることができる。
次に、最大出力が所定の規格値に達しているかどうかが判断される(ステップS5)。最大出力が規格値未満である場合(ステップS5:Yes)は、有機物の除去を再度繰り返すかを判断するためにステップS6に進む。最大出力が規格値以上である場合(ステップS5:No)は、出荷できる状態であると判断される(ステップS7)。
ステップS6においては、有機物の除去を再度繰り返す必要があるかが判断される。ここでは本発明者らの以下の知見に基づく判断を行っている。すなわち、図5に示すように、有機コンタミによって燃料電池20の最大出力が規格値に達していない場合(有機コンタミ品)は、上記説明した除去サイクルを少なくとも2回以上繰り返すことで、徐々に性能が回復して最大出力が規格値を上回るようになる。一方、有機コンタミ以外の要因で最大出力が規格値に達していない場合(他の要因による性能低下品)は、有機物除去のサイクルを再度繰り返しても性能が回復することはない。
この知見に基づき、ステップS6においては、有機物の除去が2回目以上でかつ前サイクルよりも最大出力が上昇していない(性能向上がない)場合(ステップS6:Yes)は、有機物による電極汚染以外の要因による可能性が高く、さらなる除去工程を繰り返しても性能の回復は見込まれないので、出荷をしないという判断をする(ステップS8)。これにより、有機物による電極汚染以外の不良を容易に判別することができ、不要な除去工程を続けることを回避できる。一方、有機物の除去がまだ一回目の場合や有機物の除去が2回目以上であるが前サイクルより最大出力が上昇している場合(ステップS6:No)は、再度の有機物の除去を行うべくステップS1に戻る。有機コンタミが見込まれる場合に限って再度の除去工程を繰り返し行うので、有機物の除去を効率的かつ確実に行うことができる。
以上説明した有機コンタミの除去工程を経ることにより、アノード電極及びカソード電極双方から有機物を効率的に除去することができる。すなわち、電極に吸着した有機物を分解や揮発により完全に除去するまでは通常であれば例えば30日以上かかるところ、上記方法によれば、脱離と強制的な揮発や発電による洗浄とを繰り返すことで、この時間を数時間にまで短縮できる。
なお、有機コンタミの除去は、燃料電池20に燃料ガス及び酸化ガスを加湿して供給して高温で運転を行う高温・過加湿運転を繰り返し行うことでも可能である。しかしながら図6に示すように、高温・過加湿運転では、発電により生成される水蒸気による有機物の洗い流し・蒸発を繰り返すだけなので、最大出力が規格値まで達するまでの時間(t2)が長くなってしまう。これに対し、本実施形態による有機コンタミの除去工程においては、有機物の脱離、蒸発、パージによる排出も行うので、最大出力が規格値まで達するまでの時間(t1)を大幅に短縮することができる。
10……燃料電池システム、20……燃料電池、21……セル、22……高分子電解質膜、23……アノード電極、23a……触媒層、23b……ガス拡散層、24……カソード電極、24a……触媒層、24b……ガス拡散層、26……セパレータ、26a……リブ、27……セパレータ、27a……リブ、30……酸化ガス供給系、31……フィルタ、32……エアコンプレッサ、33……酸化ガス通路、34……酸化オフガス通路、35……加湿器、40……燃料ガス供給系、41……燃料ガス供給源、42……インジェクタ、43……燃料ガス通路、44……循環通路、45……循環ポンプ、46……排気排水通路、50……電力系、51……コンバータ、52……バッテリ、53……トラクションインバータ、54……トラクションモータ、55……補機類、60……コントローラ、71……電圧センサ、72……電流センサ、73……センサ、100……貴金属粒子、101……触媒担持カーボン、102……高分子電解質

Claims (5)

  1. 高分子電解質と触媒層とを有する単セルを複数積層した燃料電池を準備する準備工程と、前記燃料電池から有機物を除去する除去工程と、を有する燃料電池の製造方法であって、
    前記除去工程は、
    前記燃料電池の電圧を0Vに保ち前記触媒層から有機物を脱離させる第1の工程と、
    前記燃料電池内の温度を上げて前記脱離した有機物を蒸発させる第2の工程と、
    前記蒸発させた有機物を前記燃料電池から排気する第3の工程と、
    を備える燃料電池の製造方法。
  2. 前記第3の工程は、前記燃料電池内をパージする工程である、請求項1に記載の燃料電池の製造方法。
  3. 前記3第工程の後に、前記燃料電池を発電させて生成水を作成し、前記生成水によって前記有機物を前記燃料電池から洗い流す第4の工程を備える、請求項1又は請求項2のいずれかに記載の燃料電池の製造方法。
  4. 前記燃料電池の最大出力が規格値未満の場合に前記除去工程を繰り返す、請求項1乃至請求項3のいずれか一項に記載の燃料電池の製造方法。
  5. 前記除去工程を2回以上行った後の前記燃料電池の最大出力が前回値より上昇しない場合、前記燃料電池に不良があると判別する、請求項4に記載の燃料電池の製造方法。
JP2014239012A 2014-11-26 2014-11-26 燃料電池の製造方法 Active JP6210229B2 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2014239012A JP6210229B2 (ja) 2014-11-26 2014-11-26 燃料電池の製造方法
KR1020150137409A KR101822235B1 (ko) 2014-11-26 2015-09-30 연료 전지의 제조 방법
CA2911538A CA2911538C (en) 2014-11-26 2015-11-06 Method of manufacturing fuel cell and removal of organic matter thereof
DE102015119150.4A DE102015119150B4 (de) 2014-11-26 2015-11-06 Verfahren zum Herstellen einer Brennstoffzelle
US14/947,663 US9853309B2 (en) 2014-11-26 2015-11-20 Method of manufacturing fuel cell
CN201510831483.4A CN105655597B (zh) 2014-11-26 2015-11-25 燃料电池的制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014239012A JP6210229B2 (ja) 2014-11-26 2014-11-26 燃料電池の製造方法

Publications (2)

Publication Number Publication Date
JP2016100311A true JP2016100311A (ja) 2016-05-30
JP6210229B2 JP6210229B2 (ja) 2017-10-11

Family

ID=55967949

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014239012A Active JP6210229B2 (ja) 2014-11-26 2014-11-26 燃料電池の製造方法

Country Status (6)

Country Link
US (1) US9853309B2 (ja)
JP (1) JP6210229B2 (ja)
KR (1) KR101822235B1 (ja)
CN (1) CN105655597B (ja)
CA (1) CA2911538C (ja)
DE (1) DE102015119150B4 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020121495A1 (ja) * 2018-12-13 2020-06-18 本田技研工業株式会社 制御装置、電力供給装置、作業機械、制御方法及びプログラム

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180219267A1 (en) * 2017-01-27 2018-08-02 Ford Global Technologies, Llc High-efficiency hydrogen-powered motor vehicle

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001085037A (ja) * 1999-09-17 2001-03-30 Matsushita Electric Ind Co Ltd 高分子電解質型燃料電池とその特性回復方法
JP2004172106A (ja) * 2002-10-31 2004-06-17 Matsushita Electric Ind Co Ltd 燃料電池システムの運転方法および燃料電池システム
US20050136298A1 (en) * 2003-12-19 2005-06-23 Manikandan Ramani Methods of treating fuel cells and fuel cell systems
JP2007273460A (ja) * 2006-03-10 2007-10-18 Sanyo Electric Co Ltd 燃料電池の活性化方法、および活性化された燃料電池用セルあるいは燃料電池用膜/電極接合体およびそれを備えたセルスタックもしくは燃料電池、および燃料電池用活性化装置
US20130236800A1 (en) * 2012-03-07 2013-09-12 Samsung Electronics Co., Ltd. Method of activating fuel cell

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003067695A2 (en) 2002-02-06 2003-08-14 Battelle Memorial Institute Polymer electrolyte membrane fuel cell system
EP1416561B1 (en) * 2002-10-31 2008-05-21 Matsushita Electric Industrial Co., Ltd. Method of operation fuel cell system and fuel cell system
CN100541897C (zh) * 2003-12-24 2009-09-16 株式会社普利司通 燃料电池用空气的净化方法和装置及燃料电池
US7419732B2 (en) * 2005-02-11 2008-09-02 Gore Enterprise Holdings, Inc. Method for reducing degradation in a fuel cell
JP2009199834A (ja) 2008-02-20 2009-09-03 Toyota Motor Corp 燃料電池のエージング方法
KR20120011598A (ko) * 2010-07-29 2012-02-08 삼성에스디아이 주식회사 연료 전지 시스템 및 그 구동 방법
DE112012005964B4 (de) * 2012-03-01 2024-04-18 Toyota Jidosha Kabushiki Kaisha Brennstoffzellensystem mit Katalysatoraktivierungsfunktion

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001085037A (ja) * 1999-09-17 2001-03-30 Matsushita Electric Ind Co Ltd 高分子電解質型燃料電池とその特性回復方法
JP2004172106A (ja) * 2002-10-31 2004-06-17 Matsushita Electric Ind Co Ltd 燃料電池システムの運転方法および燃料電池システム
US20050136298A1 (en) * 2003-12-19 2005-06-23 Manikandan Ramani Methods of treating fuel cells and fuel cell systems
JP2007273460A (ja) * 2006-03-10 2007-10-18 Sanyo Electric Co Ltd 燃料電池の活性化方法、および活性化された燃料電池用セルあるいは燃料電池用膜/電極接合体およびそれを備えたセルスタックもしくは燃料電池、および燃料電池用活性化装置
US20130236800A1 (en) * 2012-03-07 2013-09-12 Samsung Electronics Co., Ltd. Method of activating fuel cell

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020121495A1 (ja) * 2018-12-13 2020-06-18 本田技研工業株式会社 制御装置、電力供給装置、作業機械、制御方法及びプログラム
JPWO2020121495A1 (ja) * 2018-12-13 2021-09-30 本田技研工業株式会社 制御装置、電力供給装置、作業機械、制御方法及びプログラム

Also Published As

Publication number Publication date
CA2911538A1 (en) 2016-05-26
KR101822235B1 (ko) 2018-01-25
DE102015119150B4 (de) 2020-08-20
JP6210229B2 (ja) 2017-10-11
KR20160063233A (ko) 2016-06-03
US9853309B2 (en) 2017-12-26
CN105655597A (zh) 2016-06-08
US20160149226A1 (en) 2016-05-26
DE102015119150A1 (de) 2016-06-02
CN105655597B (zh) 2018-07-17
CA2911538C (en) 2018-09-25

Similar Documents

Publication Publication Date Title
US8415065B2 (en) Fuel cell system and method of controlling fuel cell system
US8546033B2 (en) Fuel cell apparatus comprising a high potential avoidance voltage setting device
US8420268B2 (en) Fuel cell system
US10056633B2 (en) Performance recovery method for fuel cell stack
US9786938B2 (en) Fuel cell system
US8053123B2 (en) Fuel cell system with a scavenging device and AC impedance measuring unit
US20100112398A1 (en) Fuel cell system
WO2013164873A1 (ja) 燃料電池システム
JP2013232361A (ja) 燃料電池システム
US20150180070A1 (en) Fuel cell system
JP2016035910A (ja) 燃料電池システムの運転方法
US10218019B2 (en) Method of determining hydrogen deficiency and device for determining hydrogen deficiency
JP2013258038A (ja) 燃料電池システム及びその制御方法
JP6210229B2 (ja) 燃料電池の製造方法
JP5725423B2 (ja) 燃料電池システム
JP4810872B2 (ja) 燃料電池システム
US10720650B2 (en) Fuel cell and moving body
JP5773278B2 (ja) 燃料電池システム及びその制御方法
JP4507971B2 (ja) 燃料電池装置
JP2012069442A (ja) 燃料電池システムの運転停止方法
JP2012069440A (ja) 燃料電池システムの運転停止方法

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170322

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170816

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170829

R151 Written notification of patent or utility model registration

Ref document number: 6210229

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151