JP2016031961A - Large-current and high-withstand voltage nitride semiconductor vertical schottky barrier diode - Google Patents

Large-current and high-withstand voltage nitride semiconductor vertical schottky barrier diode Download PDF

Info

Publication number
JP2016031961A
JP2016031961A JP2014152660A JP2014152660A JP2016031961A JP 2016031961 A JP2016031961 A JP 2016031961A JP 2014152660 A JP2014152660 A JP 2014152660A JP 2014152660 A JP2014152660 A JP 2014152660A JP 2016031961 A JP2016031961 A JP 2016031961A
Authority
JP
Japan
Prior art keywords
barrier diode
schottky barrier
layer
substrate
schottky
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014152660A
Other languages
Japanese (ja)
Inventor
江川 孝志
Takashi Egawa
孝志 江川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagoya Institute of Technology NUC
Original Assignee
Nagoya Institute of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagoya Institute of Technology NUC filed Critical Nagoya Institute of Technology NUC
Priority to JP2014152660A priority Critical patent/JP2016031961A/en
Publication of JP2016031961A publication Critical patent/JP2016031961A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To achieve larger current and higher withstand voltage in a Schottky barrier diode comprising a nitride semiconductor on a Si substrate.SOLUTION: In a Schottky barrier diode having a laminate structure including at least an AlGaN buffer layer and an nGaN layer on an nSi substrate, a Schottky electrode and an ohmic electrode are formed on the surface of the laminate structure and the rear surface of the Si substrate, respectively, and a current is flown in a lamination direction. In the Schottky barrier diode, an insulation film or a p-GaN layer is formed on the surface of the laminate structure, and a part of the insulation film or the p-GaN layer overlaps with the Schottky electrode.SELECTED DRAWING: Figure 4

Description

本発明は、ショットキーバリアダイオード、特にSi基板を用いたショットキーバリアダイオードに係る。   The present invention relates to a Schottky barrier diode, and more particularly to a Schottky barrier diode using a Si substrate.

GaN等窒化物半導体をパワーデバイスに用いる場合、大電流化、高耐圧化、小型化等が求められる。Si基板上のGaN系デバイスとして、ショットキーバリアダイオード構造(図1および図2参照、非特許文献1および非特許文献2参照)、またAlGaN/GaN HEMT構造(図3参照)が知られているが、これらの構造はオーミック電極、ショットキー電極ともに素子表面側に設けており、また電流の流れは横方向(基板面に平行方向)である。そのため、どの構造も製造プロセスが複雑であり、また電流パスが制限され、大きな電流が得られないという問題がある。 When a nitride semiconductor such as GaN is used for a power device, a large current, a high breakdown voltage, miniaturization, etc. are required. Known GaN-based devices on a Si substrate include a Schottky barrier diode structure (see FIGS. 1 and 2, Non-Patent Document 1 and Non-Patent Document 2), and an AlGaN / GaN HEMT structure (see FIG. 3). However, in these structures, both the ohmic electrode and the Schottky electrode are provided on the element surface side, and the current flow is in the lateral direction (parallel to the substrate surface). For this reason, the manufacturing process is complicated in any structure, and the current path is limited, and a large current cannot be obtained.

G. Zhao, W. Sutton, D. Pavlidis, E. Piner, J. W. Schwank and S. Hubbard, A Novel Pt-AlGaN/GaN Heterostructure Schottky Diode Gas Sensor on Si, IEICE Trans. Fundamentals/Commun./Electron./INF.&SYST., Vol. E85-A/B/C/D, No1, p. 1, 2002G. Zhao, W. Sutton, D. Pavlidis, E. Piner, JW Schwank and S. Hubbard, A Novel Pt-AlGaN / GaN Heterostructure Schottky Diode Gas Sensor on Si, IEICE Trans. Fundamentals / Commun. / Electron. / INF . & SYST., Vol. E85-A / B / C / D, No1, p. 1, 2002 Y. Zhang, M. Sun, D. Piedra, M. Azize, X. Zhang, T. Fujishima and T. Palacios, GaN-on-Si Vertical Schottky and p-n Diodes, IEEE Electron Device Letters, Vol. 35, No. 6, pp. 618-620, 2014Y. Zhang, M. Sun, D. Piedra, M. Azize, X. Zhang, T. Fujishima and T. Palacios, GaN-on-Si Vertical Schottky and pn Diodes, IEEE Electron Device Letters, Vol. 35, No. 6, pp. 618-620, 2014

本発明の課題は、Si基板上の窒化物半導体により構成されたショットキーバリアダイオードにおいて、大電流化、高耐圧化、小型化を図ることである。   An object of the present invention is to increase the current, increase the breakdown voltage, and reduce the size of a Schottky barrier diode formed of a nitride semiconductor on a Si substrate.

本発明者らは、基板面に垂直方向に電流を流す構造を創案した。すなわち、本発明によれば、以下のショットキーバリアダイオードが提供される。   The inventors of the present invention have invented a structure in which current flows in a direction perpendicular to the substrate surface. That is, according to the present invention, the following Schottky barrier diode is provided.

[1]n-Si基板上に少なくともAlGa1−XNバッファ層およびn‐GaN層を含む積層構造のショットキーバリアダイオードであって、積層構造の表面にショットキー電極、前記Si基板裏面にオーミック電極が形成され、電流を積層方向に流すショットキーバリアダイオード。 [1] A Schottky barrier diode having a laminated structure including at least an Al X Ga 1-X N buffer layer and an n -GaN layer on an n + -Si substrate, the Schottky electrode on the surface of the laminated structure, the Si A Schottky barrier diode in which an ohmic electrode is formed on the backside of the substrate and current flows in the stacking direction.

[2]AlGa1−XNバッファ層およびn‐GaN層との間に超格子層が形成され、超格子層の一方の組成がAlNであり、他方の組成がAlGa1−YNであり、Y:0〜0.30である前記[1]請求項1に記載のショットキーバリアダイオード。 [2] A superlattice layer is formed between the Al X Ga 1- XN buffer layer and the n -GaN layer, and one composition of the superlattice layer is AlN, and the other composition is Al Y Ga 1− The Schottky barrier diode according to claim 1, wherein Y is N, and Y is 0 to 0.30.

[3]前記AlGa1−XNバッファ層において、X≧0.30、膜厚が1nm〜10nmである前記[1]または[2]に記載のショットキーバリアダイオード。 [3] The Schottky barrier diode according to the above [1] or [2], wherein the Al X Ga 1-X N buffer layer has X ≧ 0.30 and a film thickness of 1 nm to 10 nm.

[4]前記AlGa1−XNバッファ層および歪超格子層にSiがドープされた前記[1]〜[3]のいずれかに記載のショットキーバリアダイオード。 [4] The Schottky barrier diode according to any one of [1] to [3], wherein the Al X Ga 1-X N buffer layer and the strained superlattice layer are doped with Si.

[5]前記n‐GaN層のキャリア密度が5×1015〜2×1017cm−3である前記[1]〜[4]のいずれかに記載のショットキーバリアダイオード。 [5] The Schottky barrier diode according to any one of [1] to [4], wherein the n -GaN layer has a carrier density of 5 × 10 15 to 2 × 10 17 cm −3 .

[6]前記積層構造表面に絶縁膜またはp‐GaN層が形成され、その一部が前記ショットキー電極と重なる前記[1]〜[5]のいずれかに記載のショットキーバリアダイオード。 [6] The Schottky barrier diode according to any one of [1] to [5], wherein an insulating film or a p-GaN layer is formed on the surface of the stacked structure, and a part thereof overlaps the Schottky electrode.

従来のショットキーバリアダイオード構造の断面構造を示す図である。It is a figure which shows the cross-section of the conventional Schottky barrier diode structure. 従来のショットキーバリアダイオード構造の別の断面構造を示す図である。It is a figure which shows another cross-section of the conventional Schottky barrier diode structure. 従来のAlGaN/GaN HEMT構造の断面構造を示す図である。It is a figure which shows the cross-section of the conventional AlGaN / GaN HEMT structure. 本発明のショットキーバリアダイオード構造の断面構造を示す図である。It is a figure which shows the cross-section of the Schottky barrier diode structure of this invention. 本発明の他のショットキーバリアダイオード構造の断面構造を示す図である。It is a figure which shows the cross-section of the other Schottky barrier diode structure of this invention. 実施例1のn‐GaN層のSiドーピング特性を調べる積層構造を示す図である。3 is a diagram illustrating a stacked structure for examining Si doping characteristics of an n -GaN layer of Example 1. FIG. SiHの流量とキャリア密度の関係を示す図である。Is a diagram showing the relationship between flow rate and the carrier density of the SiH 4. バッファ層としてAlN層の膜厚とキャリア密度の関係を示す図である。It is a figure which shows the relationship between the film thickness of an AlN layer as a buffer layer, and carrier density.

以下、図面を参照しつつ本発明の実施の形態について説明する。本発明は、以下の実施形態に限定されるものではなく、発明の範囲を逸脱しない限りにおいて、変更、修正、改良を加え得るものである。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. The present invention is not limited to the following embodiments, and changes, modifications, and improvements can be added without departing from the scope of the invention.

本発明において基板は、その上に形成するバッファ層(緩衝層)、歪超格子層、およびn‐GaN層の各組成あるいは形成手法に応じて適宜に選択される。例えば、基板としては、シリコン、ゲルマニウム、サファイア、炭化ケイ素、酸化物(ZnO、LiAlO,LiGaO,MgAl,(LaSr)(AlTa)O,NdGaO,MgOなど)、Si-Ge合金、周期律表の第3族−第5族化合物(GaAs,AlN,GaN,AlGaN、AlInN)、ホウ化物(ZrB2など)、などを用いることができる。ただし、室温〜1200℃における前記基板の熱膨張係数が基板上に形成するAlGa1−XNからなる膜の熱膨張係数より小さいことが好ましく、なかでもSi基板が品質およびコストの点で好ましく、Si単結晶が特に好ましく、基板の厚みとしては0.42〜1.00mmが好適である。 In the present invention, the substrate is appropriately selected according to each composition or formation method of the buffer layer (buffer layer), strained superlattice layer, and n -GaN layer formed thereon. For example, as a substrate, silicon, germanium, sapphire, silicon carbide, oxide (ZnO, LiAlO 2 , LiGaO 2 , MgAl 2 O 4 , (LaSr) (AlTa) O 3 , NdGaO 3 , MgO, etc.), Si—Ge An alloy, a Group 3 to Group 5 compound of the periodic table (GaAs, AlN, GaN, AlGaN, AlInN), boride (such as ZrB2), and the like can be used. However, the thermal expansion coefficient of the substrate at room temperature to 1200 ° C. is preferably smaller than the thermal expansion coefficient of the film made of Al X Ga 1-X N formed on the substrate, and the Si substrate is particularly preferable in terms of quality and cost. Preferably, Si single crystal is particularly preferable, and the thickness of the substrate is preferably 0.42 to 1.00 mm.

バッファ層は、その上に形成するデバイス層の組成や構造、あるいは各層の形成手法に応じて、様々な第3族窒化物半導体からなる層から形成される。本発明では、バッファ層はAlGa1−XNからなり、X≧0.30であり、X≧0.70がより好ましい。X=1が特に好ましい。膜厚として1nm〜30nmが好ましく、1nm〜10nmがより好ましく、3nm〜10nmさらに好ましい。このバッファ層は、例えばMOCVD法やMBE法などの公知の成膜手法にて形成される。歪や転位密度ができるだけ少ない膜構造とすることが好ましく、後に形成される膜の品質に影響するため、転位密度は1×1011cm−2以下に形成することが好ましい。なお、バッファ層とデバイス層のn‐GaN層との間に、更なる格子歪低減のため、超格子層を形成することが好ましい。超格子層としては、一方の組成がAlNであり、他方の組成がAlGa1−YNであり、Yが0〜0.30であることが好ましい。そして、超格子の一対がAlNとAlGa1−YNの場合、その膜厚比(AlN:AlGa1−YN)が1:2〜1:5が好ましい。また、AlNバッファ層および歪超格子層にSiがドープされることが、ショットキーバリアダイオードの直列抵抗成分の低減のためにより好ましい。 The buffer layer is formed of various Group 3 nitride semiconductor layers depending on the composition and structure of the device layer formed thereon or the method of forming each layer. In the present invention, the buffer layer is made of Al X Ga 1-X N, and X ≧ 0.30, and more preferably X ≧ 0.70. X = 1 is particularly preferred. The film thickness is preferably 1 nm to 30 nm, more preferably 1 nm to 10 nm, and even more preferably 3 nm to 10 nm. This buffer layer is formed by a known film formation method such as MOCVD method or MBE method. It is preferable that the film structure has as little strain and dislocation density as possible, and the dislocation density is preferably 1 × 10 11 cm −2 or less in order to affect the quality of a film to be formed later. A superlattice layer is preferably formed between the buffer layer and the n -GaN layer of the device layer in order to further reduce lattice strain. The superlattice layers, where one composition is AlN, other compositions are Al Y Ga 1-Y N, it is preferable Y is from 0 to 0.30. When a pair of superlattice of AlN and Al Y Ga 1-Y N, the film thickness ratio (AlN: Al Y Ga 1- Y N) is 1: 2 to 1: 5 are preferred. Further, it is more preferable that the AlN buffer layer and the strained superlattice layer are doped with Si in order to reduce the series resistance component of the Schottky barrier diode.

本発明の場合は、バッファ層、超格子層に引き続き、膜厚0.5μm〜2.0μmのn‐GaN層が形成される。n‐GaN層は、GaNにSiHを用いてキャリア密度が5×1015〜2×1017cm−3になるようにSiをドープしてn型として形成する。 In the present invention, an n -GaN layer having a thickness of 0.5 μm to 2.0 μm is formed following the buffer layer and the superlattice layer. The n -GaN layer is formed as n-type by doping Si with GaN using SiH 4 so that the carrier density is 5 × 10 15 to 2 × 10 17 cm −3 .

‐GaN層の表面の素子中央部となる領域以外にはSiO等の絶縁層あるいはP型GaN層を形成することが好ましい。SiO等の絶縁層あるいはP型GaN層が形成されない素子中央部の領域にショットキー電極、一方基板裏面にはオーミック電極が形成される。たとえば、ショットキー電極としてはPdTiAu、オーミック電極としてはAuSb/Auが形成される。 An insulating layer such as SiO 2 or a P-type GaN layer is preferably formed in a region other than the central portion of the element on the surface of the n -GaN layer. A Schottky electrode is formed in a central region of the element where an insulating layer such as SiO 2 or a P-type GaN layer is not formed, and an ohmic electrode is formed on the back surface of the substrate. For example, PdTiAu is formed as the Schottky electrode, and AuSb / Au is formed as the ohmic electrode.

(実施例1:n‐GaN層のSiドーピング特性)
4インチ径、厚み525μmの(111)面のn‐Si基板(抵抗率0.004Ω・cm以下)を用い、この基板をMOCVD装置の反応管内に設置した。MOCVD装置は、キャリアガスとしてH、N、反応ガスとして、TMG(トリメチルガリウム)、TMA(トリメチルアルミニウム)およびNHが反応管に供給可能とされている。キャリアガスとして水素を流量20SLM、及び窒素を流量10SLMで流しながら、反応管内の圧力を100Torrに保ちつつ、基板を1210℃まで昇温した後、10分間保持し、基板のサーマルクリーニングを実施した。
その後、基板温度を下げて1030℃に保ちつつ、TMAとそのキャリアガスである水素を供給するとともに、NHとそのキャリアガスである水素とを供給することにより、バッファ層として膜厚5nmのAlN層を最初に形成した。供給反応ガスのモル比、すなわち、第5族ガス/第3族ガス(NH/TMA)の比は5600とし、反応管内の圧力は100Torr、SiHの流量は100SCCMとした。なお、同じ条件で、AlN層の膜厚5nm以外に、膜厚20nm,80nmの2種類を準備した。
次に、基板温度を1130℃にし、GaN層/AlN層からなる超格子層を形成した。バッファ層同様に、供給ガスとしてTMA、TMG、およびNHの供給量を調整して、反応管内の圧力は100Torr、SiHの流量は100SCCMとした。GaN層とAlN層をそれぞれ20nm、5nmの膜厚で交互に積層し、超格子層として3.0μm厚とした。
基板温度を1130℃維持したまま、圧力を760Torr、供給する反応ガスモル比(第5族ガス/第3族ガス)が2800となるように供給して、膜厚1.0μmのn‐GaN層を形成した。モノシラン(SiH)の流量を0.15SCCM〜8.0SCCMと変化させた。
図6に示す積層構造にて、n-GaN層へのSiHを用いたSiのドーピング特性の評価を行った。AlN層は、成長温度1030℃、圧力100Torr、膜厚5nm、歪超格子は成長温度1030℃、圧力100Torr、その膜構成はGaN(20nm)/AlN(5nm)の合計120層、n‐GaN層は1130℃、圧力760Torr、膜厚1μmとした。
キャリア密度の測定は、容量−電圧(C−V)法を用いて行った(図7参照)。n−GaN層の表層1μmまではSiHの流量を増加とともにキャリア密度は増加するが、より深い部位での特定の傾向は見いだせなかった。また転位密度はX線の半値幅を用いて求めた。AlNの膜厚が5nmの場合は、転位密度が1×1011cm−2 、SiHの供給量に対するキャリア密度(5×1015〜1×1018cm−3)の制御が容易である。これに対して、AlN層の膜厚が20nmおよび80nmの場合、転位密度が5×1011cm−2と大きく、またSiHの供給量に対するキャリア密度変化(1×1015〜1×1017cm−3)と変化が大きく、その制御が困難である(図8参照)。
Example 1: Si doping characteristics of n -GaN layer
A (111) -plane n + -Si substrate (resistivity 0.004 Ω · cm or less) having a diameter of 4 inches and a thickness of 525 μm was used, and this substrate was placed in a reaction tube of an MOCVD apparatus. The MOCVD apparatus can supply H 2 and N 2 as carrier gases and TMG (trimethyl gallium), TMA (trimethyl aluminum) and NH 3 as reaction gases to the reaction tube. While flowing hydrogen as a carrier gas at a flow rate of 20 SLM and nitrogen at a flow rate of 10 SLM, while maintaining the pressure in the reaction tube at 100 Torr, the substrate was heated to 1210 ° C. and then held for 10 minutes to perform thermal cleaning of the substrate.
Thereafter, while the substrate temperature is lowered and maintained at 1030 ° C., TMA and hydrogen as its carrier gas are supplied, and NH 3 and hydrogen as its carrier gas are supplied to thereby form a 5 nm-thick AlN film as a buffer layer. A layer was first formed. The molar ratio of the supplied reaction gas, that is, the ratio of Group 5 gas / Group 3 gas (NH 3 / TMA) was 5600, the pressure in the reaction tube was 100 Torr, and the flow rate of SiH 4 was 100 SCCM. Under the same conditions, two types of film thicknesses of 20 nm and 80 nm were prepared in addition to the film thickness of the AlN layer of 5 nm.
Next, the substrate temperature was set to 1130 ° C. to form a superlattice layer composed of a GaN layer / AlN layer. Similarly to the buffer layer, the supply amounts of TMA, TMG, and NH 3 were adjusted as supply gases, the pressure in the reaction tube was 100 Torr, and the flow rate of SiH 4 was 100 SCCM. A GaN layer and an AlN layer were alternately stacked with a thickness of 20 nm and 5 nm, respectively, to obtain a thickness of 3.0 μm as a superlattice layer.
While maintaining the substrate temperature at 1130 ° C., the pressure was set to 760 Torr, the reaction gas molar ratio (Group 5 gas / Group 3 gas) to be supplied was set to 2800, and an n-GaN layer having a thickness of 1.0 μm was formed. Formed. The flow rate of monosilane (SiH 4 ) was changed from 0.15 SCCM to 8.0 SCCM.
In the laminated structure shown in FIG. 6, the doping characteristics of Si using SiH 4 to the n-GaN layer were evaluated. The AlN layer has a growth temperature of 1030 ° C., a pressure of 100 Torr, a film thickness of 5 nm, the strained superlattice has a growth temperature of 1030 ° C., a pressure of 100 Torr, and the film structure is a total of 120 layers of GaN (20 nm) / AlN (5 nm), n-GaN layer Was 1130 ° C., pressure 760 Torr, and film thickness 1 μm.
The carrier density was measured using a capacitance-voltage (CV) method (see FIG. 7). Although the carrier density increases with an increase in the flow rate of SiH 4 up to the surface layer of 1 μm of the n-GaN layer, a specific tendency in a deeper part was not found. The dislocation density was determined using the half width of X-rays. When the film thickness of AlN is 5 nm, the dislocation density is 1 × 10 11 cm −2 and the carrier density (5 × 10 15 to 1 × 10 18 cm −3 ) with respect to the supply amount of SiH 4 can be easily controlled. On the other hand, when the film thickness of the AlN layer is 20 nm and 80 nm, the dislocation density is as large as 5 × 10 11 cm −2, and the carrier density change (1 × 10 15 to 1 × 10 17 with respect to the SiH 4 supply amount). cm −3 ) and the change is large, and its control is difficult (see FIG. 8).

(実施例2:SiO2絶縁膜を有するGaNショットキーバリアダイオード)
実施例1の構造(図6)および同じプロセスにおいて、n−GaN層へのSiHの流量を0.4SCCMとして結晶成長を行った後、Si基板の裏面に電子ビーム蒸着法を用いて、AuSb/Au(20nm/100nm) 蒸着し、その後300℃でアニールし、Si基板裏面のオーミック電極を形成した。その後、素子表面側において電子ビーム蒸着法によりSiO絶縁膜100nmを蒸着し、部分的にSiO膜を除去した。さらにフォトリソグラフィ技術とリフトオフ法を用いてショットキー電極としてPd/Ti/Au (40nm/20nm/60nm)を電子ビーム蒸着法により形成した。チップサイズは1×1mmとした。
当ショットキーバリアダイオードの電流−電圧特性を測定したところ、立ち上がり電圧:1.4V、順方向電圧:2.1V(@順方向電流:8A)、耐圧:850Vであった。
(Example 2: GaN Schottky barrier diode having SiO2 insulating film)
In the structure of Example 1 (FIG. 6) and the same process, after crystal growth was performed with the flow rate of SiH 4 to the n-GaN layer being 0.4 SCCM, the back surface of the Si substrate was subjected to electron beam evaporation, and AuSb / Au (20 nm / 100 nm) was deposited, and then annealed at 300 ° C. to form an ohmic electrode on the back surface of the Si substrate. Thereafter, an SiO 2 insulating film of 100 nm was deposited on the element surface side by an electron beam deposition method, and the SiO 2 film was partially removed. Further, Pd / Ti / Au (40 nm / 20 nm / 60 nm) was formed by electron beam evaporation as a Schottky electrode by using a photolithography technique and a lift-off method. The chip size was 1 × 1 mm 2 .
When the current-voltage characteristics of the Schottky barrier diode were measured, the rising voltage was 1.4 V, the forward voltage was 2.1 V (@ forward current: 8 A), and the withstand voltage was 850 V.

(実施例3:p−GaN層を有するGaNショットキーバリアダイオード層)
実施例1の構造(図6)および同じプロセスにおいて、n−GaN層へのSiHの流量を0.4SCCMとして結晶成長を行った後、素子側において、SiO(膜厚100nm)を全面に成膜した。その後、部分的にSiOを除去し、SiO膜以外の部分のn−GaN層をRIE(BCl, 10SCCM、 3Pa、5W、10分)を用いて選択的に0.1μm除去した。その後、SiO膜をマスクとして、膜厚が0.1μmのp−GaN層の選択再成長を行う。そして、SiO膜を除去した後、750℃、20分間、窒素雰囲気中で活性化アニールを行った。その後、実施例2と同様に、Si基板の裏面に電子ビーム蒸着法を用いて、AuSb/Au(20nm/100nm) 蒸着し、その後300℃でアニールし、Si基板裏面のオーミック電極を形成し、フォトリソグラフィ技術とリフトオフ法を用いてショットキー電極としてPd/Ti/Au (40nm/20nm/60nm)を電子ビーム蒸着法により形成した。
当ショットキーバリアダイオードの電流ー電圧特性を測定したところ、立ち上がり電圧:1.4V、順方向電圧:1.9V(@順方向電流:8A)、耐圧:900Vであった。
(Example 3: GaN Schottky barrier diode layer having a p-GaN layer)
In the structure of Example 1 (FIG. 6) and the same process, after crystal growth was performed with the flow rate of SiH 4 to the n-GaN layer being 0.4 SCCM, SiO 2 (film thickness 100 nm) was deposited on the entire surface on the device side. A film was formed. Thereafter, SiO 2 was partially removed, and the n-GaN layer other than the SiO 2 film was selectively removed by 0.1 μm using RIE (BCl 3 , 10SCCM, 3Pa, 5W, 10 minutes). Thereafter, selective regrowth of the p-GaN layer having a film thickness of 0.1 μm is performed using the SiO 2 film as a mask. Then, after removing the SiO 2 film, activation annealing was performed in a nitrogen atmosphere at 750 ° C. for 20 minutes. Thereafter, as in Example 2, using an electron beam evaporation method on the back surface of the Si substrate, AuSb / Au (20 nm / 100 nm) is deposited, and then annealed at 300 ° C. to form an ohmic electrode on the back surface of the Si substrate. Pd / Ti / Au (40 nm / 20 nm / 60 nm) was formed by electron beam evaporation as a Schottky electrode by using a photolithography technique and a lift-off method.
When the current-voltage characteristics of the Schottky barrier diode were measured, the rising voltage was 1.4 V, the forward voltage was 1.9 V (@ forward current: 8 A), and the withstand voltage was 900 V.

本発明は、ショットキーバリアダイオードに用いられる。
The present invention is used for a Schottky barrier diode.

Claims (6)

-Si基板上に少なくともAlGa1−XNバッファ層およびn‐GaN層を含む積層構造のショットキーバリアダイオードであって、積層構造の表面にショットキー電極、前記Si基板裏面にオーミック電極が形成され、電流を積層方向に流すショットキーバリアダイオード。 A Schottky barrier diode having a laminated structure including at least an Al X Ga 1-X N buffer layer and an n -GaN layer on an n + -Si substrate, the Schottky electrode on the surface of the laminated structure, and on the back surface of the Si substrate A Schottky barrier diode in which an ohmic electrode is formed and current flows in the stacking direction. AlGa1−XNバッファ層およびn‐GaN層との間に超格子層が形成され、超格子層の一方の組成がAlNであり、他方の組成がAlGa1−YNであり、Y:0〜0.30である請求項1に記載のショットキーバリアダイオード。 A superlattice layer is formed between the Al X Ga 1- XN buffer layer and the n -GaN layer, and one composition of the superlattice layer is AlN, and the other composition is Al Y Ga 1-Y N. The Schottky barrier diode according to claim 1, wherein Y is 0 to 0.30. 前記AlGa1−XNバッファ層において、X≧0.3、膜厚が1nm〜10nmである請求項1または2に記載のショットキーバリアダイオード。 3. The Schottky barrier diode according to claim 1, wherein the Al X Ga 1-X N buffer layer has X ≧ 0.3 and a film thickness of 1 nm to 10 nm. 前記AlGa1−XNバッファ層および歪超格子層にSiがドープされた請求項1〜3のいずれかに記載のショットキーバリアダイオード。 The Schottky barrier diode according to claim 1, wherein the Al X Ga 1-X N buffer layer and the strained superlattice layer are doped with Si. 前記n‐GaN層のキャリア密度が5×1015〜2×1017cm−3である請求項1〜4のいずれかに記載のショットキーバリアダイオード。 5. The Schottky barrier diode according to claim 1, wherein the n -GaN layer has a carrier density of 5 × 10 15 to 2 × 10 17 cm −3 . 前記積層構造表面に絶縁膜またはp‐GaN層が形成され、その一部が前記ショットキー電極と重なる請求項1〜5のいずれかに記載のショットキーバリアダイオード。
The Schottky barrier diode according to any one of claims 1 to 5, wherein an insulating film or a p-GaN layer is formed on the surface of the laminated structure, and a part thereof overlaps the Schottky electrode.
JP2014152660A 2014-07-28 2014-07-28 Large-current and high-withstand voltage nitride semiconductor vertical schottky barrier diode Pending JP2016031961A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014152660A JP2016031961A (en) 2014-07-28 2014-07-28 Large-current and high-withstand voltage nitride semiconductor vertical schottky barrier diode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014152660A JP2016031961A (en) 2014-07-28 2014-07-28 Large-current and high-withstand voltage nitride semiconductor vertical schottky barrier diode

Publications (1)

Publication Number Publication Date
JP2016031961A true JP2016031961A (en) 2016-03-07

Family

ID=55442194

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014152660A Pending JP2016031961A (en) 2014-07-28 2014-07-28 Large-current and high-withstand voltage nitride semiconductor vertical schottky barrier diode

Country Status (1)

Country Link
JP (1) JP2016031961A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106971943A (en) * 2017-02-09 2017-07-21 香港商莫斯飞特半导体有限公司 The manufacture method of the longitudinal type device of epitaxial layer of gallium nitride growth on a silicon substrate
CN109216332A (en) * 2018-07-23 2019-01-15 西安电子科技大学 A kind of millimeter wave linearization technique based on Schottky diode

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003060212A (en) * 2001-08-20 2003-02-28 Sanken Electric Co Ltd Schottky barrier diode and manufacturing method therefor
JP2005285924A (en) * 2004-03-29 2005-10-13 Furukawa Electric Co Ltd:The Field effect transistor
JP2008124137A (en) * 2006-11-09 2008-05-29 Furukawa Electric Co Ltd:The Power semiconductor element
JP2012094889A (en) * 2011-12-20 2012-05-17 Fuji Electric Co Ltd Semiconductor device
JP2013021124A (en) * 2011-07-11 2013-01-31 Dowa Electronics Materials Co Ltd Group iii nitride epitaxial substrate and manufacturing method thereof
JP2013033983A (en) * 2012-09-24 2013-02-14 Sumitomo Electric Ind Ltd Group iii nitride electronic device
JP2013089723A (en) * 2011-10-17 2013-05-13 Rohm Co Ltd Semiconductor device
JP2014022685A (en) * 2012-07-23 2014-02-03 Nagoya Institute Of Technology Semiconductor laminate structure and semiconductor element using the same
JP2014090056A (en) * 2012-10-30 2014-05-15 Hitachi Metals Ltd Nitride semiconductor element and manufacturing method of the same
JP2014110310A (en) * 2012-11-30 2014-06-12 Furukawa Electric Co Ltd:The Nitride compound semiconductor device and manufacturing method of the same

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003060212A (en) * 2001-08-20 2003-02-28 Sanken Electric Co Ltd Schottky barrier diode and manufacturing method therefor
JP2005285924A (en) * 2004-03-29 2005-10-13 Furukawa Electric Co Ltd:The Field effect transistor
JP2008124137A (en) * 2006-11-09 2008-05-29 Furukawa Electric Co Ltd:The Power semiconductor element
JP2013021124A (en) * 2011-07-11 2013-01-31 Dowa Electronics Materials Co Ltd Group iii nitride epitaxial substrate and manufacturing method thereof
JP2013089723A (en) * 2011-10-17 2013-05-13 Rohm Co Ltd Semiconductor device
JP2012094889A (en) * 2011-12-20 2012-05-17 Fuji Electric Co Ltd Semiconductor device
JP2014022685A (en) * 2012-07-23 2014-02-03 Nagoya Institute Of Technology Semiconductor laminate structure and semiconductor element using the same
JP2013033983A (en) * 2012-09-24 2013-02-14 Sumitomo Electric Ind Ltd Group iii nitride electronic device
JP2014090056A (en) * 2012-10-30 2014-05-15 Hitachi Metals Ltd Nitride semiconductor element and manufacturing method of the same
JP2014110310A (en) * 2012-11-30 2014-06-12 Furukawa Electric Co Ltd:The Nitride compound semiconductor device and manufacturing method of the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106971943A (en) * 2017-02-09 2017-07-21 香港商莫斯飞特半导体有限公司 The manufacture method of the longitudinal type device of epitaxial layer of gallium nitride growth on a silicon substrate
CN109216332A (en) * 2018-07-23 2019-01-15 西安电子科技大学 A kind of millimeter wave linearization technique based on Schottky diode

Similar Documents

Publication Publication Date Title
JP6260145B2 (en) Manufacturing method of semiconductor device
JP2006032911A (en) Semiconductor laminated structure, semiconductor device, and hemt element
JP5596222B2 (en) Semiconductor laminate, method for manufacturing the same, and semiconductor element
JP6052420B2 (en) Manufacturing method of semiconductor device
KR101933230B1 (en) Semiconductor device, hemt device, and method of manufacturing semiconductor device
JP2014053639A (en) Manufacturing method of epitaxial substrate for semiconductor element
JPWO2011118433A1 (en) Epitaxial substrate for semiconductor device and semiconductor device
JP6265328B2 (en) Semiconductor laminated structure and semiconductor element using the same
JP6512669B2 (en) Semiconductor laminated structure and semiconductor device using the same
JP2014022685A (en) Semiconductor laminate structure and semiconductor element using the same
JP2015192004A (en) Mis type normally-off hemt element of recess structure having drain current density/transconductance improved greatly
JP2007115887A (en) Nitride semiconductor element and its manufacturing method
US20120168771A1 (en) Semiconductor element, hemt element, and method of manufacturing semiconductor element
JP6266490B2 (en) Semiconductor device and manufacturing method thereof
US8598626B2 (en) Epitaxial substrate for semiconductor device, schottky junction structure, and leakage current suppression method for schottky junction structure
JP2016031961A (en) Large-current and high-withstand voltage nitride semiconductor vertical schottky barrier diode
JP5806545B2 (en) Semiconductor device, HEMT device, and method for manufacturing semiconductor device
JP2012054341A (en) Semiconductor substrate and semiconductor device
JP2016092083A (en) Vertical type schottky barrier diode using gallium nitride substrate as drift layer
JP2008071832A (en) Group iii nitride semiconductor element and method for manufacturing the same
JP5580012B2 (en) Schottky barrier diode and manufacturing method thereof
JP2012004498A (en) Semiconductor substrate and semiconductor device
Kim et al. Highly efficient InGaN/GaN blue LED grown on Si (111) substrate
JP6654409B2 (en) Substrate for group III nitride semiconductor device and method of manufacturing the same
JP2012004503A (en) Semiconductor substrate and semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180320

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180403

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20180510

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180724

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181030

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181219

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190528