JP2016092110A - Light-emitting device and manufacturing method of light-emitting device - Google Patents

Light-emitting device and manufacturing method of light-emitting device Download PDF

Info

Publication number
JP2016092110A
JP2016092110A JP2014222859A JP2014222859A JP2016092110A JP 2016092110 A JP2016092110 A JP 2016092110A JP 2014222859 A JP2014222859 A JP 2014222859A JP 2014222859 A JP2014222859 A JP 2014222859A JP 2016092110 A JP2016092110 A JP 2016092110A
Authority
JP
Japan
Prior art keywords
light emitting
light
substrate
emitting device
covering member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014222859A
Other languages
Japanese (ja)
Other versions
JP6447018B2 (en
Inventor
匡也 宮崎
Masaya Miyazaki
匡也 宮崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Chemical Industries Ltd
Original Assignee
Nichia Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichia Chemical Industries Ltd filed Critical Nichia Chemical Industries Ltd
Priority to JP2014222859A priority Critical patent/JP6447018B2/en
Publication of JP2016092110A publication Critical patent/JP2016092110A/en
Application granted granted Critical
Publication of JP6447018B2 publication Critical patent/JP6447018B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To easily manufacture a light-emitting device which improves light extraction.SOLUTION: A manufacturing method of the light-emitting device includes: a first step for preparing a light-emitting element including a substrate including a first principal surface and a second principal surface, a semiconductor layer that is provided on the first principal surface, and an electrode that is electrically connected with the semiconductor layer; a second step for forming a cover member at a side of a side face of the substrate in such a manner that an outer side face at a side of the second principal surface is positioned outsides further than at a side of the first principal surface; a third step for covering the outer side face of the cover member with a light reflection member; and a fourth step for removing the substrate from the semiconductor layer.SELECTED DRAWING: Figure 1

Description

本発明の実施形態は、発光装置及び発光装置の製造方法に関する。   Embodiments described herein relate generally to a light emitting device and a method for manufacturing the light emitting device.

発光ダイオード(LED)は、各種照明やバックライト用光源など様々な用途で広く利用されている。   Light emitting diodes (LEDs) are widely used in various applications such as various illuminations and light sources for backlights.

特許文献1には、CSP(Chip Size Package)タイプの半導体発光装置が開示されている。特許文献1の半導体発光装置は、透明絶縁基板と半導体層とを有する半導体発光素子の側面が、白色反射部材で覆われ、蛍光体シートが、接着部材により透明絶縁基板及び白色反射部材上に設けられている。このような構成とすることで、小型で、容易に製造可能な半導体発光装置を作製することができる。   Patent Document 1 discloses a CSP (Chip Size Package) type semiconductor light emitting device. In the semiconductor light emitting device of Patent Document 1, the side surface of a semiconductor light emitting element having a transparent insulating substrate and a semiconductor layer is covered with a white reflecting member, and a phosphor sheet is provided on the transparent insulating substrate and the white reflecting member by an adhesive member. It has been. With such a structure, a semiconductor light emitting device that is small and can be easily manufactured can be manufactured.

特開2012−227470号公報JP 2012-227470 A

しかしながら、特許文献1に開示される半導体発光装置は、半導体発光素子が透明絶縁基板を有しているため、半導体層からの出射光の一部が吸収されてしまい、光の取り出しが低下する恐れがある。   However, in the semiconductor light emitting device disclosed in Patent Document 1, since the semiconductor light emitting element has a transparent insulating substrate, a part of the light emitted from the semiconductor layer is absorbed, and the light extraction may be reduced. There is.

そこで、本発明の実施形態は、光取り出しの高い発光装置を提供することを目的とする。また、光取り出しの高い発光装置を容易に作製できる製造方法を提供することを目的とする。   Therefore, an object of the embodiment of the present invention is to provide a light emitting device with high light extraction. It is another object of the present invention to provide a manufacturing method capable of easily manufacturing a light-emitting device with high light extraction.

実施形態に係る発光装置の実装方法は、第1主面及び第2主面を有する基板と、前記第1主面上に設けられた半導体層と、前記半導体層と電気的に接続される電極と、を有する発光素子を準備する第1の工程と、前記第1主面側よりも前記第2主面側の外側面が外側に位置するように、前記基板の側面側に被覆部材を形成する第2の工程と、前記被覆部材の前記外側面を光反射部材で被覆する第3の工程と、前記半導体層から前記基板を除去する第4の工程と、を有する。   A light emitting device mounting method according to an embodiment includes a substrate having a first main surface and a second main surface, a semiconductor layer provided on the first main surface, and an electrode electrically connected to the semiconductor layer. And forming a covering member on the side surface of the substrate so that the outer surface on the second main surface side is located outside the first main surface side than the first main surface side. A second step of covering the outer surface of the covering member with a light reflecting member, and a fourth step of removing the substrate from the semiconductor layer.

本発明の実施形態によれば、光取り出しの高い発光装置を提供することができる。また、光取り出しの高い発光装置を容易に作製できる製造方法を提供することができる。   According to the embodiment of the present invention, a light emitting device with high light extraction can be provided. In addition, a manufacturing method capable of easily manufacturing a light-emitting device with high light extraction can be provided.

実施形態1に係る発光装置の断面図である。1 is a cross-sectional view of a light emitting device according to Embodiment 1. FIG. 実施形態1に係る発光装置の製造方法の第1の工程について示す断面図である。FIG. 6 is a cross-sectional view showing a first step of the method for manufacturing the light emitting device according to Embodiment 1. 実施形態1に係る発光装置の製造方法の第2の工程について示す側面図である。5 is a side view showing a second step of the method for manufacturing the light emitting device according to Embodiment 1. FIG. 実施形態1に係る発光装置の製造方法の第2の工程について示す平面図である。6 is a plan view showing a second step of the method for manufacturing the light emitting device according to Embodiment 1. FIG. 実施形態1に係る発光装置の製造方法の第2の工程について示す側面図である。5 is a side view showing a second step of the method for manufacturing the light emitting device according to Embodiment 1. FIG. 実施形態1に係る発光装置の製造方法の第2の工程について示す側面図である。5 is a side view showing a second step of the method for manufacturing the light emitting device according to Embodiment 1. FIG. 実施形態1に係る発光装置の製造方法の第2の工程について示す側面図である。5 is a side view showing a second step of the method for manufacturing the light emitting device according to Embodiment 1. FIG. 実施形態1に係る発光装置の製造方法の第2の工程について示す側面図である。5 is a side view showing a second step of the method for manufacturing the light emitting device according to Embodiment 1. FIG. 実施形態1に係る発光装置の製造方法の第3の工程について示す側面透過図である。FIG. 5 is a side transparent view illustrating a third step of the method for manufacturing the light emitting device according to the first embodiment. 実施形態1に係る発光装置の製造方法の第3の工程について示す側面透過図である。FIG. 5 is a side transparent view illustrating a third step of the method for manufacturing the light emitting device according to the first embodiment. 実施形態1に係る発光装置の製造方法の第4の工程について示す側面透過図である。FIG. 6 is a side transparent view illustrating a fourth step of the method for manufacturing the light emitting device according to Embodiment 1. 実施形態1に係る発光装置の製造方法の第4の工程について示す断面図である。6 is a cross-sectional view illustrating a fourth step of the method for manufacturing the light-emitting device according to Embodiment 1. FIG. 実施形態1に係る発光装置の製造方法の透光部材形成工程について示す断面図である。FIG. 6 is a cross-sectional view illustrating a light transmissive member forming step of the method for manufacturing the light emitting device according to the first embodiment. 実施形態1に係る発光装置の製造方法の封止部材形成工程について示す断面図である。6 is a cross-sectional view illustrating a sealing member forming step of the method for manufacturing the light emitting device according to Embodiment 1. FIG. 実施形態1に係る発光装置の製造方法の反射層形成工程について示す断面図である。FIG. 6 is a cross-sectional view illustrating a reflective layer forming step of the method for manufacturing the light emitting device according to Embodiment 1. 実施形態2に係る発光装置の断面図である。6 is a cross-sectional view of a light emitting device according to Embodiment 2. FIG. 実施形態2に係る発光装置の平面図である。6 is a plan view of a light emitting device according to Embodiment 2. FIG. 実施形態2に係る発光装置の製造方法の第2の工程について示す側面図である。FIG. 10 is a side view showing a second step of the method for manufacturing the light emitting device according to Embodiment 2. 実施形態2に係る発光装置の製造方法の第3の工程について示す側面透過図である。FIG. 10 is a side transparent view illustrating a third step of the method for manufacturing the light emitting device according to the second embodiment. 実施形態2に係る発光装置の製造方法の第4の工程について示す断面図である。12 is a cross-sectional view illustrating a fourth step of the method for manufacturing the light-emitting device according to Embodiment 2. FIG.

以下、本発明の実施形態について適宜図面を参照して説明する。ただし、以下に説明する発光装置は、実施形態の技術的思想を具現化するためのものであって、以下に限定するものではない。特に、構成部品の寸法、材質、形状、その相対的配置等は、実施形態の技術的範囲を限定するものではなく、単なる説明例にすぎない。なお、各図面が示す部材の大きさや位置関係等は、説明を明確にするために誇張していることがある。以下に記載される実施形態は、各構成等を適宜組み合わせて適用できる。   Hereinafter, embodiments of the present invention will be described with reference to the drawings as appropriate. However, the light-emitting device described below is for embodying the technical idea of the embodiment, and is not limited to the following. In particular, the dimensions, materials, shapes, relative arrangements, and the like of the component parts do not limit the technical scope of the embodiment, but are merely illustrative examples. Note that the size, positional relationship, and the like of the members shown in each drawing may be exaggerated for clarity of explanation. The embodiments described below can be applied by appropriately combining the components.

<実施形態1>
(発光装置)
図1は、本実施形態に係る発光装置1000の断面図である。
本実施形態の発光装置1000は、発光素子10のn側電極3n及びp側電極3pが露出する面を実装面とし、実装面の反対側の面を光出射面とする上面発光型(トップビュー型)の発光装置である。なお、これに限らず、側面発光型(サイドビュー型)の発光装置としてもかまわない。また、発光装置1000が、例えば他の配線基板等に実装された形態でもかまわない。
<Embodiment 1>
(Light emitting device)
FIG. 1 is a cross-sectional view of a light emitting device 1000 according to this embodiment.
The light emitting device 1000 of the present embodiment is a top emission type (top view) in which the surface on which the n-side electrode 3n and the p-side electrode 3p of the light emitting element 10 are exposed is the mounting surface, and the surface opposite to the mounting surface is the light emitting surface. Type) light emitting device. Note that the present invention is not limited to this, and a side light emission type (side view type) light emitting device may be used. Further, the light emitting device 1000 may be mounted on, for example, another wiring board.

発光装置1000は、半導体層2と、半導体層2と電気的に接続される正負一対の電極3n,3pとを有する発光素子10を備える。また、半導体層2の光出射面側を露出するように、電極3n,3pと半導体層2の電極を有する側の面及び側面とを被覆する光反射部材5を有する。光反射部材5は、半導体層2を囲むように形成され、半導体層2よりも高い側壁5aを有する。光反射部材5の側壁5aと半導体層2の露出面とによって、発光装置1000の凹部5cが形成される。光反射部材5の側壁5aの内側面5bは、半導体層2側よりも発光装置1000の光出射面側が外側に位置するように形成される。
本実施形態では、光反射部材5の側壁5aの内側面5bは、半導体層2側から発光装置1000の光出射面側に向かって外側に傾斜する傾斜面を有する。光反射部材5の外側面は、実装面に対して略垂直に形成することができる。すなわち、光反射部材5の側壁5aは、半導体層2側から発光装置1000の光出射面側へ厚みが薄くなるテーパー形状である。なお、光反射部材5の側壁5aの内側面5bは、略平面の傾斜面であると、半導体層2からの光を効率的に光出射面側へ反射できるため好ましいが、傾斜面は平面でなくてもよい。例えば、傾斜面は、曲面、凹面、凸面、凹凸面(段差面)であってもよい。また、本実施形態では、凹部5cに透光部材6が設けられる。
The light emitting device 1000 includes a light emitting element 10 having a semiconductor layer 2 and a pair of positive and negative electrodes 3n and 3p electrically connected to the semiconductor layer 2. In addition, the light reflection member 5 is provided to cover the surfaces and side surfaces of the electrodes 3n and 3p and the semiconductor layer 2 on the side having the electrodes so that the light emitting surface side of the semiconductor layer 2 is exposed. The light reflecting member 5 is formed so as to surround the semiconductor layer 2, and has a side wall 5 a higher than the semiconductor layer 2. A recess 5 c of the light emitting device 1000 is formed by the side wall 5 a of the light reflecting member 5 and the exposed surface of the semiconductor layer 2. The inner side surface 5b of the side wall 5a of the light reflecting member 5 is formed such that the light emitting surface side of the light emitting device 1000 is positioned outside the semiconductor layer 2 side.
In the present embodiment, the inner surface 5 b of the side wall 5 a of the light reflecting member 5 has an inclined surface that is inclined outward from the semiconductor layer 2 side toward the light emitting surface side of the light emitting device 1000. The outer surface of the light reflecting member 5 can be formed substantially perpendicular to the mounting surface. That is, the side wall 5 a of the light reflecting member 5 has a tapered shape in which the thickness decreases from the semiconductor layer 2 side to the light emitting surface side of the light emitting device 1000. The inner side surface 5b of the side wall 5a of the light reflecting member 5 is preferably a substantially flat inclined surface because light from the semiconductor layer 2 can be efficiently reflected to the light emitting surface side, but the inclined surface is flat. It does not have to be. For example, the inclined surface may be a curved surface, a concave surface, a convex surface, or an uneven surface (step surface). Moreover, in this embodiment, the translucent member 6 is provided in the recessed part 5c.

以上のような構成とすると、小型の発光装置1000を形成することができる。また、発光素子10が半導体層2の成長用基板等を有さないので、半導体層2からの出射光の無駄な吸収を防ぐことができる。さらに、光反射部材5の側壁5aの内側面5bが、半導体層2側よりも発光装置1000の光出射面側において外側に位置するように形成されるので、半導体層2からの光を効率的に発光装置1000から出射させることができる。
以下、発光装置1000の製造方法について詳述する。
With the above structure, a small light emitting device 1000 can be formed. Moreover, since the light emitting element 10 does not have a growth substrate or the like for the semiconductor layer 2, useless absorption of light emitted from the semiconductor layer 2 can be prevented. Furthermore, the inner side surface 5b of the side wall 5a of the light reflecting member 5 is formed so as to be positioned on the outer side on the light emitting surface side of the light emitting device 1000 than on the semiconductor layer 2 side, so that light from the semiconductor layer 2 is efficiently transmitted. The light can be emitted from the light emitting device 1000.
Hereinafter, a method for manufacturing the light emitting device 1000 will be described in detail.

(発光装置の製造方法)
・第1の工程
図2Aは、本実施形態に係る発光装置1000の製造方法の第1の工程について示す概略図である。第1の工程では、まず発光素子10を準備する。
(Method for manufacturing light emitting device)
First Step FIG. 2A is a schematic view showing a first step of the method for manufacturing the light emitting device 1000 according to the present embodiment. In the first step, first, the light emitting element 10 is prepared.

準備する発光素子10は、基板1と、半導体層2と、半導体層2と電気的に接続する正負一対の電極3n,3pとを有する。本実施形態では、n側電極3n及びp側電極3pが同一面上に設けられた発光素子10を用いることができる。これにより、実装面に電極3n,3pが露出する発光装置1000を容易に形成することができる。   The prepared light emitting element 10 includes a substrate 1, a semiconductor layer 2, and a pair of positive and negative electrodes 3 n and 3 p that are electrically connected to the semiconductor layer 2. In the present embodiment, the light emitting element 10 in which the n-side electrode 3n and the p-side electrode 3p are provided on the same surface can be used. Thereby, the light emitting device 1000 in which the electrodes 3n and 3p are exposed on the mounting surface can be easily formed.

本実施形態の基板1は、半導体層2を成長させるための成長用基板を用いることができる。例えば、半導体層2をGaN(窒化ガリウム)等の窒化物半導体を用いて形成する場合、基板1としては、Al、MgAl等の絶縁性基板、SiC、ZnS、ZnO、Si、GaAs、ダイヤモンド、窒化物半導体と格子整合するニオブ酸リチウム、ガリウム酸ネオジム等の酸化物基板等が挙げられる。なお、基板1は、後述する第4の工程において除去される。 As the substrate 1 of this embodiment, a growth substrate for growing the semiconductor layer 2 can be used. For example, when the semiconductor layer 2 is formed using a nitride semiconductor such as GaN (gallium nitride), the substrate 1 may be an insulating substrate such as Al 2 O 3 or MgAl 2 O 4 , SiC, ZnS, ZnO, Si And oxide substrates such as lithium niobate and neodymium gallate that lattice-match with GaAs, diamond, and nitride semiconductors. In addition, the board | substrate 1 is removed in the 4th process mentioned later.

基板1は、第1主面1aと第1主面の反対側(すなわち、第1主面と対向する裏面側)の第2主面1bとを有する。半導体層2は、基板1の第1主面1a上に設けられる。半導体層2は、n型半導体層2n、発光層2a、p型半導体層2pを含む積層体である。本実施形態では、例えば、基板1の第1主面1aからn型半導体層2n、発光層2a、p型半導体層2pが順次積層され、p型半導体層2p及び発光層2aの一部が除去されることにより、n型半導体層2nの一部を露出させる段差を有する半導体層2を形成することができる。また、n型半導体層2n上にはn型半導体層2nと電気的に接続するn側電極3n、p型半導体層2p上にはp型半導体層2pと電気的に接続されるp側電極3pを設けることができる。n側電極3n及びp側電極3pとしては、金属材料を用いることができ、金属材料としては、例えばAg、Al、Ni、Rh、Au、Cu、Ti、Pt、Pd、Mo、Cr、W等、又はこれらの合金等を好適に用いることができる。n側電極3n及びp側電極3pは、これらの金属材料を単層で、又は積層したものを用いることができる。   The substrate 1 has a first main surface 1a and a second main surface 1b opposite to the first main surface (that is, the back surface facing the first main surface). The semiconductor layer 2 is provided on the first main surface 1 a of the substrate 1. The semiconductor layer 2 is a stacked body including an n-type semiconductor layer 2n, a light emitting layer 2a, and a p-type semiconductor layer 2p. In the present embodiment, for example, the n-type semiconductor layer 2n, the light-emitting layer 2a, and the p-type semiconductor layer 2p are sequentially stacked from the first main surface 1a of the substrate 1, and a part of the p-type semiconductor layer 2p and the light-emitting layer 2a is removed. Thus, the semiconductor layer 2 having a step that exposes a part of the n-type semiconductor layer 2n can be formed. An n-side electrode 3n electrically connected to the n-type semiconductor layer 2n is provided on the n-type semiconductor layer 2n, and a p-side electrode 3p electrically connected to the p-type semiconductor layer 2p is provided on the p-type semiconductor layer 2p. Can be provided. A metal material can be used as the n-side electrode 3n and the p-side electrode 3p. Examples of the metal material include Ag, Al, Ni, Rh, Au, Cu, Ti, Pt, Pd, Mo, Cr, and W. , Or an alloy thereof can be suitably used. As the n-side electrode 3n and the p-side electrode 3p, a single layer or a laminate of these metal materials can be used.

また、段差以外のp型半導体層2pの表面の略全面に、導電性及び反射性を有する全面電極3aが設けられ、その上面にp側電極3pが設けられると好ましい。そうすることで、p側電極3pから供給される電流をp型半導体層2pに均一に拡散させることができる。さらに、発光層2aからの光を、発光装置1000の光出射面側へ効率的に反射させることができる。全面電極3aとしては、可視光領域で良好な反射性を有する金属材料であるAg、Al、又はこれらの金属を主成分とする合金を好適に用いることができる。全面電極3aは、これらの金属材料を単層で、又は積層したものを用いることができる。 Further, it is preferable that the whole surface electrode 3a having conductivity and reflectivity is provided on substantially the entire surface of the p-type semiconductor layer 2p other than the step, and the p-side electrode 3p is provided on the upper surface thereof. By doing so, the current supplied from the p-side electrode 3p can be uniformly diffused into the p-type semiconductor layer 2p. Furthermore, the light from the light emitting layer 2a can be efficiently reflected toward the light emitting surface side of the light emitting device 1000. As the full-surface electrode 3a, Ag, Al, which is a metal material having good reflectivity in the visible light region, or an alloy containing these metals as a main component can be suitably used. The whole surface electrode 3a may be a single layer or a laminate of these metal materials.

また、全面電極3aの上面及び側面を被覆するカバー電極3bが設けられていてもよい。そうすることで、全面電極3aのマイグレーションを防止することができる。カバー電極3bは、導電性及びバリア性を有する金属材料を用いることができ、材料としては、例えばAl、Ti、W、Au等を用いることができる。カバー電極3bは、これらの金属材料を単層で、又は積層したものを用いることができる。 Moreover, the cover electrode 3b which coat | covers the upper surface and side surface of the whole surface electrode 3a may be provided. By doing so, migration of the entire surface electrode 3a can be prevented. For the cover electrode 3b, a metal material having conductivity and barrier properties can be used, and as the material, for example, Al, Ti, W, Au, or the like can be used. As the cover electrode 3b, a single layer or a laminate of these metal materials can be used.

さらに、絶縁性及び透光性を有し、基板1と、n側電極3n及びp側電極3pの外部との接続部を除き、発光素子10の表面全体を被覆する保護層Hが設けられていると好ましい。これにより、発光素子10を保護することができ、さらに帯電を防止することができる。保護層Hとしては、金属酸化物や金属窒化物を用いることができ、金属酸化物や金属窒化物の材料としては、例えばSi、Ti、Zr、Nb、Ta、Alからなる群より選択された少なくとも一種の酸化物又は窒化物を好適に用いることができる。DBR(Distributed Bragg Reflector)を用いてもよい。 Further, a protective layer H is provided which has insulating properties and translucency, and covers the entire surface of the light emitting element 10 except for the connection portion between the substrate 1 and the outside of the n-side electrode 3n and the p-side electrode 3p. It is preferable. Thereby, the light emitting element 10 can be protected and further charging can be prevented. As the protective layer H, metal oxide or metal nitride can be used, and the material of the metal oxide or metal nitride is selected from the group consisting of Si, Ti, Zr, Nb, Ta, Al, for example. At least one oxide or nitride can be suitably used. DBR (Distributed Bragg Reflector) may be used.

n側電極3n及びp側電極3pは、発光素子10を安定的に配置するために、高さが同じであると好ましい。n側電極3n及びp側電極3p上には金属バンプ等を設けてもかまわない。なお、発光素子10の構成は前述のものに限られず、適宜所望の構成を有する発光素子を用いることができる。 The n-side electrode 3n and the p-side electrode 3p are preferably the same height in order to stably arrange the light emitting element 10. Metal bumps or the like may be provided on the n-side electrode 3n and the p-side electrode 3p. Note that the structure of the light-emitting element 10 is not limited to that described above, and a light-emitting element having a desired structure can be used as appropriate.

次に、準備した発光素子10を、基体200上に配置する。発光素子10は、基板1の第2主面1b、すなわち、基板1において半導体層2及び電極3n,3pが設けられる面と反対側の面が基体200と接するように、基体200上に配置する。なお、基体200は、第4の工程の前に除去される。   Next, the prepared light emitting element 10 is disposed on the substrate 200. The light emitting element 10 is disposed on the substrate 200 such that the second main surface 1b of the substrate 1, that is, the surface of the substrate 1 opposite to the surface on which the semiconductor layer 2 and the electrodes 3n and 3p are provided is in contact with the substrate 200. . Note that the substrate 200 is removed before the fourth step.

基体200は、後述する第2の工程で、被覆部材4の硬化の際に加熱されるので、耐熱性を有する材料からなると好ましい。基体200は、例えばアクリル、シリコーン、ゴム系の材料で形成されると好ましく、特にアクリル系の樹脂で形成されると好ましい。基体200は、厚み約25〜100μm程度のシート状であると、後に光反射部材5で被覆された発光素子10から剥離しやすいため好ましい。
発光素子10を基体200上に配置する際には、接着剤を用いてもかまわない。接着剤の材料としては、アクリル系の樹脂等を好適に用いることができる。発光素子10と基体200との密着強度は、第3の工程において、例えば圧縮成形等で光反射部材5を形成する際に、発光素子10が基体200から剥離しない程度であることが好ましい。例えば、基体200の粘着力は、2〜5N/25mm程度とすることができる。
Since the base 200 is heated when the covering member 4 is cured in the second step described later, the base 200 is preferably made of a heat-resistant material. The substrate 200 is preferably formed of, for example, an acrylic, silicone, or rubber-based material, and particularly preferably formed of an acrylic resin. The substrate 200 is preferably in the form of a sheet having a thickness of about 25 to 100 μm because it is easily peeled off from the light emitting element 10 covered with the light reflecting member 5 later.
An adhesive may be used when the light emitting element 10 is disposed on the substrate 200. As the adhesive material, an acrylic resin or the like can be suitably used. The adhesion strength between the light emitting element 10 and the substrate 200 is preferably such that the light emitting element 10 does not peel from the substrate 200 when the light reflecting member 5 is formed by compression molding or the like in the third step. For example, the adhesive strength of the substrate 200 can be about 2 to 5 N / 25 mm.

(第2の工程)
図2B〜図2Gは、発光装置1000の製造方法の第2の工程について示す概略図である。第2の工程では、発光素子10の基板1の側面1cの外側に被覆部材4を形成する。基板1の側面1cは、基板1の第1主面1aと第2主面1bとを接続する面である。被覆部材4(詳述すると、被覆部材4の外側面)は、後述の光反射部材5の側壁5aの内側面5bを形成するために設けられる。
本実施形態において、被覆部材4は、発光素子10の基板1の第2主面1b側の外側面が、基板1の第1主面1a側の外側面よりも外側に位置するように形成する。より詳細には、被覆部材4は、内側面が発光素子10の基板1の側面1cを被覆するように形成され、外側面は基板1の第1主面1a側から第2主面1b側へ外側に傾斜する傾斜面4aとなるように形成される。
(Second step)
2B to 2G are schematic views illustrating the second step of the method for manufacturing the light emitting device 1000. FIG. In the second step, the covering member 4 is formed outside the side surface 1 c of the substrate 1 of the light emitting element 10. The side surface 1 c of the substrate 1 is a surface that connects the first main surface 1 a and the second main surface 1 b of the substrate 1. The covering member 4 (more specifically, the outer surface of the covering member 4) is provided to form an inner surface 5b of a side wall 5a of the light reflecting member 5 described later.
In the present embodiment, the covering member 4 is formed such that the outer surface of the light emitting element 10 on the second main surface 1b side of the substrate 1 is located outside the outer surface of the substrate 1 on the first main surface 1a side. . More specifically, the covering member 4 is formed such that the inner surface covers the side surface 1c of the substrate 1 of the light emitting element 10, and the outer surface is from the first main surface 1a side to the second main surface 1b side of the substrate 1. It forms so that it may become the inclined surface 4a which inclines outside.

なお、被覆部材4の外側面は略平面の傾斜面であると、半導体層2からの光をより効率的に発光装置1000の光出射面側へ反射可能な光反射部材5の内側面5bを形成することができるが、被覆部材4の外側面の傾斜面は平面でなくてもよい。例えば、傾斜面は、曲面、凹面、凸面、凹凸面(段差面)であってもよい。   If the outer surface of the covering member 4 is a substantially flat inclined surface, the inner surface 5b of the light reflecting member 5 that can more efficiently reflect the light from the semiconductor layer 2 toward the light emitting surface of the light emitting device 1000 is provided. Although it can be formed, the inclined surface of the outer surface of the covering member 4 may not be a flat surface. For example, the inclined surface may be a curved surface, a concave surface, a convex surface, or an uneven surface (step surface).

また、本実施形態では、被覆部材4は、発光素子10の基板1の側面1cの略全面を被覆するように形成されるが、少なくとも側面1cの一部を被覆していればよい。例えば、図2Eに示されるように、基板1の側面1cの一部に、第1主面側から第2主面側に外側に傾斜する傾斜面を有するような場合、被覆部材4はその傾斜面を被覆しないように形成してもかまわない。これにより、被覆部材4の量を少なくすることができる。したがって、コスト及びタクトを削減しつつ、半導体層2からの光をより効率的に発光装置1000の光出射面側へ反射可能な光反射部材5を形成することができる。   In the present embodiment, the covering member 4 is formed so as to cover substantially the entire side surface 1c of the substrate 1 of the light emitting element 10, but it is sufficient that at least a part of the side surface 1c is covered. For example, as shown in FIG. 2E, when a part of the side surface 1c of the substrate 1 has an inclined surface that is inclined outward from the first main surface side to the second main surface side, the covering member 4 is inclined. You may form so that a surface may not be coat | covered. Thereby, the quantity of the covering member 4 can be decreased. Accordingly, it is possible to form the light reflecting member 5 that can more efficiently reflect the light from the semiconductor layer 2 to the light emitting surface side of the light emitting device 1000 while reducing cost and tact.

被覆部材4の被覆領域によって、後述する光反射部材5の被覆領域が確定される。例えば、被覆部材4が基体200の上面及び発光素子10の基板1の側面1cのみを被覆する場合、後述する光反射部材5は半導体層2及び電極3n,3pの側面を被覆するように形成される。これにより、半導体層2からの光が、光出射面以外から漏れ出すことを抑制可能な発光装置1000を形成することができる。しかし、被覆部材4は、半導体層2や電極3n,3pを被覆してもよい。また、本実施形態の被覆部材4は、発光素子10の基板1の側面1cに接するように形成されるが、基板1の側面1cから離間して、又は他の部材を介して形成されていてもかまわない。被覆部材が、他の部材を介して基板の側面の外側に形成される形態については、実施形態2で詳述する。   The covered area of the light reflecting member 5 described later is determined by the covered area of the covering member 4. For example, when the covering member 4 covers only the upper surface of the base body 200 and the side surface 1c of the substrate 1 of the light emitting element 10, the light reflecting member 5 described later is formed so as to cover the side surfaces of the semiconductor layer 2 and the electrodes 3n and 3p. The Thereby, the light-emitting device 1000 which can suppress that the light from the semiconductor layer 2 leaks from other than a light-projection surface can be formed. However, the covering member 4 may cover the semiconductor layer 2 and the electrodes 3n and 3p. Further, the covering member 4 of the present embodiment is formed so as to be in contact with the side surface 1c of the substrate 1 of the light emitting element 10, but is formed apart from the side surface 1c of the substrate 1 or via another member. It doesn't matter. Embodiment 2 in which the covering member is formed outside the side surface of the substrate via another member will be described in detail in Embodiment 2.

以下、第2の工程における被覆部材4の形成方法について、いくつか例示する。まず、発光素子10を基体200へ配置後に、被覆部材4を配置する形態について説明する。   Hereinafter, some examples of the method for forming the covering member 4 in the second step will be described. First, a mode in which the covering member 4 is disposed after the light emitting element 10 is disposed on the base 200 will be described.

本実施形態では、例えば、基体200上に配置された発光素子10の周囲を囲むように、ディスペンスD等で樹脂等からなる被覆部材4を配置することで、所望の形状の被覆部材4を形成することができる。具体的には、図2B及び図2Cに示されるように、略矩形の発光素子10を用いる場合、基体200上に配置された各々の発光素子10の周囲を、被覆部材4で略矩形環状に囲む。なお、被覆部材4は、矩形環状の他、円環状等に設けてもよい。平面視で約1.0×1.0mm、厚み約0.15mm程度の基板1を有する発光素子10を用いる場合、ディスペンスDの吐出口の径は、例えば、約0.1mm程度のものを用いることができる。被覆部材4は、発光素子10から約10〜100μm程度離間して配置してもよい。これにより、発光素子10とディスペンスDとが接触することを防ぐことができる。ディスペンスDから吐出された被覆部材4は、この時点では上下において略一定の幅である。   In the present embodiment, for example, a covering member 4 having a desired shape is formed by disposing the covering member 4 made of a resin or the like with a dispense D or the like so as to surround the periphery of the light emitting element 10 disposed on the substrate 200. can do. Specifically, as shown in FIGS. 2B and 2C, when using a substantially rectangular light emitting element 10, the periphery of each light emitting element 10 disposed on the substrate 200 is formed into a substantially rectangular ring shape by the covering member 4. Enclose. The covering member 4 may be provided in an annular shape in addition to the rectangular shape. When the light emitting element 10 having the substrate 1 having a thickness of about 1.0 × 1.0 mm and a thickness of about 0.15 mm in plan view is used, the diameter of the discharge port of the dispense D is, for example, about 0.1 mm. be able to. The covering member 4 may be arranged away from the light emitting element 10 by about 10 to 100 μm. Thereby, it can prevent that the light emitting element 10 and the dispense D contact. The covering member 4 discharged from the dispense D has a substantially constant width at the top and bottom at this point.

発光素子10の周囲を囲むように基体200上に配置された矩形環状の被覆部材4は、未硬化の樹脂等である場合、時間の経過とともに形状が変化する。具体的には、被覆部材4は徐々に濡れ広がり、被覆部材4の内側面は、発光素子10の側面(詳述すると、基板1の側面1c)を被覆するように変形する。さらに、図2Dに示されるように、被覆部材4の外側面の少なくとも一部は、基板1の第1主面側から第2主面側へ外側に傾斜する傾斜面4aへと変形する。すなわち、被覆部材4は、矩形の孔を有する矩形環状に形成することができ、基板1の第1主面側(基体200の上面側)から第2主面1b側へ厚みが薄くなるテーパー形状に形成することができる。ここで、被覆部材4を硬化することが好ましい。例えば、約150°で約4時間加熱することにより、被覆部材4を硬化することができる。これにより、基板1の第2主面側の外側面が、基板1の第1主面側の外側面よりも外側に位置する被覆部材4を形成することができる。被覆部材4は、発光素子10と基体200とを接着する機能も有する。なお、被覆部材4は、基板1の第1主面側の角部付近の一部を被覆していなくてもよい。   When the rectangular annular covering member 4 disposed on the base 200 so as to surround the light emitting element 10 is an uncured resin or the like, the shape changes with the passage of time. Specifically, the covering member 4 gradually wets and spreads, and the inner side surface of the covering member 4 is deformed so as to cover the side surface of the light emitting element 10 (more specifically, the side surface 1c of the substrate 1). Further, as shown in FIG. 2D, at least a part of the outer surface of the covering member 4 is deformed into an inclined surface 4 a that is inclined outward from the first main surface side to the second main surface side of the substrate 1. That is, the covering member 4 can be formed in a rectangular ring shape having a rectangular hole, and has a tapered shape in which the thickness decreases from the first main surface side (the upper surface side of the base body 200) of the substrate 1 to the second main surface 1b side. Can be formed. Here, it is preferable to harden the covering member 4. For example, the covering member 4 can be cured by heating at about 150 ° for about 4 hours. Thereby, the coating | coated member 4 in which the outer surface by the side of the 2nd main surface of the board | substrate 1 is located outside the outer surface of the 1st main surface side of the board | substrate 1 can be formed. The covering member 4 also has a function of bonding the light emitting element 10 and the substrate 200. Note that the covering member 4 may not cover a part near the corner portion on the first main surface side of the substrate 1.

基板1の第2主面側の被覆部材4の外縁の形状、すなわち平面視における被覆部材4の外縁の形状は、例えば略円形や略楕円形とすることができるが、これに限らない。基板1の第2主面側の被覆部材4の外縁の形状は、発光装置1000の発光部の形状となる。したがって、この被覆部材4の外縁の形状を適宜調整することで、発光装置1000の発光部の大きさや形状を調整することが可能である。本実施形態では、平面視で、基板1の第2主面の外縁から被覆部材4の外縁までの幅は、約100〜500μm程度とすることができる。   The shape of the outer edge of the covering member 4 on the second main surface side of the substrate 1, that is, the shape of the outer edge of the covering member 4 in plan view can be, for example, substantially circular or substantially elliptical, but is not limited thereto. The shape of the outer edge of the covering member 4 on the second main surface side of the substrate 1 is the shape of the light emitting portion of the light emitting device 1000. Therefore, the size and shape of the light emitting part of the light emitting device 1000 can be adjusted by appropriately adjusting the shape of the outer edge of the covering member 4. In the present embodiment, the width from the outer edge of the second main surface of the substrate 1 to the outer edge of the covering member 4 in a plan view can be about 100 to 500 μm.

断面視で、被覆部材4の外側面(傾斜面4a)と基板1の側面1cとがなす角度が大きいほど、半導体層2からの光を発光装置1000の光出射面側へ効率的に反射可能な光反射部材5の内側面5bを形成することができる。例えば、断面視で、被覆部材4の傾斜面4aと基板1の側面1cとがなす角度が約25°〜65°、より好ましくは約40°〜50°程度となるように、被覆部材4の傾斜面4aを形成することが好ましい。   In a cross-sectional view, the larger the angle formed between the outer surface (inclined surface 4a) of the covering member 4 and the side surface 1c of the substrate 1, the more efficiently light from the semiconductor layer 2 can be reflected to the light emitting surface side of the light emitting device 1000. The inner side surface 5b of the light reflecting member 5 can be formed. For example, in a sectional view, the angle of the inclined surface 4a of the covering member 4 and the side surface 1c of the substrate 1 is about 25 ° to 65 °, more preferably about 40 ° to 50 °. It is preferable to form the inclined surface 4a.

被覆部材4の材料としては、樹脂等であると好ましい。これにより、発光素子10の基板1の第2主面側の外側面が、基板1の第1主面側の外側面よりも外側に位置する被覆部材4(すなわち、被覆部材4の傾斜面4a)を容易に形成することができる。本実施形態では、後述する第4の工程において、被覆部材4も除去する。したがって、被覆部材4の材料は透光性であっても、不透光性であっても、どちらでもかまわない。樹脂としては、熱硬化性樹脂、熱可塑性樹脂、これらの変性樹脂又はこれらの樹脂を1種以上含むハイブリッド樹脂等などが挙げられる。具体的には、エポキシ樹脂、変性エポキシ樹脂(シリコーン変性エポキシ樹脂等)、シリコーン樹脂、変性シリコーン樹脂(エポキシ変性シリコーン樹脂等)、ハイブリッドシリコーン樹脂、不飽和ポリエステル樹脂、ポリイミド樹脂、変性ポリイミド樹脂、ポリアミド樹脂、ポリエチレンテレフタレート樹脂、ポリブチレンテレフタレート樹脂、ポリシクロヘキサンテレフタレート樹脂、ポリフタルアミド(PPA)、ポリカーボネート樹脂、ポリフェニレンサルファイド(PPS)、液晶ポリマー(LCP)、ABS樹脂、フェノール樹脂、アクリル樹脂、PBT樹脂、ユリア樹脂、BTレジン、ポリウレタン樹脂等が挙げられる。特に、透光性、耐熱性、耐光性の観点から、シリコーン樹脂が好ましい。前述の樹脂には、フィラー、反射材、拡散材、波長変換部材、着色材等が含有されていてもかまわない。   The material of the covering member 4 is preferably a resin or the like. As a result, the outer surface of the light emitting element 10 on the second main surface side of the substrate 1 is located outside the outer surface of the first main surface side of the substrate 1 (that is, the inclined surface 4a of the covering member 4). ) Can be easily formed. In the present embodiment, the covering member 4 is also removed in a fourth step described later. Therefore, the material of the covering member 4 may be either translucent or non-translucent. Examples of the resin include thermosetting resins, thermoplastic resins, modified resins thereof, or hybrid resins containing one or more of these resins. Specifically, epoxy resin, modified epoxy resin (silicone modified epoxy resin, etc.), silicone resin, modified silicone resin (epoxy modified silicone resin, etc.), hybrid silicone resin, unsaturated polyester resin, polyimide resin, modified polyimide resin, polyamide Resin, polyethylene terephthalate resin, polybutylene terephthalate resin, polycyclohexane terephthalate resin, polyphthalamide (PPA), polycarbonate resin, polyphenylene sulfide (PPS), liquid crystal polymer (LCP), ABS resin, phenol resin, acrylic resin, PBT resin, Examples include urea resin, BT resin, and polyurethane resin. In particular, a silicone resin is preferable from the viewpoint of translucency, heat resistance, and light resistance. The aforementioned resin may contain a filler, a reflective material, a diffusing material, a wavelength conversion member, a coloring material, and the like.

樹脂の粘度は、約1〜30Pa・s程度であることが好ましい。そうすることで、発光素子10の周囲を囲むように基体200上に配置した被覆部材4を、所望の形状に濡れ広がらせることができる。すなわち、被覆部材4の内側面を、容易に発光素子10の基板1の側面1cを被覆するように変形させやすい。さらに、被覆部材4の外側面を、基板1の第1主面側よりも第2主面側において外側に位置するように容易に変形させやすい。
例えば、吐出口の径が約0.1mm程度のディスペンスDを用い、粘度約1〜5Pa・s程度のシリコーン樹脂を含有する被覆部材4を、アクリル系の材料からなる基体200上に配置する場合、被覆部材4を配置してから、約10〜100秒程度放置することで、被覆部材4を所望の形状へと変形させることができる。
The viscosity of the resin is preferably about 1 to 30 Pa · s. By doing so, the covering member 4 arranged on the base body 200 so as to surround the periphery of the light emitting element 10 can be spread in a desired shape. That is, the inner surface of the covering member 4 can be easily deformed so as to easily cover the side surface 1 c of the substrate 1 of the light emitting element 10. Furthermore, the outer surface of the covering member 4 can be easily deformed so as to be positioned on the outer side on the second main surface side than the first main surface side of the substrate 1.
For example, when the dispensing member 4 having a discharge port diameter of about 0.1 mm and a silicone resin having a viscosity of about 1 to 5 Pa · s is disposed on the substrate 200 made of an acrylic material. The covering member 4 can be deformed into a desired shape by leaving it about 10 to 100 seconds after the covering member 4 is disposed.

以上のように被覆部材4を形成すると、基体200上に配置された各発光素子10に対してそれぞれ被覆部材4を配置するので、発光素子1の配置に高い精度を必要としない。また、被覆部材4の被覆領域を調整しやすい。具体的には、各発光素子10の半導体層2や電極3n,3pを被覆することなく、基板1の側面1cを被覆することができる。さらに、被覆部材4の形状は、樹脂等の濡れ広がりによって形成することができるので、容易に所望の被覆部材4を形成することができる。   When the covering member 4 is formed as described above, the covering member 4 is disposed for each of the light emitting elements 10 disposed on the base body 200, so that high accuracy is not required for the arrangement of the light emitting elements 1. Moreover, it is easy to adjust the covering region of the covering member 4. Specifically, the side surface 1c of the substrate 1 can be covered without covering the semiconductor layer 2 and the electrodes 3n and 3p of each light emitting element 10. Furthermore, since the shape of the covering member 4 can be formed by wetting and spreading of a resin or the like, the desired covering member 4 can be easily formed.

次に、発光素子10を基体200へ配置する前に、被覆部材4を配置する形態について説明する。この形態では、被覆部材4を、発光素子10の基板1の第2主面上及び/又は基体200の上面上に予め配置しておき、発光素子10を基体200に配置することで、被覆部材4を形成する。   Next, a form in which the covering member 4 is disposed before the light emitting element 10 is disposed on the base body 200 will be described. In this embodiment, the covering member 4 is disposed in advance on the second main surface of the substrate 1 of the light emitting element 10 and / or the upper surface of the base body 200, and the light emitting element 10 is disposed on the base body 200. 4 is formed.

図2F及び図2Gは、本実施形態に係る発光装置1000の製造方法の第2の工程について示す概略図である。この方法では、発光素子10を基体200に配置する前に、予め被覆部材4を発光素子10の基板1の第2主面上及び/又は基体200の上面上に配置しておき、発光素子10を配置する際の応力によって、被覆部材4を発光素子10の側面(詳述すると、発光素子10の基板1の側面)に這い上がらせて形成する。 2F and 2G are schematic views illustrating a second step of the method for manufacturing the light emitting device 1000 according to the present embodiment. In this method, before the light emitting element 10 is disposed on the base body 200, the covering member 4 is previously disposed on the second main surface of the substrate 1 of the light emitting element 10 and / or the upper surface of the base body 200. The covering member 4 is formed so as to crawl up on the side surface of the light emitting element 10 (specifically, the side surface of the substrate 1 of the light emitting element 10) due to the stress at the time of disposing.

まず、図2Fに示されるように、基体200上において、発光素子10を配置する各々の領域に、被覆部材4を配置する。被覆部材4は、滴下法、印刷、スプレー等で配置することができる。発光素子10を配置する際の速度は、約1〜3mm/s程度、より好ましくは約2mm/s程度が好ましい。そうすることで、発光素子10が基体200上に配置される際の圧力によって、被覆部材4を発光素子10の側面に這い上がらせることができ、基板1の上面側の外側面よりも基板1の下面側の外側面が外側に位置する被覆部材4を形成することができる。   First, as illustrated in FIG. 2F, the covering member 4 is disposed on each region where the light emitting element 10 is disposed on the base 200. The covering member 4 can be disposed by a dropping method, printing, spraying, or the like. The speed at which the light emitting element 10 is disposed is preferably about 1 to 3 mm / s, more preferably about 2 mm / s. By doing so, the covering member 4 can be crawled up to the side surface of the light emitting element 10 by the pressure when the light emitting element 10 is arranged on the base 200, and the substrate 1 is more than the outer surface on the upper surface side of the substrate 1. The covering member 4 in which the outer surface on the lower surface side is located outside can be formed.

なお、発光素子10を配置する前に予め基体200上に被覆部材4を配置する場合、前述のように、配置される発光素子10の基板1の外縁よりも大きい径の孔を有する環状の被覆部材4を形成してもよい。この場合、被覆部材4が濡れ広がる前に、発光素子10を孔内の基体200上に配置することが好ましい。これにより、配置した発光素子10の側面を被覆するように被覆部材4が濡れ広がることで、所望の被覆部材4を形成することができる。   When the covering member 4 is previously disposed on the base 200 before the light emitting element 10 is disposed, as described above, the annular covering having a hole having a diameter larger than the outer edge of the substrate 1 of the light emitting element 10 to be disposed. The member 4 may be formed. In this case, it is preferable to arrange the light emitting element 10 on the base body 200 in the hole before the covering member 4 spreads out. Thus, the desired covering member 4 can be formed by spreading the covering member 4 so as to cover the side surface of the arranged light emitting element 10.

また、予め発光素子10の基板1の第2主面1b上に被覆部材4を配置し、被覆部材4側を基体200上に対向させるように発光素子10を基体200上に配置することで、被覆部材4を形成することができる。例えば、基体200とは別に支持体300を準備し、支持体300上に複数の発光素子10をフリップチップ実装で保持させ、各発光素子10の基板1の第2主面1b上に被覆部材4を配置する。支持体300の材料は、基体200と同じでもよいし、異なる材料を用いてもかまわない。例えば、支持体300の材料は、耐熱性を有し、熱により伸縮しにくい材料であると好ましく、アクリル等が好適に用いられる。被覆部材4は基板1の第2主面1b上に滴下法等で配置することができる。そして、図2Gに示されるように、被覆部材4側を基体200上に対向させるように支持体300を反転させ、発光素子10を基体200上に配置する。これにより、発光素子10が基体200上に配置される際の圧力によって、被覆部材4を発光素子10の側面に這い上がらせることができ、基板1の第1主面側の外側面よりも第2主面側の外側面が外側に位置する被覆部材4を形成することができる。なお、被覆部材4は、反転させても基板1上に保持される程度の粘度であることが好ましい。
支持体300は、発光素子10と基体200とが被覆部材4で接着された後、発光素子10から剥離される。したがって、発光素子10と支持体300との密着強度は、発光素子10の基板1上に配置された被覆部材4と基体200との密着強度よりも弱いことが好ましい。なお、支持体300を剥離せずに、発光装置の一部として用いてもかまわない。
In addition, the covering member 4 is disposed on the second main surface 1b of the substrate 1 of the light emitting element 10 in advance, and the light emitting element 10 is disposed on the base 200 so that the covering member 4 side faces the base 200. The covering member 4 can be formed. For example, a support 300 is prepared separately from the base body 200, a plurality of light emitting elements 10 are held on the support 300 by flip chip mounting, and the covering member 4 is formed on the second main surface 1 b of the substrate 1 of each light emitting element 10. Place. The material of the support 300 may be the same as that of the base 200, or a different material may be used. For example, the material of the support 300 is preferably a material that has heat resistance and is difficult to expand and contract by heat, and acrylic or the like is preferably used. The covering member 4 can be disposed on the second main surface 1b of the substrate 1 by a dropping method or the like. Then, as shown in FIG. 2G, the support 300 is inverted so that the covering member 4 side faces the base 200, and the light emitting element 10 is disposed on the base 200. Thereby, the covering member 4 can be crawled up to the side surface of the light emitting element 10 by the pressure when the light emitting element 10 is arranged on the base body 200, and is more than the outer surface on the first main surface side of the substrate 1. The covering member 4 in which the outer surface on the two principal surface sides is located outside can be formed. The covering member 4 preferably has a viscosity that can be retained on the substrate 1 even if it is inverted.
The support 300 is peeled off from the light emitting element 10 after the light emitting element 10 and the substrate 200 are bonded together by the covering member 4. Therefore, the adhesion strength between the light emitting element 10 and the support 300 is preferably weaker than the adhesion strength between the covering member 4 disposed on the substrate 1 of the light emitting element 10 and the substrate 200. Note that the support 300 may be used as a part of the light emitting device without being peeled off.

これにより、複数の発光素子10を一括で基体200上に配置でき、さらに複数の被覆部材4を一括で形成することができるので、量産性を向上させることができる。なお、被覆部材4は、基体200上及び発光素子10の基板1の第2主面上の両方に設けてもよい。   Accordingly, the plurality of light emitting elements 10 can be collectively disposed on the substrate 200, and the plurality of covering members 4 can be collectively formed, so that mass productivity can be improved. The covering member 4 may be provided on both the base 200 and the second main surface of the substrate 1 of the light emitting element 10.

以上のように、発光素子10を基体200上に配置する前に、基体200上及び/又は発光素子10の基板1の第2主面上に被覆部材4を配置する場合、前述の接着剤を被覆部材4として用いることができるため効率的である。
なお、発光素子10の基板1の第2主面上、すなわち発光素子10の基板1と基体200との間に被覆部材4が形成される場合は、第4の工程の前に、基板1の第2主面上の被覆部材4を除去することが好ましい。
As described above, when the covering member 4 is disposed on the base 200 and / or the second main surface of the substrate 1 of the light emitting element 10 before the light emitting element 10 is disposed on the base 200, the above-described adhesive is used. Since it can be used as the covering member 4, it is efficient.
In addition, when the covering member 4 is formed on the second main surface of the substrate 1 of the light emitting element 10, that is, between the substrate 1 of the light emitting element 10 and the base body 200, before the fourth process, It is preferable to remove the covering member 4 on the second main surface.

配置する被覆部材4の量は、例えば平面視で約1.0×1.0mm、厚み約0.15mm程度の基板1を有する発光素子10を用いる場合、それぞれ約0.05mg程度とすることができる。 When the light emitting element 10 having the substrate 1 having a thickness of about 1.0 × 1.0 mm and a thickness of about 0.15 mm is used, for example, the amount of the covering member 4 to be arranged is about 0.05 mg each. it can.

その他、被覆部材4は、金型を使った圧縮成形やトランスファー成形で形成することができる。これにより、被覆部材4の形状のばらつきを防ぐことができる。また、被覆部材4の材料の選択性が向上する。さらに、基体200上に配置された発光素子10毎に被覆部材4を形成する場合に比べて、量産性を向上させることができる。   In addition, the covering member 4 can be formed by compression molding or transfer molding using a mold. Thereby, the dispersion | variation in the shape of the coating | coated member 4 can be prevented. Moreover, the selectivity of the material of the covering member 4 is improved. Furthermore, the mass productivity can be improved as compared with the case where the covering member 4 is formed for each light emitting element 10 arranged on the substrate 200.

(第3の工程)
図2H及び図2Iは、本実施形態に係る発光装置1000の製造方法の第3の工程について示す概略図である。第3の工程では、被覆部材4の傾斜面4aを光反射部材5で被覆する。具体的には、印刷、金型を用いた圧縮成形やトランスファー成形等によって、半導体層2の電極3n,3pを有する側の面及び側面と、被覆部材4の外側面を被覆するように、一体に又はそれぞれに光反射部材5を形成することができる。複数の発光素子10及び被覆部材4に対して、一体に光反射部材5を形成すると、光反射部材5の形状のばらつきを防ぐことができる。また、量産性を向上させることができるため好ましい。
本実施形態では、光反射部材5は、被覆部材4で被覆された複数の発光素子10毎にそれぞれ形成される。光反射部材5は、形成後、図2Iに示されるように発光素子10の電極3n,3pの一部が露出するように一部除去してもかまわない。除去は、研磨や切削等で行うことができる。これにより、発光装置1000の実装面に外部端子や配線等と接続する接続部を形成することができる。なお、光反射部材5は一部除去しなくてもよい。
(Third step)
2H and FIG. 2I are schematic views illustrating a third step of the method for manufacturing the light emitting device 1000 according to the present embodiment. In the third step, the inclined surface 4 a of the covering member 4 is covered with the light reflecting member 5. Specifically, the surface and side surfaces of the semiconductor layer 2 having the electrodes 3n and 3p and the outer surface of the covering member 4 are integrally formed by printing, compression molding using a mold, transfer molding, or the like. The light reflecting member 5 can be formed on or respectively. When the light reflecting member 5 is integrally formed with respect to the plurality of light emitting elements 10 and the covering member 4, variations in the shape of the light reflecting member 5 can be prevented. Moreover, it is preferable because mass productivity can be improved.
In the present embodiment, the light reflecting member 5 is formed for each of the plurality of light emitting elements 10 covered with the covering member 4. After the formation, the light reflecting member 5 may be partially removed so that a part of the electrodes 3n and 3p of the light emitting element 10 is exposed as shown in FIG. 2I. The removal can be performed by polishing or cutting. Accordingly, a connection portion that is connected to an external terminal, wiring, or the like can be formed on the mounting surface of the light emitting device 1000. The light reflecting member 5 may not be partially removed.

光反射部材5の材料としては、樹脂等の母材に光反射性材料が含有されたものが好ましい。例えば、樹脂としては、熱硬化性樹脂、熱可塑性樹脂、これらの変性樹脂又はこれらの樹脂を1種以上含むハイブリッド樹脂等などが挙げられる。具体的には、エポキシ樹脂、変性エポキシ樹脂(シリコーン変性エポキシ樹脂等)、シリコーン樹脂、変性シリコーン樹脂(エポキシ変性シリコーン樹脂等)、ハイブリッドシリコーン樹脂、不飽和ポリエステル樹脂、ポリイミド樹脂、変性ポリイミド樹脂、ポリアミド樹脂、ポリエチレンテレフタレート樹脂、ポリブチレンテレフタレート樹脂、ポリシクロヘキサンテレフタレート樹脂、ポリフタルアミド(PPA)、ポリカーボネート樹脂、ポリフェニレンサルファイド(PPS)、液晶ポリマー(LCP)、ABS樹脂、フェノール樹脂、アクリル樹脂、PBT樹脂、ユリア樹脂、BTレジン、ポリウレタン樹脂等が挙げられる。特に、耐光性及び柔軟性の観点から、シリコーン樹脂が特に好ましい。
光反射性材料としては、例えば、酸化チタン、酸化亜鉛、酸化アルミニウム、二酸化チタン、二酸化ケイ素、二酸化ジルコニウム、チタン酸カリウム、アルミナ、窒化アルミニウム、窒化ホウ素、ムライト、酸化ニオブ、各種希土類酸化物(例えば、酸化イットリウム、酸化ガドリニウム)等が挙げられる。
前述の母材には、フィラー、反射材、拡散材、波長変換部材、着色材等が含有されていてもかまわない。
As a material of the light reflecting member 5, a material in which a light reflecting material is contained in a base material such as a resin is preferable. Examples of the resin include a thermosetting resin, a thermoplastic resin, a modified resin thereof, a hybrid resin containing one or more of these resins, and the like. Specifically, epoxy resin, modified epoxy resin (silicone modified epoxy resin, etc.), silicone resin, modified silicone resin (epoxy modified silicone resin, etc.), hybrid silicone resin, unsaturated polyester resin, polyimide resin, modified polyimide resin, polyamide Resin, polyethylene terephthalate resin, polybutylene terephthalate resin, polycyclohexane terephthalate resin, polyphthalamide (PPA), polycarbonate resin, polyphenylene sulfide (PPS), liquid crystal polymer (LCP), ABS resin, phenol resin, acrylic resin, PBT resin, Examples include urea resin, BT resin, and polyurethane resin. In particular, a silicone resin is particularly preferable from the viewpoint of light resistance and flexibility.
Examples of the light reflecting material include titanium oxide, zinc oxide, aluminum oxide, titanium dioxide, silicon dioxide, zirconium dioxide, potassium titanate, alumina, aluminum nitride, boron nitride, mullite, niobium oxide, various rare earth oxides (for example, Yttrium oxide, gadolinium oxide) and the like.
The aforementioned base material may contain a filler, a reflective material, a diffusing material, a wavelength conversion member, a coloring material, and the like.

(第4の工程)
図2J及び図2Kは、本実施形態に係る発光装置1000の製造方法の第4の工程について示す概略図である。第4の工程では、発光素子10の基板1を半導体層2から除去する。本実施形態では、基板1と、第2の工程で形成した被覆部材4も除去する。具体的には、図2Jに示されるように、耐熱性を有し、熱により伸縮しにくいアクリル系の材料からなる厚み約20〜50μm程度、より好ましくは厚み約35μm程度のシート状の支持体400を準備し、光反射部材5から露出された電極3n,3pが支持体400上に対向するように、基体200ごと反転させ、光反射部材5で被覆された発光素子10を支持体400に配置(転写)する。配置する際に、接着剤等を用いてもよい。そして、光反射部材5で被覆された発光素子10から基体200を剥離する。したがって、光反射部材5で被覆された発光素子10と支持体400との密着強度は、光反射部材5で被覆された発光素子10と基体200との密着強度よりも大きいことが好ましい。支持体400の材料としては、耐熱性の観点から、アクリル等が好ましい。支持体400上に配置(転写)された光反射部材5で被覆された発光素子10は、光反射部材5から基板1の第2主面及び被覆部材4が露出する。ここで、基板1の第2主面及び被覆部材4が露出していない場合、例えば前述の接着剤(被覆部材4)が基板1上を覆っているような場合は、基板1が露出するように適宜接着剤(被覆部材4)を除去する等の処理を行う。
(Fourth process)
2J and 2K are schematic views illustrating a fourth step of the method for manufacturing the light emitting device 1000 according to the present embodiment. In the fourth step, the substrate 1 of the light emitting element 10 is removed from the semiconductor layer 2. In the present embodiment, the substrate 1 and the covering member 4 formed in the second step are also removed. Specifically, as shown in FIG. 2J, a sheet-like support having a thickness of about 20 to 50 μm, more preferably about 35 μm, made of an acrylic material that has heat resistance and is difficult to expand and contract by heat. 400 is prepared, and the substrate 200 is inverted so that the electrodes 3n and 3p exposed from the light reflecting member 5 face the support 400, and the light emitting element 10 covered with the light reflecting member 5 is attached to the support 400. Place (transfer). An adhesive agent or the like may be used when arranging. Then, the substrate 200 is peeled from the light emitting element 10 covered with the light reflecting member 5. Therefore, the adhesion strength between the light emitting element 10 coated with the light reflecting member 5 and the support 400 is preferably larger than the adhesion strength between the light emitting element 10 coated with the light reflecting member 5 and the substrate 200. As a material of the support 400, acrylic or the like is preferable from the viewpoint of heat resistance. In the light emitting element 10 covered with the light reflecting member 5 disposed (transferred) on the support 400, the second main surface of the substrate 1 and the covering member 4 are exposed from the light reflecting member 5. Here, when the second main surface of the substrate 1 and the covering member 4 are not exposed, for example, when the above-described adhesive (covering member 4) covers the substrate 1, the substrate 1 is exposed. Then, a treatment such as removing the adhesive (covering member 4) is appropriately performed.

そして、図2Kに示されるように、発光素子10の基板1を除去する。基板1の除去は、例えば、レーザ照射によるレーザリフトオフ(LLO)により実施することができる。具体的には、エキシマレーザ等の高出力のレーザ光を基板1側から半導体層2へ照射することで、基板1と半導体層2の境界近傍で半導体物質を分解させ、基板1と半導体層2とを分離して基板1を剥離させる。レーザ光は、基板1を透過し、半導体層2に吸収される波長のものを用いる。例えば、基板1がサファイア基板であり、半導体層2がGaNである場合は、レーザ光として前述のエキシマレーザ(波長約248nm)や、YAGレーザ(波長約266nm)を用いることができる。なお、基板1の一部が除去されずに残っていてもかまわない。   Then, as shown in FIG. 2K, the substrate 1 of the light emitting element 10 is removed. The removal of the substrate 1 can be performed, for example, by laser lift-off (LLO) by laser irradiation. Specifically, the semiconductor material is decomposed in the vicinity of the boundary between the substrate 1 and the semiconductor layer 2 by irradiating the semiconductor layer 2 with a high-power laser beam such as an excimer laser, and the substrate 1 and the semiconductor layer 2. And the substrate 1 is peeled off. A laser beam having a wavelength that passes through the substrate 1 and is absorbed by the semiconductor layer 2 is used. For example, when the substrate 1 is a sapphire substrate and the semiconductor layer 2 is GaN, the aforementioned excimer laser (wavelength: about 248 nm) or YAG laser (wavelength: about 266 nm) can be used as the laser light. Note that a portion of the substrate 1 may remain without being removed.

基板1を除去する際、被覆部材4を同時に剥離させることができる。ここで、被覆部材4及び光反射部材5の母材に異なる材料を用いると、同じ材料を用いる場合に比べ、被覆部材4と光反射部材5とが剥離しやすく、被覆部材4を基板1とともに除去しやすい。その他、第2の工程後、第3の工程の前に、被覆部材4の外表面に後述する離型剤を設けることで、基板1とともに被覆部材4を除去しやすくなる。なお、被覆部材4が完全に除去されず、その一部が光反射部材5上に残ってもかまわない。また、基板1と被覆部材4を同時に除去すると効率的であるが、被覆部材4は基板1と別々に除去してもかまわない。 When removing the board | substrate 1, the coating | coated member 4 can be peeled simultaneously. Here, when different materials are used for the base material of the covering member 4 and the light reflecting member 5, the covering member 4 and the light reflecting member 5 are more easily separated than when the same material is used. Easy to remove. In addition, it becomes easy to remove the covering member 4 together with the substrate 1 by providing a release agent to be described later on the outer surface of the covering member 4 after the second step and before the third step. The covering member 4 may not be completely removed, and a part of the covering member 4 may remain on the light reflecting member 5. Although it is efficient to remove the substrate 1 and the covering member 4 at the same time, the covering member 4 may be removed separately from the substrate 1.

基板1及び被覆部材4を除去することで、光反射部材5及び半導体層2からなる凹部5cを形成することができる。なお、被覆部材4が完全に除去されず、その一部が光反射部材5上に残る場合、凹部5cは、光反射部材5、被覆部材4、半導体層2によって構成される。
以上の製造方法により発光装置1000を形成することで、半導体層2からの光を光出射面側へ効率的に反射可能な光反射部材5の内側面5bの形状を容易に形成することができる。
By removing the substrate 1 and the covering member 4, it is possible to form a recess 5 c composed of the light reflecting member 5 and the semiconductor layer 2. When the covering member 4 is not completely removed and a part of the covering member 4 remains on the light reflecting member 5, the recess 5 c is configured by the light reflecting member 5, the covering member 4, and the semiconductor layer 2.
By forming the light emitting device 1000 by the above manufacturing method, the shape of the inner side surface 5b of the light reflecting member 5 that can efficiently reflect the light from the semiconductor layer 2 to the light emitting surface side can be easily formed. .

なお、第4の工程で基板1及び被覆部材4を除去した後、露出した半導体層2の表面を粗面化すると好ましい。粗面化は、物理的・化学的な方法で行うことができるが、ダメージを低減するため、エッチングで行うことできる。例えば、発光素子10を支持体400ごと、リン酸などの酸性の液や、水酸化カリウム、水酸化ナトリウム、トリメチルアンモニウム、水酸化テトラメチルアンモニウム溶液等のアルカリ性の液につけ、半導体層2の表面をエッチングすることで粗面化できる。これにより、半導体層2からの光を効率的に取り出すことができる。   In addition, after removing the board | substrate 1 and the coating | coated member 4 at a 4th process, it is preferable when the surface of the exposed semiconductor layer 2 is roughened. The roughening can be performed by a physical / chemical method, but can be performed by etching in order to reduce damage. For example, the light-emitting element 10 is attached to the support 400 together with an acidic liquid such as phosphoric acid, or an alkaline liquid such as potassium hydroxide, sodium hydroxide, trimethylammonium, tetramethylammonium hydroxide solution, and the surface of the semiconductor layer 2 is attached. The surface can be roughened by etching. Thereby, the light from the semiconductor layer 2 can be extracted efficiently.

(透光部材形成工程)
図2Lは、本実施形態に係る発光装置1000の製造方法の透光部材形成工程について示す概略図である。第4の工程で形成された凹部5cには、透光部材6を設けることができる。そうすることで、半導体層2の表面を保護することができる。なお、波長変換部材を含有させた透光部材6を形成することで、発光装置1000の光を所望の発光色とすることができる。透光部材6は、波長変換部材のみで構成されてもよいが、透光性の母材に波長変換部材を含有するものが好ましい。
(Translucent member forming process)
FIG. 2L is a schematic view illustrating a light transmissive member forming step of the method for manufacturing the light emitting device 1000 according to the present embodiment. The light transmitting member 6 can be provided in the recess 5c formed in the fourth step. By doing so, the surface of the semiconductor layer 2 can be protected. In addition, the light of the light-emitting device 1000 can be made into a desired luminescent color by forming the translucent member 6 containing the wavelength conversion member. Although the translucent member 6 may be comprised only by the wavelength conversion member, what contains a wavelength conversion member in the translucent base material is preferable.

母材の材料としては、樹脂や、ガラス等の無機物等を用いることができる。特に、前述の樹脂材料」を用いると、凹部5cに容易に設けることができるため好ましい。特に、透光性及び耐熱性及び耐光性の観点から、シリコーン樹脂が好ましい。
波長変換部材としては、例えば当該分野で公知の蛍光体を用いることができる。具体的には、セリウムで賦活されたイットリウム・アルミニウム・ガーネット(YAG)系蛍光体、セリウムで賦活されたルテチウム・アルミニウム・ガーネット(LAG)、ユウロピウム及び/又はクロムで賦活された窒素含有アルミノ珪酸カルシウム(CaO−Al−SiO)系蛍光体、ユウロピウムで賦活されたシリケート((Sr,Ba)SiO)系蛍光体、βサイアロン蛍光体、CASN系又はSCASN系蛍光体等の窒化物系蛍光体、KSF系蛍光体(KSiF:Mn)、硫化物系蛍光体などが挙げられる。波長変換部材は、例えば、いわゆるナノクリスタル、量子ドットと称される発光物質でもよい。これらの材料としては、半導体材料を用いることができ、半導体材料としては、例えばII−VI族、III−V族、IV−VI族半導体、具体的には、CdSe、コアシェル型のCdSSe1−x/ZnS、GaP等のナノサイズの高分散粒子が挙げられる。透光部材には、さらに、フィラー、反射材、拡散材、着色材等を含有させてもよい。
As a material of the base material, an inorganic material such as a resin or glass can be used. In particular, it is preferable to use the above-mentioned resin material because it can be easily provided in the recess 5c. In particular, a silicone resin is preferable from the viewpoints of translucency, heat resistance, and light resistance.
As the wavelength conversion member, for example, a phosphor known in the art can be used. Specifically, yttrium-aluminum-garnet (YAG) phosphors activated with cerium, lutetium-aluminum-garnet (LAG) activated with cerium, nitrogen-containing calcium aluminosilicate activated with europium and / or chromium Nitrides such as (CaO—Al 2 O 3 —SiO 2 ) -based phosphors, europium-activated silicate ((Sr, Ba) 2 SiO 4 ) -based phosphors, β sialon phosphors, CASN-based or SCASN-based phosphors Examples thereof include physical phosphors, KSF phosphors (K 2 SiF 6 : Mn), and sulfide phosphors. The wavelength conversion member may be, for example, a so-called nanocrystal or a luminescent material called a quantum dot. As these materials, semiconductor materials can be used. Examples of semiconductor materials include II-VI group, III-V group, and IV-VI group semiconductors, specifically, CdSe, and core-shell type CdS x Se 1. Nano-sized highly dispersed particles such as -x / ZnS and GaP can be mentioned. The light transmissive member may further contain a filler, a reflective material, a diffusing material, a coloring material, and the like.

本実施形態では、母材である樹脂に波長変換部材が含有された透光部材6を、滴下、スプレー(噴霧)、印刷、圧縮成形、トランスファー成形等で凹部5cに形成することができる。また、樹脂等に波長変換部材が含有された波長変換シートや、ガラス等に波長変換部材が含有された波長変換板等を、露出した半導体層2の表面に接着してもよい。その他、電着等、種々の方法を用いて形成することができる。なお、透光部材6は、波長変換部材を含んでいなくてもよい。
以上のような方法で形成された透光部材6の表面は、略平面であってもよいし、凹凸、段差、傾斜面、曲面を有していてもかまわない。
In this embodiment, the translucent member 6 in which the wavelength conversion member is contained in the resin that is the base material can be formed in the recess 5c by dropping, spraying, printing, compression molding, transfer molding, or the like. Further, a wavelength conversion sheet in which a wavelength conversion member is contained in a resin or the like, a wavelength conversion plate in which a wavelength conversion member is contained in glass or the like may be bonded to the exposed surface of the semiconductor layer 2. In addition, it can be formed using various methods such as electrodeposition. In addition, the translucent member 6 does not need to include the wavelength conversion member.
The surface of the translucent member 6 formed by the method as described above may be substantially flat or may have irregularities, steps, inclined surfaces, and curved surfaces.

(封止部材形成工程)
その他、図3に示されるように、透光部材6や光反射部材5の上面をさらに被覆する封止部材7を形成してもかまわない。これにより、透光部材6及び光反射部材5の表面を保護することができる。さらに、所望の配光特性を有する発光装置1000を形成することができる。封止部材7としては、前述の透光部材6の母材と同様の材料を用いることができ、透光性及び耐熱性の観点から、特にシリコーン系樹脂が好ましい。形状は、略半球状、略平板状等、特に限定されない。特に、平板状の薄い封止部材(例えば、約10〜30μm程度)であると、小型の発光装置1000とできるため好ましい。封止部材7の形成方法としては、スプレー、スパッタ、印刷、塗布等、圧縮成形、トランスファー成形等が挙げられる。封止部材7には、フィラー、反射材、拡散材、波長変換部材、着色材等を含有させてもよい。また、封止部材7は複数層形成してもかまわない。
(Sealing member forming step)
In addition, as shown in FIG. 3, a sealing member 7 that further covers the upper surfaces of the light transmitting member 6 and the light reflecting member 5 may be formed. Thereby, the surface of the translucent member 6 and the light reflection member 5 can be protected. Furthermore, a light emitting device 1000 having desired light distribution characteristics can be formed. As the sealing member 7, the same material as the base material of the above-mentioned translucent member 6 can be used, and a silicone resin is particularly preferable from the viewpoint of translucency and heat resistance. The shape is not particularly limited, such as a substantially hemispherical shape or a substantially flat plate shape. In particular, a flat thin sealing member (for example, about 10 to 30 μm) is preferable because a small light emitting device 1000 can be obtained. Examples of the method for forming the sealing member 7 include spraying, sputtering, printing, coating, compression molding, transfer molding, and the like. The sealing member 7 may contain a filler, a reflective material, a diffusion material, a wavelength conversion member, a coloring material, and the like. The sealing member 7 may be formed in a plurality of layers.

(反射層形成工程)
また、図4に示されるように、透光部材6を形成する前に、光反射部材5よりも高反射率の反射層8を光反射部材5の内側面5bに設けてもよい。これにより、光をより効率的に反射させることができる。
具体的には、例えば、半導体層2の表面にマスクを形成した後、光反射部材5の内側面5bの傾斜面にスプレー、スパッタ、印刷、塗布等の方法で反射層8を形成することができる。反射層8としては、光反射率の高い金属材料又は絶縁性材料等で形成することができる。金属材料としては、例えばAg、Ag合金、Al、Au等が挙げられる。特に、光反射率が高く、耐酸化性に優れたAg合金が好ましい。絶縁性材料としては、樹脂に光反射性材料を添加したもの等を用いることができる。反射層8の厚さは、特に限定されるものではなく、半導体層2からの出射光を効果的に反射することができる厚さ(例えば、約20nm〜約1μm)とすることができる。反射層8は、半導体層2からの光に対する反射率が60%以上、より好ましくは70%、80%又は90%以上であると好ましい。
(Reflective layer forming process)
As shown in FIG. 4, a reflective layer 8 having a higher reflectance than the light reflecting member 5 may be provided on the inner side surface 5 b of the light reflecting member 5 before forming the light transmissive member 6. Thereby, light can be reflected more efficiently.
Specifically, for example, after forming a mask on the surface of the semiconductor layer 2, the reflective layer 8 may be formed on the inclined surface of the inner surface 5 b of the light reflecting member 5 by a method such as spraying, sputtering, printing, or coating. it can. The reflective layer 8 can be formed of a metal material or an insulating material having a high light reflectance. Examples of the metal material include Ag, an Ag alloy, Al, and Au. In particular, an Ag alloy having high light reflectivity and excellent oxidation resistance is preferable. As the insulating material, a material obtained by adding a light reflective material to a resin can be used. The thickness of the reflective layer 8 is not particularly limited, and can be a thickness (for example, about 20 nm to about 1 μm) that can effectively reflect the light emitted from the semiconductor layer 2. The reflective layer 8 preferably has a reflectance with respect to light from the semiconductor layer 2 of 60% or more, more preferably 70%, 80%, or 90% or more.

第4の工程後、適宜、反射層形成工程、透光部材形成工程、封止部材形成工程等を行い、発光装置1000を形成する。本実施形態では、光反射部材5が、被覆部材4で被覆された発光素子10毎にそれぞれ離間して形成されるため、支持体400を除去することで、図1に示される発光装置1000を形成することができる。なお、第3の工程において、光反射部材5が一体に形成される場合は、支持体400を除去し、光反射部材5を切断して各々の発光装置1000に個片化することで、図1に示される発光装置1000を形成することができる。個片化は、ダイシング等によって行うことができる。   After the fourth step, a light emitting device 1000 is formed by appropriately performing a reflective layer forming step, a translucent member forming step, a sealing member forming step, and the like. In the present embodiment, since the light reflecting member 5 is formed separately for each light emitting element 10 covered with the covering member 4, the light emitting device 1000 shown in FIG. Can be formed. In the third step, when the light reflecting member 5 is integrally formed, the support 400 is removed, and the light reflecting member 5 is cut and separated into individual light emitting devices 1000. 1 can be formed. The singulation can be performed by dicing or the like.

<実施形態2>
図5Aは、実施形態2に係る発光装置2000の概略断面図である。図5Bは、実施形態2に係る発光装置2000の概略平面図である。実施形態2では、第4の工程において被覆部材24を除去しない。したがって、発光装置2000は、光反射部材25の内側面25bの内側に被覆部材24を有する。具体的には、被覆部材24の外側面は、図5Aに示されるように、光反射部材25の内側面25bを被覆しており、半導体層2側よりも発光装置1000の光出射面側が外側に位置するように形成される。被覆部材24の内側面は、除去された基板1の側面の形状に対応しており、半導体層22に対して略垂直に形成される。図5Bに示されるように、平面視で、被覆部材24の上面(発光装置2000の光出射面側の面)は、略円形の外縁を有する略矩形環状である。すなわち、被覆部材24は、発光装置2000の光出射面側から半導体層22側へ厚みが薄くなるテーパー形状である。また、被覆部材24及び半導体層22からなる凹部25c(すなわち、被覆部材24の内側)には、透光部材26を設けることができる。それ以外は、実施形態1の発光装置1000と略同様に構成されており、適宜説明を省略する。
<Embodiment 2>
FIG. 5A is a schematic cross-sectional view of the light-emitting device 2000 according to Embodiment 2. FIG. 5B is a schematic plan view of the light emitting device 2000 according to the second embodiment. In the second embodiment, the covering member 24 is not removed in the fourth step. Therefore, the light emitting device 2000 includes the covering member 24 inside the inner side surface 25 b of the light reflecting member 25. Specifically, as shown in FIG. 5A, the outer surface of the covering member 24 covers the inner surface 25b of the light reflecting member 25, and the light emitting surface side of the light emitting device 1000 is on the outer side than the semiconductor layer 2 side. It is formed so that it may be located in. The inner side surface of the covering member 24 corresponds to the shape of the side surface of the removed substrate 1 and is formed substantially perpendicular to the semiconductor layer 22. As shown in FIG. 5B, the top surface of the covering member 24 (the surface on the light emitting surface side of the light emitting device 2000) in a plan view is a substantially rectangular ring having a substantially circular outer edge. That is, the covering member 24 has a tapered shape in which the thickness decreases from the light emitting surface side of the light emitting device 2000 to the semiconductor layer 22 side. In addition, a translucent member 26 can be provided in the concave portion 25 c (that is, the inside of the covering member 24) made of the covering member 24 and the semiconductor layer 22. Other than that, the configuration is substantially the same as that of the light-emitting device 1000 of Embodiment 1, and a description thereof will be omitted as appropriate.

以下、実施形態2の発光装置2000の製造方法において、実施形態1の発光装置1000の製造方法と異なる部分について主に説明する。 Hereinafter, in the manufacturing method of the light emitting device 2000 according to the second embodiment, portions different from the manufacturing method of the light emitting device 1000 according to the first embodiment will be mainly described.

本実施形態では、実施形態1と同様に、発光素子20を準備し、基体200上に配置する。ここで、図6に示されるように、発光素子20の基板21の側面21cに、離型剤9を形成する。離型剤9は、被覆部材24と基板21とを剥離しやすくするものであり、これにより、第4の工程において、基板21のみを除去することができる。離型剤9は、発光素子20を基体200上に配置する前又は配置した後に、塗布等で適宜設けることができる。離型剤9は、発光素子20の基板21の全側面を被覆するように設けられると好ましいが、側面の一部が被覆されなくてもかまわない。また、離型剤9は基体200上に配置してもかまわない。   In the present embodiment, as in the first embodiment, the light emitting element 20 is prepared and disposed on the substrate 200. Here, as shown in FIG. 6, the release agent 9 is formed on the side surface 21 c of the substrate 21 of the light emitting element 20. The release agent 9 makes it easy to peel the covering member 24 and the substrate 21, and thus, only the substrate 21 can be removed in the fourth step. The release agent 9 can be appropriately provided by coating or the like before or after the light emitting element 20 is disposed on the substrate 200. The release agent 9 is preferably provided so as to cover all the side surfaces of the substrate 21 of the light emitting element 20, but a part of the side surface may not be covered. Further, the release agent 9 may be disposed on the substrate 200.

離型剤9としては、例えば揮発剤等を用いることができる。揮発剤は、所定の熱を加えることで揮発するため、容易に被覆部材24と基板21とを剥離させることができる。揮発剤としては、例えば、種々の溶剤及び樹脂等の有機物質等を利用することができる。
具体的には、アセトン、メチルエチルケトン、メチルイソブチルケトン(沸点:150℃以下)、ホロン(沸点:198℃)、シクロヘキサノン(沸点:155℃)、メチルシクロヘキサノン(沸点:170℃)等のケトン系溶剤、 テトラヒドロフラン、ジオキサン、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル)、酢酸エチル、メチルプロピルジグリコール、ヘキシルカルビトール、ブチルプロピレンジグルコール、ベンジルアルコール、ブチルカルビトール、シクロヘキサン、メチルシクロヘキサン、シクロヘキサノン(沸点:150℃以下)、メチルフェニルエーテル(沸点:153℃)、エチルフェニルエーテル(172℃)、メトキシトルエン(沸点:172℃)、ベンジルエチルエーテル(沸点:189℃)、ジエチレングリコールジメチルエーテル(沸点:160℃)、ジエチレングリコールジエチルエーテル(沸点:188℃)、ジエチレングリコールモノメチルエーテル(沸点:194℃)、ジエチレングリコールモノブチルエーテル(沸点:231℃)、ジエチレングリコールモノブチルエーテルアセテート(沸点:247℃)、エチレングリコールモノブチルエーテル(沸点:171℃)、エチレングリコールモノイソアミルエーテル(沸点:181℃)、ブチルカルビトール(沸点:231℃)等のエーテル系溶剤等が挙げられる。
As the release agent 9, for example, a volatile agent or the like can be used. Since the volatilizing agent volatilizes by applying predetermined heat, the covering member 24 and the substrate 21 can be easily peeled off. As the volatilizing agent, for example, various solvents and organic substances such as resins can be used.
Specifically, ketone solvents such as acetone, methyl ethyl ketone, methyl isobutyl ketone (boiling point: 150 ° C. or less), holon (boiling point: 198 ° C.), cyclohexanone (boiling point: 155 ° C.), methylcyclohexanone (boiling point: 170 ° C.), Tetrahydrofuran, dioxane, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether), ethyl acetate, methylpropyl diglycol, hexyl carbitol, butyl propylene diglycol, benzyl alcohol, butyl carbitol, cyclohexane, methylcyclohexane, cyclohexanone (boiling point: 150) ° C or lower), methyl phenyl ether (boiling point: 153 ° C.), ethyl phenyl ether (172 ° C.), methoxytoluene (boiling point: 172 ° C.), benzyl ethyl ether ( Boiling point: 189 ° C), diethylene glycol dimethyl ether (boiling point: 160 ° C), diethylene glycol diethyl ether (boiling point: 188 ° C), diethylene glycol monomethyl ether (boiling point: 194 ° C), diethylene glycol monobutyl ether (boiling point: 231 ° C), diethylene glycol monobutyl ether acetate ( Examples include ether solvents such as boiling point: 247 ° C., ethylene glycol monobutyl ether (boiling point: 171 ° C.), ethylene glycol monoisoamyl ether (boiling point: 181 ° C.), and butyl carbitol (boiling point: 231 ° C.).

さらに、メタノール、エタノール、イソプロピルアルコール、n−ブチルアルコール(沸点:150℃以下)、1−ヘキサノール(沸点:157℃)、1−ヘプタノール(沸点:176℃)、2−ヘプタノール(沸点:160℃)、3−ヘプタノール(沸点:156℃)、1−オクタノール(沸点:195℃)、2−オクタノール(沸点:179℃)、2−エチル−1−ヘキサノール(沸点:184℃)、シクロヘキサノール(沸点:161℃)、1−メチルシクロヘキサノール(沸点:155℃)、2−メチルシクロヘキサノール(沸点:165℃)、3−メチルシクロヘキサノール(沸点:173℃)、4−メチルシクロヘキサノール(沸点:174℃)、フルフリルアルコール(沸点:170℃)、ベンジルアルコール((沸点:205℃)、1,2−オクタンジオール(沸点:131℃)、1,8−オクタンジオール(沸点:172℃)、2−エチル−1,3−ヘキサンジオール(沸点:243℃)、エチレングリコール(沸点:198℃)、プロピレングリコール(沸点:187℃)、1,2−ブチレングリコール(沸点:191℃)、ヘキシレングリコール(沸点:197℃)、3−メチル−3−メトキシブタノール(沸点:174℃)、ブチルプロピレンジグルコール(沸点:231℃)等のアルコール系溶剤等が挙げられる。   Further, methanol, ethanol, isopropyl alcohol, n-butyl alcohol (boiling point: 150 ° C. or less), 1-hexanol (boiling point: 157 ° C.), 1-heptanol (boiling point: 176 ° C.), 2-heptanol (boiling point: 160 ° C.) 3-heptanol (boiling point: 156 ° C), 1-octanol (boiling point: 195 ° C), 2-octanol (boiling point: 179 ° C), 2-ethyl-1-hexanol (boiling point: 184 ° C), cyclohexanol (boiling point: 161 ° C), 1-methylcyclohexanol (boiling point: 155 ° C), 2-methylcyclohexanol (boiling point: 165 ° C), 3-methylcyclohexanol (boiling point: 173 ° C), 4-methylcyclohexanol (boiling point: 174 ° C) ), Furfuryl alcohol (boiling point: 170 ° C.), benzyl alcohol ((boiling point: 20 ° C), 1,2-octanediol (boiling point: 131 ° C), 1,8-octanediol (boiling point: 172 ° C), 2-ethyl-1,3-hexanediol (boiling point: 243 ° C), ethylene glycol (boiling point) : 198 ° C), propylene glycol (boiling point: 187 ° C), 1,2-butylene glycol (boiling point: 191 ° C), hexylene glycol (boiling point: 197 ° C), 3-methyl-3-methoxybutanol (boiling point: 174 ° C) ) And alcohol solvents such as butylpropylene diglycol (boiling point: 231 ° C.).

また、ベンゼン、トルエン、キシレン(沸点:150℃以下)等の芳香族系有機溶剤、
3−メトキシ−3−メチル−1−ブチルアセテート(沸点:188℃)、エチレングリコールモノアセテート(沸点:182℃)、ジエチレングリコールモノブチルエーテルアセテート(沸点:247℃)等のアセテート系溶剤、
プロピレンカーボネート(沸点:241℃)等の環状カーボネート系溶剤、 γ−ブチロラクトン(沸点:204℃)等のラクトン系溶剤、N−メチル−2−ピロリドン(沸点:202℃)等のピロリドン系溶剤、α−ピネン(沸点:156℃)、β−ピネン(沸点:161℃)、リモネン(沸点:177℃)、ターピネオール(沸点:217℃)、ジヒドロターピネオール(沸点:207℃)、ジヒドロターピニルアセテート(沸点:220℃)等のテルペン系溶剤等が挙げられる。
その他、ジメチルホルムアミド(沸点:153℃)、ジメチルスルホキシド(沸点:189℃)等が挙げられる。これらは単独で又は2種以上を組み合わせて用いることができる。また、これらの揮発剤には、適宜有機バインダ、粘度調整剤等を添加して用いてもかまわない。
In addition, aromatic organic solvents such as benzene, toluene, xylene (boiling point: 150 ° C. or lower),
Acetate solvents such as 3-methoxy-3-methyl-1-butyl acetate (boiling point: 188 ° C.), ethylene glycol monoacetate (boiling point: 182 ° C.), diethylene glycol monobutyl ether acetate (boiling point: 247 ° C.),
Cyclic carbonate solvents such as propylene carbonate (boiling point: 241 ° C), lactone solvents such as γ-butyrolactone (boiling point: 204 ° C), pyrrolidone solvents such as N-methyl-2-pyrrolidone (boiling point: 202 ° C), α -Pinene (boiling point: 156 ° C), β-pinene (boiling point: 161 ° C), limonene (boiling point: 177 ° C), terpineol (boiling point: 217 ° C), dihydroterpineol (boiling point: 207 ° C), dihydroterpinyl acetate ( Terpene solvents such as boiling point: 220 ° C.).
Other examples include dimethylformamide (boiling point: 153 ° C.) and dimethyl sulfoxide (boiling point: 189 ° C.). These can be used alone or in combination of two or more. Moreover, you may use for these volatilizing agents, adding an organic binder, a viscosity modifier, etc. suitably.

上記のような有機溶剤等の揮発剤を離型剤9とすると、後の第3の工程で、光反射部材25を形成する際にかかる熱によって離型剤9を除去することができる。これにより、第4の工程において基板21が除去される際、基板21とともに被覆部材24が除去されることを防ぐことができ、光反射部材25側に保持させておくことができる。 When the volatile agent such as the organic solvent as described above is used as the release agent 9, the release agent 9 can be removed by heat applied when the light reflecting member 25 is formed in the subsequent third step. Thereby, when the board | substrate 21 is removed in a 4th process, it can prevent that the coating | coated member 24 is removed with the board | substrate 21, and can be made to hold | maintain at the light reflection member 25 side.

次に、第2の工程において、実施形態1と同様の方法で、内側面が発光素子20の側面に設けられた離型剤9を被覆し、外側面が基板21の第1主面側よりも第2主面側において外側に位置する被覆部材24を形成する。そして、第3の工程において、被覆部材24の外側面を被覆するように、光反射部材25を形成する。続いて、発光素子20の電極23n、23pが露出されるように、光反射部材25の一部を適宜除去する。そして、光反射部材25が形成された発光素子20を、基体200から支持体400へ配置(転写)する。図7に示されるように、支持体400に配置(転写)された光反射部材25で被覆された発光素子20は、光反射部材25から基板21の第2主面21b及び被覆部材24が露出する。   Next, in the second step, the inner surface is coated with the release agent 9 provided on the side surface of the light emitting element 20 in the same manner as in the first embodiment, and the outer surface is from the first main surface side of the substrate 21. Also, the covering member 24 located outside is formed on the second main surface side. In the third step, the light reflecting member 25 is formed so as to cover the outer surface of the covering member 24. Subsequently, a part of the light reflecting member 25 is appropriately removed so that the electrodes 23n and 23p of the light emitting element 20 are exposed. Then, the light emitting element 20 on which the light reflecting member 25 is formed is arranged (transferred) from the base body 200 to the support body 400. As shown in FIG. 7, in the light emitting element 20 covered with the light reflecting member 25 disposed (transferred) on the support 400, the second main surface 21 b of the substrate 21 and the covering member 24 are exposed from the light reflecting member 25. To do.

そして、図8に示されるように、第4の工程において、LLO等で基板21のみを除去する。なお、基板21の一部が除去されずに残ってもかまわない。また、被覆部材24の一部が除去されてもかまわない。第4の工程の後、適宜、反射層形成工程、透光部材形成工程、封止部材形成工程、個片化を行うことで、発光装置2000を形成する。これにより、実施形態1の発光装置1000に、さらに被覆部材24を有する発光装置2000を形成することができる。   Then, as shown in FIG. 8, in the fourth step, only the substrate 21 is removed by LLO or the like. Note that a part of the substrate 21 may be left without being removed. Further, a part of the covering member 24 may be removed. After the fourth step, the light emitting device 2000 is formed by appropriately performing a reflective layer forming step, a translucent member forming step, a sealing member forming step, and singulation. Thereby, the light-emitting device 2000 which further has the coating | coated member 24 in the light-emitting device 1000 of Embodiment 1 can be formed.

実施形態2では、被覆部材24を除去しないので、被覆部材24の材料は透光性を有していることが好ましい。好ましくは、半導体層2からの光の透過率が60%以上、より好ましくは70%、80%又は90%以上であると好ましい。   In Embodiment 2, since the covering member 24 is not removed, the material of the covering member 24 preferably has translucency. The light transmittance from the semiconductor layer 2 is preferably 60% or more, more preferably 70%, 80%, or 90% or more.

被覆部材24には、フィラー、反射材、拡散材、波長変換部材、着色材等が含有されていてもかまわない。例えば、透光部材26と被覆部材24とに異なる波長変換部材を含有させることで、演色性の高い発光装置2000を形成することができる。なお、被覆部材24及び/又は透光部材26は、波長変換部材を含有していなくてもよい。また、被覆部材24及び透光部材26の母材を同じ樹脂等の材料とすることで、両部材の密着性を向上させることができる。さらに、被覆部材24及び光反射部材25の母材を同じ樹脂等の材料とすることで、両部材の密着性を向上させることができ、第4の工程において被覆部材24を光反射部材25側に保持させやすい。   The covering member 24 may contain a filler, a reflecting material, a diffusing material, a wavelength converting member, a coloring material, and the like. For example, the light-emitting device 2000 with high color rendering can be formed by including different wavelength conversion members in the translucent member 26 and the covering member 24. The covering member 24 and / or the translucent member 26 may not contain a wavelength conversion member. Moreover, the adhesiveness of both members can be improved by making the base material of the coating | coated member 24 and the translucent member 26 into materials, such as the same resin. Furthermore, by making the base material of the covering member 24 and the light reflecting member 25 the same material such as resin, it is possible to improve the adhesion between the two members, and in the fourth step, the covering member 24 is placed on the light reflecting member 25 side. Easy to hold on.

以上、いくつかの実施形態について例示したが、本発明は前述の実施形態に限定されるものではなく、本発明の要旨を逸脱しない限り任意のものとすることができることは言うまでもない。   As mentioned above, although several embodiment was illustrated, it cannot be overemphasized that this invention can be made arbitrary, unless it deviates from the summary of this invention, without being limited to the above-mentioned embodiment.

1000,2000…発光装置
10,20…発光素子
1,21…基板
1a…第1主面
1b,21b…第2主面
1c,21c…側面
2,22…半導体層
2n…n型半導体層
2a…発光層
2p…p型半導体層
3n,23n…n側電極
3p,23p…p側電極
3a…全面電極
3b…カバー電極
H…保護膜
4,24…被覆部材
4a…傾斜面
5,25…光反射部材
5a,25a…側壁
5b,25b…内側面
5c,25c…凹部
6,26…透光部材
7…封止部材
8…反射層
9…離型剤
200…基体
300,400…支持体
D…ディスペンス
1000, 2000 ... light emitting device 10,20 ... light emitting element 1,21 ... substrate 1a ... first main surface 1b, 21b ... second main surface 1c, 21c ... side surface 2,22 ... semiconductor layer 2n ... n-type semiconductor layer 2a ... Light-emitting layer 2p ... p-type semiconductor layer 3n, 23n ... n-side electrode 3p, 23p ... p-side electrode 3a ... full surface electrode 3b ... cover electrode H ... protective film 4,24 ... covering member 4a ... inclined surface 5,25 ... light reflection Member 5a, 25a ... Side wall 5b, 25b ... Inner side 5c, 25c ... Recess 6, 26 ... Translucent member 7 ... Sealing member 8 ... Reflective layer 9 ... Release agent 200 ... Base 300, 400 ... Support D ... Dispensing

Claims (13)

第1主面及び第2主面を有する基板と、前記第1主面上に設けられた半導体層と、前記半導体層と電気的に接続される電極と、を有する発光素子を準備する第1の工程と、
前記第1主面側よりも前記第2主面側の外側面が外側に位置するように、前記基板の側面側に被覆部材を形成する第2の工程と、
前記被覆部材の前記外側面を光反射部材で被覆する第3の工程と、
前記半導体層から前記基板を除去する第4の工程と、を有する発光装置の製造方法。
A first light emitting device is provided that includes a substrate having a first main surface and a second main surface, a semiconductor layer provided on the first main surface, and an electrode electrically connected to the semiconductor layer. And the process of
A second step of forming a covering member on the side surface of the substrate such that the outer surface on the second main surface side is located outside the first main surface side;
A third step of covering the outer surface of the covering member with a light reflecting member;
And a fourth step of removing the substrate from the semiconductor layer.
第2の工程において、前記被覆部材の前記外側面が傾斜面となるように、前記被覆部材を形成する請求項1に記載の発光装置の製造方法。   The manufacturing method of the light-emitting device according to claim 1, wherein in the second step, the covering member is formed so that the outer surface of the covering member becomes an inclined surface. 前記第3の工程おいて、前記光反射部材は、前記半導体層の前記電極を有する側の面及び側面を被覆する請求項1又は2に記載の発光装置の製造方法。 3. The method for manufacturing a light emitting device according to claim 1, wherein, in the third step, the light reflecting member covers a surface and a side surface of the semiconductor layer having the electrodes. 第2の工程の前に、前記基板の第2主面側が接するように、前記発光素子を基体上に配置し、
前記第4の工程の前に、前記基体を除去する請求項1〜3のいずれか1項に記載の発光装置の製造方法。
Prior to the second step, the light emitting element is disposed on the base so that the second main surface side of the substrate is in contact,
The method for manufacturing a light emitting device according to claim 1, wherein the substrate is removed before the fourth step.
前記発光素子を前記基体上に配置した後に、前記被覆部材を形成する請求項4に記載の発光装置の製造方法。   The method for manufacturing a light emitting device according to claim 4, wherein the covering member is formed after the light emitting element is disposed on the base. 前記第4の工程において、さらに前記被覆部材を除去する請求項1〜5のいずれか1項に記載の発光装置の製造方法。 The method for manufacturing a light emitting device according to claim 1, wherein the covering member is further removed in the fourth step. 前記第2の工程の前に、前記基板の前記側面を離型剤で被覆する請求項1〜6のいずれか1項に記載の発光装置の製造方法。   The method for manufacturing a light-emitting device according to claim 1, wherein the side surface of the substrate is covered with a release agent before the second step. 前記第3の工程において、透光性を有する材料で前記被覆部材を形成する請求項1〜7のいずれか1項に記載の発光装置の製造方法。   The manufacturing method of the light-emitting device according to claim 1, wherein the covering member is formed of a light-transmitting material in the third step. 前記第4の工程において、レーザリフトオフによって前記基板を除去する請求項1〜8のいずれか1項に記載の発光装置の製造方法。   The method for manufacturing a light-emitting device according to claim 1, wherein in the fourth step, the substrate is removed by laser lift-off. 前記第4の工程の後、前記基板が除去された部分に透光部材を形成する請求項1〜9のいずれか1項に記載の発光装置の製造方法。   The method for manufacturing a light emitting device according to claim 1, wherein a translucent member is formed in a portion where the substrate is removed after the fourth step. 前記透光部材は、波長変換部材を含有する請求項10に記載の発光装置の製造方法。   The method for manufacturing a light-emitting device according to claim 10, wherein the translucent member contains a wavelength conversion member. 半導体層と、前記半導体層と電気的に接続される電極とを有する発光素子と、
前記半導体層の上面に設けられる透光部材と、
透光性を有しており、前記透光部材の側面を被覆し、前記半導体層側よりも前記透光部材の上面側の外側面が外側にある被覆部材と、
前記被覆部材の前記外側面を被覆する光反射部材と、を有することを特徴とする発光装置。
A light-emitting element having a semiconductor layer and an electrode electrically connected to the semiconductor layer;
A translucent member provided on the upper surface of the semiconductor layer;
A translucent member, covering a side surface of the translucent member, and an outer surface on the upper surface side of the translucent member outside the semiconductor layer side;
And a light reflecting member that covers the outer surface of the covering member.
前記被覆部材の前記外側面は、傾斜面であることを特徴とする請求項12に記載の発光装置。   The light emitting device according to claim 12, wherein the outer surface of the covering member is an inclined surface.
JP2014222859A 2014-10-31 2014-10-31 LIGHT EMITTING DEVICE AND LIGHT EMITTING DEVICE MANUFACTURING METHOD Active JP6447018B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014222859A JP6447018B2 (en) 2014-10-31 2014-10-31 LIGHT EMITTING DEVICE AND LIGHT EMITTING DEVICE MANUFACTURING METHOD

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014222859A JP6447018B2 (en) 2014-10-31 2014-10-31 LIGHT EMITTING DEVICE AND LIGHT EMITTING DEVICE MANUFACTURING METHOD

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2018226955A Division JP6760356B2 (en) 2018-12-04 2018-12-04 Light emitting device and manufacturing method of light emitting device

Publications (2)

Publication Number Publication Date
JP2016092110A true JP2016092110A (en) 2016-05-23
JP6447018B2 JP6447018B2 (en) 2019-01-09

Family

ID=56018922

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014222859A Active JP6447018B2 (en) 2014-10-31 2014-10-31 LIGHT EMITTING DEVICE AND LIGHT EMITTING DEVICE MANUFACTURING METHOD

Country Status (1)

Country Link
JP (1) JP6447018B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016219743A (en) * 2015-05-26 2016-12-22 日亜化学工業株式会社 Light-emitting device
CN107507904A (en) * 2017-08-16 2017-12-22 深圳市兆驰节能照明股份有限公司 One side CSP LED and its manufacture method
US10243118B2 (en) 2016-12-20 2019-03-26 Nichia Corporation Method for manufacturing light emitting device
KR20190057640A (en) * 2017-11-20 2019-05-29 엘지디스플레이 주식회사 Light emitting diode display device and manufacturing method thereof
US11002427B2 (en) 2019-03-28 2021-05-11 Nichia Corporation Light emitting device
US11710809B2 (en) 2020-04-24 2023-07-25 Nichia Corporation Light-emitting device and method of manufacturing the light-emitting device

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009043764A (en) * 2007-08-06 2009-02-26 Nichia Corp Semiconductor light-emitting element, and method of manufacturing the same
JP2011501428A (en) * 2007-10-22 2011-01-06 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Strong LED structure for substrate lift-off
JP2012503876A (en) * 2008-09-25 2012-02-09 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Coated light emitting device and method for coating light emitting device
JP2013510422A (en) * 2009-11-06 2013-03-21 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Silicone-based reflective underfill and thermal coupler for flip-chip LEDs
WO2013061228A1 (en) * 2011-10-28 2013-05-02 Koninklijke Philips Electronics N.V. Light emitting device with integral shaped reflector
JP2013232539A (en) * 2012-04-27 2013-11-14 Toshiba Corp Semiconductor light-emitting device and manufacturing method of the same
JP2014049642A (en) * 2012-08-31 2014-03-17 Nichia Chem Ind Ltd Light-emitting device and manufacturing method therefor
JP2014107291A (en) * 2012-11-22 2014-06-09 Toshiba Corp Semiconductor light-emitting element and method of manufacturing the same
WO2014091914A1 (en) * 2012-12-10 2014-06-19 シチズンホールディングス株式会社 Led device and manufacturing method thereof
JP2014207349A (en) * 2013-04-15 2014-10-30 パナソニック株式会社 Light-emitting device and manufacturing method thereof

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009043764A (en) * 2007-08-06 2009-02-26 Nichia Corp Semiconductor light-emitting element, and method of manufacturing the same
JP2011501428A (en) * 2007-10-22 2011-01-06 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Strong LED structure for substrate lift-off
JP2012503876A (en) * 2008-09-25 2012-02-09 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Coated light emitting device and method for coating light emitting device
JP2013510422A (en) * 2009-11-06 2013-03-21 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Silicone-based reflective underfill and thermal coupler for flip-chip LEDs
WO2013061228A1 (en) * 2011-10-28 2013-05-02 Koninklijke Philips Electronics N.V. Light emitting device with integral shaped reflector
JP2013232539A (en) * 2012-04-27 2013-11-14 Toshiba Corp Semiconductor light-emitting device and manufacturing method of the same
JP2014049642A (en) * 2012-08-31 2014-03-17 Nichia Chem Ind Ltd Light-emitting device and manufacturing method therefor
JP2014107291A (en) * 2012-11-22 2014-06-09 Toshiba Corp Semiconductor light-emitting element and method of manufacturing the same
WO2014091914A1 (en) * 2012-12-10 2014-06-19 シチズンホールディングス株式会社 Led device and manufacturing method thereof
JP2014207349A (en) * 2013-04-15 2014-10-30 パナソニック株式会社 Light-emitting device and manufacturing method thereof

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016219743A (en) * 2015-05-26 2016-12-22 日亜化学工業株式会社 Light-emitting device
US10243118B2 (en) 2016-12-20 2019-03-26 Nichia Corporation Method for manufacturing light emitting device
CN107507904A (en) * 2017-08-16 2017-12-22 深圳市兆驰节能照明股份有限公司 One side CSP LED and its manufacture method
KR20190057640A (en) * 2017-11-20 2019-05-29 엘지디스플레이 주식회사 Light emitting diode display device and manufacturing method thereof
KR102500613B1 (en) * 2017-11-20 2023-02-15 엘지디스플레이 주식회사 Light emitting diode display device and manufacturing method thereof
US11002427B2 (en) 2019-03-28 2021-05-11 Nichia Corporation Light emitting device
US11313536B2 (en) 2019-03-28 2022-04-26 Nichia Corporation Light emitting device
US11710809B2 (en) 2020-04-24 2023-07-25 Nichia Corporation Light-emitting device and method of manufacturing the light-emitting device

Also Published As

Publication number Publication date
JP6447018B2 (en) 2019-01-09

Similar Documents

Publication Publication Date Title
US11056627B2 (en) Light emitting device
JP6447018B2 (en) LIGHT EMITTING DEVICE AND LIGHT EMITTING DEVICE MANUFACTURING METHOD
JP6008940B2 (en) Semiconductor light emitting device and manufacturing method thereof
JP6288009B2 (en) Method for manufacturing light emitting device
JP6446951B2 (en) Device mounting method and light emitting device manufacturing method
JP6413631B2 (en) LIGHT EMITTING DEVICE AND LIGHT EMITTING DEVICE MANUFACTURING METHOD
JP6668608B2 (en) Light emitting device manufacturing method
TWI637537B (en) Light emitting device and method of manufacturing the same
KR20110019416A (en) Optoelectronic component and method for the production thereof
US10461227B2 (en) Method for manufacturing light emitting device, and light emitting device
JP6323176B2 (en) Method for manufacturing light emitting device
TW201810444A (en) Light emitting device
US9831379B2 (en) Method of manufacturing light emitting device
US11329203B2 (en) Light emitting device including covering member and optical member
JP6511809B2 (en) Light emitting device, method of mounting the same, and method of manufacturing light source device
JP2014179569A (en) Light-emitting device and method of manufacturing the same
JP2017085085A (en) Method for manufacturing light-emitting device
JP6760356B2 (en) Light emitting device and manufacturing method of light emitting device
JP6721029B2 (en) Element mounting method and light-emitting device manufacturing method
KR20140048178A (en) Method of manufacutruing semiconductor device structure
JP2019134187A (en) Manufacturing method of light emitting device
JP2020080429A (en) Light-emitting device and manufacturing method thereof
KR20140026154A (en) Method of manufacutruing semiconductor device structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170727

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180515

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181119

R150 Certificate of patent or registration of utility model

Ref document number: 6447018

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250