JP2009299292A - Shear transmission structure between sidewall of underground tank and continuous underground wall - Google Patents

Shear transmission structure between sidewall of underground tank and continuous underground wall Download PDF

Info

Publication number
JP2009299292A
JP2009299292A JP2008152160A JP2008152160A JP2009299292A JP 2009299292 A JP2009299292 A JP 2009299292A JP 2008152160 A JP2008152160 A JP 2008152160A JP 2008152160 A JP2008152160 A JP 2008152160A JP 2009299292 A JP2009299292 A JP 2009299292A
Authority
JP
Japan
Prior art keywords
wall
underground
tank
continuous
continuous underground
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008152160A
Other languages
Japanese (ja)
Inventor
Masanori Tsuchiya
雅徳 土屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Construction Co Ltd
Shimizu Corp
Original Assignee
Shimizu Construction Co Ltd
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Construction Co Ltd, Shimizu Corp filed Critical Shimizu Construction Co Ltd
Priority to JP2008152160A priority Critical patent/JP2009299292A/en
Publication of JP2009299292A publication Critical patent/JP2009299292A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Bulkheads Adapted To Foundation Construction (AREA)
  • Underground Structures, Protecting, Testing And Restoring Foundations (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To reduce cost by simplifying a structure. <P>SOLUTION: This shear transmission structure 10 between a sidewall 3 of an underground tank 1 and a continuous underground wall 2 constructed in the ground is constructed by embedding a slip bar 11 over both of the sidewall 3 of the underground tank 1 and the continuous underground wall 2, integrally fixing a continuous underground wall side embedded part 11a of the slip bar 11 to the continuous underground wall 2, and providing a buffer material 12 on the sidewall side embedded part 11b of the slip bar 11. The weight of the underground tank 1 is not transmitted to the continuous underground wall 2, but only the buoyancy applied to the underground tank 1 is transmitted to the continuous underground wall 2. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、LNG貯蔵用等で用いられる地下タンクにおける側壁と連続地中壁とのせん断伝達構造に関する。   The present invention relates to a shear transmission structure between a side wall and a continuous underground wall in an underground tank used for LNG storage or the like.

従来、例えばLNG貯蔵用として用いられる地下タンクは、地盤内に埋設された状態で構築されており、地下水の水圧よって浮力を受ける。そのため、この浮力による地下タンクの躯体の浮き上がりを防止するために地下タンクの底部付近に水抜き構造を設けて、地下タンクに揚水圧が作用しないようにした技術が、例えば特許文献1に開示されている。
特許文献1には、地中連続壁の内側に浸水する地下水を地下タンクの下部に設けた砕石層に集水し、さらにポンプで地上へ排水する構造について記載されている。
Conventionally, for example, an underground tank used for LNG storage is constructed in a state of being buried in the ground, and receives buoyancy due to the water pressure of the underground water. Therefore, for example, Patent Document 1 discloses a technique in which a water drainage structure is provided near the bottom of the underground tank so that the pumping pressure does not act on the underground tank in order to prevent the floating of the underground tank due to this buoyancy. ing.
Patent Document 1 describes a structure in which groundwater submerged inside the underground continuous wall is collected in a crushed stone layer provided in the lower part of the underground tank and further drained to the ground with a pump.

また、水抜きを行わない運転形態をとる地下タンクにおいて、浮き上がりを防止する構造が、例えば特許文献2に提案されている。
特許文献2には、地下タンクの側壁と連続地中壁との間にスリップバーを介挿し、連続地中壁と側壁とを一体化した構造であって、連続地中壁の側壁側に開口したさや管が埋設され、スリップバーの一端をさや管に挿入させて充填硬化材により固定し、他端を側壁に埋設させることで、連続地中壁に対して地下タンクをスリップバーの軸線方向に変位自在とするとともに、地中連続壁の重量付加によって地下タンクの浮き上がりを防ぐようにした構造について記載されている。
特開平9−2572号公報 特開平9−268582号公報
Further, for example, Patent Document 2 proposes a structure that prevents floating in an underground tank that takes an operation mode without draining water.
Patent Document 2 discloses a structure in which a slip bar is inserted between a side wall of an underground tank and a continuous underground wall, and the continuous underground wall and the side wall are integrated, and is open to the side wall side of the continuous underground wall. Saddle pipe is buried, one end of the slip bar is inserted into the sheath pipe and fixed with filling hardened material, and the other end is buried in the side wall, so that the underground tank is connected to the continuous underground wall in the axial direction of the slip bar Describes a structure that can be displaced freely and prevents the underground tank from floating by adding the weight of the underground continuous wall.
Japanese Patent Laid-Open No. 9-2572 JP-A-9-268582

ところで、地下タンクは、通常水抜き設備があり、タンク完成後においては、水抜き運転をする場合と、水抜き運転をしない場合(地震等で水抜き運転が中断される場合)の双方に対応できるように設計されている。そのため、側壁と連続地中壁との間にスリップバーを設けた場合、タンク自体の躯体重量が大きい場合は、浮力とタンク自体の躯体重量の双方に耐え得る構造にするためにスリップバーの設置本数を増加したり、径寸法を大きくしたりすることになり、コストが増大するという問題があった。   By the way, underground tanks usually have drainage facilities, and after tank completion, both when draining operation and when draining operation is not performed (when draining operation is interrupted due to an earthquake, etc.) Designed to be able to. Therefore, when a slip bar is provided between the side wall and the continuous underground wall, if the body weight of the tank itself is large, the slip bar should be installed so that it can withstand both buoyancy and the body weight of the tank itself. There is a problem that the number increases or the diameter increases, which increases the cost.

本発明は、上述する問題点に鑑みてなされたもので、簡単な構造とすることで、コストの低減を図ることができる地下タンクにおける側壁と連続地中壁とのせん断伝達構造を提供することを目的とする。   The present invention has been made in view of the above-described problems, and provides a shear transmission structure between a side wall and a continuous underground wall in an underground tank that can reduce costs by adopting a simple structure. With the goal.

上記目的を達成するため、本発明に係る地下タンクにおける側壁と連続地中壁とのせん断伝達構造では、地盤中に構築した連続地中壁の内側に側壁と底版とを有する地下タンクにおける側壁と連続地中壁とのせん断伝達構造であって、連続地中壁と側壁との双方にわたって鋼棒が埋設され、鋼棒の側壁側埋設部の上に緩衝材が設けられていることを特徴としている。   In order to achieve the above object, in the shear transmission structure between the side wall and the continuous underground wall in the underground tank according to the present invention, the side wall in the underground tank having the side wall and the bottom plate inside the continuous underground wall constructed in the ground, A shear transmission structure with a continuous underground wall, characterized in that a steel bar is embedded over both the continuous underground wall and the side wall, and a buffer material is provided on the side wall side embedded part of the steel bar. Yes.

本発明では、地下水の水圧によって鉛直方向で上向きに作用する揚水圧を受けて地下タンクに上向きの力が作用すると、地下タンクに浮き上がろうとする力がかかるが、側壁の挿通孔の内面下部がせん断伝達構造の鋼棒の側壁側埋設部に当接した状態で地下タンクの上向きの移動が規制される。つまり、側壁にかかる上向きの力は鋼棒を介して連続地中壁に伝達されることになる。そのため、タンク自体の重量に連続地中壁の重量を付加した重量が、揚水圧を受けた地下タンクに作用する浮力(浮き上がろうとする上向きの力)に対抗する耐力となり、地下タンクの浮き上がりを抑制することができる。
また、鋼棒の側壁側埋設部の上に緩衝材が設けられているので、地下タンクの重量などの下向きの力が鋼棒に作用することがなくなり、その下向きの力が鋼棒を介して連続地中壁に伝達されることがなくなる。そのため、鋼棒には地下タンクに作用する上向きの浮力のみに対応する耐力をもたせればよいことになり、例えば鋼棒の数量や径寸法などの仕様を低減したせん断伝達構造とすることができる。
In the present invention, when an upward force is applied to the underground tank by receiving the pumping pressure that acts upward in the vertical direction due to the water pressure of the groundwater, a force to lift the underground tank is applied. The upward movement of the underground tank is restricted in a state in which is in contact with the buried portion on the side wall side of the steel rod having the shear transmission structure. That is, the upward force applied to the side wall is transmitted to the continuous underground wall through the steel bar. Therefore, the weight obtained by adding the weight of the continuous underground wall to the weight of the tank itself provides resistance to the buoyancy acting on the underground tank that has been subjected to the pumping pressure (upward force to lift), and the underground tank is lifted Can be suppressed.
Moreover, since the buffer material is provided on the side wall side buried part of the steel bar, downward force such as the weight of the underground tank does not act on the steel bar, and the downward force is applied via the steel bar. It will not be transmitted to the continuous underground wall. Therefore, it is sufficient that the steel rod has a proof strength corresponding only to the upward buoyancy acting on the underground tank. For example, a shear transmission structure with reduced specifications such as the number and diameter of the steel rod can be provided. .

また、本発明に係る地下タンクにおける側壁と連続地中壁とのせん断伝達構造では、地盤中に構築した連続地中壁の内側に側壁と底版とを有する地下タンクにおける側壁と連続地中壁とのせん断伝達構造であって、連続地中壁と側壁との双方にわたって鋼棒が埋設され、鋼棒の連続地中壁側埋設部の下に緩衝材が設けられていることを特徴としている。   Further, in the shear transmission structure between the side wall and the continuous underground wall in the underground tank according to the present invention, the side wall and the continuous underground wall in the underground tank having the side wall and the bottom plate inside the continuous underground wall constructed in the ground. In this shear transmission structure, a steel bar is embedded over both the continuous underground wall and the side wall, and a buffer material is provided under the continuous underground wall side embedded part of the steel bar.

本発明では、地下水の水圧によって鉛直方向で上向きに作用する揚水圧を受けて地下タンクに上向きの力が作用すると、地下タンクに浮き上がろうとする力がかかり、側壁に一体化された鋼棒にも上向きの力が作用することになる。このとき、鋼棒の連続地中壁側埋設部が連続地中壁の挿通孔の内面上部に当接した状態で地下タンクの上向きの移動が規制される。つまり、側壁にかかる上向きの力は鋼棒を介して連続地中壁に伝達されることになる。そのため、タンク自体の重量に連続地中壁の重量を付加した重量が、揚水圧を受けた地下タンクに作用する浮力(浮き上がろうとする上向きの力)に対抗する耐力となり、地下タンクの浮き上がりを抑制することができる。
また、鋼棒の連続地中壁側埋設部の下に緩衝材が設けられているので、地下タンクの重量などの下向きの力が鋼棒に作用することがなくなり、その下向きの力が鋼棒を介して連続地中壁に伝達されることがなくなる。そのため、鋼棒には地下タンクに作用する上向きの浮力のみに対応する耐力をもたせればよいことになり、例えば鋼棒の数量や径寸法などの仕様を低減したせん断伝達構造とすることができる。
In the present invention, when an upward force is applied to the underground tank by receiving a pumping pressure that acts upward in the vertical direction due to the water pressure of the groundwater, a steel rod integrated on the side wall is applied with a force to lift the underground tank. The upward force will also be applied. At this time, the upward movement of the underground tank is restricted in a state in which the continuous underground wall side buried portion of the steel bar is in contact with the upper part of the inner surface of the insertion hole of the continuous underground wall. That is, the upward force applied to the side wall is transmitted to the continuous underground wall through the steel bar. Therefore, the weight obtained by adding the weight of the continuous underground wall to the weight of the tank itself provides resistance to the buoyancy acting on the underground tank that has been subjected to the pumping pressure (upward force to lift), and the underground tank is lifted Can be suppressed.
In addition, since the buffer material is provided under the continuous underground wall side buried part of the steel bar, downward force such as the weight of the underground tank does not act on the steel bar, and the downward force is It is no longer transmitted to the continuous underground wall via Therefore, it is sufficient that the steel rod has a proof strength corresponding only to the upward buoyancy acting on the underground tank. For example, a shear transmission structure with reduced specifications such as the number and diameter of the steel rod can be provided. .

本発明の地下タンクにおける側壁と連続地中壁とのせん断伝達構造によれば、地下タンクの重量(下向きの力)を連続地中壁に伝達させずに、地下タンクにかかる浮力(上向きの力)のみを連続地中壁に伝達させることができることから、鋼棒の耐力を小さくすることが可能となり、部材費などのコストの低減を図ることができる。   According to the shear transmission structure between the side wall and the continuous underground wall in the underground tank of the present invention, the buoyancy (upward force) applied to the underground tank without transmitting the weight (downward force) of the underground tank to the continuous underground wall. ) Can be transmitted to the continuous underground wall, it is possible to reduce the proof stress of the steel rod and to reduce costs such as member costs.

以下、本発明の第1の実施の形態による地下タンクにおける側壁と連続地中壁とのせん断伝達構造について、図1乃至図3に基づいて説明する。
図1は本発明の第1の実施の形態による地下タンクのせん断伝達構造の概略構成を示す縦断面図、図2は図1に示すせん断伝達構造の要部拡大図、図3は図2に示すA−A線断面図である。
Hereinafter, a shear transmission structure between a side wall and a continuous underground wall in an underground tank according to a first embodiment of the present invention will be described with reference to FIGS. 1 to 3.
1 is a longitudinal sectional view showing a schematic configuration of a shear transmission structure of an underground tank according to a first embodiment of the present invention, FIG. 2 is an enlarged view of a main part of the shear transmission structure shown in FIG. 1, and FIG. It is an AA line sectional view shown.

図1の符号1は、地盤G中に構築された本第1の実施の形態の地下タンクを示している。この地下タンク1は、例えばLNG貯蔵タンクとして使用されるものであり、鉄筋コンクリート造をなし、円筒壁形状をなす連続地中壁2の内周に沿う有底円筒状に形成され、側壁3と底版4とから構成されている。   Reference numeral 1 in FIG. 1 indicates an underground tank according to the first embodiment constructed in the ground G. The underground tank 1 is used, for example, as an LNG storage tank, is reinforced concrete, is formed in a bottomed cylindrical shape along the inner periphery of a continuous underground wall 2 having a cylindrical wall shape, and a side wall 3 and a bottom plate 4.

連続地中壁2は、土留めとして地盤の崩落を防ぐ機能や止水機能をもたせる目的で、地下タンク1の底版4よりもさらに深く地盤に構築されており、地下タンク1の設置箇所周囲に沿って掘削溝を設け、その溝内にコンクリートを流し込む周知技術により構築されている。連続地中壁2と、その内周側に設けられる地下タンク1の側壁3との間はビニールシート等の縁切り材料Sにより縁が切られ、互いに固定されていない状態となっている(図2参照)。   The continuous underground wall 2 is constructed in the ground deeper than the bottom plate 4 of the underground tank 1 for the purpose of preventing the collapse of the ground as a soil retaining and a water stopping function. It is constructed by a well-known technique in which an excavation groove is provided along and concrete is poured into the groove. The edge between the continuous underground wall 2 and the side wall 3 of the underground tank 1 provided on the inner peripheral side thereof is cut by an edge cutting material S such as a vinyl sheet and is not fixed to each other (FIG. 2). reference).

そして、連続地中壁2と地下タンク1の側壁3との間には複数のせん断伝達構造10、10、…が介挿されており、それらのせん断伝達構造10、10、…によって地下タンク1と連続地中壁2とが互いに結合された状態となっている。これらせん断伝達構造10、10、…は、地下タンク1の上下方向および周方向に沿って互いに所定間隔をもって多数配列されている。
なお、連続地中壁2と側壁3との縁切りについては、側壁3に対する連続地中壁2側のコンクリート打継ぎ処理に仕方によっては、縁切り材料Sを介在させなくても、実質、縁切り状態になる場合がある。
A plurality of shear transmission structures 10, 10,... Are interposed between the continuous underground wall 2 and the side wall 3 of the underground tank 1, and the underground tank 1 is connected by the shear transmission structures 10, 10,. And the continuous underground wall 2 are connected to each other. These shear transmission structures 10, 10,... Are arranged in a large number at predetermined intervals along the vertical direction and circumferential direction of the underground tank 1.
In addition, about the edge cut | disconnection of the continuous underground wall 2 and the side wall 3, depending on how the concrete grounding process of the continuous underground wall 2 side with respect to the side wall 3 is carried out, even if it does not interpose the edge cutting material S, it will be in a substantially edge-cut state. There is a case.

図2および図3に示すように、せん断伝達構造10は、連続地中壁2と側壁3との双方にわたって埋設されたスリップバー11(鋼棒)と、そのスリップバー11の側壁側埋設部11b上にのみ設けられた緩衝材12とを備えた構成となっている。   As shown in FIGS. 2 and 3, the shear transmission structure 10 includes a slip bar 11 (steel bar) embedded over both the continuous underground wall 2 and the side wall 3, and a side wall-side embedded portion 11 b of the slip bar 11. It is the structure provided with the shock absorbing material 12 provided only on the top.

スリップバー11は、例えば外径寸法D1(図3参照)が38mmをなす丸鋼の鉄筋であり、一端(連続地中壁側埋設部11a、図2で紙面に向かって右側)が連続地中壁2に埋設され、他端(側壁側埋設部11b、同じく紙面に向かって左側)が地下タンク1の側壁3に埋設されている。
連続地中壁2とスリップバー11の連続地中壁側埋設部11aとは、両者間の間隙にエポキシ樹脂、或いはモルタルなどの硬化材13が充填され、硬化した状態で固定されている。そして、連続地中壁2に形成される連続地中壁側埋設部11aを嵌入させるための挿入孔2Aは、スリップバー11の周囲に適宜量の硬化材13を充填できるだけの断面形状となっている。
The slip bar 11 is, for example, a round steel bar having an outer diameter D1 (see FIG. 3) of 38 mm, and one end (continuous underground wall side embedded portion 11a, right side toward the paper surface in FIG. 2) is continuous underground. It is embedded in the wall 2 and the other end (side wall side embedded portion 11 b, also on the left side as viewed in the drawing) is embedded in the side wall 3 of the underground tank 1.
The continuous underground wall 2 and the continuous underground wall side buried portion 11a of the slip bar 11 are fixed in a cured state by filling a gap between them with a curing material 13 such as epoxy resin or mortar. And the insertion hole 2A for inserting the continuous underground wall side burying portion 11a formed in the continuous underground wall 2 has a cross-sectional shape capable of filling an appropriate amount of the hardening material 13 around the slip bar 11. Yes.

緩衝材12は、例えば発泡スチロール等の材料からなり、スリップバー11の側壁側埋設部11bの上に盛り上げるようにして設けられている。緩衝材12の設置範囲は、例えば外径寸法D1(図3参照)が38mmのスリップバー11においてその上端からの高さ寸法D2で30mm程度の範囲とされる。   The buffer material 12 is made of, for example, a material such as styrene foam, and is provided so as to rise on the side wall-side embedded portion 11 b of the slip bar 11. The installation range of the buffer material 12 is, for example, a range of about 30 mm in the height D2 from the upper end of the slip bar 11 having an outer diameter D1 (see FIG. 3) of 38 mm.

そして、スリップバー11に緩衝材12を外接させた状態で、それらの外周を絶縁テープ14(絶縁部材)で被覆して埋設することで、側壁3の内部でスリップバー11が軸線方向Eに沿って移動自在な状態になっている。
つまり、スリップバー11は、連続地中壁2に対して一体化しているとともに、側壁3に対して分離した状態となっているので、地下タンク1(側壁3)が連続地中壁2に対して水平方向に拘束されない状態となっている。
Then, with the cushioning material 12 circumscribed on the slip bar 11, the outer periphery of the slip bar 11 is covered with an insulating tape 14 (insulating member) and buried, so that the slip bar 11 extends along the axial direction E inside the side wall 3. And is free to move.
That is, since the slip bar 11 is integrated with the continuous underground wall 2 and is separated from the side wall 3, the underground tank 1 (side wall 3) is in contact with the continuous underground wall 2. And is not restrained in the horizontal direction.

次に、上述した地下タンク1に設けたせん断伝達構造10の作用について図面に基づいて説明する。
図1および図2に示すように、本第1の実施の形態によるせん断伝達構造10によれば、連続地中壁2と側壁3との境界面は接合されていない状態となっている。さらに、スリップバー11の連続地中壁側埋設部11aが連続地中壁2に一体に固定されるとともに、側壁側埋設部11bが側壁3に対して軸線方向Eに移動自在であることから、地下タンク1の側壁3が温度収縮を起こしたときや地震時においても、側壁3が連続地中壁2に対して離間する方向に拘束されずに変位可能なことから、地下タンク1の躯体におけるクラックの発生を防止することができる。
Next, the effect | action of the shear transmission structure 10 provided in the underground tank 1 mentioned above is demonstrated based on drawing.
As shown in FIGS. 1 and 2, according to the shear transmission structure 10 according to the first embodiment, the boundary surface between the continuous underground wall 2 and the side wall 3 is not joined. Furthermore, the continuous underground wall side buried portion 11a of the slip bar 11 is integrally fixed to the continuous underground wall 2, and the sidewall side buried portion 11b is movable in the axial direction E with respect to the sidewall 3, Even when the side wall 3 of the underground tank 1 undergoes temperature shrinkage or during an earthquake, the side wall 3 can be displaced without being restrained in a direction away from the continuous underground wall 2. Generation of cracks can be prevented.

また、地下水の水圧によって鉛直方向で上向きに作用する揚水圧を受けて地下タンク1に上向きの力F1が作用すると、地下タンク1に浮き上がろうとする力がかかるが、せん断伝達構造10のスリップバー11の側壁側埋設部11bの下側が側壁3に当接した状態になっているので、地下タンク1の上向きの移動が規制される。つまり、側壁3にかかる上向きの力F1はスリップバー11を介して連続地中壁2に伝達されることになる。そのため、タンク自体の重量に連続地中壁2の重量を付加した重量が、揚水圧を受けた地下タンク1に作用する浮力(浮き上がろうとする上向きの力F1)に対抗する耐力となり、地下タンク1の浮き上がりを抑制することができる。   In addition, when an upward force F1 is applied to the underground tank 1 due to the pumping pressure that acts upward in the vertical direction due to the water pressure of the groundwater, a force to lift the underground tank 1 is applied, but the slip of the shear transmission structure 10 is applied. Since the lower side of the side wall embedded portion 11b of the bar 11 is in contact with the side wall 3, the upward movement of the underground tank 1 is restricted. That is, the upward force F <b> 1 applied to the side wall 3 is transmitted to the continuous underground wall 2 through the slip bar 11. Therefore, the weight obtained by adding the weight of the continuous underground wall 2 to the weight of the tank itself is a proof force against the buoyancy acting on the underground tank 1 subjected to the pumping pressure (upward force F1 to lift) The lift of the tank 1 can be suppressed.

また、スリップバー11の側壁側埋設部11b上に緩衝材12が設けられているので、地下タンク1の重量などの下向きの力F2がスリップバー11に作用することがなくなり、その下向きの力F2がスリップバー11を介して連続地中壁2に伝達されることがなくなる。そのため、スリップバー11には地下タンク1に作用する上向きの浮力のみに対応する耐力をもたせればよいことになり、例えば鋼棒の数量や径寸法などの仕様を低減したせん断伝達構造とすることができる。   Further, since the cushioning material 12 is provided on the side wall buried portion 11b of the slip bar 11, the downward force F2 such as the weight of the underground tank 1 does not act on the slip bar 11, and the downward force F2 thereof. Is not transmitted to the continuous underground wall 2 via the slip bar 11. Therefore, the slip bar 11 only needs to have a yield strength corresponding to only upward buoyancy acting on the underground tank 1, and for example, a shear transmission structure with reduced specifications such as the number and diameter of the steel bars is adopted. Can do.

上述のように本第1の実施の形態による地下タンクにおける側壁と連続地中壁とのせん断伝達構造では、地下タンク1の重量(下向きの力F2)を連続地中壁2に伝達させずに、地下タンク1にかかる浮力(上向きの力F1)のみを連続地中壁2に伝達させることができることから、スリップバー11の耐力を小さくすることが可能となり、部材費などのコストの低減を図ることができる。   As described above, in the shear transmission structure between the side wall and the continuous underground wall in the underground tank according to the first embodiment, the weight (downward force F2) of the underground tank 1 is not transmitted to the continuous underground wall 2. Since only the buoyancy (upward force F1) applied to the underground tank 1 can be transmitted to the continuous underground wall 2, the proof stress of the slip bar 11 can be reduced, and the costs such as the member costs can be reduced. be able to.

次に、他の実施の形態について、添付図面に基づいて説明するが、上述の第1の実施の形態と同一又は同様な部材、部分には同一の符号を用いて説明を省略し、第1の実施の形態と異なる構成について説明する。
図4は本第2の実施の形態によるせん断伝達構造の構造を示す縦断面図であって、図2に対応する図、図5は図4に示すB−B線断面図である。
図4および図5に示すように、第2の実施の形態によるせん断伝達構造20は、緩衝材22を連続地中壁2側に設けた構造となっている。つまり、側壁3には、スリップバー21の側壁側埋設部21bが埋設され固定されている。
Next, other embodiments will be described with reference to the accompanying drawings. However, the same or similar members and parts as those of the above-described first embodiment are denoted by the same reference numerals, and description thereof is omitted. A configuration different from the embodiment will be described.
4 is a longitudinal sectional view showing the structure of the shear transmission structure according to the second embodiment, which corresponds to FIG. 2, and FIG. 5 is a sectional view taken along line BB in FIG.
As shown in FIGS. 4 and 5, the shear transmission structure 20 according to the second embodiment has a structure in which a buffer material 22 is provided on the continuous underground wall 2 side. That is, the side wall-side embedded portion 21 b of the slip bar 21 is embedded and fixed in the side wall 3.

緩衝材22は、スリップバー21の連続地中壁埋設部21aの下に設けられており、例えば発泡スチロール等の材料からなり、スリップバー21の連続地中壁側埋設部21a下に外接させて設けられている。そして、スリップバー21の連続地中壁側埋設部21aを嵌入させるための連続地中壁2に形成される挿入孔2Bは、スリップバー21とその下に緩衝材22を配置できるだけの断面形状となっている。   The cushioning material 22 is provided under the continuous underground wall burying portion 21a of the slip bar 21, and is made of, for example, a material such as polystyrene foam, and is provided so as to circumscribe the continuous underground wall side embedded portion 21a of the slip bar 21. It has been. And the insertion hole 2B formed in the continuous underground wall 2 for inserting the continuous underground wall side burying part 21a of the slip bar 21 has a cross-sectional shape capable of disposing the slip bar 21 and the cushioning material 22 thereunder. It has become.

本第2の実施の形態では、地下水の水圧によって鉛直方向で上向きに作用する揚水圧を受けて地下タンク1に上向きの力が作用すると、地下タンク1に浮き上がろうとする力がかかり、側壁3に一体化されたスリップバー21にも上向きの力F1が作用することになる。このとき、スリップバー21の連続地中壁側埋設部21bが連続地中壁2の挿通孔2Bの内面上部2aに当接した状態で地下タンク1の上向きの移動が規制される。つまり、側壁3にかかる上向きの力F1はスリップバー21を介して連続地中壁2に伝達されることになる。そのため、タンク自体の重量に連続地中壁2の重量を付加した重量が、揚水圧を受けた地下タンク1に作用する浮力(浮き上がろうとする上向きの力F1)に対抗する耐力となり、地下タンク1の浮き上がりを抑制することができる。   In the second embodiment, when an upward force is applied to the underground tank 1 due to the pumping pressure that acts upward in the vertical direction due to the water pressure of the groundwater, a force to lift the underground tank 1 is applied to the side wall. The upward force F <b> 1 is also applied to the slip bar 21 integrated with 3. At this time, the upward movement of the underground tank 1 is restricted in a state where the continuous underground wall side buried portion 21b of the slip bar 21 is in contact with the inner surface upper portion 2a of the insertion hole 2B of the continuous underground wall 2. That is, the upward force F <b> 1 applied to the side wall 3 is transmitted to the continuous underground wall 2 through the slip bar 21. Therefore, the weight obtained by adding the weight of the continuous underground wall 2 to the weight of the tank itself is a proof force against the buoyancy acting on the underground tank 1 subjected to the pumping pressure (upward force F1 to lift) The lift of the tank 1 can be suppressed.

また、スリップバー21の連続地中壁側埋設部21a下に緩衝材22が設けられているので、地下タンク1の重量などの下向きの力F2がスリップバー21に作用することがなくなり、その下向きの力F2がスリップバー21を介して連続地中壁2に伝達されることがなくなる。そのため、スリップバー21には地下タンク1に作用する上向きの浮力のみに対応する耐力をもたせればよいことになり、例えばスリップバー21の数量や径寸法などの仕様を低減したせん断伝達構造とすることができる。   Moreover, since the buffer material 22 is provided under the continuous underground wall side buried part 21a of the slip bar 21, the downward force F2 such as the weight of the underground tank 1 does not act on the slip bar 21, and the downward direction Is not transmitted to the continuous underground wall 2 via the slip bar 21. Therefore, the slip bar 21 only needs to have a yield strength corresponding to only upward buoyancy acting on the underground tank 1, and for example, a shear transmission structure with reduced specifications such as the number and diameter of the slip bar 21 is adopted. be able to.

以上、本発明による地下タンクにおける側壁と連続地中壁とのせん断伝達構造の実施の形態について説明したが、本発明は上記の実施の形態に限定されるものではなく、その趣旨を逸脱しない範囲で適宜変更可能である。
例えば、スリップバー11、21(鋼棒)の位置、数量、径寸法、軸線方向の長さ寸法、等の構成は、地下タンク1の大きさ、重量、揚水圧等の条件に応じて任意に設定することができる。
As mentioned above, although embodiment of the shear transmission structure of the side wall and continuous underground wall in the underground tank by this invention was described, this invention is not limited to said embodiment, The range which does not deviate from the meaning It can be changed as appropriate.
For example, the configuration, such as the position, quantity, diameter dimension, and axial length dimension of the slip bars 11 and 21 (steel bars) can be arbitrarily selected according to conditions such as the size, weight, pumping pressure, etc. of the underground tank 1. Can be set.

また、本実施の形態では絶縁テープ14を採用しているが、軟質塩化ビニル等の樹脂製のさや管(キャップ)のような部材を被せるようにしてもよい。
さらに、緩衝材12、22の設置範囲、設置量についても、本実施の形態に制限されることはない。例えば本実施の形態ではスリップバーの連続地中壁側埋設部、又は側壁側埋設部の範囲で軸方向全体にわたって設けられているが、その範囲内において部分的に設けられていてもかまわない、
Further, although the insulating tape 14 is employed in the present embodiment, a member such as a resin sheath such as soft vinyl chloride or a tube (cap) may be covered.
Furthermore, the installation range and the installation amount of the buffer materials 12 and 22 are not limited to the present embodiment. For example, in the present embodiment, the continuous underground wall side buried portion of the slip bar, or the side wall side buried portion is provided over the entire axial direction, but may be partially provided within the range.

本発明の第1の実施の形態による地下タンクのせん断伝達構造の概略構成を示す縦断面図である。It is a longitudinal cross-sectional view which shows schematic structure of the shear transmission structure of the underground tank by the 1st Embodiment of this invention. 図1に示すせん断伝達構造の要部拡大図である。It is a principal part enlarged view of the shear transmission structure shown in FIG. 図2に示すA−A線断面図である。It is the sectional view on the AA line shown in FIG. 第2の実施の形態によるせん断伝達構造の構造を示す縦断面図であって、図2に対応する図である。It is a longitudinal cross-sectional view which shows the structure of the shear transmission structure by 2nd Embodiment, Comprising: It is a figure corresponding to FIG. 図4に示すB−B線断面図である。FIG. 5 is a sectional view taken along line B-B shown in FIG. 4.

符号の説明Explanation of symbols

1 地下タンク
2 連続地中壁
3 側壁
4 底版
10、20 せん断伝達構造
11、21 スリップバー(鋼棒)
11a、21a 連続地中壁側埋設部
11b、21b 側壁側埋設部
12、22 緩衝材
13 硬化材
14 絶縁テープ
DESCRIPTION OF SYMBOLS 1 Underground tank 2 Continuous underground wall 3 Side wall 4 Bottom plate 10, 20 Shear transmission structure 11, 21 Slip bar (steel bar)
11a, 21a Continuous underground wall side buried portion 11b, 21b Side wall side buried portion 12, 22 Buffer material 13 Curing material 14 Insulating tape

Claims (2)

地盤中に構築した連続地中壁の内側に側壁と底版とを有する地下タンクにおける側壁と連続地中壁とのせん断伝達構造であって、
前記連続地中壁と前記側壁との双方にわたって鋼棒が埋設され、
該鋼棒の側壁側埋設部の上に緩衝材が設けられていることを特徴とする地下タンクにおける側壁と連続地中壁とのせん断伝達構造。
A shear transmission structure between a side wall and a continuous underground wall in an underground tank having a side wall and a bottom plate inside a continuous underground wall constructed in the ground,
A steel rod is embedded over both the continuous underground wall and the side wall,
A shear transmission structure between a side wall and a continuous underground wall in an underground tank, wherein a buffer material is provided on a side wall-side buried portion of the steel bar.
地盤中に構築した連続地中壁の内側に側壁と底版とを有する地下タンクにおける側壁と連続地中壁とのせん断伝達構造であって、
前記連続地中壁と前記側壁との双方にわたって鋼棒が埋設され、
該鋼棒の連続地中壁側埋設部の下に緩衝材が設けられていることを特徴とする地下タンクにおける側壁と連続地中壁とのせん断伝達構造。
A shear transmission structure between a side wall and a continuous underground wall in an underground tank having a side wall and a bottom plate inside a continuous underground wall constructed in the ground,
A steel rod is embedded over both the continuous underground wall and the side wall,
A shear transmission structure between a side wall and a continuous underground wall in an underground tank, wherein a buffer material is provided under the continuous underground wall side buried portion of the steel bar.
JP2008152160A 2008-06-10 2008-06-10 Shear transmission structure between sidewall of underground tank and continuous underground wall Pending JP2009299292A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008152160A JP2009299292A (en) 2008-06-10 2008-06-10 Shear transmission structure between sidewall of underground tank and continuous underground wall

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008152160A JP2009299292A (en) 2008-06-10 2008-06-10 Shear transmission structure between sidewall of underground tank and continuous underground wall

Publications (1)

Publication Number Publication Date
JP2009299292A true JP2009299292A (en) 2009-12-24

Family

ID=41546464

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008152160A Pending JP2009299292A (en) 2008-06-10 2008-06-10 Shear transmission structure between sidewall of underground tank and continuous underground wall

Country Status (1)

Country Link
JP (1) JP2009299292A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012007460A (en) * 2010-05-27 2012-01-12 Taisei Corp Water-cutoff structure of entrance
JP2016089449A (en) * 2014-11-04 2016-05-23 鹿島建設株式会社 Shear force transmission structure and construction method of the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012007460A (en) * 2010-05-27 2012-01-12 Taisei Corp Water-cutoff structure of entrance
JP2016089449A (en) * 2014-11-04 2016-05-23 鹿島建設株式会社 Shear force transmission structure and construction method of the same

Similar Documents

Publication Publication Date Title
JP2009281001A (en) Lift prevention method and buried structure for underground buried object
GB2478362A (en) A pile with a tube extending lengthwise of the pile
JP2014005597A (en) Floatation prevention pile for underground structure and floatation prevention method for underground structure
CN210341902U (en) Can resist miniature pile foundation of bad engineering characteristic of inflation soil foundation
JP6832101B2 (en) Reinforcement structure of embankment and reinforcement method of embankment
JP2009299292A (en) Shear transmission structure between sidewall of underground tank and continuous underground wall
JP5976373B2 (en) Pile foundation reinforcement structure and reinforcement method
CN114150715A (en) Anti-floating anchor rod reverse construction method and steel sleeve used by same
JP2009114815A (en) Reinforcing structure of hollow concrete structure, and reinforcing method of hollow concrete structure
CN211447282U (en) Connecting system for pile and column integrated construction
JP2010163771A (en) Structure and construction method for coping with liquefaction of structure
KR102071271B1 (en) Concrete Caisson and Constructing Method thereof
JP5176788B2 (en) Construction method of underground structure
KR101539185B1 (en) Method of constructing steel anchor having controlled lifting distance and structure thereof
JP6931600B2 (en) Ground tank
KR101481810B1 (en) Method for construction of constinuous overlap pile wall using the double casing for construction of constinuous overlap pile wall
JP2013139696A (en) Semi-underground structure
JP5282963B2 (en) Structure liquefaction countermeasure structure and structure liquefaction countermeasure construction method
JP2000257077A (en) Construction method of underwater foundation
JP6901956B2 (en) Concrete structure
JP6630616B2 (en) Pile formation method, pile
JP2014156766A (en) Floatation prevention structure and method of manhole
JP3740600B2 (en) Structure for preventing settlement of underground structures
JP5670595B2 (en) Vertical shaft construction method
JP4373862B2 (en) Arrangement with increased horizontal strength