JP2016095131A - Manufacturing method of heat storage device - Google Patents

Manufacturing method of heat storage device Download PDF

Info

Publication number
JP2016095131A
JP2016095131A JP2016032643A JP2016032643A JP2016095131A JP 2016095131 A JP2016095131 A JP 2016095131A JP 2016032643 A JP2016032643 A JP 2016032643A JP 2016032643 A JP2016032643 A JP 2016032643A JP 2016095131 A JP2016095131 A JP 2016095131A
Authority
JP
Japan
Prior art keywords
heat storage
heat
compressor
storage body
storage device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016032643A
Other languages
Japanese (ja)
Inventor
久保 次雄
Tsugio Kubo
次雄 久保
栗須谷 広治
Kouji Kurisuya
広治 栗須谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2016032643A priority Critical patent/JP2016095131A/en
Publication of JP2016095131A publication Critical patent/JP2016095131A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing method of a heat storage device capable of efficiently storing waste heat from a compressor to a heat storage device, and capable of efficiently performing defrosting operation during heating operation.SOLUTION: A heat storage device 18 includes a heat storage body 19 arranged so as to surround a substantially cylindrical compressor, and a heat storage heat exchanger 20 at least a part of which is buried in the heat storage body 19. The heat storage body 19 has at least two open holes, and the heat storage heat exchanger 20 has one or more U-shaped heat transfer pipes. The heat storage device 18 is manufactured so that the heat transfer pipe of the heat storage heat exchanger 20 is inserted into the open holes of the heat storage body 19, is expanded, and adheres to the heat storage body 19.SELECTED DRAWING: Figure 3

Description

本発明は、圧縮機を囲むように配置され圧縮機で発生した熱を金属に蓄積する蓄熱体を有する蓄熱装置の製造方法に関するものである。   The present invention relates to a method for manufacturing a heat storage device having a heat storage body that is arranged so as to surround a compressor and accumulates heat generated in the compressor in a metal.

従来、ヒートポンプ式空気調和機による暖房運転時、室外熱交換器に着霜した場合には、暖房サイクルから冷房サイクルに四方弁を切り替えて除霜を行っている。この除霜方式では、室内ファンは停止するものの、室内機から冷気が徐々に放出されることから暖房感が失われるという欠点がある。   Conventionally, when the outdoor heat exchanger is frosted during the heating operation by the heat pump air conditioner, defrosting is performed by switching the four-way valve from the heating cycle to the cooling cycle. In this defrosting method, although the indoor fan is stopped, there is a disadvantage that a feeling of heating is lost because cold air is gradually discharged from the indoor unit.

そこで、室外機に設けられた圧縮機に蓄熱装置を設け、暖房運転中に蓄熱槽に蓄えられた圧縮機の廃熱を利用して除霜するようにしたものが提案されている(例えば、特許文献1参照)。   Accordingly, a heat storage device is provided in the compressor provided in the outdoor unit, and the one that is defrosted using the waste heat of the compressor stored in the heat storage tank during the heating operation has been proposed (for example, Patent Document 1).

図7は、従来の蓄熱装置を示す横断面図である。図7において、蓄熱装置100は圧縮機101の外周面に固設され、蓄熱槽102と蓄熱体103と熱交換器104とで構成されている。蓄熱槽102の内周の伝熱面105は、圧縮機101の外周面に接するように配置されており、これにより圧縮機101の廃熱を蓄熱槽102に蓄えている。   FIG. 7 is a cross-sectional view showing a conventional heat storage device. In FIG. 7, the heat storage device 100 is fixed to the outer peripheral surface of the compressor 101, and includes a heat storage tank 102, a heat storage body 103, and a heat exchanger 104. The heat transfer surface 105 on the inner periphery of the heat storage tank 102 is disposed so as to contact the outer peripheral surface of the compressor 101, thereby storing waste heat of the compressor 101 in the heat storage tank 102.

特開平3−31666号公報JP-A-3-31666

しかしながら、前記従来の蓄熱装置では、圧縮機の廃熱を効率よく蓄熱槽に蓄熱できないという課題を有していた。   However, the conventional heat storage device has a problem that the waste heat of the compressor cannot be efficiently stored in the heat storage tank.

本発明は、前記従来の課題を解決するもので、圧縮機の廃熱を効率よく蓄熱槽に蓄熱することのできる蓄熱装置の製造方法を提供することを目的とする。   This invention solves the said conventional subject, and it aims at providing the manufacturing method of the thermal storage apparatus which can thermally store the waste heat of a compressor in a thermal storage tank efficiently.

前記従来の課題を解決するために、本発明は、略円筒状の圧縮機を囲むように配置する蓄熱体と、前記蓄熱体に少なくとも一部が埋設する蓄熱熱交換器とを備え、前記蓄熱体は少なくとも2本以上の貫通穴を有し、前記蓄熱熱交換器は1本以上のU字型の伝熱管を有する蓄熱装置の製造方法であって、前記伝熱管を前記貫通穴に挿入し、拡管して、前記蓄熱体に密着させる蓄熱装置の製造方法である。   In order to solve the conventional problem, the present invention includes a heat storage body disposed so as to surround a substantially cylindrical compressor, and a heat storage heat exchanger at least partially embedded in the heat storage body, and the heat storage The body has at least two or more through holes, and the heat storage heat exchanger is a method for manufacturing a heat storage device having one or more U-shaped heat transfer tubes, and the heat transfer tubes are inserted into the through holes. It is a manufacturing method of the thermal storage apparatus which expands and makes it stick to the said thermal storage body.

これにより、圧縮機からの廃熱を効率よく蓄熱体に熱移動させ蓄熱することのできる蓄熱装置の製造方法を提供することができる。   Thereby, the manufacturing method of the thermal storage apparatus which can carry out the heat transfer of the waste heat from a compressor efficiently to a thermal storage body, and can store it can be provided.

本発明は、圧縮機からの廃熱を効率よく蓄熱装置に蓄熱でき、暖房運転中の除霜運転を効率よく行うことができる蓄熱装置の製造方法を提供することができる。   INDUSTRIAL APPLICABILITY The present invention can provide a method for manufacturing a heat storage device that can efficiently store waste heat from a compressor in a heat storage device and can efficiently perform a defrosting operation during heating operation.

本発明の実施の形態1における空気調和機の冷凍サイクルの構成図The block diagram of the refrigerating cycle of the air conditioner in Embodiment 1 of this invention 同圧縮機と蓄熱装置の斜視図Perspective view of the compressor and heat storage device 同蓄熱装置の外観斜視図External perspective view of the heat storage device 図2のX−Xに沿った縦断面図Longitudinal sectional view along XX in FIG. 図2のY−Yに沿った横断面図Cross-sectional view along YY in FIG. (a)同無数の小径穴を設けた伝熱シートの外観斜視図、(b)同無数の縦横スリットを設けた伝熱シートの外観斜視図(A) Appearance perspective view of heat transfer sheet provided with the same number of small diameter holes, (b) Appearance perspective view of heat transfer sheet provided with the same number of vertical and horizontal slits 従来の蓄熱装置を示す横断面図Cross-sectional view showing a conventional heat storage device

第1の発明は、略円筒状の圧縮機を囲むように配置する蓄熱体と、前記蓄熱体に少なくとも一部が埋設する蓄熱熱交換器とを備え、前記蓄熱体は少なくとも2本以上の貫通穴を有し、前記蓄熱熱交換器は1本以上のU字型の伝熱管を有する蓄熱装置の製造方法であって、前記伝熱管を前記貫通穴に挿入し、拡管して、前記蓄熱体に密着させる蓄熱装置の製造方法である。   1st invention is equipped with the thermal storage body arrange | positioned so that a substantially cylindrical compressor may be enclosed, and the thermal storage heat exchanger with which at least one part is embed | buried in the said thermal storage body, The said thermal storage body penetrates at least 2 or more The heat storage heat exchanger is a method of manufacturing a heat storage device having one or more U-shaped heat transfer tubes, the heat transfer tubes are inserted into the through holes, expanded, and the heat storage body It is the manufacturing method of the thermal storage apparatus closely_contact | adhered to.

第2の発明は、特に第1の発明において、前記蓄熱体はアルミニウムの押し出し成型で作られるものである。   In a second aspect of the invention, particularly in the first aspect of the invention, the heat storage body is made by extrusion molding of aluminum.

第3の発明は、特に第1または第2の発明において、前記蓄熱体を分割して前記圧縮機の周囲に配置するものである。   In a third aspect of the invention, particularly in the first or second aspect of the invention, the heat storage body is divided and arranged around the compressor.

第4の発明は、特に第1〜3のいずれか1つの発明において、前記蓄熱体はバンドにより前記圧縮機に固定するものである。   In a fourth aspect of the invention, in particular, in any one of the first to third aspects of the invention, the heat storage body is fixed to the compressor by a band.

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the embodiments.

(実施の形態1)
図1は実施の形態1における空気調和機の冷凍サイクルの構成図である。
(Embodiment 1)
1 is a configuration diagram of a refrigeration cycle of an air conditioner according to Embodiment 1. FIG.

本実施の形態における空気調和機は、室内に設置される室内機1と、室外に設置される室外機2とを冷媒配管3で接続することによって構成されている。   The air conditioner in the present embodiment is configured by connecting an indoor unit 1 installed indoors and an outdoor unit 2 installed outdoor using a refrigerant pipe 3.

室内機1には、室内空気と冷媒とが熱交換を行う室内熱交換器5と、室内熱交換器5での熱交換を促進し室内へ送風するための室内送風ファン6を備える。また、室内温度を検出する室内温度検出手段である温度センサ7と、室内熱交換器の温度を検出する室内熱交換器温度検出手段である温度センサ8とを備える。   The indoor unit 1 includes an indoor heat exchanger 5 that exchanges heat between indoor air and a refrigerant, and an indoor fan 6 that promotes heat exchange in the indoor heat exchanger 5 and blows air into the room. Moreover, the temperature sensor 7 which is an indoor temperature detection means which detects indoor temperature, and the temperature sensor 8 which is an indoor heat exchanger temperature detection means which detects the temperature of an indoor heat exchanger are provided.

室外機2には、室外空気と冷媒とが熱交換を行う室外熱交換器9と、室外熱交換器9での熱交換を促進し送風する室外ファン10と、冷媒を圧縮し高温冷媒を吐出する圧縮機11と、冷媒の流路の順逆を切り換える四方弁12と、冷媒を減圧する減圧装置13と、室外熱交換器の温度を検出する室外熱交換器温度検出手段である温度センサ14と、外気の温度を検出する外気温度検出手段である温度センサ15とを備える。   The outdoor unit 2 includes an outdoor heat exchanger 9 that exchanges heat between the outdoor air and the refrigerant, an outdoor fan 10 that promotes heat exchange in the outdoor heat exchanger 9 and blows air, and compresses the refrigerant and discharges high-temperature refrigerant. A compressor 11 that performs switching, a four-way valve 12 that switches the flow path of the refrigerant, a decompression device 13 that decompresses the refrigerant, and a temperature sensor 14 that is an outdoor heat exchanger temperature detection unit that detects the temperature of the outdoor heat exchanger; And a temperature sensor 15 which is an outside air temperature detecting means for detecting the temperature of the outside air.

そして、冷房運転時には、圧縮機11、四方弁12、室外熱交換器9、減圧装置13、室内熱交換器5、四方弁12、圧縮機11の順に冷媒が流れ、暖房運転時には、圧縮機11、四方弁12、室内熱交換器5、減圧装置13、室外熱交換器9、四方弁12、圧縮機11の順に冷媒が流れるように冷凍サイクルが構成されている。   During the cooling operation, the refrigerant flows in the order of the compressor 11, the four-way valve 12, the outdoor heat exchanger 9, the decompression device 13, the indoor heat exchanger 5, the four-way valve 12, and the compressor 11. In the heating operation, the compressor 11 The refrigeration cycle is configured such that the refrigerant flows in the order of the four-way valve 12, the indoor heat exchanger 5, the decompression device 13, the outdoor heat exchanger 9, the four-way valve 12, and the compressor 11.

また、室内機1へ運転指示を行うリモコン装置(図示せず)を備え、リモコン装置では
、冷房運転や暖房運転の指示、室内設定温度を設定することができ、通常の空調運転では、室内設定温度となるように空調運転が実施される。
In addition, a remote control device (not shown) that gives an operation instruction to the indoor unit 1 is provided. The remote control device can set an instruction for cooling operation or heating operation, and set a room temperature. Air conditioning operation is performed so that the temperature is reached.

また、圧縮機11の周囲には蓄熱装置18が配置され、金属材料のアルミニウムで形成された蓄熱体19と、蓄熱体19から熱をもらう蓄熱熱交換器20で構成され、蓄熱熱交換器20の内部に設けられた冷媒管に流れる冷媒と、蓄熱体19とが熱交換を行う。   Further, a heat storage device 18 is disposed around the compressor 11, and includes a heat storage body 19 formed of a metal material aluminum and a heat storage heat exchanger 20 that receives heat from the heat storage body 19. The heat flowing between the refrigerant flowing in the refrigerant pipe provided inside and the heat storage body 19 performs heat exchange.

また、圧縮機11の吐出管と、減圧装置13と室外熱交換器9との間とを接続する除霜用バイパス回路21を設け、除霜用バイパス回路21には除霜用二方弁22を設けている。そして除霜用二方弁22を開閉することによって除霜用バイパス回路21に冷媒を流している。   Further, a defrosting bypass circuit 21 for connecting the discharge pipe of the compressor 11 and the pressure reducing device 13 and the outdoor heat exchanger 9 is provided, and the defrosting bypass circuit 21 has a two-way valve 22 for defrosting. Is provided. Then, the refrigerant is caused to flow through the defrosting bypass circuit 21 by opening and closing the defrosting two-way valve 22.

以上のように構成された空気調和機において、除霜運転について説明する。   In the air conditioner configured as described above, the defrosting operation will be described.

まず、温度センサ14で検出される室外熱交換器の温度が除霜運転開始条件である温度を検出すると、除霜運転が開始される。なお、除霜運転開始の条件はこれに限定されることはなく、例えば、外気温度や、除霜運転開始条件の温度を下回る時間が所定時間継続した場合などの条件を追加することも考えられる。また、室外熱交換器9の温度検出は、室外熱交換器9の冷媒管の温度を検出することによって代用されてもよい。   First, when the temperature of the outdoor heat exchanger detected by the temperature sensor 14 detects a temperature that is a defrosting operation start condition, the defrosting operation is started. In addition, the conditions for starting the defrosting operation are not limited to this. For example, it may be possible to add conditions such as when the outside air temperature or a time lower than the temperature of the defrosting operation starting condition continues for a predetermined time. . Moreover, the temperature detection of the outdoor heat exchanger 9 may be substituted by detecting the temperature of the refrigerant pipe of the outdoor heat exchanger 9.

そして、除霜運転が開始されると、除霜用二方弁22およびバイパス用二方弁17を開弁して、減圧装置13を適切な開度に制御することによって、暖房運転を継続しながら除霜運転を実施することができる。   When the defrosting operation is started, the heating operation is continued by opening the defrosting two-way valve 22 and the bypass two-way valve 17 and controlling the decompression device 13 to an appropriate opening degree. The defrosting operation can be carried out.

このような暖房運転を継続しながらの除霜運転は、除霜用二方弁22とバイパス用二方弁17の両方が開状態で初めて行われることになるが、バイパス用二方弁17を除霜用二方弁22より先に開制御すると、蓄熱体19に蓄積された熱量が無駄に使用されることになり、除霜用二方弁22とバイパス用二方弁17の両方を同時に開制御すると、室外熱交換器9からの冷媒と室内熱交換器5からの冷媒が同時に圧縮機11に吸入されることになり、圧力変動を惹起するおそれがあることから、除霜用二方弁22の開制御とバイパス用二方弁17の開制御に適切な時間差を設定することで、圧力変動を極力抑えることができるとともに、圧縮機11への液冷媒の流入を阻止して圧縮機11の信頼性を向上させることができる。そのため本実施の形態では、除霜用二方弁22をバイパス用二方弁17よりも先に開弁するようにしている。   Such a defrosting operation while continuing the heating operation is performed for the first time when both the defrosting two-way valve 22 and the bypass two-way valve 17 are open. If the opening control is performed prior to the defrosting two-way valve 22, the amount of heat accumulated in the heat accumulator 19 is wasted, and both the defrosting two-way valve 22 and the bypass two-way valve 17 are simultaneously used. When the opening control is performed, the refrigerant from the outdoor heat exchanger 9 and the refrigerant from the indoor heat exchanger 5 are simultaneously sucked into the compressor 11, which may cause pressure fluctuations. By setting an appropriate time difference between the opening control of the valve 22 and the opening control of the bypass two-way valve 17, pressure fluctuation can be suppressed as much as possible, and the inflow of liquid refrigerant to the compressor 11 can be prevented to reduce the compressor. 11 reliability can be improved. Therefore, in this embodiment, the defrosting two-way valve 22 is opened before the bypass two-way valve 17.

次に、蓄熱装置18の構成について説明する。図2は、本実施の形態における圧縮機11と蓄熱装置18の斜視図である。図2に示すように、蓄熱装置18は、圧縮機11の周囲に配置され、蓄熱体19と蓄熱熱交換器20とで構成されている。   Next, the configuration of the heat storage device 18 will be described. FIG. 2 is a perspective view of the compressor 11 and the heat storage device 18 in the present embodiment. As shown in FIG. 2, the heat storage device 18 is arranged around the compressor 11, and includes a heat storage body 19 and a heat storage heat exchanger 20.

蓄熱熱交換器20の内部には冷媒が流れており、蓄熱体19には圧縮機11から放熱される熱が蓄えられている。蓄熱体19はアルミニウムの押し出し成型で作られており、アルミニウムを用いることで熱伝導性が高く、かつ、コストが安くなる。   A refrigerant flows inside the heat storage heat exchanger 20, and heat radiated from the compressor 11 is stored in the heat storage body 19. The heat storage body 19 is made by extrusion molding of aluminum, and by using aluminum, the thermal conductivity is high and the cost is reduced.

また、蓄熱体19は圧縮機11を抱くように横方向から密着させ、バンド52a、52bにより、それぞれアキュームレータ26、圧縮機11に上下で締結されることで、強固に固定される。   Further, the heat accumulator 19 is tightly fixed by being in close contact with the compressor 11 from the lateral direction and fastened to the accumulator 26 and the compressor 11 by bands 52a and 52b, respectively.

図3は、本実施の形態における蓄熱装置18の外観斜視図である。図3に示すように、内部に冷媒が流れる蓄熱熱交換器20は、U字型形状のU字管20aと、まっすぐな直管20bとで構成されている。そして、隣り合う直管20b同士の端部をU字管20aで接
続して冷媒流路を繋げている。また、蓄熱体19は、外壁19aと内壁19bを有し、内壁19bが伝熱面となり圧縮機11の外周面と密着する。
FIG. 3 is an external perspective view of the heat storage device 18 in the present embodiment. As shown in FIG. 3, the heat storage heat exchanger 20 in which the refrigerant flows is composed of a U-shaped U-shaped tube 20a and a straight straight tube 20b. And the edge part of adjacent straight pipe 20b is connected by the U-shaped pipe 20a, and the refrigerant | coolant flow path is connected. The heat storage body 19 has an outer wall 19 a and an inner wall 19 b, and the inner wall 19 b becomes a heat transfer surface and is in close contact with the outer peripheral surface of the compressor 11.

図4は本実施の形態における図2のX−Xに沿った縦断面図であり、図5は本実施の形態における図2のY−Yに沿った横断面図である。   4 is a longitudinal sectional view taken along the line XX in FIG. 2 in the present embodiment, and FIG. 5 is a transverse sectional view taken along the line YY in FIG. 2 in the present embodiment.

圧縮機11の外周面と蓄熱体19の内壁(伝熱面)19bとは固いもの同士の密着のために、接合した場合にはどうしても隙間が生じることになる。隙間が生じた場合には空気層が介在するため断熱性の高い空気層は熱伝導性能を低下させる。この熱伝導性能の低下を防止するため、緩衝性があり、熱伝導性も有する伝熱シート60を図4、図5に示すように、圧縮機11の外周面と蓄熱体19の内壁(伝熱面)19bとの間に配置し、圧縮機11と蓄熱体19の間に空気層を介在させないように構成している。この伝熱シート60は緩衝性、熱伝導性能の他に耐熱性も考慮した材料(例えばシリコンシート)などをシート状にして用いている。   Since the outer peripheral surface of the compressor 11 and the inner wall (heat transfer surface) 19b of the heat storage body 19 are in close contact with each other, a gap is inevitably generated when they are joined. When a gap is generated, an air layer is interposed, so that an air layer with high heat insulation reduces heat conduction performance. In order to prevent the deterioration of the heat conduction performance, a heat transfer sheet 60 having a buffer property and also having heat conductivity is provided on the outer peripheral surface of the compressor 11 and the inner wall of the heat accumulator 19 (see FIG. 5). It arrange | positions between 19b of heat surfaces, and it is comprised so that an air layer may not be interposed between the compressor 11 and the thermal storage body 19. FIG. The heat transfer sheet 60 is made of a material (for example, a silicon sheet) that takes into account heat resistance in addition to buffering properties and heat conduction performance.

図6(a)は本実施の形態における無数の小径穴を設けた伝熱シート60の外観斜視図であり、図6(b)本実施の形態における無数の縦横スリットを設けた伝熱シート60の外観斜視図である。   6A is an external perspective view of the heat transfer sheet 60 provided with innumerable small-diameter holes in the present embodiment, and FIG. 6B is a heat transfer sheet 60 provided with innumerable vertical and horizontal slits in the present embodiment. FIG.

伝熱シート60は、図6(a)に示すように、表面全体に無数の小口径の貫通穴61を設けたものや、図6(a)に示すように、無数の縦または横または縦横両方のスリット62を設けたものにすることで、金属面に貼り付けた際に、金属面と伝熱シート60との間に生じる気泡の介在を防止することができる。なお貫通穴61やスリット62が施していない伝熱シート60でも、もちろん用いることは可能である。   As shown in FIG. 6A, the heat transfer sheet 60 has an infinite number of small-diameter through holes 61 on the entire surface, or an infinite number of vertical or horizontal or vertical and horizontal directions as shown in FIG. 6A. By providing both slits 62, it is possible to prevent air bubbles from being generated between the metal surface and the heat transfer sheet 60 when the slit 62 is attached. Of course, it is possible to use the heat transfer sheet 60 in which the through hole 61 and the slit 62 are not provided.

なお、内壁(伝熱面)19bは、全体として所定の直径の円筒の一部を切り欠いた形状を呈しており、この内側には、圧縮機11と伝熱シート60とが収容されることから、取り付け公差や伝熱シート60の厚み等を考慮して、内壁(伝熱面)19bの内径は圧縮機11の外径より僅かに大きく設定される。   The inner wall (heat transfer surface) 19b has a shape in which a part of a cylinder having a predetermined diameter is cut out as a whole, and the compressor 11 and the heat transfer sheet 60 are accommodated inside the inner wall (heat transfer surface) 19b. Therefore, the inner diameter of the inner wall (heat transfer surface) 19b is set slightly larger than the outer diameter of the compressor 11 in consideration of the mounting tolerance, the thickness of the heat transfer sheet 60, and the like.

次に、上記構成の蓄熱装置18の作用を説明する。   Next, the operation of the heat storage device 18 configured as described above will be described.

上述したように、蓄熱装置18は、暖房運転時に圧縮機11で発生した熱を蓄熱体19に蓄熱し、通常暖房運転から除霜・暖房運転に移行したときに、蓄熱熱交換器20によって、その熱を取得し利用する。したがって、暖房運転時に霜が成長するよりも早く蓄熱体19の温度が十分に上げられるよう、圧縮機11の外表面から蓄熱体19に至る伝熱経路の熱伝導性能が良い程好ましい。   As described above, the heat storage device 18 stores heat generated in the compressor 11 during the heating operation in the heat storage body 19, and when the heat storage device 18 shifts from the normal heating operation to the defrosting / heating operation, the heat storage heat exchanger 20 The heat is acquired and used. Therefore, it is preferable that the heat transfer performance of the heat transfer path from the outer surface of the compressor 11 to the heat storage body 19 is better so that the temperature of the heat storage body 19 can be sufficiently raised earlier than frost grows during heating operation.

圧縮機11の外表面から蓄熱体19に至る伝熱経路の熱伝導性能は、蓄熱体19と圧縮機11との密着度と、伝熱面の熱伝導性能に依存している。   The heat transfer performance of the heat transfer path from the outer surface of the compressor 11 to the heat storage body 19 depends on the degree of adhesion between the heat storage body 19 and the compressor 11 and the heat transfer performance of the heat transfer surface.

そこで、本発明に係る蓄熱装置18においては、圧縮機11の外周面と蓄熱体19の内壁(伝熱面)19bとの間に伝熱シート60を設け、空気層の介在を防止し、圧縮機11の外周面と蓄熱体19の内壁(伝熱面)19bとの密着度を向上させ、かつ、伝熱シート60を熱伝導性や緩衝性に優れたものにすることにより、蓄熱体19への蓄熱性能を向上させている。   Therefore, in the heat storage device 18 according to the present invention, the heat transfer sheet 60 is provided between the outer peripheral surface of the compressor 11 and the inner wall (heat transfer surface) 19b of the heat storage body 19 to prevent the air layer from interposing and compressing. By improving the adhesion between the outer peripheral surface of the machine 11 and the inner wall (heat transfer surface) 19b of the heat storage body 19 and making the heat transfer sheet 60 excellent in thermal conductivity and buffering properties, the heat storage body 19 The heat storage performance is improved.

本実施の形態における、第1の態様は、略円筒状の圧縮機を囲むように配置され前記圧縮機で発生した熱を蓄熱する蓄熱体と、前記蓄熱体に埋設され蓄熱した熱を取得するための蓄熱熱交換器とを備え、前記圧縮機で発生した熱を効率よく取得する伝熱面を前記蓄熱
体の内側に設けた蓄熱装置において、前記圧縮機と前記蓄熱体の伝熱面との間に熱伝導性および緩衝性を有するシート材を備え、前記圧縮機と前記蓄熱体の間に空気層を介在させない構造とした蓄熱装置を備えた空気調和機としたことにより、金属のように表面が硬いもの同士の間に熱伝導性が高く、緩衝性を有するシート材を介し、断熱効果の高い空気層を排除することができ、圧縮機からの廃熱を効率よく蓄熱体に熱移動することができるとともに、蓄熱体から蓄熱熱交換器にも短時間で熱移動が可能な蓄熱装置を用いた空気調和機を提供することができる。
The first aspect of the present embodiment is a heat storage body that is arranged so as to surround a substantially cylindrical compressor and stores heat generated by the compressor, and heat stored in the heat storage body that is stored. And a heat storage device provided with a heat transfer surface that efficiently obtains the heat generated in the compressor, the compressor and the heat transfer surface of the heat storage body, By using an air conditioner equipped with a heat storage device having a sheet material having thermal conductivity and cushioning between the compressor and a structure in which an air layer is not interposed between the compressor and the heat storage body. Highly heat-conductive between two hard surfaces, and a highly heat-insulating air layer can be eliminated via a cushioning sheet material, and waste heat from the compressor can be efficiently It can move and heat storage heat exchange from the heat storage body It is possible to provide an air conditioner using a heat storage device capable heat transfer even in a short time.

第2の態様は、特に第1の態様において、シート材に無数の小径穴か、または無数の縦または横または縦横両方のスリットを設けたものであり、これにより、金属面に貼り付けた際に、金属面とシート材との間に生じる気泡の介在を防止することができる。   In the second aspect, in particular, in the first aspect, the sheet material is provided with innumerable small-diameter holes, or innumerable vertical, horizontal, and vertical and horizontal slits. When this is applied to a metal surface, In addition, it is possible to prevent air bubbles from occurring between the metal surface and the sheet material.

第3の態様は、特に第1または第2の態様において、蓄熱体は少なくとも2本以上の貫通穴を持ち、貫通穴に、少なくとも1本以上のU字型に曲げた伝熱管を一方から挿入し、各管は挿入後反対側から拡管しながら蓄熱体に密着をさせた蓄熱熱交換器を構成したことにより、蓄熱体と蓄熱熱交換器との密着性が更に向上する。   In the third aspect, particularly in the first or second aspect, the heat storage body has at least two through holes, and at least one or more U-shaped heat transfer tubes are inserted into the through holes from one side. And since each tube comprised the thermal storage heat exchanger which made it closely_contact | adhere to a thermal storage body, expanding from the opposite side after insertion, the adhesiveness of a thermal storage body and a thermal storage heat exchanger further improves.

第4の態様は、特に第1〜3のいずれか1つの態様において、前記蓄熱体を分割して前記圧縮機の周囲に配置したことにより、複雑な加工を必要とせず、組み立て工数を削減することができる。   In the fourth aspect, particularly in any one of the first to third aspects, the heat storage body is divided and arranged around the compressor, so that complicated processing is not required and the number of assembling steps is reduced. be able to.

第5の態様は、特に第1〜4のいずれか1つの態様において、前記蓄熱体の総重量を圧縮機の半分以下に抑えたことで、本来の目的である圧縮機の性能を落とさず、その廃熱のみを有効に蓄熱体に蓄熱することができる。   In the fifth aspect, in particular, in any one of the first to fourth aspects, the total weight of the heat storage body is suppressed to less than half of the compressor, so that the performance of the original compressor is not degraded. Only the waste heat can be effectively stored in the heat storage body.

本発明に係る蓄熱装置は圧縮機と密着する密着部材を備えており、圧縮機で発生した熱を蓄熱体に効率的に蓄積することができるので、空気調和機の他に温水暖房機等の用途にも適用できる。   The heat storage device according to the present invention includes a close contact member that is in close contact with the compressor, and can efficiently store heat generated in the compressor in the heat storage body. It can also be applied to applications.

11 圧縮機
18 蓄熱装置
19 蓄熱体
19a 外壁
19b 内壁(伝熱面)
20 蓄熱熱交換器
60 伝熱シート
61 貫通穴
62 スリット
11 compressor 18 heat storage device 19 heat storage body 19a outer wall 19b inner wall (heat transfer surface)
20 Heat storage heat exchanger 60 Heat transfer sheet 61 Through hole 62 Slit

Claims (4)

略円筒状の圧縮機を囲むように配置する蓄熱体と、前記蓄熱体に少なくとも一部が埋設する蓄熱熱交換器とを備え、前記蓄熱体は少なくとも2本以上の貫通穴を有し、前記蓄熱熱交換器は1本以上のU字型の伝熱管を有する蓄熱装置の製造方法であって、前記伝熱管を前記貫通穴に挿入し、拡管して、前記蓄熱体に密着させる蓄熱装置の製造方法。 A heat storage body arranged so as to surround a substantially cylindrical compressor, and a heat storage heat exchanger at least partially embedded in the heat storage body, wherein the heat storage body has at least two or more through holes, A heat storage heat exchanger is a method of manufacturing a heat storage device having one or more U-shaped heat transfer tubes, wherein the heat transfer tube is inserted into the through hole, expanded, and closely attached to the heat storage device. Production method. 前記蓄熱体はアルミニウムの押し出し成型で作られる請求項1に記載の蓄熱装置の製造方法。 The said heat storage body is a manufacturing method of the heat storage apparatus of Claim 1 made by the extrusion molding of aluminum. 前記蓄熱体を分割して前記圧縮機の周囲に配置する請求項1または2に記載の蓄熱装置の製造方法。 The method for manufacturing a heat storage device according to claim 1 or 2, wherein the heat storage body is divided and disposed around the compressor. 前記蓄熱体はバンドにより前記圧縮機に固定する請求項1〜3のいずれか1項に記載の蓄熱装置の製造方法。
The said heat storage body is a manufacturing method of the heat storage apparatus of any one of Claims 1-3 fixed to the said compressor with a band.
JP2016032643A 2016-02-24 2016-02-24 Manufacturing method of heat storage device Pending JP2016095131A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016032643A JP2016095131A (en) 2016-02-24 2016-02-24 Manufacturing method of heat storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016032643A JP2016095131A (en) 2016-02-24 2016-02-24 Manufacturing method of heat storage device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2011283185A Division JP5934884B2 (en) 2011-12-26 2011-12-26 Air conditioner

Publications (1)

Publication Number Publication Date
JP2016095131A true JP2016095131A (en) 2016-05-26

Family

ID=56071010

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016032643A Pending JP2016095131A (en) 2016-02-24 2016-02-24 Manufacturing method of heat storage device

Country Status (1)

Country Link
JP (1) JP2016095131A (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58138993A (en) * 1982-02-15 1983-08-18 Matsushita Electric Ind Co Ltd Heat exchanger
JPH02166358A (en) * 1988-12-19 1990-06-27 Matsushita Electric Ind Co Ltd Heat accumulation device
JPH06241618A (en) * 1993-02-16 1994-09-02 Yamakawa Ind Co Ltd Aluminum-made refrigerant pipeline device in compressor for cooling-heating device
JP2000121204A (en) * 1998-10-16 2000-04-28 Nippon Kentetsu Co Ltd Heat exchanger
JP2001033180A (en) * 1999-07-15 2001-02-09 Nakkusu Kk Heat accumulator
JP4760995B1 (en) * 2010-09-29 2011-08-31 パナソニック株式会社 Heat storage device and air conditioner equipped with the heat storage device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58138993A (en) * 1982-02-15 1983-08-18 Matsushita Electric Ind Co Ltd Heat exchanger
JPH02166358A (en) * 1988-12-19 1990-06-27 Matsushita Electric Ind Co Ltd Heat accumulation device
JPH06241618A (en) * 1993-02-16 1994-09-02 Yamakawa Ind Co Ltd Aluminum-made refrigerant pipeline device in compressor for cooling-heating device
JP2000121204A (en) * 1998-10-16 2000-04-28 Nippon Kentetsu Co Ltd Heat exchanger
JP2001033180A (en) * 1999-07-15 2001-02-09 Nakkusu Kk Heat accumulator
JP4760995B1 (en) * 2010-09-29 2011-08-31 パナソニック株式会社 Heat storage device and air conditioner equipped with the heat storage device

Similar Documents

Publication Publication Date Title
JP5934884B2 (en) Air conditioner
CN106765673B (en) Heat pump system and defrosting control method thereof
EP3026358B1 (en) Air conditioner and method of controlling the same
JP5665937B1 (en) Refrigeration cycle equipment
CN100498158C (en) Refrigerator
JP5413480B2 (en) Air conditioner
MX341749B (en) Refrigeration circuit.
SE1451397A1 (en) Radiation-type air conditioner
JP6036356B2 (en) Refrigeration equipment
WO2018142583A1 (en) Refrigeration system
EP2733437A1 (en) Heat pump water heater
JP6291333B2 (en) Refrigeration cycle equipment
JP2009275964A (en) Refrigerator
JP2016095131A (en) Manufacturing method of heat storage device
CN114008395B (en) Vacuum insulator, refrigerator and method for manufacturing refrigerator
JP2013120030A (en) Air conditioner
JP2013120006A (en) Air conditioner
WO2011099060A1 (en) Heat storage device, and air-conditioner provided with same
JP6036357B2 (en) Air conditioner
JP2011163662A (en) Heat storage device and air conditioner including the same
EP2977692A1 (en) Compressor system and air conditioner including the same
JP2008267770A (en) Capillary tube embracing heat exchanger
WO2020121404A1 (en) Refrigerator
JP2012072934A (en) Heat storage device, and air conditioner with the same
JP2005009825A (en) Refrigerator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160301

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20160526

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170131

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170208

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170801