JP2016089449A - Shear force transmission structure and construction method of the same - Google Patents

Shear force transmission structure and construction method of the same Download PDF

Info

Publication number
JP2016089449A
JP2016089449A JP2014224098A JP2014224098A JP2016089449A JP 2016089449 A JP2016089449 A JP 2016089449A JP 2014224098 A JP2014224098 A JP 2014224098A JP 2014224098 A JP2014224098 A JP 2014224098A JP 2016089449 A JP2016089449 A JP 2016089449A
Authority
JP
Japan
Prior art keywords
steel plate
force transmission
underground
transmission structure
shear force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014224098A
Other languages
Japanese (ja)
Other versions
JP6374762B2 (en
Inventor
安永 正道
Masamichi Yasunaga
正道 安永
松浦 正典
Masanori Matsuura
正典 松浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Original Assignee
Kajima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp filed Critical Kajima Corp
Priority to JP2014224098A priority Critical patent/JP6374762B2/en
Publication of JP2016089449A publication Critical patent/JP2016089449A/en
Application granted granted Critical
Publication of JP6374762B2 publication Critical patent/JP6374762B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a shear force transmission structure that can be formed simply.SOLUTION: A shear force transmission structure 10 has steel plates 11, 12, a connecting bolt 13 and a nut 14, etc. The steel plate 11 is buried over an RC continuous wall 3a and an RC sidewall 4a. The steel plate 12 is buried in the RC sidewall 4a. The steel plates 11, 12 are disposed by aligning the position of holes 112, 122. The shaft of the connecting bolt 13 is inserted into the holes 112, 122, and the nut 14 is tightened on the tip. When an underground structure building frame by the RC sidewall 4a and a bottom slab 5 rises by buoyancy, the steel plate 12 rises and the connecting bolt 13 is pushed up, and rubber ring 131 provided around the shaft is destroyed and locked at the upper part of the hole 112 of the steel plate 11. Thereby, the buoyancy applied to the underground structure building frame is transmitted to the RC continuous wall 3a side as a shear force, and can be resisted by the gravity of the RC continuous wall 3a.SELECTED DRAWING: Figure 2

Description

本発明は、土留壁と地下構造躯体の間のせん断力伝達構造、及びせん断力伝達構造の構築方法に関する。   The present invention relates to a shear force transmission structure between a retaining wall and an underground structural frame, and a construction method of the shear force transmission structure.

立坑、地下タンクなどの地下構造躯体を構築する際は、例えば、図14(a)、(b)に示すように土留壁としてRC連壁3(鉄筋コンクリート製地中連続壁)を構築した後、その内側を掘削し、地下構造躯体の構築を行う。   When constructing underground structures such as shafts and underground tanks, for example, after building RC continuous wall 3 (reinforced concrete underground continuous wall) as a retaining wall, as shown in FIGS. 14 (a) and 14 (b), The inside will be excavated and the underground structure will be constructed.

図14(a)は立坑の例であり、地下構造躯体としてRC側壁4と底版5を構築する。図14(b)は地下タンクの例であり、地下構造躯体としてRC側壁6と底版7を構築し、RC側壁6の頂部に屋根8を設ける。RC連壁3及びRC側壁4、6は略円筒状であり、RC側壁4、6はRC連壁3の内周面に接するように設けられる。   FIG. 14A is an example of a vertical shaft, in which an RC side wall 4 and a bottom plate 5 are constructed as an underground structural frame. FIG. 14B shows an example of an underground tank, in which an RC side wall 6 and a bottom plate 7 are constructed as an underground structural frame, and a roof 8 is provided on the top of the RC side wall 6. The RC connecting wall 3 and the RC side walls 4 and 6 are substantially cylindrical, and the RC side walls 4 and 6 are provided so as to be in contact with the inner peripheral surface of the RC connecting wall 3.

近年、地下構造躯体は大型化、大深度化する傾向にあり、その部材寸法は、土圧や水圧などの外力だけではなく、浮力に対する安全性から決まることも多くなっている。この傾向は、上記のような隔壁を持たない略円筒状の地下構造躯体では特に顕著である。そのため、地下構造躯体と土留壁の間にせん断力伝達構造を設け、土留壁の重量で地下構造躯体の浮力に抵抗させる設計が行われることがある。   In recent years, underground structures have a tendency to become larger and deeper, and the member dimensions are often determined not only by external forces such as earth pressure and water pressure, but also by safety against buoyancy. This tendency is particularly remarkable in the substantially cylindrical underground structural frame without the partition walls as described above. For this reason, there is a case where a shear force transmission structure is provided between the underground structural frame and the retaining wall, and the buoyancy of the underground structural frame is resisted by the weight of the retaining wall.

例えば特許文献1では、RC連壁の内側を掘削した後、予めRC連壁に埋設されたせん断鉄筋の機械継手に新たなせん断鉄筋を連結し、この箇所でコンクリートを打設してRC連壁に突出部分を形成しせん断力伝達構造とした後、RC連壁の内側にコンクリートを打設して地下構造躯体を構築することが記載されている。また特許文献2、3には、鋼矢板や鋼管矢板、H形鋼などの鋼製土留壁に設けた孔開き鋼板ジベルによって、鋼製土留壁とその内側の地下構造躯体を一体化することが記載されている。   For example, in Patent Document 1, after excavating the inside of the RC connection wall, a new shear reinforcement is connected to the mechanical joint of the shear reinforcement previously embedded in the RC connection wall, and concrete is placed at this location to place the RC connection wall. After the projecting part is formed in the structure, a shear force transmission structure is formed, and then concrete is placed inside the RC connection wall to construct an underground structural frame. Further, in Patent Documents 2 and 3, a steel retaining wall and an underground structure frame inside thereof are integrated by a perforated steel plate gibber provided in a steel retaining wall such as a steel sheet pile, a steel pipe sheet pile, or an H-shaped steel. Have been described.

特許第3028053号公報Japanese Patent No. 3028053 特開2001-146756号公報JP 2001-146756 A 特開2002-13134号公報JP 2002-13134

しかしながら、特許文献1の方法ではせん断鉄筋の本数が膨大になり、取付けに時間がかかるという問題があった。せん断力伝達構造の工事はクリテイカルな工種であり、その間地下構造躯体の工事等ができず、せん断力伝達構造の形成に時間がかかると全体工程に影響する。   However, the method of Patent Document 1 has a problem that the number of shearing rebars is enormous, and it takes time to mount. The construction of the shear force transmission structure is a critical type of work. During that time, the construction of the underground structure cannot be performed, and if it takes time to form the shear force transmission structure, the entire process will be affected.

また、RC連壁の構築時に打設したコンクリートがせん断鉄筋の機械継手の部分に流れ込むと、接続できないせん断鉄筋が出てくるため、ある程度の不良を考慮して多めに配置することになり、無駄が生じるという問題もあった。この点、特許文献2、3は鋼矢板などの鋼製土留壁に関するものであり、上記のようなRC連壁に関するものではなかった。   Also, if the concrete placed during the construction of the RC wall flows into the mechanical joints of the shear rebars, shear rebars that cannot be connected will come out. There was also a problem that occurred. In this respect, Patent Documents 2 and 3 are related to steel retaining walls such as steel sheet piles, and are not related to the RC continuous wall as described above.

また、特許文献1ではせん断力伝達構造が地下構造躯体側に突出した形状となっており、地下構造躯体が断面欠損となることから強度低下の問題があった。さらに、せん断力伝達構造周りの地下構造躯体の鉄筋が複雑な形状となり、加工、組み立てに時間がかかるとともに、型枠設置、コンクリート打設、養生に時間を要するという問題があった。   Further, in Patent Document 1, the shear force transmission structure has a shape protruding toward the underground structural body, and the underground structural body has a cross-sectional defect, which causes a problem of strength reduction. In addition, the steel bars in the underground structure around the shear force transmission structure have a complicated shape, and it takes time to process and assemble, and also requires time for formwork installation, concrete placement, and curing.

本発明は、上記の問題を鑑みてなされたもので、簡易に形成できるせん断力伝達構造を提供することを目的とする。   The present invention has been made in view of the above problems, and an object thereof is to provide a shear force transmission structure that can be easily formed.

前述した課題を解決するための第1の発明は、土留壁と地下構造躯体の接触面を交差するように設けられるせん断力伝達構造であって、前記土留壁と前記地下構造躯体に渡って埋設され、前記地下構造躯体側に係止部を有する鉛直方向の第1の鋼板と、前記地下構造躯体に埋設された鉛直方向の第2の鋼板と、前記地下構造躯体の上昇時の前記第2の鋼板の上昇に伴って前記係止部に係止されることにより、せん断力の伝達を行う被係止部と、前記被係止部と前記係止部の間に配置された緩衝材と、を有することを特徴とするせん断力伝達構造である。   1st invention for solving the subject mentioned above is a shear force transmission structure provided so that the contact surface of a retaining wall and an underground structure frame may cross | intersect, Comprising: It embeds over the said retaining wall and the said underground structure frame A first vertical steel plate having a locking portion on the underground structural frame side, a second vertical steel plate embedded in the underground structural frame, and the second when the underground structural frame is raised A locked portion that transmits shearing force by being locked to the locking portion as the steel plate rises, and a cushioning material disposed between the locked portion and the locking portion. A shearing force transmission structure characterized by comprising:

前記第1の鋼板は、前記土留壁の前記地下構造躯体側の面における窪み部に配置されることが望ましい。
また、前記第1の鋼板には、前記係止部である孔が設けられ、前記被係止部は、前記孔に通されることが望ましい。
さらに、前記第2の鋼板には、孔が設けられ、前記第1、第2の鋼板は、孔の位置を重ねて配置され、前記被係止部は、軸部の周囲に前記緩衝材を設けたボルトであり、前記軸部を前記第1、第2の鋼板の孔に通し、前記ボルトの頭部と前記軸部の端部に取付けたナットとで前記第1、第2の鋼板が挟まれることが望ましい。
加えて、前記第1、第2の鋼板は鉄筋挿通孔を有し、前記第1の鋼板は前記鉄筋挿通孔に前記土留壁の横鉄筋を通して配置され、前記第2の鋼板は前記鉄筋挿通孔に前記地下構造躯体の横鉄筋を通して配置されることが望ましい。
It is desirable that the first steel plate is disposed in a hollow portion on the surface of the earth retaining wall on the underground structure housing side.
The first steel plate is preferably provided with a hole as the locking portion, and the locked portion is passed through the hole.
Further, the second steel plate is provided with a hole, the first and second steel plates are arranged so that the positions of the holes are overlapped, and the locked portion has the buffer material around the shaft portion. The bolts are provided, the shafts are passed through the holes of the first and second steel plates, and the first and second steel plates are made of nuts attached to the heads of the bolts and the ends of the shafts. It is desirable to be pinched.
In addition, the first and second steel plates have rebar insertion holes, the first steel plate is arranged through the rebar insertion holes through the horizontal rebars of the retaining wall, and the second steel plate is the rebar insertion holes. It is desirable to be arranged through the horizontal rebar of the underground structural frame.

第2の発明は、土留壁と地下構造躯体の接触面を交差するように設けられるせん断力伝達構造の構築方法であって、土留壁を地盤に構築する工程(a)と、前記土留壁の側方の地盤を掘削した掘削部に地下構造躯体を構築する工程(b)と、を具備し、前記工程(a)において、前記土留壁に、前記土留壁から前記地下構造躯体側に突出し、突出箇所に係止部を有する鉛直方向の第1の鋼板が埋設され、前記工程(b)において、前記地下構造躯体に、鉛直方向の第2の鋼板と、前記地下構造躯体の上昇時の前記第2の鋼板の上昇に伴って前記係止部に係止されることにより、せん断力の伝達を行う被係止部と、前記被係止部と前記係止部の間に配置される緩衝材と、が埋設されることを特徴とするせん断力伝達構造の構築方法である。   2nd invention is the construction method of the shear force transmission structure provided so that the contact surface of a retaining wall and an underground structure frame may cross | intersect, Comprising: The process (a) which constructs a retaining wall on the ground, and the said retaining wall And a step (b) for constructing an underground structure in the excavation part excavating the side ground, and in the step (a), the earth retaining wall protrudes from the earth retaining wall to the underground structure body, A first steel plate in the vertical direction having a locking portion at the protruding portion is embedded, and in the step (b), the second steel plate in the vertical direction and the above-mentioned at the time of ascent of the underground structure housing are embedded in the underground structure housing. A locked portion that transmits shearing force by being locked to the locking portion as the second steel plate rises, and a buffer disposed between the locked portion and the locking portion A method of constructing a shearing force transmission structure characterized in that a material is embedded.

前記工程(a)において、前記第1の鋼板の前記地下構造躯体側の端部の周囲に型枠を配置してコンクリートを打設することで前記土留壁を構築し、前記工程(b)において、前記型枠を撤去して前記地下構造躯体のコンクリートを打設することで前記地下構造躯体を構築することが望ましい。   In the step (a), the earth retaining wall is constructed by placing a formwork around the end of the first steel plate on the base structure side and placing concrete, and in the step (b) It is desirable to construct the underground structural frame by removing the formwork and placing concrete of the underground structural frame.

本発明のせん断力伝達構造を、土留壁と地下構造躯体が接している箇所に配置することで、地下構造躯体に浮力が作用し上昇した場合には、地下構造躯体内の第2の鋼板も上昇し、緩衝材が潰れて被係止部が第1の鋼板の係止部に係止される。第1の鋼板は土留壁と地下構造躯体に渡って埋設されており、被係止部の係止時には、地下構造躯体に加わる浮力がせん断力として土留壁側に伝達され、土留壁の重力によって浮力に抵抗できる。このように、本発明では2枚の鋼板等を用いて簡易に形成できる構造によりせん断力の伝達が可能となり、地下構造躯体と土留壁との一体化による部材厚の低減も実現でき、施工面やコスト面で有利になる。   When the shear force transmission structure of the present invention is arranged at a location where the retaining wall and the underground structural frame are in contact with each other, when the buoyancy acts on the underground structural frame and rises, the second steel plate in the underground structural frame is also Ascending, the cushioning material is crushed and the locked portion is locked to the locking portion of the first steel plate. The first steel plate is buried over the retaining wall and the underground structure. When the locked part is locked, the buoyancy applied to the underground structure is transmitted to the retaining wall as shearing force, and the gravity of the retaining wall Can resist buoyancy. Thus, in the present invention, shear force can be transmitted by a structure that can be easily formed using two steel plates, etc., and the thickness of the member can be reduced by integrating the underground structural frame with the earth retaining wall. And it becomes advantageous in terms of cost.

また、箱抜き用の型枠を用いてコンクリートを打設するなどして窪み部を有する土留壁を構築し、この窪み部にせん断力伝達構造を配置することで、地下構造躯体に断面欠損が無く壁厚を薄くでき、コスト的に有利である。また鋼板は、土留壁と地下構造躯体の横鉄筋を用いて容易に固定できる。   In addition, by constructing a retaining wall with a hollow part by placing concrete using a box formwork and arranging a shearing force transmission structure in this hollow part, there is a cross-sectional defect in the underground structural frame. The wall thickness can be reduced without any cost, which is advantageous in terms of cost. The steel plate can be easily fixed using the retaining wall and the horizontal reinforcing bar of the underground structure.

また、2枚の鋼板を孔の位置を合わせて配置し、連結ボルトの軸部を挿入してナットを締め込むことで、連結ボルトを被係止部、鋼板の孔を係止部としてせん断力伝達構造を簡易に形成でき、工期短縮、コスト低減が可能である。また連結ボルトとナットを用いて両鋼板を保持して離間を防ぐことができる。さらに、連結ボルトの軸部の周囲に緩衝材を設けることで、地下構造躯体の構築時に、せん断力伝達構造近傍の地下構造躯体の部分が上方の荷重により多少下降した場合も、連結ボルトの軸部の下方の緩衝材が簡単につぶれることから上記部分の下降幅程度を吸収でき、荷重が連結ボルトに掛らない。   In addition, the two steel plates are arranged with the positions of the holes aligned, the shaft portion of the connecting bolt is inserted, and the nut is tightened, so that the connecting bolt is the locked portion and the hole of the steel plate is the locking portion. The transmission structure can be easily formed, and the construction period can be shortened and the cost can be reduced. Moreover, both steel plates can be held using connecting bolts and nuts to prevent separation. Furthermore, by providing a cushioning material around the shaft part of the connecting bolt, even when the underground structural frame part near the shearing force transmission structure is slightly lowered due to the upward load during construction of the underground structural frame, the shaft of the connecting bolt Since the cushioning material below the portion is easily crushed, the lowering width of the portion can be absorbed, and no load is applied to the connecting bolt.

本発明により、簡易に形成できるせん断力伝達構造を提供することができる。   The present invention can provide a shear force transmission structure that can be easily formed.

せん断力伝達構造10の配置を示す図The figure which shows arrangement | positioning of the shear force transmission structure 10 せん断力伝達構造10の構成を示す図The figure which shows the structure of the shear force transmission structure 10 鋼板11、12を示す図The figure which shows the steel plates 11 and 12 せん断力伝達構造10によるせん断力の伝達について説明する図The figure explaining transmission of the shearing force by the shearing force transmission structure 10 せん断力伝達構造10の構築方法について説明する図The figure explaining the construction method of the shear force transmission structure 10 せん断力伝達構造10の構築方法について説明する図The figure explaining the construction method of the shear force transmission structure 10 せん断力伝達構造10の構築方法について説明する図The figure explaining the construction method of the shear force transmission structure 10 せん断力伝達構造10の構築方法について説明する図The figure explaining the construction method of the shear force transmission structure 10 せん断力伝達構造10の構築方法について説明する図The figure explaining the construction method of the shear force transmission structure 10 せん断力伝達構造10の構築方法について説明する図The figure explaining the construction method of the shear force transmission structure 10 せん断力伝達構造10aを示す図The figure which shows the shearing force transmission structure 10a せん断力伝達構造10aによるせん断力の伝達について説明する図The figure explaining transmission of the shearing force by the shearing force transmission structure 10a せん断力伝達構造10bを示す図The figure which shows the shearing force transmission structure 10b 土留壁と地下構造躯体を示す図Diagram showing retaining wall and underground structure

以下、図面に基づいて本発明の好適な実施形態について詳細に説明する。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings.

[第1の実施形態]
(1.せん断力伝達構造10)
図1は本発明の第1の実施形態に係るせん断力伝達構造10の配置を示す図である。本実施形態では、地盤2に土留壁であるRC連壁3aが設けられ、その内側を掘削した掘削部22に地下構造躯体が設けられる。本実施形態の地下構造躯体は立坑であり、RC側壁4a、底版5を有する。
[First embodiment]
(1. Shear force transmission structure 10)
FIG. 1 is a diagram showing an arrangement of a shear force transmission structure 10 according to the first embodiment of the present invention. In this embodiment, the RC connection wall 3a which is a retaining wall is provided in the ground 2, and the underground structure frame is provided in the excavation part 22 which excavated the inner side. The underground structural frame of this embodiment is a vertical shaft, and has RC side walls 4a and a bottom plate 5.

RC連壁3a、RC側壁4aは、鉛直方向の縦鉄筋や水平方向の横鉄筋などの補強筋を配置してコンクリートを打設し、構築されたものである。RC連壁3a、RC側壁4aは略円筒状であり、平面において、内外のRC連壁3a、RC側壁4aが全周で接している。せん断力伝達構造10は、この接触面を交差するように設けられる。   The RC continuous wall 3a and the RC side wall 4a are constructed by placing concrete reinforcing bars such as vertical reinforcing bars in the vertical direction and horizontal reinforcing bars in the horizontal direction. The RC continuous wall 3a and the RC side wall 4a are substantially cylindrical, and the inner and outer RC continuous wall 3a and the RC side wall 4a are in contact with each other on the entire surface. The shear force transmission structure 10 is provided so as to cross this contact surface.

せん断力伝達構造10は、地下構造躯体(RC側壁4a、底版5)に加わる浮力をせん断力としてRC側壁4aからRC連壁3aに伝達し、RC連壁3aの重力で抵抗させるものである。   The shear force transmission structure 10 transmits buoyancy applied to the underground structural frame (RC side wall 4a, bottom plate 5) as shearing force from the RC side wall 4a to the RC continuous wall 3a, and resists it by the gravity of the RC continuous wall 3a.

図1に示すように、本実施形態では鉛直方向に間隔を空けて複数のせん断力伝達構造10が設けられる。また、せん断力伝達構造10は、RC連壁3aの周方向に沿って等間隔に複数配置される。図1では周方向の一部のせん断力伝達構造10を示している。しかしながら、せん断力伝達構造10の配置はこれに限らない。例えば、1個の長いせん断力伝達構造10を鉛直方向に連続して配置することも可能である。   As shown in FIG. 1, in the present embodiment, a plurality of shear force transmission structures 10 are provided at intervals in the vertical direction. A plurality of shear force transmission structures 10 are arranged at equal intervals along the circumferential direction of the RC continuous wall 3a. FIG. 1 shows a partial shear force transmission structure 10 in the circumferential direction. However, the arrangement of the shear force transmission structure 10 is not limited to this. For example, one long shear force transmission structure 10 can be arranged continuously in the vertical direction.

(2.せん断力伝達構造10の構成)
図2はせん断力伝達構造10の構成を示す図である。図2(a)はせん断力伝達構造10の水平方向断面、図2(b)はせん断力伝達構造10の鉛直方向断面を示す。図2(a)は図2(b)の線B−Bによる断面であり、図2(b)は図2(a)の線A−Aによる断面である。
(2. Configuration of shear force transmission structure 10)
FIG. 2 is a diagram showing a configuration of the shear force transmission structure 10. FIG. 2A shows a horizontal section of the shear force transmission structure 10, and FIG. 2B shows a vertical section of the shear force transmission structure 10. 2A is a cross section taken along line BB in FIG. 2B, and FIG. 2B is a cross section taken along line AA in FIG.

図2(a)、(b)に示すように、せん断力伝達構造10は、鋼板11(第1の鋼板)、12(第2の鋼板)、連結ボルト13(被係止部)、ナット14等を有する。せん断力伝達構造10は、RC連壁3aの内面(RC側壁4a側の面)の窪み部30に配置される。   As shown in FIGS. 2A and 2B, the shear force transmission structure 10 includes a steel plate 11 (first steel plate), 12 (second steel plate), a connecting bolt 13 (locked portion), and a nut 14. Etc. The shear force transmission structure 10 is disposed in the recessed portion 30 on the inner surface of the RC connecting wall 3a (the surface on the RC side wall 4a side).

鋼板11は鉄筋挿通孔111、孔112(係止部)を有し、窪み部30において鉛直方向に配置される。図3(a)に示すように、鉄筋挿通孔111、孔112は、平行する2列のそれぞれに沿って鉛直方向に複数並べて設けられる。鋼板11は、RC連壁3a、RC側壁4aに渡って埋設される。すなわち、鉄筋挿通孔111を含む一部がRC連壁3aに埋設され、孔112を含む残りの部分がRC側壁4aに埋設される。   The steel plate 11 has a reinforcing bar insertion hole 111 and a hole 112 (locking portion), and is arranged in the vertical direction in the recessed portion 30. As shown in FIG. 3A, a plurality of reinforcing bar insertion holes 111 and holes 112 are provided in the vertical direction along two parallel rows. The steel plate 11 is embedded over the RC continuous wall 3a and the RC side wall 4a. That is, a part including the reinforcing bar insertion hole 111 is embedded in the RC connecting wall 3a, and the remaining part including the hole 112 is embedded in the RC side wall 4a.

鋼板12はRC側壁4aに埋設される。鋼板12は鉄筋挿通孔121、孔122を有し、鉛直方向に配置される。図3(b)に示すように、鉄筋挿通孔121、孔122は、平行する2列のそれぞれに沿って鉛直方向に複数並べて設けられる。   The steel plate 12 is embedded in the RC side wall 4a. The steel plate 12 has a reinforcing bar insertion hole 121 and a hole 122 and is arranged in the vertical direction. As shown in FIG. 3B, a plurality of reinforcing bar insertion holes 121 and holes 122 are provided in the vertical direction along each of two parallel rows.

RC連壁3a内には、縦鉄筋31と横鉄筋32からなる鉄筋籠が埋設されており、鋼板11の鉄筋挿通孔111には横鉄筋32が通される。RC側壁4a内にも縦鉄筋41と横鉄筋42が埋設されており、鋼板12の鉄筋挿通孔121に横鉄筋42が通される。これにより、鋼板11、12の位置が固定される。   In the RC connecting wall 3a, a reinforcing bar made up of a vertical reinforcing bar 31 and a horizontal reinforcing bar 32 is embedded, and the horizontal reinforcing bar 32 is passed through the reinforcing bar insertion hole 111 of the steel plate 11. Vertical reinforcing bars 41 and horizontal reinforcing bars 42 are also embedded in the RC side wall 4 a, and the horizontal reinforcing bars 42 are passed through the reinforcing bar insertion holes 121 of the steel plate 12. Thereby, the position of the steel plates 11 and 12 is fixed.

鋼板11、12は、孔112、122の位置を合わせ、重ねて配置される。鋼板11、12は、連結ボルト13とナット14を用いて離間しないように保持される。   The steel plates 11 and 12 are arranged so that the positions of the holes 112 and 122 are aligned. The steel plates 11 and 12 are held so as not to be separated by using connecting bolts 13 and nuts 14.

連結ボルト13は、頭部と、頭部より径の小さい軸部を有し、連結ボルト13の軸部が、鋼板11、12の重なった孔112、122に鋼板12側から挿入される。軸部の先端は鋼板11から突き出ており、この先端にナット14が締め込まれる。これにより、鋼板11、12が連結ボルト13の頭部とナット14で挟まれ、離間するのが防がれる。なお、ここではナット14をきつく締め付けるようなことはせず、鋼板11、12を連結ボルト13の頭部やナット14に対して摺動可能にしておく。   The connecting bolt 13 has a head portion and a shaft portion having a smaller diameter than the head portion, and the shaft portion of the connecting bolt 13 is inserted into the holes 112 and 122 where the steel plates 11 and 12 overlap from the steel plate 12 side. The tip of the shaft portion protrudes from the steel plate 11, and the nut 14 is tightened at this tip. Thereby, the steel plates 11 and 12 are prevented from being sandwiched and separated by the head of the connecting bolt 13 and the nut 14. Here, the nut 14 is not tightened tightly, and the steel plates 11 and 12 are made slidable with respect to the head of the connecting bolt 13 and the nut 14.

連結ボルト13の軸部の周囲には緩衝材であるゴムリング131が設けられ、軸部を孔112、122に挿入した時に、軸部と孔112、122の内周面との間がゴムリング131で埋められる。なお、緩衝材としてはゴムリング131の他、発泡スチロール製リングなども使用できる。   A rubber ring 131 as a buffer material is provided around the shaft portion of the connecting bolt 13, and when the shaft portion is inserted into the holes 112 and 122, the rubber ring is between the shaft portion and the inner peripheral surface of the holes 112 and 122. It is filled with 131. In addition to the rubber ring 131, a foamed polystyrene ring or the like can be used as the buffer material.

(3.せん断力伝達構造10によるせん断力の伝達)
本実施形態のせん断力伝達構造10は、連結ボルト13(被係止部)が鋼板11の孔112(係止部)に係止されることにより、せん断力を伝える構造となっている。これを説明するのが図4であり、図4(a)、(b)はそれぞれ、せん断力伝達構造10の要部の鉛直方向断面を示す図である。
(3. Transmission of shear force by the shear force transmission structure 10)
The shearing force transmission structure 10 of the present embodiment has a structure for transmitting a shearing force by locking the connecting bolt 13 (locked portion) in the hole 112 (locking portion) of the steel plate 11. This is illustrated in FIG. 4, and FIGS. 4A and 4B are diagrams each showing a vertical section of the main part of the shear force transmission structure 10.

すなわち、図4(a)に示す初期の状態から、RC側壁4aと底版5による地下構造躯体が浮力により上昇すると、図4(b)に示すように鋼板12が上昇して連結ボルト13を押し上げる。すると、ゴムリング131が潰れて連結ボルト13の軸部が鋼板11の孔112の上部で係止される。これにより、地下構造躯体に加わる浮力が、せん断力としてRC連壁3a側に伝達され、RC連壁3aの重力によって抵抗できる。   That is, from the initial state shown in FIG. 4 (a), when the underground structural frame by the RC side wall 4a and the bottom slab 5 rises by buoyancy, the steel plate 12 rises and pushes up the connecting bolt 13 as shown in FIG. 4 (b). . Then, the rubber ring 131 is crushed and the shaft portion of the connecting bolt 13 is locked at the upper portion of the hole 112 of the steel plate 11. Thereby, the buoyancy applied to the underground structural frame is transmitted to the RC connection wall 3a side as a shearing force, and can be resisted by the gravity of the RC connection wall 3a.

(4.せん断力伝達構造10の構築方法)
次に、図5〜10を参照してせん断力伝達構造10の構築方法について説明する。図5〜9において、(a)図は図1と同様の鉛直方向断面であり、(b)図は(a)図の線C−Cに沿った水平方向断面である。また図10(a)、(b)は、図5〜9の(b)図と同様の水平方向断面を示す図である。
(4. Method for constructing shearing force transmission structure 10)
Next, the construction method of the shear force transmission structure 10 will be described with reference to FIGS. 5 to 9, (a) is a vertical section similar to FIG. 1, and (b) is a horizontal section taken along line CC in FIG. 5 (a). FIGS. 10A and 10B are views showing a horizontal cross section similar to FIGS. 5 to 9B.

本実施形態では、まず図5(a)、(b)に示すように、RC連壁3aを構築するため、地盤2を掘削して掘削溝21を設ける。   In the present embodiment, first, as shown in FIGS. 5A and 5B, the ground 2 is excavated to provide the excavation groove 21 in order to construct the RC connection wall 3a.

その後、図6(a)、(b)に示すように、鋼板11を掘削溝21内に配置する。鋼板11は縦鉄筋31と横鉄筋32を有する鉄筋籠に予め取り付けられ、鉄筋籠を掘削溝21内に建て込むことで鋼板11の配置も行われる。なお、(a)図では縦鉄筋や横鉄筋等の図示を省略している。以降の図7〜9でも同様である。   Thereafter, as shown in FIGS. 6A and 6B, the steel plate 11 is placed in the excavation groove 21. The steel plate 11 is attached in advance to a reinforcing bar having a vertical reinforcing bar 31 and a horizontal reinforcing bar 32, and the steel plate 11 is also arranged by building the reinforcing bar into the excavation groove 21. In addition, illustration of a vertical reinforcing bar, a horizontal reinforcing bar, etc. is abbreviate | omitted in the (a) figure. The same applies to the following FIGS.

鋼板11は横鉄筋32を鉄筋挿通孔111に通して鉄筋籠に取り付けられる。鋼板11の内側(RC側壁4a側)の、孔112を含む端部の周囲には、箱抜き用の型枠40が予め設けられている。   The steel plate 11 is attached to the reinforcing bar rod by passing the horizontal reinforcing bars 32 through the reinforcing bar insertion holes 111. A box forming mold 40 is provided in advance around the end including the hole 112 inside the steel plate 11 (on the RC side wall 4a side).

その後、掘削溝21にコンクリートを打設する。図7(a)、(b)に示すようにコンクリートは型枠40内を除く部分で充填され、コンクリートが硬化するとRC連壁3aが構築される。RC連壁3aには鋼板11が埋設されるが、鋼板11の内側の端部はRC連壁3aから突出している。この突出箇所には孔112が含まれる。   Thereafter, concrete is placed in the excavation groove 21. As shown in FIGS. 7A and 7B, the concrete is filled in a portion other than the inside of the mold 40, and when the concrete is hardened, the RC continuous wall 3a is constructed. A steel plate 11 is embedded in the RC continuous wall 3a, but an inner end portion of the steel plate 11 protrudes from the RC continuous wall 3a. The protruding portion includes a hole 112.

本実施形態では、RC連壁3aの構築後、図8(a)、(b)に示すように、RC連壁3aの内側を掘削して掘削部22とするとともに、型枠40を撤去する。型枠40を撤去した部分は窪み部30となる。掘削部22の底部には、コンクリート等による底版5を構築する。   In this embodiment, after the construction of the RC connection wall 3a, as shown in FIGS. 8A and 8B, the inside of the RC connection wall 3a is excavated to form the excavation part 22, and the formwork 40 is removed. . The part from which the mold 40 is removed becomes a recess 30. A bottom slab 5 made of concrete or the like is constructed at the bottom of the excavation part 22.

次に、図9(a)、(b)に示すように、鋼板12を、鋼板11の突出箇所に重ねて配置する。この時、鋼板11、12の孔112、122の位置を合わせる。そして、図10(a)に示すように、鋼板11、12の重なった孔112、122に、鋼板12側から連結ボルト13の軸部を通し、鋼板11から突き出た軸部の先端にナット14を締め込む。前記したように、連結ボルト13の軸部の周囲にはゴムリング131が取り付けられている。   Next, as shown in FIGS. 9A and 9B, the steel plate 12 is disposed so as to overlap the protruding portion of the steel plate 11. At this time, the positions of the holes 112 and 122 of the steel plates 11 and 12 are aligned. Then, as shown in FIG. 10 (a), the shafts of the connecting bolts 13 are passed from the steel plate 12 side through the holes 112, 122 where the steel plates 11, 12 overlap, and a nut 14 is attached to the tip of the shaft protruding from the steel plate 11. Tighten. As described above, the rubber ring 131 is attached around the shaft portion of the connecting bolt 13.

また、RC連壁3aの内側では、RC側壁4aの縦鉄筋41と横鉄筋42の配置を行う。この時、鋼板12の鉄筋挿通孔121に横鉄筋42を通しておく。   Moreover, the vertical reinforcing bar 41 and the horizontal reinforcing bar 42 of the RC side wall 4a are arranged inside the RC connecting wall 3a. At this time, the horizontal reinforcing bar 42 is passed through the reinforcing bar insertion hole 121 of the steel plate 12.

その後、図10(b)に示すように、RC連壁3aの内側にてRC側壁4aのコンクリートを打設する。コンクリートが硬化するとRC側壁4aが構築される。RC側壁4a内には鋼板12、連結ボルト13、ゴムリング131やナット14等が埋設される。こうして、図1等で説明したせん断力伝達構造10が構築される。   Then, as shown in FIG.10 (b), the concrete of RC side wall 4a is laid inside RC connection wall 3a. When the concrete hardens, the RC side wall 4a is constructed. A steel plate 12, a connecting bolt 13, a rubber ring 131, a nut 14 and the like are embedded in the RC side wall 4a. In this way, the shear force transmission structure 10 described with reference to FIG.

なお、RC側壁4aのコンクリートは、数ロットに分けて下から上へと順に打設する。この時、せん断力伝達構造10の近傍のコンクリートが、上方のロットのコンクリートの荷重によって多少下降した場合も、連結ボルト13の軸部の下方のゴムリング131が簡単につぶれることから上記側壁のコンクリートの下降幅程度を吸収でき、荷重が連結ボルト13に掛ることはなく、底版5等で支持される。   The concrete of the RC side wall 4a is placed in order from the bottom to the top in several lots. At this time, even when the concrete in the vicinity of the shear force transmission structure 10 is slightly lowered by the load of the concrete in the upper lot, the rubber ring 131 below the shaft portion of the connecting bolt 13 is easily crushed, so the concrete on the side wall Can be absorbed, and the load is not applied to the connecting bolt 13 but is supported by the bottom plate 5 or the like.

以上説明したように、本実施形態では、RC連壁3aとRC側壁4aが接している箇所にせん断力伝達構造10を配置することで、RC側壁4aと底版5からなる地下構造躯体に浮力が作用し上昇した場合には、鋼板12も上昇して前記したようにゴムリング131が潰れ、連結ボルト13が鋼板11の孔112に係止される。これにより、地下構造躯体に加わる浮力がせん断力としてRC連壁3a側に伝達され、RC連壁3aの重力によって浮力に抵抗できる。このように、本実施形態では2枚の鋼板11、12や連結ボルト13等を用いて簡易に形成できる構造によりせん断力の伝達が可能となり、地下構造躯体とRC連壁3aとの一体化による部材厚の低減も実現でき、施工面やコスト面で有利になる。   As described above, in this embodiment, the shear force transmission structure 10 is arranged at a location where the RC connecting wall 3a and the RC side wall 4a are in contact with each other, so that the buoyancy is generated in the underground structural frame composed of the RC side wall 4a and the bottom plate 5. When acting and rising, the steel plate 12 is also raised, the rubber ring 131 is crushed as described above, and the connecting bolt 13 is locked in the hole 112 of the steel plate 11. Thereby, the buoyancy applied to the underground structural frame is transmitted to the RC connection wall 3a as a shearing force, and the buoyancy can be resisted by the gravity of the RC connection wall 3a. Thus, in this embodiment, shear force can be transmitted by a structure that can be easily formed using the two steel plates 11, 12 and the connecting bolt 13, etc., and by integrating the underground structural frame and the RC connecting wall 3a. It is also possible to reduce the thickness of the member, which is advantageous in terms of construction and cost.

また、箱抜き用の型枠40を用いてコンクリートを打設するなどして窪み部30を有するRC連壁3aを構築し、この窪み部30にせん断力伝達構造10を配置することで、RC側壁4aに断面欠損が無く壁厚を薄くでき、コスト的に有利である。また、鋼板11、12は、RC連壁3aとRC側壁4aの横鉄筋32、42を用いて容易に固定できる。   Further, the RC connecting wall 3a having the recessed portion 30 is constructed by placing concrete using the boxing mold 40, and the shear force transmitting structure 10 is disposed in the recessed portion 30. There is no cross-sectional defect in the side wall 4a, and the wall thickness can be reduced, which is advantageous in cost. Moreover, the steel plates 11 and 12 can be easily fixed using the horizontal reinforcing bars 32 and 42 of the RC continuous wall 3a and the RC side wall 4a.

また、本実施形態では、2枚の鋼板11、12を孔112、122の位置を合わせて配置し、連結ボルト13の軸部を挿入してナット14を締め込むことで、せん断力伝達構造10を簡易に形成でき、工期短縮、コスト低減が可能である。また連結ボルト13とナット14を用いて両鋼板11、12を保持して離間を防ぐことができる。   In this embodiment, the two steel plates 11 and 12 are arranged with the positions of the holes 112 and 122 aligned, the shaft portion of the connecting bolt 13 is inserted, and the nut 14 is tightened, whereby the shear force transmission structure 10 is obtained. Can be formed easily, and the construction period can be shortened and the cost can be reduced. Moreover, both the steel plates 11 and 12 can be hold | maintained using the connection bolt 13 and the nut 14, and separation can be prevented.

さらに、連結ボルト13の軸部の周囲にゴムリング131を設けることで、RC側壁4aの構築時に、せん断力伝達構造10の近傍のコンクリートが上方のロットのコンクリートの荷重によって多少下降した場合も、連結ボルト13の軸部の下方のゴムリング131が簡単につぶれることから上記側壁のコンクリートの下降幅程度を吸収でき、荷重が連結ボルト13に掛らず、底版5等で支持される。同様に、連結ボルト13は、RC側壁4aの温度低下や乾燥収縮等に伴う鉛直方向の変位や径方向の変位も拘束しない。従って、これらのケースでもRC側壁4aに応力が発生せず、応力に伴うひび割れも発生しない。連結ボルト13の軸部と孔112、122の内周面との間隔(ゴムリング131の厚さ)は、前記したRC側壁4aの構築時のコンクリートの下降幅や、RC側壁4aの温度低下、乾燥収縮等による変位等を考慮して予め定めることができる。例えば、20-30mm程度とする。   Furthermore, by providing the rubber ring 131 around the shaft portion of the connecting bolt 13, when the RC side wall 4a is constructed, the concrete in the vicinity of the shear force transmission structure 10 is slightly lowered by the load of the concrete in the upper lot. Since the rubber ring 131 below the shaft portion of the connecting bolt 13 is easily crushed, the concrete descending width of the side wall can be absorbed, and the load is not applied to the connecting bolt 13 and is supported by the bottom plate 5 or the like. Similarly, the connecting bolt 13 does not constrain vertical displacement or radial displacement associated with a temperature drop or drying shrinkage of the RC side wall 4a. Therefore, even in these cases, no stress is generated on the RC side wall 4a, and no cracks are generated due to the stress. The distance between the shaft portion of the connecting bolt 13 and the inner peripheral surfaces of the holes 112 and 122 (the thickness of the rubber ring 131) is such that the concrete descending width during the construction of the RC side wall 4a described above, the temperature drop of the RC side wall 4a, It can be determined in advance in consideration of displacement due to drying shrinkage or the like. For example, it is about 20-30 mm.

しかしながら、本発明はこれに限らない。例えば、本実施形態ではRC連壁3aとRC側壁4aが全周で接しているが、少なくとも一部で接しており、その隣接箇所にせん断力伝達構造10が設けられていればよい。また、本実施形態ではRC連壁3a、RC側壁4aを略円筒状としたが、その他の形状、例えば角筒状であってもよい。加えて、本実施形態は、立坑だけでなく図14(b)で説明したような地下タンクなどにも適用可能である。   However, the present invention is not limited to this. For example, in the present embodiment, the RC continuous wall 3a and the RC side wall 4a are in contact with each other around the entire circumference, but at least part of them is in contact, and the shear force transmission structure 10 may be provided in the adjacent portion. Further, in the present embodiment, the RC continuous wall 3a and the RC side wall 4a are substantially cylindrical, but other shapes such as a rectangular tube may be used. In addition, this embodiment can be applied not only to a vertical shaft but also to an underground tank as described with reference to FIG.

次に、本発明のせん断力伝達構造の別の例について、第2、第3の実施形態として説明する。各実施形態は第1の実施形態と異なる点について主に説明し、同様の点については図等で同じ符号を付すなどして説明を省略する。   Next, another example of the shear force transmission structure of the present invention will be described as second and third embodiments. Each embodiment will mainly describe differences from the first embodiment, and the same points will be denoted by the same reference numerals in the drawings and the like, and description thereof will be omitted.

[第2の実施形態]
図11は第2の実施形態のせん断力伝達構造10aを示す図である。図11(a)はせん断力伝達構造10aの水平方向断面、図11(b)はせん断力伝達構造10aの鉛直方向断面を示す。図11(a)は図11(b)の線D−Dによる断面であり、図11(b)は図11(a)の線C−Cによる断面である。
[Second Embodiment]
FIG. 11 is a diagram showing a shear force transmission structure 10a according to the second embodiment. FIG. 11A shows a horizontal section of the shear force transmission structure 10a, and FIG. 11B shows a vertical section of the shear force transmission structure 10a. 11A is a cross section taken along line DD in FIG. 11B, and FIG. 11B is a cross section taken along line CC in FIG. 11A.

図11に示すように、せん断力伝達構造10aは、鋼板11(第1の鋼板)、12a(第2の鋼板)を有する。鋼板11については第1の実施形態と同様である。   As shown in FIG. 11, the shear force transmission structure 10a includes a steel plate 11 (first steel plate) and 12a (second steel plate). The steel plate 11 is the same as that of the first embodiment.

鋼板12aはRC側壁4aに埋設される。鋼板12aは鉄筋挿通孔121と突起124(被係止部)を有し、鉛直方向に配置される。図11(b)に示すように、鉄筋挿通孔121、突起124は、平行する2列のそれぞれに沿って鉛直方向に複数並べて設けられる。突起124の周囲には緩衝材としてゴムリング125が設けられる。鋼板11、12aは、鋼板12aの突起124を鋼板11の孔112(係止部)に通した状態で重ねて配置され、この時、孔112の内周面と突起124との間がゴムリング125で埋められる。   The steel plate 12a is embedded in the RC side wall 4a. The steel plate 12a has a reinforcing bar insertion hole 121 and a projection 124 (locked portion), and is arranged in the vertical direction. As shown in FIG. 11B, a plurality of reinforcing bar insertion holes 121 and protrusions 124 are provided in a vertical direction along two parallel rows. A rubber ring 125 is provided around the protrusion 124 as a cushioning material. The steel plates 11 and 12a are arranged so that the protrusions 124 of the steel plate 12a are passed through the holes 112 (locking portions) of the steel plate 11, and at this time, a rubber ring is formed between the inner peripheral surface of the holes 112 and the protrusions 124. Filled with 125.

また、第1の実施形態と同じく、RC連壁3a内には縦鉄筋31と横鉄筋32が埋設されており、鋼板11の鉄筋挿通孔111には横鉄筋32が通される。RC側壁4a内にも縦鉄筋41と横鉄筋42が埋設されており、鋼板12aの鉄筋挿通孔121に横鉄筋42が通される。これにより、鋼板11、12aが固定される。   Similarly to the first embodiment, the vertical reinforcing bar 31 and the horizontal reinforcing bar 32 are embedded in the RC continuous wall 3 a, and the horizontal reinforcing bar 32 is passed through the reinforcing bar insertion hole 111 of the steel plate 11. Vertical reinforcing bars 41 and horizontal reinforcing bars 42 are also embedded in the RC side wall 4a, and the horizontal reinforcing bars 42 are passed through the reinforcing bar insertion holes 121 of the steel plate 12a. Thereby, the steel plates 11 and 12a are fixed.

本実施形態のせん断力伝達構造10aは、鋼板12aの突起124(被係止部)が鋼板11の孔112(係止部)に係止されることにより、せん断力を伝える構造となっている。これを説明するのが図12であり、図12(a)、(b)はそれぞれ、せん断力伝達構造10aの要部の鉛直方向断面を示す図である。   The shearing force transmission structure 10a of the present embodiment has a structure for transmitting a shearing force by engaging a protrusion 124 (locked portion) of the steel plate 12a with a hole 112 (locking portion) of the steel plate 11. . This is illustrated in FIG. 12, and FIGS. 12 (a) and 12 (b) are views showing a vertical section of the main part of the shear force transmission structure 10a.

すなわち、図12(a)に示す初期の状態から、RC側壁4aと底版5による地下構造躯体が浮力により上昇すると、図12(b)に示すように鋼板12aが上昇し、ゴムリング125が潰れて突起124が鋼板11の孔112の上部で係止される。これにより、前記と同様、地下構造躯体に加わる浮力が、せん断力としてRC連壁3a側に伝達され、RC連壁3aの重力によって抵抗できる。   That is, from the initial state shown in FIG. 12 (a), when the underground structural frame by the RC side wall 4a and the bottom slab 5 rises by buoyancy, the steel plate 12a rises and the rubber ring 125 is crushed as shown in FIG. 12 (b). Thus, the protrusion 124 is locked at the upper portion of the hole 112 of the steel plate 11. Thereby, like the above, the buoyancy applied to the underground structural frame is transmitted to the RC connection wall 3a side as a shearing force and can be resisted by the gravity of the RC connection wall 3a.

[第3の実施形態]
図13(a)、(b)はそれぞれ、第3の実施形態のせん断力伝達構造10bの要部の鉛直方向断面と水平方向断面を示す図である。図13(a)は図13(b)の線F−Fによる断面であり、図13(b)は図13(a)の線E−Eによる断面である。
[Third embodiment]
FIGS. 13A and 13B are views showing a vertical section and a horizontal section, respectively, of the main part of the shear force transmission structure 10b of the third embodiment. 13A is a cross section taken along line FF in FIG. 13B, and FIG. 13B is a cross section taken along line EE in FIG.

本実施形態のせん断力伝達構造10bは、鋼板11b(第1の鋼板)、12b(第2の鋼板)を有し、鋼板12bに設けたかぎ状部126(被係止部)が鋼板11bに設けた函状部115(係止部)に係止されることにより、せん断力を伝える構造となっている。   The shear force transmission structure 10b of this embodiment includes steel plates 11b (first steel plates) and 12b (second steel plates), and a hook-like portion 126 (locked portion) provided on the steel plate 12b is provided on the steel plate 11b. By being locked by the box-shaped portion 115 (locking portion), a shearing force is transmitted.

図に示すように、かぎ状部126は鋼板12bの側面から突出し、先端が上方へ折れ曲がった形となっている。函状部115は鋼板11bの側面に設けられ、下面が開口している。函状部115の内部空間の上部および側部には緩衝材116a、116bがそれぞれ配置され、函状部115の前面の下部には緩衝材116cが設けられる。   As shown in the figure, the hook-shaped portion 126 protrudes from the side surface of the steel plate 12b, and the tip is bent upward. The box-shaped portion 115 is provided on the side surface of the steel plate 11b, and the lower surface is opened. Cushioning materials 116a and 116b are respectively disposed on the upper and side portions of the internal space of the box-shaped portion 115, and a buffering material 116c is provided on the lower portion of the front surface of the box-shaped portion 115.

鋼板12bは、図13(c)に示すように、かぎ状部126の先端の折れ曲がり部を鋼板11bの函状部115の下から挿入して配置する。この時、図13(a)、(b)に示すように、かぎ状部126と函状部115の間に緩衝材116a、116b、116cが配置される。   As shown in FIG. 13C, the steel plate 12b is arranged by inserting the bent portion at the tip of the hook-like portion 126 from below the box-like portion 115 of the steel plate 11b. At this time, as shown in FIGS. 13A and 13B, the cushioning materials 116 a, 116 b, and 116 c are disposed between the hook-shaped portion 126 and the box-shaped portion 115.

なお、説明を省略した構成については第1の実施形態と略同様である。例えば、鋼板11bは第1の実施形態と同様、RC連壁3aとRC側壁4aに渡って埋設され、鋼板12bはRC側壁4aに埋設される。図13(a)、(b)に示した部分はRC側壁4a内に位置する。また、鋼板11b、12bには第1の実施形態と同様の鉄筋挿通孔も設けられ、それぞれRC連壁3a、RC側壁4aの横鉄筋32、42が通される。   Note that the configuration omitted in description is substantially the same as that of the first embodiment. For example, the steel plate 11b is embedded over the RC connecting wall 3a and the RC side wall 4a as in the first embodiment, and the steel plate 12b is embedded in the RC side wall 4a. The portions shown in FIGS. 13A and 13B are located in the RC side wall 4a. The steel plates 11b and 12b are also provided with the same reinforcing bar insertion holes as in the first embodiment, and the horizontal reinforcing bars 32 and 42 of the RC connecting wall 3a and the RC side wall 4a are passed therethrough, respectively.

本実施形態では、RC側壁4aと底版5による地下構造躯体が浮力により上昇すると、図13(d)に示すように鋼板12bが上昇し、函状部115の内部空間の上部の緩衝材116aと函状部115の前面の下部の緩衝材116cが潰れ、かぎ状部126が鋼板11bの函状部115で係止される。これにより、前記と同様、地下構造躯体に加わる浮力が、せん断力としてRC連壁3a側に伝達され、RC連壁3aの重力で抵抗できる。   In the present embodiment, when the underground structural frame by the RC side wall 4a and the bottom slab 5 rises by buoyancy, the steel plate 12b rises as shown in FIG. 13 (d), and the cushioning material 116a above the internal space of the box-shaped portion 115 The cushioning material 116c at the lower part of the front surface of the box-shaped part 115 is crushed, and the hook-shaped part 126 is locked by the box-shaped part 115 of the steel plate 11b. Thus, as described above, the buoyancy applied to the underground structural frame is transmitted to the RC connection wall 3a as a shearing force, and can be resisted by the gravity of the RC connection wall 3a.

以上、添付図面を参照して、本発明の好適な実施形態について説明したが、本発明は係る例に限定されない。当業者であれば、本願で開示した技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。   The preferred embodiments of the present invention have been described above with reference to the accompanying drawings, but the present invention is not limited to such examples. It will be apparent to those skilled in the art that various changes or modifications can be conceived within the scope of the technical idea disclosed in the present application, and these are naturally within the technical scope of the present invention. Understood.

2;地盤
3、3a;RC連壁
4、4a、6;RC側壁
5、7;底版
8;屋根
10、10a、10b;せん断力伝達構造
11、11b、12、12a、12b;鋼板
13;連結ボルト
14;ナット
21;掘削溝
22;掘削部
30;窪み部
31、41;縦鉄筋
32、42;横鉄筋
40;型枠
111、121;鉄筋挿通孔
112、122;孔
124;突起
125、131;ゴムリング
126;かぎ状部
115;函状部
116a、116b、116c;緩衝材
2; Ground 3, 3a; RC connection walls 4, 4a, 6; RC side walls 5, 7; Bottom plate 8; Roof 10, 10a, 10b; Shear force transmission structures 11, 11b, 12, 12a, 12b; Bolt 14; Nut 21; Excavation groove 22; Excavation portion 30; Depression portion 31, 41; Vertical rebar 32, 42; Horizontal rebar 40; Formwork 111, 121; Rebar insertion hole 112, 122; Rubber ring 126; hook-shaped portion 115; box-shaped portions 116a, 116b, 116c;

Claims (7)

土留壁と地下構造躯体の接触面を交差するように設けられるせん断力伝達構造であって、
前記土留壁と前記地下構造躯体に渡って埋設され、前記地下構造躯体側に係止部を有する鉛直方向の第1の鋼板と、
前記地下構造躯体に埋設された鉛直方向の第2の鋼板と、
前記地下構造躯体の上昇時の前記第2の鋼板の上昇に伴って前記係止部に係止されることにより、せん断力の伝達を行う被係止部と、
前記被係止部と前記係止部の間に配置された緩衝材と、
を有することを特徴とするせん断力伝達構造。
A shear force transmission structure provided to cross the contact surface between the retaining wall and the underground structural frame,
A first steel plate in a vertical direction that is embedded over the retaining wall and the underground structure housing and has a locking portion on the underground structure housing side;
A second steel plate in the vertical direction embedded in the underground structural frame;
A locked portion that transmits shearing force by being locked to the locking portion as the second steel plate rises when the underground structure is raised,
A cushioning material disposed between the locked portion and the locking portion;
A shearing force transmission structure characterized by comprising:
前記第1の鋼板は、前記土留壁の前記地下構造躯体側の面における窪み部に配置されることを特徴とする請求項1記載のせん断力伝達構造。   The shear force transmission structure according to claim 1, wherein the first steel plate is disposed in a hollow portion on a surface of the earth retaining wall on the underground structure housing side. 前記第1の鋼板には、前記係止部である孔が設けられ、
前記被係止部は、前記孔に通されることを特徴とする請求項1または請求項2記載のせん断力伝達構造。
The first steel plate is provided with a hole which is the locking portion,
The shearing force transmitting structure according to claim 1, wherein the locked portion is passed through the hole.
前記第2の鋼板には、孔が設けられ、
前記第1、第2の鋼板は、孔の位置を重ねて配置され、
前記被係止部は、軸部の周囲に前記緩衝材を設けたボルトであり、前記軸部を前記第1、第2の鋼板の孔に通し、前記ボルトの頭部と前記軸部の端部に取付けたナットとで前記第1、第2の鋼板が挟まれることを特徴とする請求項3記載のせん断力伝達構造。
A hole is provided in the second steel plate,
The first and second steel plates are arranged so as to overlap the positions of the holes,
The locked portion is a bolt provided with the cushioning material around the shaft portion, the shaft portion is passed through the holes of the first and second steel plates, the bolt head and the end of the shaft portion The shear force transmission structure according to claim 3, wherein the first and second steel plates are sandwiched between nuts attached to the portion.
前記第1、第2の鋼板は鉄筋挿通孔を有し、
前記第1の鋼板は前記鉄筋挿通孔に前記土留壁の横鉄筋を通して配置され、
前記第2の鋼板は前記鉄筋挿通孔に前記地下構造躯体の横鉄筋を通して配置されることを特徴とする請求項1から請求項4のいずれかに記載のせん断力伝達構造。
The first and second steel plates have reinforcing bar insertion holes,
The first steel plate is arranged through the reinforcing bar insertion hole through the horizontal reinforcing bar of the retaining wall,
The shear force transmission structure according to any one of claims 1 to 4, wherein the second steel plate is disposed through the reinforcing bar insertion hole through a horizontal reinforcing bar of the underground structural frame.
土留壁と地下構造躯体の接触面を交差するように設けられるせん断力伝達構造の構築方法であって、
土留壁を地盤に構築する工程(a)と、
前記土留壁の側方の地盤を掘削した掘削部に地下構造躯体を構築する工程(b)と、
を具備し、
前記工程(a)において、
前記土留壁に、
前記土留壁から前記地下構造躯体側に突出し、突出箇所に係止部を有する鉛直方向の第1の鋼板が埋設され、
前記工程(b)において、
前記地下構造躯体に、
鉛直方向の第2の鋼板と、
前記地下構造躯体の上昇時の前記第2の鋼板の上昇に伴って前記係止部に係止されることにより、せん断力の伝達を行う被係止部と、
前記被係止部と前記係止部の間に配置される緩衝材と、
が埋設されることを特徴とするせん断力伝達構造の構築方法。
A method for constructing a shear force transmission structure provided so as to intersect a contact surface between a retaining wall and an underground structural frame,
A step (a) of constructing a retaining wall on the ground;
A step (b) of constructing an underground structural frame in an excavation part excavating the ground on the side of the retaining wall;
Comprising
In the step (a),
To the retaining wall,
The first steel plate in the vertical direction protruding from the earth retaining wall to the underground structure housing side and having a locking portion at the protruding portion is embedded,
In the step (b),
In the underground structure enclosure,
A second steel plate in the vertical direction;
A locked portion that transmits shearing force by being locked to the locking portion as the second steel plate rises when the underground structure is raised,
A cushioning material disposed between the locked portion and the locking portion;
A method for constructing a shearing force transmission structure, wherein the structure is embedded.
前記工程(a)において、前記第1の鋼板の前記地下構造躯体側の端部の周囲に型枠を配置してコンクリートを打設することで前記土留壁を構築し、
前記工程(b)において、前記型枠を撤去して前記地下構造躯体のコンクリートを打設することで前記地下構造躯体を構築する
ことを特徴とする請求項6記載のせん断力伝達構造の構築方法。
In the step (a), the retaining wall is constructed by placing a formwork around the end of the first steel plate on the side of the underground structure and placing concrete.
The method for constructing a shear force transmission structure according to claim 6, wherein in the step (b), the underground structure body is constructed by removing the formwork and placing concrete of the underground structure body. .
JP2014224098A 2014-11-04 2014-11-04 Shear force transmission structure group, construction method of shear force transmission structure Active JP6374762B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014224098A JP6374762B2 (en) 2014-11-04 2014-11-04 Shear force transmission structure group, construction method of shear force transmission structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014224098A JP6374762B2 (en) 2014-11-04 2014-11-04 Shear force transmission structure group, construction method of shear force transmission structure

Publications (2)

Publication Number Publication Date
JP2016089449A true JP2016089449A (en) 2016-05-23
JP6374762B2 JP6374762B2 (en) 2018-08-15

Family

ID=56016477

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014224098A Active JP6374762B2 (en) 2014-11-04 2014-11-04 Shear force transmission structure group, construction method of shear force transmission structure

Country Status (1)

Country Link
JP (1) JP6374762B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114033027A (en) * 2021-10-22 2022-02-11 河南耐睿特实业有限公司 Ultra-low energy consumption integrated heat preservation assembled multi-storey house and installation method

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55150840U (en) * 1979-04-09 1980-10-30
JPH0493413A (en) * 1990-08-10 1992-03-26 Taisei Corp Concrete leak prevention construction for reinforcement cage partitioned plate
JPH07292660A (en) * 1994-04-28 1995-11-07 Takenaka Komuten Co Ltd Steel encased reinforced concrete continuous underground wall
JPH08246476A (en) * 1995-03-07 1996-09-24 Three U:Kk Method of constructing underground structure
JPH0953230A (en) * 1995-08-11 1997-02-25 Takenaka Komuten Co Ltd Composite wall utilizing steel-framed reinforced-concrete structure continuous underground-wall and execution method thereof
JPH09158171A (en) * 1995-12-06 1997-06-17 Kajima Corp Joining method between skeleton and underground continuous wall
JPH10140559A (en) * 1996-11-07 1998-05-26 Ohbayashi Corp Underground continuous wall method and ground stabilizing jig used therefor
JPH11323916A (en) * 1998-05-21 1999-11-26 Ohbayashi Corp Construction method of underground wall
US6240700B1 (en) * 1999-10-12 2001-06-05 Chyi Sheu Constructing method for underground continuous double-row walls and the structure of continuous double-row walls
JP2001173135A (en) * 1999-12-21 2001-06-26 Penta Ocean Constr Co Ltd Underground exterior wall of structure and method of construction thereof
JP2002047671A (en) * 2000-08-01 2002-02-15 Taisei Corp Construction method for underground wall
JP2002250031A (en) * 2000-12-19 2002-09-06 Kensetsu Kikaku Consultant:Kk Underground structural wall and construction method therefor
JP2006052823A (en) * 2004-08-16 2006-02-23 Sugimoto Sangyo Kk Bolt with cushioning washer
JP2009299292A (en) * 2008-06-10 2009-12-24 Shimizu Corp Shear transmission structure between sidewall of underground tank and continuous underground wall

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55150840U (en) * 1979-04-09 1980-10-30
JPH0493413A (en) * 1990-08-10 1992-03-26 Taisei Corp Concrete leak prevention construction for reinforcement cage partitioned plate
JPH07292660A (en) * 1994-04-28 1995-11-07 Takenaka Komuten Co Ltd Steel encased reinforced concrete continuous underground wall
JPH08246476A (en) * 1995-03-07 1996-09-24 Three U:Kk Method of constructing underground structure
JPH0953230A (en) * 1995-08-11 1997-02-25 Takenaka Komuten Co Ltd Composite wall utilizing steel-framed reinforced-concrete structure continuous underground-wall and execution method thereof
JPH09158171A (en) * 1995-12-06 1997-06-17 Kajima Corp Joining method between skeleton and underground continuous wall
JPH10140559A (en) * 1996-11-07 1998-05-26 Ohbayashi Corp Underground continuous wall method and ground stabilizing jig used therefor
JPH11323916A (en) * 1998-05-21 1999-11-26 Ohbayashi Corp Construction method of underground wall
US6240700B1 (en) * 1999-10-12 2001-06-05 Chyi Sheu Constructing method for underground continuous double-row walls and the structure of continuous double-row walls
JP2001173135A (en) * 1999-12-21 2001-06-26 Penta Ocean Constr Co Ltd Underground exterior wall of structure and method of construction thereof
JP2002047671A (en) * 2000-08-01 2002-02-15 Taisei Corp Construction method for underground wall
JP2002250031A (en) * 2000-12-19 2002-09-06 Kensetsu Kikaku Consultant:Kk Underground structural wall and construction method therefor
JP2006052823A (en) * 2004-08-16 2006-02-23 Sugimoto Sangyo Kk Bolt with cushioning washer
JP2009299292A (en) * 2008-06-10 2009-12-24 Shimizu Corp Shear transmission structure between sidewall of underground tank and continuous underground wall

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114033027A (en) * 2021-10-22 2022-02-11 河南耐睿特实业有限公司 Ultra-low energy consumption integrated heat preservation assembled multi-storey house and installation method

Also Published As

Publication number Publication date
JP6374762B2 (en) 2018-08-15

Similar Documents

Publication Publication Date Title
JP6243147B2 (en) Method for connecting curved precast members and connecting structure thereof
JP5728301B2 (en) Foundation structure
KR20130006420A (en) Method of constructing underground structure to be newly built
JP5208904B2 (en) Wall construction method using bags
JP2018168600A (en) Concrete structure and method for constructing the same
JP2009293349A (en) Joint structure between pile and foundation, construction method thereof, and joint method of pile to foundation
JP5976373B2 (en) Pile foundation reinforcement structure and reinforcement method
JP5634931B2 (en) Construction method of underground structure
JP2016205051A (en) Construction method for structure
JP4890217B2 (en) Construction method of underground structure and underground structure
JP6374762B2 (en) Shear force transmission structure group, construction method of shear force transmission structure
KR20050073776A (en) Assembly pile for method of ground improvement
JP2017125322A (en) Base structure
JP6230272B2 (en) Seismic wall and method of forming the same
JP5367452B2 (en) Underground wall construction method and underground wall body
JP6768477B2 (en) How to build an underground structure
JP6302222B2 (en) Horizontal force support structure and method for constructing horizontal force support structure
JP2018009388A (en) End structure of preceding element and construction method of underground continuous wall
JP5551943B2 (en) Foundation structure using ground improvement body
KR102110260B1 (en) Mold assembly for manufacturing phc pile for soil retaining wall
KR102098141B1 (en) A method of constructing an underground wall structure using an earth retaining wall and an underground wall structure
JP6827294B2 (en) Segment wall and tunnel lining
KR200436405Y1 (en) Structure for constructing bracing for reinforcing support
JP6774774B2 (en) Pile foundation structure
JP4885039B2 (en) Lightweight embankment structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170519

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180306

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180424

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180710

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180720

R150 Certificate of patent or registration of utility model

Ref document number: 6374762

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250