JP2016092083A - Vertical type schottky barrier diode using gallium nitride substrate as drift layer - Google Patents

Vertical type schottky barrier diode using gallium nitride substrate as drift layer Download PDF

Info

Publication number
JP2016092083A
JP2016092083A JP2014222104A JP2014222104A JP2016092083A JP 2016092083 A JP2016092083 A JP 2016092083A JP 2014222104 A JP2014222104 A JP 2014222104A JP 2014222104 A JP2014222104 A JP 2014222104A JP 2016092083 A JP2016092083 A JP 2016092083A
Authority
JP
Japan
Prior art keywords
gan
barrier diode
schottky barrier
substrate
schottky
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014222104A
Other languages
Japanese (ja)
Other versions
JP2016092083A5 (en
Inventor
江川 孝志
Takashi Egawa
孝志 江川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagoya Institute of Technology NUC
Original Assignee
Nagoya Institute of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagoya Institute of Technology NUC filed Critical Nagoya Institute of Technology NUC
Priority to JP2014222104A priority Critical patent/JP2016092083A/en
Publication of JP2016092083A publication Critical patent/JP2016092083A/en
Publication of JP2016092083A5 publication Critical patent/JP2016092083A5/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a Schottky barrier diode including a GaN substrate, which has high voltage resistance and which is adapted for a large current and reduced in size.SOLUTION: A Schottky barrier diode using an n-GaN substrate as a drift layer comprises: the n-GaN substrate having a predetermined impurity density and polished into a mirror-like condition so that the n-GaN substrate has one face made one of N and Ga faces, and the other face made the other of N and Ga faces; an n-GaN layer formed on the one face; an ohmic electrode formed on the n-GaN layer; a Schottky electrode formed on the other face of the n-GaN substrate; and an insulative film or a p-GaN layer formed on the surface on the side of the Schottky electrode, which overlaps with the Schottky electrode.SELECTED DRAWING: Figure 4

Description

本発明は、縦型ショットキーバリアダイオード、特にGaN基板をドリフト層として用いたショットキーバリアダイオードに係る。   The present invention relates to a vertical Schottky barrier diode, and more particularly to a Schottky barrier diode using a GaN substrate as a drift layer.

GaN等窒化物半導体をパワーデバイスに用いる場合、大電流化、高耐圧化、小型化等が求められる。Si基板上にGaN系膜を形成したデバイスとして、横型のショットキーバリアダイオード構造(図1および図2参照、非特許文献1および非特許文献2参照)が知られている。これらの構造はオーミック電極、ショットキー電極ともに素子表面側に設けており、また電流の流れは横方向(基板面に平行方向)である。そのため、どの構造も製造プロセスが複雑であり、また電流パスが制限され、大きな電流が得られないという問題がある。一方、縦型のショットキーバリアダイオード構造(図3参照、非特許文献3参照)が知られているが、厚膜のn−GaNドリフト層を成長するため、コストがかかり、耐圧がn−GaNドリフト層の膜厚で支配されるため、大きな耐圧を得ることが困難である。 When a nitride semiconductor such as GaN is used for a power device, a large current, a high breakdown voltage, miniaturization, etc. are required. As a device in which a GaN-based film is formed on a Si substrate, a lateral Schottky barrier diode structure (see FIGS. 1 and 2, Non-Patent Document 1 and Non-Patent Document 2) is known. In these structures, both the ohmic electrode and the Schottky electrode are provided on the element surface side, and the current flow is in the lateral direction (parallel to the substrate surface). For this reason, the manufacturing process is complicated in any structure, and the current path is limited, and a large current cannot be obtained. On the other hand, a vertical Schottky barrier diode structure (see FIG. 3 and Non-Patent Document 3) is known. However, since a thick n -GaN drift layer is grown, the cost increases and the breakdown voltage is n −. Since it is governed by the film thickness of the GaN drift layer, it is difficult to obtain a large breakdown voltage.

G. Zhao, W. Sutton, D. Pavlidis, E. Piner, J. W. Schwank and S. Hubbard, A Novel Pt-AlGaN/GaN Heterostructure Schottky Diode Gas Sensor on Si, IEICE Trans. Fundamentals/Commun./Electron./INF.&SYST., Vol. E85-A/B/C/D, No1, p. 1, 2002G. Zhao, W. Sutton, D. Pavlidis, E. Piner, JW Schwank and S. Hubbard, A Novel Pt-AlGaN / GaN Heterostructure Schottky Diode Gas Sensor on Si, IEICE Trans. Fundamentals / Commun. / Electron. / INF . & SYST., Vol. E85-A / B / C / D, No1, p. 1, 2002 Y. Zhang, M. Sun, D. Piedra, M. Azize, X. Zhang, T. Fujishima and T. Palacios, GaN-on-Si Vertical Schottky and p-n Diodes, IEEE Electron Device Letters, Vol. 35, No. 6, pp. 618-620, 2014Y. Zhang, M. Sun, D. Piedra, M. Azize, X. Zhang, T. Fujishima and T. Palacios, GaN-on-Si Vertical Schottky and pn Diodes, IEEE Electron Device Letters, Vol. 35, No. 6, pp. 618-620, 2014 Yu Saitoh et al., Extremely Low On-Resistance and High Breakdown Voltage Observed in Vertical GaN Schottky Barrier Diodes with High-Mobility Drift Layers on Low-Dislocation-Density GaN Substrates, Applied Physics Express, 3, p. 081001-1, 2010Yu Saitoh et al., Extremely Low On-Resistance and High Breakdown Voltage Observed in Vertical GaN Schottky Barrier Diodes with High-Mobility Drift Layers on Low-Dislocation-Density GaN Substrates, Applied Physics Express, 3, p. 081001-1, 2010

本発明の課題は、GaN基板を用いたショットキーバリアダイオードにおいて、大電流化、高耐圧化、小型化を図ることである。   An object of the present invention is to achieve a large current, a high breakdown voltage, and a small size in a Schottky barrier diode using a GaN substrate.

本発明者らは、基板面に垂直方向に電流を流し、かつ、GaN基板内にドリフト層を形成することを創案した。すなわち、本発明によれば、以下のショットキーバリアダイオードが提供される。   The inventors of the present invention have invented that a current is allowed to flow in a direction perpendicular to the substrate surface and that a drift layer is formed in the GaN substrate. That is, according to the present invention, the following Schottky barrier diode is provided.

[1]n−GaN基板の一方の面がN面またはGa面のいずれか一方に、他方の面がその逆の面とし、当該一方の面に対してn−GaN層を形成し、さらに当該n−GaN層上にオーミック電極を形成し、n−GaN基板の他方の面にショットキー電極を形成した、n−GaN基板をドリフト層とするショットキーバリアダイオード。 [1] One surface of the n -GaN substrate is either an N surface or a Ga surface, the other surface is the opposite surface, and an n + -GaN layer is formed on the one surface, Furthermore an ohmic electrode is formed on the n + -GaN layer, n - -GaN the other surface of the substrate to form a Schottky electrode, n - -GaN Schottky barrier diode substrate and the drift layer.

[2]n−GaN基板の不純物濃度が2×1015cm−3〜2×1017cm−3である、前記[1]に記載のショットキーバリアダイオード。 [2] The Schottky barrier diode according to [1], wherein the n -GaN substrate has an impurity concentration of 2 × 10 15 cm −3 to 2 × 10 17 cm −3 .

[3]前記n−GaN層の不純物濃度が1×1018cm−3〜1×1019cm−3である前記[1]または[2]に記載のショットキーバリアダイオード。 [3] The Schottky barrier diode according to [1] or [2], wherein the impurity concentration of the n + -GaN layer is 1 × 10 18 cm −3 to 1 × 10 19 cm −3 .

[4]前記n−GaN基板のショットキー電極側表面に絶縁膜またはp‐GaN層が形成され、その一部が前記ショットキー電極と重なる前記[1]〜[3]のいずれかに記載のショットキーバリアダイオード。 [4] The insulating film or p-GaN layer is formed on the Schottky electrode side surface of the n -GaN substrate, and a part thereof overlaps with the Schottky electrode. Schottky barrier diode.

[5]n−GaN基板が、HVPE法、Naフラックス法、あるいはアモノサーマル法のいずれかで製造された前記[1]〜[4]のいずかに記載のショットキーバリアダイオード。
[5] The Schottky barrier diode according to any one of [1] to [4], wherein the n -GaN substrate is manufactured by any one of the HVPE method, the Na flux method, and the ammonothermal method.

従来の横型ショットキーバリアダイオード構造の断面を示す模式図である。It is a schematic diagram which shows the cross section of the conventional horizontal type Schottky barrier diode structure. 従来の他の横型ショットキーバリアダイオード構造の断面を示す模式図である。It is a schematic diagram which shows the cross section of the other conventional horizontal type Schottky barrier diode structure. 従来の縦型ショットキーバリアダイオード構造の断面を示す模式図である。It is a schematic diagram which shows the cross section of the conventional vertical Schottky barrier diode structure. 本発明実施例1のショットキーバリアダイオードの断面を示す模式図である。It is a schematic diagram which shows the cross section of the Schottky barrier diode of Example 1 of this invention. 本発明実施例1のショットキーバリアダイオードの順方向の電流−電圧特性を示す図である。It is a figure which shows the current-voltage characteristic of the forward direction of the Schottky barrier diode of Example 1 of this invention. 本発明実施例1のショットキーバリアダイオードの逆方向の電流−電圧特性を示す図である。It is a figure which shows the current-voltage characteristic of the reverse direction of the Schottky barrier diode of Example 1 of this invention. 本発明実施例2のショットキーバリアダイオードの断面を示す模式図である。It is a schematic diagram which shows the cross section of the Schottky barrier diode of Example 2 of this invention. 本発明実施例2のショットキーバリアダイオードの順方向の電流−電圧特性を示す図である。It is a figure which shows the current-voltage characteristic of the forward direction of the Schottky barrier diode of Example 2 of this invention. 本発明実施例2のショットキーバリアダイオードの逆方向の電流−電圧特性を示す図である。It is a figure which shows the electric current-voltage characteristic of the reverse direction of the Schottky barrier diode of Example 2 of this invention. 本発明実施例3のショットキーバリアダイオードの断面を示す模式図である。It is a schematic diagram which shows the cross section of the Schottky barrier diode of Example 3 of this invention. 本発明実施例3のショットキーバリアダイオードの順方向の電流−電圧特性を示す図である。It is a figure which shows the current-voltage characteristic of the forward direction of the Schottky barrier diode of Example 3 of this invention. 本発明実施例3のショットキーバリアダイオードの逆方向の電流−電圧特性を示す図である。It is a figure which shows the current-voltage characteristic of the reverse direction of the Schottky barrier diode of Example 3 of this invention. 本発明実施例4のショットキーバリアダイオードの断面を示す模式図である。It is a schematic diagram which shows the cross section of the Schottky barrier diode of Example 4 of this invention. 本発明実施例4のショットキーバリアダイオードの順方向の電流−電圧特性を示す図である。It is a figure which shows the current-voltage characteristic of the forward direction of the Schottky barrier diode of Example 4 of this invention. 本発明実施例4のショットキーバリアダイオードの逆方向の電流−電圧特性を示す図である。It is a figure which shows the current-voltage characteristic of the reverse direction of the Schottky barrier diode of Example 4 of this invention.

以下、図面を参照しつつ本発明の実施の形態について説明する。本発明は、以下の実施形態に限定されるものではなく、発明の範囲を逸脱しない限りにおいて、変更、修正、改良を加え得るものである。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. The present invention is not limited to the following embodiments, and changes, modifications, and improvements can be added without departing from the scope of the invention.

本発明において基板は、n−GaN基板であり、HVPE法(Hydride vapor phase epitaxy)、Naフラックス法、あるいはアモノサーマル法のいずれかで製造された結晶を加工して用いる。基板のサイズは、径が2インチ以上、厚みは200μm〜700μmであることが好ましい。当該基板は(0001)面が用いられ、両面ともに鏡面研磨され、一方の面がGa面、他方の面がN面になるように加工されることが好ましい。当該基板はドリフト層となるため、不純物濃度が2×1015cm−3〜2×1017cm−3、キャリア移動度が500cm/Vs以上であることが好ましい。不純物としては周期律表第14族(第4b族)元素が用いられ、Siが好適に用いられる。 In the present invention, the substrate is an n -GaN substrate, and a crystal manufactured by any one of the HVPE method (Hydride vapor phase epitaxy), the Na flux method, or the ammonothermal method is used. The substrate preferably has a diameter of 2 inches or more and a thickness of 200 μm to 700 μm. The (0001) surface is used for the substrate, and both surfaces are preferably mirror-polished and processed so that one surface is a Ga surface and the other surface is an N surface. Since the substrate serves as a drift layer, the impurity concentration is preferably 2 × 10 15 cm −3 to 2 × 10 17 cm −3 and the carrier mobility is 500 cm 2 / Vs or higher. As the impurity, a group 14 (group 4b) element of the periodic table is used, and Si is preferably used.

−GaN基板上の一方のGa面またはN面に、MOCVD法やMBE法などの公知の成膜手法にて、n−GaN層が形成される。当該n−GaN層の不純物濃度は1×1018cm−3〜1×1019cm−3、より好ましくは1×1018cm−3〜5×1018cm−3、キャリア移動度は150cm/Vs〜250cm/Vsであることが好ましく、厚みは50nm〜500nmであることが好ましい。 An n + -GaN layer is formed on one Ga surface or N surface of the n -GaN substrate by a known film formation method such as MOCVD or MBE. The impurity concentration of the n + -GaN layer is 1 × 10 18 cm −3 to 1 × 10 19 cm −3 , more preferably 1 × 10 18 cm −3 to 5 × 10 18 cm −3 , and the carrier mobility is 150 cm. is preferably 2 / Vs~250cm 2 / Vs, it is preferable that the thickness is 50 nm~500 nm.

−GaN層の上に電子ビーム蒸着法等にてオーミック電極を形成する。オーミック電極としては、例えば、Ti/Al/Ni/Au(この順に膜形成)なる構成の電極が形成される。各層の厚みは10nm〜200nmである。 An ohmic electrode is formed on the n + -GaN layer by electron beam evaporation or the like. As the ohmic electrode, for example, an electrode having a configuration of Ti / Al / Ni / Au (film formation in this order) is formed. The thickness of each layer is 10 nm to 200 nm.

‐GaN基板の他方のN面またはGa面の素子中央部となる領域以外にはSiO等の絶縁層あるいはP型GaN層を形成することが好ましい。SiO等の絶縁層あるいはP型GaN層が形成されない素子中央部の領域にショットキー電極が形成される。たとえば、ショットキー電極としては、例えば、Ni/Au(この順に膜形成)なる構成の電極が形成される。各層の厚みは10nm〜200nmである。 It is preferable to form an insulating layer such as SiO 2 or a P-type GaN layer other than the region that becomes the element central portion of the other N-face or Ga-face of the n -GaN substrate. A Schottky electrode is formed in the central region of the device where the insulating layer such as SiO 2 or the P-type GaN layer is not formed. For example, as the Schottky electrode, for example, an electrode having a configuration of Ni / Au (film formation in this order) is formed. The thickness of each layer is 10 nm to 200 nm.

(実施例1:n‐GaN基板のN面にn−GaN層を形成し、ショットキー電極側にSiO形成)
基板として2インチ径の厚み325μmの(0001)面n−GaN単結晶基板(不純物濃度:5x1016cm−3、移動度:700cm/Vs、Ga面及びN面ともに鏡面研磨)を用い、これを所定のMOCVD装置の反応菅内に設置した。MOCVD装置は、キャリアガスあるいは反応ガスとして、少なくともH、N、TMG(トリメチルガリウム)、NH及びドーパントとしてSiH(モノシラン)が、反応管内に供給可能とされている。キャリアガスとして、水素を流量20SLM、及び窒素を流量10SLMで流しながら、反応管内の圧力を760Torrに保ちつつ、基板を1130℃まで昇温した後、10分間保持し、n−GaN基板のN面に対してサーマルクリーニングを実施した。その後、基板温度を1130℃に保ちつつ、TMGとそのキャリアガスである水素を供給するとともに、NHとそのキャリアガスである水素及びSiHとを供給することにより、不純物濃度が2x1018 cm-3、膜厚0.1μmのn−GaN層をn−GaN基板のN面上に形成した。供給反応ガスのモル比、すなわち、第5族ガス/第3族ガス(NH/TMG)の比は2000とし、反応管内の圧力は760Torr、SiHの流量は20SCCMとした。
−GaN層を形成後、n−GaN層のN面に電子ビーム蒸着法を用いて、Ti/Al/Ni/Au(20/120/40/50nm)を形成し、さらに800℃で30秒間アニールして、オーミック電極を形成した。その後、ドリフト層であるn−GaN基板のGa面上に電子ビーム蒸着法により、ショットキー電極中央部を除いて絶縁膜SiOを厚み100nm形成した。さらに、フォトリソグラフィ技術とリフトオフ法を用いてショットキー電極としてNi/Au (50/100nm)を電子ビーム蒸着法により形成した。ショットキー電極サイズは1×1mmとした。
上記のように、オーミック電極およびショットキー電極を形成したショットキーダイオード素子(図4参照)の順方向及び逆方向の電流−電圧特性を測定した。その結果を、図5および図6に示す。立ち上がり電圧:1.93V、順方向電圧:3.0V(@順方向電流:8A)、耐圧:4.1kVであった。
(Example 1: An n + -GaN layer is formed on the N face of an n -GaN substrate, and SiO 2 is formed on the Schottky electrode side)
Using a (0001) plane n -GaN single crystal substrate (impurity concentration: 5 × 10 16 cm −3 , mobility: 700 cm 2 / Vs, both Ga plane and N plane mirror polished) having a 2 inch diameter and a thickness of 325 μm as a substrate, This was installed in a reaction vessel of a predetermined MOCVD apparatus. In the MOCVD apparatus, at least H 2 , N 2 , TMG (trimethyl gallium), NH 3 as a carrier gas or a reaction gas, and SiH 4 (monosilane) as a dopant can be supplied into the reaction tube. As the carrier gas, while flowing a hydrogen flow 20 SLM, and the nitrogen flow rate 10 SLM, while maintaining the pressure in the reaction tube to 760 Torr, after raising the substrate to 1130 ° C., held for 10 minutes, n - -GaN substrate of N Thermal cleaning was performed on the surface. Then, while maintaining the substrate temperature at 1130 ° C., TMG and its carrier gas, hydrogen, are supplied, and NH 3 and its carrier gas, hydrogen and SiH 4 , are supplied, so that the impurity concentration becomes 2 × 10 18 cm −. 3. An n + -GaN layer having a thickness of 0.1 μm was formed on the N surface of the n -GaN substrate. The molar ratio of the supplied reaction gas, that is, the ratio of Group 5 gas / Group 3 gas (NH 3 / TMG) was 2000, the pressure in the reaction tube was 760 Torr, and the flow rate of SiH 4 was 20 SCCM.
After forming the n + -GaN layer by using an electron beam evaporation method on the N surface of the n + -GaN layer to form a Ti / Al / Ni / Au ( 20/120/40 / 50nm), an additional 800 ° C. An ohmic electrode was formed by annealing for 30 seconds. Thereafter, an insulating film SiO 2 having a thickness of 100 nm was formed on the Ga surface of the n -GaN substrate, which is a drift layer, by the electron beam evaporation method except for the central portion of the Schottky electrode. Furthermore, Ni / Au (50/100 nm) was formed as a Schottky electrode by an electron beam evaporation method using a photolithography technique and a lift-off method. The Schottky electrode size was 1 × 1 mm 2 .
As described above, the forward-direction and reverse-direction current-voltage characteristics of the Schottky diode element (see FIG. 4) in which the ohmic electrode and the Schottky electrode were formed were measured. The results are shown in FIG. 5 and FIG. Rise voltage: 1.93 V, forward voltage: 3.0 V (@ forward current: 8 A), withstand voltage: 4.1 kV.

(実施例2:n‐GaN基板のGa面にn−GaN層を形成し、ショットキー電極側にSiO形成)
実施例1と同じn−GaN基板を用い、n−GaN基板のGa面に対して実施例1と同様にサーマルクリーニングを実施した。その後、実施例1と同じ条件で、同じ不純物濃度2x1018 cm-3 膜厚0.1μmのn−GaN層をn−GaN基板のGa面上に形成した。
−GaN層を形成後、n−GaN層のGa面に電子ビーム蒸着法を用いて、Ti/Al/Ni/Au(20/120/40/50nm)を形成し、さらに800℃で30秒間アニールして、オーミック電極を形成した。その後、ドリフト層であるn−GaN基板のN面上に電子ビーム蒸着法により、ショットキー電極中央部を除いて絶縁膜SiOを厚み100nm形成した。さらに、フォトリソグラフィ技術とリフトオフ法を用いてショットキー電極としてNi/Au (50/100nm)を電子ビーム蒸着法により形成した。ショットキー電極サイズは1×1mmとした。
上記のように、オーミック電極およびショットキー電極を形成したショットキーダイオード素子(図7参照)の順方向及び逆方向の電流−電圧特性を測定した。その結果を、図8および図9に示す。立ち上がり電圧:1.73V、順方向電圧:2.67V(@順方向電流:8A)、耐圧:4.2kVであった。
(Example 2: An n + -GaN layer is formed on the Ga surface of an n -GaN substrate, and SiO 2 is formed on the Schottky electrode side)
The same n -GaN substrate as in Example 1 was used, and thermal cleaning was performed on the Ga surface of the n -GaN substrate in the same manner as in Example 1. Thereafter, an n + -GaN layer having the same impurity concentration of 2 × 10 18 cm −3 and a thickness of 0.1 μm was formed on the Ga surface of the n -GaN substrate under the same conditions as in Example 1.
After forming the n + -GaN layer by using an electron beam evaporation of Ga surface of the n + -GaN layer to form a Ti / Al / Ni / Au ( 20/120/40 / 50nm), an additional 800 ° C. An ohmic electrode was formed by annealing for 30 seconds. Thereafter, an insulating film SiO 2 having a thickness of 100 nm was formed on the N surface of the n -GaN substrate, which is a drift layer, by an electron beam evaporation method except for the central portion of the Schottky electrode. Furthermore, Ni / Au (50/100 nm) was formed as a Schottky electrode by an electron beam evaporation method using a photolithography technique and a lift-off method. The Schottky electrode size was 1 × 1 mm 2 .
As described above, the forward-direction and reverse-direction current-voltage characteristics of the Schottky diode element (see FIG. 7) in which the ohmic electrode and the Schottky electrode were formed were measured. The results are shown in FIG. 8 and FIG. The rising voltage was 1.73 V, the forward voltage was 2.67 V (@ forward current: 8 A), and the withstand voltage was 4.2 kV.

(実施例3:n‐GaN基板のN面にn−GaN層を形成し、ショットキー電極側にP−GaN形成)
実施例1と同じ条件で、n−GaN基板のN面にn−GaN層を形成した。一方、n−GaN基板のGa面上にSiO膜(100nm)を全面に成膜した。その後、部分的にSiO膜を除去し、SiO膜以外の部分のn−GaNドリフト層をRIE装置(反応ガス:BCl3、流量:10sccm、ガス圧:3Pa、電力:5W、エッチング時間:10分)を用いて選択的に0.1μm除去した。その後、SiO膜をマスクとして、成長温度1030℃、圧力760Torr、第5族ガス/第3族ガス(NH/TMG)の比は2700、Cp2Mg(300sccm、ビスシクロペンタジエニルマグネシウム)を用いて膜厚が0.1μmのP−GaN層の選択再成長を行った。そして、SiO膜を除去した後、750℃、20分間、窒素雰囲気中で活性化アニールを行った。そして、実施例1と同様の電極形成を行って、ショットキーダイオード素子(図10参照)の順方向及び逆方向の電流−電圧特性を測定した。その結果を、図11および図12に示す。立ち上がり電圧:1.87V、順方向電圧:2.8V(@順方向電流:8A)、耐圧:4.5kVであった。
(Example 3: An n + -GaN layer is formed on the N face of an n -GaN substrate, and P-GaN is formed on the Schottky electrode side)
Under the same conditions as in Example 1, an n + -GaN layer was formed on the N surface of the n -GaN substrate. On the other hand, a SiO 2 film (100 nm) was formed on the entire Ga surface of the n -GaN substrate. Thereafter, partially removing the SiO 2 film, in the portion other than the SiO 2 film n - -GaN drift layer RIE apparatus (reaction gas: BCl3, flow rate: 10 sccm, gas pressure: 3 Pa, power: 5W, etching time: 10 μm) to selectively remove 0.1 μm. Thereafter, using the SiO 2 film as a mask, a growth temperature of 1030 ° C., a pressure of 760 Torr, a Group 5 gas / Group 3 gas (NH 3 / TMG) ratio of 2700, and Cp 2 Mg (300 sccm, biscyclopentadienyl magnesium) are used. Then, selective regrowth of a P-GaN layer having a film thickness of 0.1 μm was performed. Then, after removing the SiO 2 film, activation annealing was performed in a nitrogen atmosphere at 750 ° C. for 20 minutes. And the electrode formation similar to Example 1 was performed, and the current-voltage characteristic of the forward direction and reverse direction of a Schottky diode element (refer FIG. 10) was measured. The results are shown in FIG. 11 and FIG. The rising voltage was 1.87 V, the forward voltage was 2.8 V (@ forward current: 8 A), and the withstand voltage was 4.5 kV.

(実施例4:n‐GaN基板のGa面にn−GaN層を形成し、ショットキー電極側にP−GaN形成)
実施例2と同じ条件で、n−GaN基板のGa面にn−GaN層を形成した。一方、n−GaN基板のN面上にSiO膜(100nm)を全面に成膜した。その後、部分的にSiO膜を除去し、SiO膜以外の部分のn−GaNドリフト層をRIE装置(反応ガス:BCl3、流量:10sccm、ガス圧:3Pa、電力:5W、エッチング時間:10分)を用いて選択的に0.1μm除去した。その後、SiO膜をマスクとして、成長温度1030℃、圧力760Torr、第5族ガス/第3族ガス(NH/TMG)の比は2700、Cp2Mg(300sccm)を用いて膜厚が0.1μmのP−GaN層の選択再成長を行った。そして、SiO膜を除去した後、750℃、20分間、窒素雰囲気中で活性化アニールを行った。そして、実施例2と同様の電極形成を行って、ショットキーダイオード素子(図10参照)の順方向及び逆方向の電流−電圧特性を測定した。その結果を、図11および図12に示す。立ち上がり電圧:1.67V、順方向電圧:2.47V(@順方向電流:8A)、耐圧:4.3kVであった。
(Example 4: An n + -GaN layer is formed on the Ga surface of an n -GaN substrate, and P-GaN is formed on the Schottky electrode side)
Under the same conditions as in Example 2, an n + -GaN layer was formed on the Ga surface of the n -GaN substrate. On the other hand, a SiO 2 film (100 nm) was formed on the entire N surface of the n -GaN substrate. Thereafter, partially removing the SiO 2 film, in the portion other than the SiO 2 film n - -GaN drift layer RIE apparatus (reaction gas: BCl3, flow rate: 10 sccm, gas pressure: 3 Pa, power: 5W, etching time: 10 μm) to selectively remove 0.1 μm. Then, using the SiO 2 film as a mask, the growth temperature is 1030 ° C., the pressure is 760 Torr, the Group 5 gas / Group 3 gas (NH 3 / TMG) ratio is 2700, and the film thickness is 0.1 μm using Cp 2 Mg (300 sccm). The selective regrowth of the P-GaN layer was performed. Then, after removing the SiO 2 film, activation annealing was performed in a nitrogen atmosphere at 750 ° C. for 20 minutes. And the electrode formation similar to Example 2 was performed, and the current-voltage characteristic of the forward direction and reverse direction of the Schottky diode element (refer FIG. 10) was measured. The results are shown in FIG. 11 and FIG. The rising voltage was 1.67 V, the forward voltage was 2.47 V (@ forward current: 8 A), and the withstand voltage was 4.3 kV.

実施例1〜4における順方向及び逆方向の電流−電圧特性をまとめると、立ち上がり電圧:1.67〜1.93V、順方向電圧:2.47〜3.0V(@順方向電流:8A)、耐圧:4.1〜4.5kV、であり、いずれも大電流化および高耐圧化に対応できていることが判った。 The forward-current and reverse-direction current-voltage characteristics in Examples 1 to 4 are summarized as follows: rising voltage: 1.67 to 1.93 V, forward voltage: 2.47 to 3.0 V (@ forward current: 8 A) , Withstand voltage: 4.1 to 4.5 kV, and it has been found that both can cope with a large current and a high withstand voltage.

本発明は、ショットキーバリアダイオードに用いられる。
The present invention is used for a Schottky barrier diode.

Claims (5)

−GaN基板の一方の面がN面またはGa面のいずれか一方に、他方の面がその逆の面とし、当該一方の面に対してn−GaN層を形成し、さらに当該n−GaN層上にオーミック電極を形成し、n−GaN基板の他方の面にショットキー電極を形成した、n−GaN基板をドリフト層とするショットキーバリアダイオード。 One surface of the n -GaN substrate is either the N surface or the Ga surface, the other surface is the opposite surface, and an n + -GaN layer is formed on the one surface. + ohmic electrode is formed on the -GaN layer, n - -GaN the other surface of the substrate to form a Schottky electrode, n - -GaN Schottky barrier diode substrate and the drift layer. −GaN基板の不純物濃度が2×1015cm−3〜2×1017cm−3である、請求項1に記載のショットキーバリアダイオード。 2. The Schottky barrier diode according to claim 1, wherein the n -GaN substrate has an impurity concentration of 2 × 10 15 cm −3 to 2 × 10 17 cm −3 . 前記n−GaN層の不純物濃度が1×1018cm−3〜1×1019cm−3である請求項1または2に記載のショットキーバリアダイオード。 3. The Schottky barrier diode according to claim 1, wherein an impurity concentration of the n + -GaN layer is 1 × 10 18 cm −3 to 1 × 10 19 cm −3 . 前記n−GaN基板のショットキー電極側表面に絶縁膜またはp‐GaN層が形成され、その一部が前記ショットキー電極と重なる請求項1〜3のいずれかに記載のショットキーバリアダイオード。 4. The Schottky barrier diode according to claim 1, wherein an insulating film or a p-GaN layer is formed on a surface of the n -GaN substrate on the Schottky electrode side, and a part thereof overlaps the Schottky electrode. −GaN基板が、HVPE法、Naフラックス法、あるいはアモノサーマル法のいずれかで製造された請求項1〜4のいずかに記載のショットキーバリアダイオード。
The Schottky barrier diode according to claim 1, wherein the n -GaN substrate is manufactured by any one of an HVPE method, a Na flux method, and an ammonothermal method.
JP2014222104A 2014-10-31 2014-10-31 Vertical type schottky barrier diode using gallium nitride substrate as drift layer Pending JP2016092083A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014222104A JP2016092083A (en) 2014-10-31 2014-10-31 Vertical type schottky barrier diode using gallium nitride substrate as drift layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014222104A JP2016092083A (en) 2014-10-31 2014-10-31 Vertical type schottky barrier diode using gallium nitride substrate as drift layer

Publications (2)

Publication Number Publication Date
JP2016092083A true JP2016092083A (en) 2016-05-23
JP2016092083A5 JP2016092083A5 (en) 2017-12-21

Family

ID=56018590

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014222104A Pending JP2016092083A (en) 2014-10-31 2014-10-31 Vertical type schottky barrier diode using gallium nitride substrate as drift layer

Country Status (1)

Country Link
JP (1) JP2016092083A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108511531A (en) * 2017-02-27 2018-09-07 苏州晶湛半导体有限公司 A kind of Schottky diode manufacture craft and Schottky diode
JP2018145042A (en) * 2017-03-03 2018-09-20 株式会社サイオクス Method for manufacturing nitride semiconductor substrate and nitride semiconductor substrate

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010166012A (en) * 2008-12-17 2010-07-29 Sumitomo Electric Ind Ltd Ohmic electrode, semiconductor device, method for manufacturing ohmic electrode, and method for manufacturing semiconductor device
JP2012178454A (en) * 2011-02-25 2012-09-13 Fujitsu Ltd Compound semiconductor device and method for manufacturing the same
JP2013012568A (en) * 2011-06-29 2013-01-17 Mitsubishi Electric Corp Semiconductor device and manufacturing method of the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010166012A (en) * 2008-12-17 2010-07-29 Sumitomo Electric Ind Ltd Ohmic electrode, semiconductor device, method for manufacturing ohmic electrode, and method for manufacturing semiconductor device
JP2012178454A (en) * 2011-02-25 2012-09-13 Fujitsu Ltd Compound semiconductor device and method for manufacturing the same
JP2013012568A (en) * 2011-06-29 2013-01-17 Mitsubishi Electric Corp Semiconductor device and manufacturing method of the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108511531A (en) * 2017-02-27 2018-09-07 苏州晶湛半导体有限公司 A kind of Schottky diode manufacture craft and Schottky diode
JP2018145042A (en) * 2017-03-03 2018-09-20 株式会社サイオクス Method for manufacturing nitride semiconductor substrate and nitride semiconductor substrate
US11094539B2 (en) 2017-03-03 2021-08-17 Sciocs Company Limited Method for manufacturing nitride semiconductor substrate and nitride semiconductor substrate
JP6994835B2 (en) 2017-03-03 2022-01-14 株式会社サイオクス Nitride semiconductor substrate manufacturing method and nitride semiconductor substrate

Similar Documents

Publication Publication Date Title
US10319829B2 (en) Method and system for in-situ etch and regrowth in gallium nitride based devices
JP4432827B2 (en) Group III nitride semiconductor device and epitaxial substrate
JP6260145B2 (en) Manufacturing method of semiconductor device
JP4730422B2 (en) Group III nitride semiconductor electronic device, method of fabricating group III nitride semiconductor electronic device, and group III nitride semiconductor epitaxial wafer
JP5596222B2 (en) Semiconductor laminate, method for manufacturing the same, and semiconductor element
JP5919703B2 (en) Semiconductor device
JP2016207748A (en) Method of manufacturing semiconductor device, and semiconductor device
JP2016058693A (en) Semiconductor device, semiconductor wafer, and method of manufacturing semiconductor device
US10332975B2 (en) Epitaxial substrate for semiconductor device and method for manufacturing same
JP6305137B2 (en) Nitride semiconductor laminate and semiconductor device
JP2016092083A (en) Vertical type schottky barrier diode using gallium nitride substrate as drift layer
US11588096B2 (en) Method to achieve active p-type layer/layers in III-nitrtde epitaxial or device structures having buried p-type layers
JP2012054341A (en) Semiconductor substrate and semiconductor device
JPWO2015115126A1 (en) Nitride semiconductor laminate, method for manufacturing the same, and nitride semiconductor device
JP5560866B2 (en) Nitride electronic device and method for fabricating nitride electronic device
JP2013062442A (en) Nitride semiconductor electronic device and nitride semiconductor electronic device manufacturing method
JP2016031961A (en) Large-current and high-withstand voltage nitride semiconductor vertical schottky barrier diode
JP5580012B2 (en) Schottky barrier diode and manufacturing method thereof
JP5648307B2 (en) Vertical AlGaN / GaN-HEMT and manufacturing method thereof
JP6176064B2 (en) Group III nitride semiconductor devices
JP2012004498A (en) Semiconductor substrate and semiconductor device
JP2006196623A (en) Epitaxial substrate and semiconductor element
JP7037801B2 (en) Field effect transistor and its manufacturing method
JP2009259952A (en) Schottky barrier diode and method of manufacturing the same
JP2012004503A (en) Semiconductor substrate and semiconductor device

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171025

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171026

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181009

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20181203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190129

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190514