JP2016087675A - Tube expansion plug and design method for tube expansion plug - Google Patents

Tube expansion plug and design method for tube expansion plug Download PDF

Info

Publication number
JP2016087675A
JP2016087675A JP2014228027A JP2014228027A JP2016087675A JP 2016087675 A JP2016087675 A JP 2016087675A JP 2014228027 A JP2014228027 A JP 2014228027A JP 2014228027 A JP2014228027 A JP 2014228027A JP 2016087675 A JP2016087675 A JP 2016087675A
Authority
JP
Japan
Prior art keywords
tube
expansion
heat transfer
diameter
transfer tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014228027A
Other languages
Japanese (ja)
Other versions
JP6521424B2 (en
Inventor
敬治 天野
Takaharu Amano
敬治 天野
齊藤 洋
Hiroshi Saito
洋 齊藤
宗尚 高橋
Munehisa Takahashi
宗尚 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MA Aluminum Corp
Original Assignee
Mitsubishi Aluminum Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Aluminum Co Ltd filed Critical Mitsubishi Aluminum Co Ltd
Priority to JP2014228027A priority Critical patent/JP6521424B2/en
Publication of JP2016087675A publication Critical patent/JP2016087675A/en
Application granted granted Critical
Publication of JP6521424B2 publication Critical patent/JP6521424B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Details Of Heat-Exchange And Heat-Transfer (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a tube expansion plug.SOLUTION: A tube expansion plug, which expands a heat transfer tube in such a manner that the plug is inserted in the heat transfer tube on an inner peripheral surface of which plural inner fins are formed, has a shank, and a head part formed on a tip side of the shank. The head part has a substantially circular shape such that a diameter of a cross section thereof is gradually increased from a tip side to a maximum diameter part. The head part is equipped with a main tube expansion part which is formed from the maximum diameter part toward the tip side, and an upper limit and a lower limit of a curvature radius R of a longitudinal section of the main tube expansion part has a relationship of the following expression with a diameter D of the maximum diameter part. The upper limit R=-9.37×D+196.69×D-1375.5×D+3214, the lower limit R=-14.43×D+286.66×D-1897.6×D+4190.SELECTED DRAWING: Figure 5

Description

本発明は、拡管プラグおよび拡管プラグの設計方法に関するものである。   The present invention relates to a tube expansion plug and a tube expansion plug design method.

一般に空調機や冷凍機のフィンチューブ式の熱交換器には冷媒を流すための伝熱管が使用されている。この伝熱管として、管内に微細なフィン(内面フィン)を形成した伝熱管を使用することで、従来の平滑管と比較して管内伝熱特性が飛躍的に向上することが知られている。   In general, heat transfer tubes for flowing refrigerant are used in fin tube heat exchangers of air conditioners and refrigerators. As this heat transfer tube, it is known that by using a heat transfer tube in which fine fins (internal fins) are formed in the tube, the heat transfer characteristics in the tube are dramatically improved as compared with the conventional smooth tube.

このような伝熱管を使用して熱交換器を製造する際には、まず、伝熱管を挿通するための孔が予め形成された例えばアルミニウム合金製の多数の放熱板を、伝熱管の長さ方向に沿って所定のピッチで重なるように並べる。次に、伝熱管を各放熱板の孔内に挿通する。さらに、伝熱管内に拡管プラグを押込むことで伝熱管を拡管し、伝熱管の外径を放熱板の孔径より大きくする。これによって伝熱管の外周と放熱板の孔の内周面とを密着させる。   When manufacturing a heat exchanger using such a heat transfer tube, first, a large number of heat-radiating plates made of, for example, an aluminum alloy in which holes for inserting the heat transfer tube are formed in advance are set to the length of the heat transfer tube. Arrange so as to overlap at a predetermined pitch along the direction. Next, the heat transfer tube is inserted into the hole of each heat radiating plate. Furthermore, the heat transfer tube is expanded by pushing a tube expansion plug into the heat transfer tube, and the outer diameter of the heat transfer tube is made larger than the hole diameter of the heat radiating plate. Thus, the outer periphery of the heat transfer tube and the inner peripheral surface of the hole of the heat radiating plate are brought into close contact with each other.

拡管プラグを押し込み、伝熱管を拡管する工程(拡管工程)では、伝熱管の内面フィンが倒れてしまうことがあった。内面フィンに倒れが生じると伝熱管を所定の外径になるまで管を拡管できず伝熱管と放熱板との間の密着性が低下する。これを防ぐために、伝熱管の材質や内面フィンの形状に合わせて、内面フィンの倒れが生じづらい拡管ロッドが様々に開発されている(例えば特許文献1、2)。   In the step of expanding the heat transfer tube by pushing in the tube expansion plug (expansion step), the inner fins of the heat transfer tube may fall down. If the inner fin falls down, the heat transfer tube cannot be expanded until the heat transfer tube has a predetermined outer diameter, and the adhesion between the heat transfer tube and the heat radiating plate decreases. In order to prevent this, various tube expansion rods have been developed in which the inner fins do not easily fall down in accordance with the material of the heat transfer tube and the shape of the inner fins (for example, Patent Documents 1 and 2).

特開2011−208823号公報JP 2011-208823 A 特許第4913371号公報Japanese Patent No. 4913371

近年、エアコン性能の向上と消費電力の節約に伝熱管には更なる熱伝達性能の向上が要求されており、その中で、幅が細く内面フィン高さの高いハイスリムフィンを有する伝熱管が使用されている。しかしながら、ハイスリムフィン化するにつれて、拡管時に内面フィンが倒れやすくなり、所望の拡管率を得ることができなくなるという問題があった。   In recent years, heat transfer tubes have been required to further improve heat transfer performance in order to improve air conditioner performance and save power consumption. Among them, heat transfer tubes with high slim fins with narrow width and high inner fin height are required. It is used. However, as the high slim fins are formed, there is a problem that the inner fins easily fall down during tube expansion, and a desired tube expansion rate cannot be obtained.

また、銅資源の枯渇などの背景から、伝熱管として軽量で安価なアルミニウム又はアルミニウム合金から形成する要求が高まっている。アルミニウム及びアルミニウム合金は、銅合金に比べて強度に劣るため、耐圧強度の面から伝熱管の底肉厚を、銅合金を用いた場合に比べて厚くする必要がある。したがって、拡管時に拡管プラグ挿入方向に加わる荷重(拡管荷重)が増大し伝熱管の座屈が生じ易くなるとともに拡管プラグの摩耗しやすくなるという問題があった。   In addition, from the background of depletion of copper resources and the like, there is an increasing demand for forming heat transfer tubes from light and inexpensive aluminum or aluminum alloys. Since aluminum and aluminum alloy are inferior in strength to copper alloy, it is necessary to make the bottom wall thickness of the heat transfer tube thicker than that in the case of using copper alloy in terms of pressure resistance. Therefore, there has been a problem that the load (tube expansion load) applied in the tube expansion plug insertion direction at the time of tube expansion increases, and the heat transfer tube is easily buckled and the tube expansion plug is easily worn.

本発明は、以上のような従来の実情に鑑みなされたものであり、拡管時の拡管荷重を低減しつつ、内面フィンの倒れを抑制し十分な拡管率を得ることができる拡管プラグの提供を目的とする。   The present invention has been made in view of the conventional situation as described above, and provides a tube expansion plug that can suppress the collapse of the inner fin and obtain a sufficient tube expansion rate while reducing the tube expansion load at the time of tube expansion. Objective.

本発明者らの鋭意検討により、拡管時の拡管荷重及び拡管率は、伝熱管の内周面と当接する拡管プラグのヘッド部の曲率半径が重要なパラメータであることが分かった。ヘッド部の曲率半径を小さくすると拡管荷重を抑制できる一方で拡管率が小さくなってしまう。また、ヘッド部の曲率半径を大きくすると拡管率を高めることができる一方で拡管荷重が大きくなる。本発明者らはさらに鋭意検討を進め、所定の拡管率を得るとともに最も拡管荷重を抑制するための最適な曲率半径を有する拡管プラグの形状を見出した。   As a result of diligent studies by the present inventors, it has been found that the radius of curvature of the head portion of the pipe expansion plug contacting the inner peripheral surface of the heat transfer pipe is an important parameter for the pipe expansion load and the pipe expansion ratio during pipe expansion. If the curvature radius of the head portion is reduced, the tube expansion load can be suppressed while the tube expansion rate is decreased. Further, when the curvature radius of the head portion is increased, the tube expansion rate can be increased while the tube expansion load is increased. The inventors of the present invention have further studied diligently, and found the shape of a tube expansion plug having an optimum radius of curvature for obtaining a predetermined tube expansion rate and suppressing the tube expansion load most.

本発明の拡管プラグは、内周面に複数の内面フィンが形成された伝熱管に挿入することで、前記伝熱管を拡管する拡管プラグであって、軸部と、その先端側に形成されるヘッド部と、を有し、前記ヘッド部は、その横断面が先端部側から最大径部まで徐々に直径を大きくする略円形状であり、前記ヘッド部は、前記最大径部から前記先端部側に向かって形成される主拡管部を備え、前記主拡管部の縦断面の曲率半径Rの上限及び下限が、前記最大径部の直径Dと以下の式の関係を有する。
上限R=−9.37×D+196.69×D−1375.5×D+3214
下限R=−14.43×D+286.66×D−1897.6×D+4190
The tube expansion plug of the present invention is a tube expansion plug that expands the heat transfer tube by being inserted into a heat transfer tube having a plurality of internal fins formed on the inner peripheral surface, and is formed on the shaft portion and the tip side thereof. A head portion, and the head portion has a substantially circular shape whose cross section gradually increases in diameter from the tip end side to the maximum diameter portion, and the head portion extends from the maximum diameter portion to the tip end portion. The upper and lower limits of the radius of curvature R of the longitudinal section of the main expanded portion have a relationship expressed by the following formula with the diameter D of the maximum diameter portion.
Upper limit R = −9.37 × D 3 + 196.69 × D 2 −1375.5 × D + 3214
Lower limit R = −14.43 × D 3 + 286.66 × D 2 −1897.6 × D + 4190

また、本発明の拡管プラグは、前記ヘッド部が、前記先端部と前記主拡管部との間に、前記主拡管部と滑らかに接続される予備拡管部を備え、前記予備拡管部が、前記伝熱管の最小管内径より小径の前記先端部から前記最小管内径より大径の予備拡管終了部までを5mm以上7.9mm以下の曲率半径で接続し、前記予備拡管終了部の直径である予備拡管終了径が、以下の式で表されるものであっても良い。
={K×β×(α−α)/α}+β
ただし、Dは、予備拡管終了径であり、Kは0.45以上0.65以下の予備拡管係数であり、βは、拡管前の前記伝熱管の最小管内径であり、αは、拡管前の前記伝熱管の外径であり、αは、拡管後の前記伝熱管の外径である。
Further, in the tube expansion plug of the present invention, the head portion includes a pre-expansion tube portion that is smoothly connected to the main tube expansion portion between the tip portion and the main tube expansion portion. A spare pipe having a radius of curvature of 5 mm or more and 7.9 mm or less is connected from the tip portion having a diameter smaller than the minimum tube inner diameter of the heat transfer tube to a preliminary tube expansion end portion having a diameter larger than the minimum tube inner diameter. The tube expansion end diameter may be expressed by the following formula.
D 2 = {K × β × (α 2 −α 1 ) / α 1 } + β
However, D 2 is the pre-expanded tube ends diameter, K is a pre-tube expansion coefficient of 0.45 to 0.65, beta is the minimum tube inner diameter of the heat transfer tube of the prior tube expansion, alpha 1 is an outer diameter of the heat transfer tube of the prior tube expansion, alpha 2 is the outer diameter of the heat transfer tube after the tube expansion.

また、本発明の拡管プラグは、前記最大径部の直径が、5.7mm以上7.0mm以下であってもよい。   In the tube expansion plug of the present invention, the diameter of the maximum diameter portion may be not less than 5.7 mm and not more than 7.0 mm.

また、本発明の拡管プラグは、拡管前の前記伝熱管が、アルミニウム又はアルミニウム合金からなり、外径が6mm以上8mm以下であり、底肉厚が0.45mm以上0.65mm以下であり、外径に対する底肉厚の比が0.05以上0.11以下であり、前記内面フィンが前記伝熱管の長手方向に対し螺旋状に形成されているものに適用できる。   Further, in the tube expansion plug of the present invention, the heat transfer tube before tube expansion is made of aluminum or an aluminum alloy, the outer diameter is 6 mm or more and 8 mm or less, the bottom wall thickness is 0.45 mm or more and 0.65 mm or less, The ratio of the bottom wall thickness to the diameter is 0.05 or more and 0.11 or less, and the present invention can be applied to the inner fin formed in a spiral shape in the longitudinal direction of the heat transfer tube.

また、本発明の拡管プラグは、前記ヘッド部が、前記最大径部と当該最大径部より小径の後端部との間に後面拡管部を有し、前記後面拡管部が、前記最大径部から前記後端部までを10mm以下の曲率半径で接続するものであっても良い。   Further, in the tube expansion plug of the present invention, the head portion has a rear surface expanded portion between the maximum diameter portion and a rear end portion having a smaller diameter than the maximum diameter portion, and the rear surface expanded portion is the maximum diameter portion. To the rear end portion may be connected with a curvature radius of 10 mm or less.

また、本発明の拡管プラグに係る設計方法は、内周面に複数の内面フィンが形成された伝熱管に挿入することで、前記伝熱管を拡管する拡管プラグの設計方法であって、軸部と、その先端側に形成されるヘッド部と、を有し、前記ヘッド部は、その横断面が先端部側から最大径部まで徐々に直径を大きくする略円形状である拡管プラグにおいて、前記ヘッド部に、前記最大径部から前記先端部側に向かって形成される主拡管部を設け、前記主拡管部の縦断面の曲率半径Rを、前記最大径部の直径Dにより表される以下の式の上限及び下限の間とする。
上限 R=−9.37×D+196.69×D−1375.5×D+3214
下限 R=−14.43×D+286.66×D−1897.6×D+4190
ただし、Dは、前記最大径部の直径であり、Rは、前記主拡管部の縦断面の曲率半径である。
Further, a design method according to the tube expansion plug of the present invention is a tube expansion plug design method for expanding the heat transfer tube by inserting the heat transfer tube into a heat transfer tube having a plurality of inner surface fins formed on an inner peripheral surface thereof. And a head portion formed on a tip side thereof, wherein the head portion is a substantially circular shape whose transverse section gradually increases in diameter from the tip portion side to the maximum diameter portion. The head portion is provided with a main expanded portion formed from the maximum diameter portion toward the distal end portion, and a curvature radius R of a longitudinal section of the main expanded portion is represented by a diameter D of the maximum diameter portion or less. Between the upper and lower limits of the equation.
Upper limit R = −9.37 × D 3 + 196.69 × D 2 −1375.5 × D + 3214
Lower limit R = −14.43 × D 3 + 286.66 × D 2 −1897.6 × D + 4190
However, D is the diameter of the said largest diameter part, R is the curvature radius of the longitudinal cross-section of the said main expansion part.

また、本発明の拡管プラグに係る設計方法は、内周面に複数の内面フィンが形成された伝熱管に挿入することで、前記伝熱管を拡管する拡管プラグの設計方法であって、軸部と、その先端側に形成されるヘッド部と、を有し、前記ヘッド部は、その横断面が先端部側から最大径部まで徐々に直径を大きくする略円形状であり、前記ヘッド部に、前記最大径部から前記先端部側に向かって形成される主拡管部を設け、前記最大径部の直径と、前記主拡管部の縦断面の曲率半径とを様々に変えた複数の拡管プラグを想定し、複数の前記拡管プラグにより前記伝熱管を拡管した際の拡管率と拡管荷重とをグラフにプロットし、複数の前記拡管プラグのうち、前記最大径部の直径が同一のものを一群として、前記グラフの各群同士の共通接線をとり、前記最大径部の直径が同一の一群に対し、前記共通接線に最も近接する前記曲率半径を最適な曲率半径とする。   Further, a design method according to the tube expansion plug of the present invention is a tube expansion plug design method for expanding the heat transfer tube by inserting the heat transfer tube into a heat transfer tube having a plurality of inner surface fins formed on an inner peripheral surface thereof. And a head portion formed on the tip side thereof, and the head portion has a substantially circular shape whose transverse section gradually increases in diameter from the tip portion side to the maximum diameter portion. A plurality of pipe expansion plugs provided with a main pipe expansion portion formed from the maximum diameter section toward the tip end side, wherein the diameter of the maximum diameter section and the curvature radius of the longitudinal section of the main pipe expansion section are variously changed. And plotting the expansion rate and the expansion load when the heat transfer tube is expanded by a plurality of the expansion plugs on a graph, and among the plurality of expansion plugs, a group of the ones having the same diameter of the maximum diameter portion And taking a common tangent line between each group of the graph, To group the diameter of the serial maximum diameter portion is the same, the optimum radius of curvature of the radius of curvature which is closest to said common tangent.

本発明の拡管プラグは、ヘッド部に形成された主拡管部の曲率半径を最適化し、拡管工程における拡管荷重を抑制しつつ拡管率を高めることができる。拡管時の拡管荷重を抑制することで、伝熱管の座屈を防止するとともに、ヘッド部の摩耗を低減でき、拡管プラグの寿命を長くすることができる。   The tube expansion plug of the present invention can optimize the radius of curvature of the main tube expansion portion formed in the head portion, and can increase the tube expansion rate while suppressing the tube expansion load in the tube expansion process. By suppressing the tube expansion load during tube expansion, it is possible to prevent buckling of the heat transfer tube, reduce head wear, and extend the life of the tube expansion plug.

第1実施形態に係る拡管プラグにより伝熱管を拡管して熱交換器を組み立てる手順を示す斜視図である。It is a perspective view which shows the procedure which expands a heat exchanger tube with the tube expansion plug which concerns on 1st Embodiment, and assembles a heat exchanger. 第1実施形態に係る拡管プラグにより伝熱管を拡管する拡管工程を示す部分断面図である。It is a fragmentary sectional view which shows the pipe expansion process which expands a heat exchanger tube with the pipe expansion plug which concerns on 1st Embodiment. 第1実施形態の拡管プラグにより拡管される伝熱管の一例を示す横断面図であり、図3(a)は、断面全体を示し、図3(b)は内面フィンを拡大して示す。It is a cross-sectional view which shows an example of the heat exchanger tube expanded by the tube expansion plug of 1st Embodiment, Fig.3 (a) shows the whole cross section, FIG.3 (b) expands and shows an internal surface fin. 第1実施形態の拡管プラグにより拡管される伝熱管の一例を示す縦断面図を示す。The longitudinal cross-sectional view which shows an example of the heat exchanger tube expanded by the tube expansion plug of 1st Embodiment is shown. 第1実施形態の拡管プラグを示し、図5(a)は斜視図であり、図5(b)はヘッド部の側面図である。The tube expansion plug of 1st Embodiment is shown, Fig.5 (a) is a perspective view, FIG.5 (b) is a side view of a head part. 第2実施形態の拡管プラグのヘッド部の側面図である。It is a side view of the head part of the tube expansion plug of 2nd Embodiment. 第2実施形態の拡管プラグにより伝熱管を拡管する拡管工程を示す部分断面図であり、図7(a)は拡管プラグを伝熱管の開口部に挿入しようとする瞬間の状態を示し、図7(b)は拡管プラグを伝熱管の内部に完全に挿入させた状態を示す。FIG. 7A is a partial cross-sectional view illustrating a tube expansion process for expanding the heat transfer tube with the tube expansion plug of the second embodiment, and FIG. 7A illustrates a state at the moment when the tube expansion plug is to be inserted into the opening of the heat transfer tube. (B) shows a state in which the tube expansion plug is completely inserted into the heat transfer tube. 第1のシミュレーションの結果である拡管率と拡管荷重の関係をまとめたグラフである。It is the graph which put together the relationship between the pipe expansion rate and the pipe expansion load which are the results of a 1st simulation. 第1のシミュレーションの結果から求めた拡管プラグのヘッド部の最大直径と曲率半径の望ましい範囲を示すグラフである。It is a graph which shows the desirable range of the maximum diameter and curvature radius of the head part of a tube expansion plug calculated | required from the result of the 1st simulation. 第2のシミュレーションの結果である拡管率と拡管荷重の関係をまとめたグラフである。It is the graph which put together the relationship between the pipe expansion rate and the pipe expansion load which are the results of a 2nd simulation. 第2のシミュレーションの結果から求めた拡管プラグのヘッド部の最大直径と曲率半径の望ましい範囲を示すグラフである。It is a graph which shows the desirable range of the maximum diameter and curvature radius of the head part of a tube expansion plug calculated | required from the result of the 2nd simulation. 第3のシミュレーションの結果である拡管率と拡管荷重の関係をまとめたグラフである。It is the graph which put together the relationship between the pipe expansion rate and the pipe expansion load which are the results of the 3rd simulation. 第3のシミュレーションの結果から求めた拡管プラグのヘッド部の最大直径と曲率半径の望ましい範囲を示すグラフである。It is a graph which shows the desirable range of the maximum diameter and curvature radius of the head part of a tube expansion plug calculated | required from the result of the 3rd simulation. 一般的な拡管プラグを用いた場合の、拡管工程におけるストローク(押込み量)と拡管荷重(拡管プラグに加わる挿入方向の荷重)の相関関係の一例を示すグラフである。It is a graph which shows an example of the correlation of the stroke (pushing amount) in a pipe expansion process and the pipe expansion load (load of the insertion direction added to a pipe expansion plug) at the time of using a general pipe expansion plug.

以下、本発明の実施形態について図面を参照しながら説明する。
なお、以下の説明で用いる図面は、特徴部分を強調する目的で、便宜上特徴となる部分を拡大して示している場合があり、各構成要素の寸法比率などが実際と同じであるとは限らない。また、同様の目的で、特徴とならない部分を省略して図示している場合がある。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
In the drawings used in the following description, for the purpose of emphasizing the feature portion, the feature portion may be shown in an enlarged manner for convenience, and the dimensional ratios of the respective constituent elements are not always the same as in practice. Absent. In addition, for the same purpose, portions that are not characteristic may be omitted from illustration.

<拡管工程>
図1に本発明の一実施形態である拡管プラグ1を用いた熱交換器の製造方法を示す。
この製造方法は、所定間隔に平行に並設する複数のフィン材15(放熱板)に形成された挿通孔15aに伝熱管11を通した状態で、伝熱管11に拡管プラグ1を挿入して拡管し伝熱管11の外周をフィン材15の挿通孔15aの内径部に密着させて熱交換器を製造する方法である。
<Tube expansion process>
FIG. 1 shows a method for manufacturing a heat exchanger using a tube expansion plug 1 according to an embodiment of the present invention.
In this manufacturing method, the tube expansion plug 1 is inserted into the heat transfer tube 11 in a state where the heat transfer tube 11 is inserted into the insertion holes 15a formed in the plurality of fin members 15 (heat radiating plates) arranged in parallel at a predetermined interval. In this method, the heat exchanger is manufactured by expanding the tube and bringing the outer periphery of the heat transfer tube 11 into close contact with the inner diameter portion of the insertion hole 15 a of the fin material 15.

以下にこの拡管工程の具体的な手順について説明する。
まず、アルミニウムあるいはアルミニウム合金製のフィン材15を複数重ねてフィン集合体16を構成する。各フィン材15において伝熱管11を挿通する予定位置には、挿通孔15aが形成されている。これらの挿通孔15aが一直線状に並ぶように各フィン材15を配置する。
また、伝熱管11をU字状に曲げてヘアピンパイプを構成しておく。これにより伝熱管11の開口部11aは、一側にそろえられ他側にU字部11bが形成される。このヘアピンパイプ(伝熱管11)を必要本数だけフィン集合体16の挿通孔15aに挿通する。各伝熱管11の開口部11aはフィン集合体16の一側に揃えておく。
The specific procedure of this pipe expansion process is demonstrated below.
First, the fin assembly 16 is formed by stacking a plurality of aluminum or aluminum alloy fin materials 15. An insertion hole 15 a is formed at a position where the heat transfer tube 11 is inserted in each fin material 15. The fin members 15 are arranged so that the insertion holes 15a are aligned in a straight line.
Further, the heat transfer tube 11 is bent into a U shape to form a hairpin pipe. Thereby, the opening part 11a of the heat exchanger tube 11 is aligned on one side, and the U-shaped part 11b is formed on the other side. The necessary number of hairpin pipes (heat transfer tubes 11) are inserted into the insertion holes 15a of the fin assembly 16. The opening 11a of each heat transfer tube 11 is arranged on one side of the fin assembly 16.

この状態において各伝熱管11の開口部11aから拡管プラグ1を強制的に押し込む。
ヘッド部3が開口部11aより内側に完全に入ったところで、開口部11a近傍の伝熱管11外周を把持治具でクランプする。ここまで(把持治具によるクランプを行うまで)の拡管工程は、伝熱管11の長手方向に対し圧縮力が加わる押込み式(縮み式)の拡管工程と呼ばれる。
In this state, the tube expansion plug 1 is forcibly pushed through the opening 11a of each heat transfer tube 11.
When the head portion 3 is completely inside the opening portion 11a, the outer periphery of the heat transfer tube 11 in the vicinity of the opening portion 11a is clamped with a gripping jig. The tube expansion process up to this point (until clamping by the holding jig) is called a push-type (contraction-type) tube expansion process in which a compressive force is applied to the longitudinal direction of the heat transfer tube 11.

把持治具によるクランプ工程以降も、ヘッド部3が伝熱管11のU字部11b近傍に到達するまでヘッド部3を強制的に押込む。
図2は、ヘッド部3が伝熱管11を拡管する拡管動作を示す部分断面図である。拡管プラグ1は、ヘッド部3の外周面に沿わせるように伝熱管11を拡管する。このとき、把持治具により伝熱管11の開口部11aが固定(クランプ)されているため、伝熱管11には長手方向に対し引張力が加わる。このように、クランプ工程以降の拡管工程は伝熱管11に引張力が加わり吊下げ式(縮みレス式)の拡管工程と呼ばれる。
Even after the clamping process by the holding jig, the head unit 3 is forcibly pushed in until the head unit 3 reaches the vicinity of the U-shaped part 11b of the heat transfer tube 11.
FIG. 2 is a partial cross-sectional view showing a tube expansion operation in which the head unit 3 expands the heat transfer tube 11. The tube expansion plug 1 expands the heat transfer tube 11 along the outer peripheral surface of the head portion 3. At this time, since the opening 11a of the heat transfer tube 11 is fixed (clamped) by the holding jig, a tensile force is applied to the heat transfer tube 11 in the longitudinal direction. In this way, the tube expansion process after the clamping process is called a suspension type (contraction-less type) tube expansion process in which a tensile force is applied to the heat transfer tube 11.

押込み式、吊下げ式の拡管工程において、拡管プラグ1のヘッド部3が伝熱管11を押し広げて塑性変形させて伝熱管11を拡管できる。拡管された伝熱管11はフィン材15の挿通孔15aを押し広げるようにフィン材15に結合するので、伝熱管11をフィン材15に機械的に接合できる。   In the push-in and suspension-type tube expansion process, the head portion 3 of the tube expansion plug 1 can expand the heat transfer tube 11 by pushing the heat transfer tube 11 and plastically deforming it. Since the expanded heat transfer tube 11 is joined to the fin material 15 so as to push the insertion hole 15 a of the fin material 15, the heat transfer tube 11 can be mechanically joined to the fin material 15.

次に、把持治具によるクランプを解除しこの拡管プラグ1を引き抜く。この工程は引抜工程と呼ばれる。吊下げ式の拡管工程が終了した時点で、伝熱管11には拡管が行われている。したがって、引抜工程は伝熱管11の塑性変形を行わない。ただし、把持治具によるクランプを経ることによって、伝熱管11の開口部11aの近傍は縮径されている。したがって引抜工程では、開口部11aの拡管を再度行うことになる。
以上の工程を経て、拡管工程が完了する。図2に示すように拡管プラグ1を挿入することで、伝熱管11の外径は、拡管前外径αから拡管後外径αに拡管される。
Next, the clamp by the holding jig is released, and the tube expansion plug 1 is pulled out. This process is called a drawing process. When the suspension-type tube expansion process is completed, the heat transfer tube 11 is expanded. Therefore, the drawing process does not plastically deform the heat transfer tube 11. However, the vicinity of the opening 11a of the heat transfer tube 11 is reduced in diameter by being clamped by a holding jig. Therefore, in the drawing process, the opening 11a is expanded again.
Through the above steps, the tube expansion step is completed. By inserting a tube expanding plug 1 as shown in FIG. 2, the outer diameter of the heat transfer tube 11 is expanded tube from the expanded tube before the outer diameter alpha 1 in the tube expanding Kosoto径alpha 2.

<伝熱管>
図3(a)に、本実施形態の拡管プラグ1によって拡管される伝熱管11の拡管前の横断面図を示す。図3(b)に、図3(a)に示す伝熱管11の内面フィン12の一部の拡大図を示す。また、図4に伝熱管11の縦断面図を示す。
<Heat transfer tube>
FIG. 3A shows a cross-sectional view of the heat transfer tube 11 expanded by the tube expansion plug 1 of the present embodiment before expansion. FIG. 3B shows an enlarged view of a part of the inner fin 12 of the heat transfer tube 11 shown in FIG. FIG. 4 shows a longitudinal sectional view of the heat transfer tube 11.

図3(a)に示すように、伝熱管11の内周面には、中心に向いて突出する内面フィン12が複数形成されている。また、図4に示すように、内面フィン12は、伝熱管11の長さ方向全長に渡り、伝熱管11の長さ方向に対して螺旋状に形成されている。内面フィン12は、伝熱管11の内周面周方向に所定の間隔で複数隣接形成されている。内面フィン12は周方向に沿って例えば、30〜72個形成されている。   As shown in FIG. 3A, a plurality of inner surface fins 12 projecting toward the center are formed on the inner peripheral surface of the heat transfer tube 11. As shown in FIG. 4, the inner fin 12 is formed in a spiral shape with respect to the length direction of the heat transfer tube 11 over the entire length in the length direction of the heat transfer tube 11. A plurality of inner surface fins 12 are formed adjacent to each other at a predetermined interval in the circumferential direction of the inner peripheral surface of the heat transfer tube 11. For example, 30 to 72 inner fins 12 are formed along the circumferential direction.

内面フィン12は、伝熱管11の横断面において、伝熱管11の中心に向く頂部12aとこの頂部12aを挟むように延在する傾斜部12b、12bとを有する横断面視等脚台形状に形成されている。これらの内面フィン12は、伝熱管11の内周面の周方向に所定の間隔で配されており、隣接する内面フィン12、12の間にフィン溝14が形成されている。
内面フィン12の高さhは例えば0.05mm〜0.35mm程度とされる。また、内面フィン12のフィン幅jは、例えば0.05mm〜0.4mmとされる。内面フィン12のフィンピッチiは、伝熱管11の内径と、形成される内面フィン12の個数によって決まり、例えば0.05mm〜0.7mmとされる。
The inner fin 12 is formed in an isosceles trapezoidal shape in a cross-sectional view having a top portion 12a facing the center of the heat transfer tube 11 and inclined portions 12b and 12b extending so as to sandwich the top portion 12a in the cross section of the heat transfer tube 11. Has been. These inner surface fins 12 are arranged at predetermined intervals in the circumferential direction of the inner peripheral surface of the heat transfer tube 11, and fin grooves 14 are formed between the adjacent inner surface fins 12, 12.
The height h of the inner fin 12 is, for example, about 0.05 mm to 0.35 mm. Moreover, the fin width j of the inner surface fin 12 shall be 0.05 mm-0.4 mm, for example. The fin pitch i of the inner fins 12 is determined by the inner diameter of the heat transfer tube 11 and the number of inner fins 12 to be formed, and is, for example, 0.05 mm to 0.7 mm.

内面フィン12は、伝熱管11の内周面に沿ってその長さ方向に螺旋を描くように形成されている。内面フィン12の捻れ角θは、15°〜40°程度に形成されている。なお、捻れ角θとは、図4に示すように伝熱管11の縦断面を描いた場合、管の内側に表示される螺旋溝あるいは螺旋フィンの直線状に描かれる部分の延長線Sと管の外面とのなす角度を示す。   The inner fin 12 is formed so as to draw a spiral along the inner circumferential surface of the heat transfer tube 11 in the length direction thereof. The twist angle θ of the inner fin 12 is formed to be about 15 ° to 40 °. Note that the torsion angle θ is the extension line S of the spiral groove or spiral fin displayed on the inner side of the heat transfer tube 11 as shown in FIG. Indicates the angle between the outer surface and the outer surface.

伝熱管11の内面に内面フィン12を設けることで、伝熱管11の内面の表面積を大きくして熱伝達効率を高めることができる。また、内面フィン12が伝熱管11の長さ方向に対し螺旋状に形成されていることで、伝熱管11に冷媒が流れる際、冷媒との熱交換効率を良好にすることができる。さらに熱伝達効率を大きくするためには、フィン幅jが細く内面フィン12が高い(即ち高さhが大きい)ハイスリムフィンが有効である。しかしながら、ハイスリムフィン化するにつれて、拡管プラグ1を挿入する際に内面フィン12が倒れやすくなる。内面フィン12の倒れが発生すると、伝熱管11の伝熱特性が低下するのみならず、所定の拡管率を得ることができなくなり、伝熱管11とフィン材15の挿通孔15a(図1参照)が十分に密着せず、熱交換器としての性能が大きく低下する。後段において詳しく説明するヘッド部3を備えた拡管プラグ1を用いて拡管を行うことによって、内面フィン12の倒れを抑制し、十分な拡管率を得ることができる。   By providing the inner surface fins 12 on the inner surface of the heat transfer tube 11, the surface area of the inner surface of the heat transfer tube 11 can be increased to increase the heat transfer efficiency. Moreover, when the internal fin 12 is formed in a spiral shape in the length direction of the heat transfer tube 11, when the refrigerant flows through the heat transfer tube 11, the heat exchange efficiency with the refrigerant can be improved. In order to further increase the heat transfer efficiency, a high slim fin having a narrow fin width j and a high inner fin 12 (that is, a high height h) is effective. However, as the high slim fin is formed, the inner fin 12 tends to fall when the tube expansion plug 1 is inserted. When the inner fin 12 falls, not only the heat transfer characteristics of the heat transfer tube 11 deteriorate, but also a predetermined tube expansion rate cannot be obtained, and the insertion hole 15a between the heat transfer tube 11 and the fin material 15 (see FIG. 1). Does not adhere sufficiently, and the performance as a heat exchanger is greatly reduced. By performing tube expansion using the tube expansion plug 1 provided with the head portion 3 that will be described in detail later, it is possible to suppress the collapse of the inner surface fins 12 and obtain a sufficient tube expansion rate.

伝熱管11の底肉厚t(フィン溝14に対応する部分の管の肉厚)は、0.45mm以上0.65mm以下とされる。伝熱管11の外径α(拡管前外径α)は、例えば6mm以上8mm以下とされる。
この伝熱管11は、拡管プラグ1が挿入され例えば3%〜8%の拡管率で拡管される。この場合、拡管後の外径α(拡管後外径α)は、5.15mm〜10.8mmとされる。
The bottom wall thickness t of the heat transfer tube 11 (the wall thickness of the tube corresponding to the fin groove 14) is 0.45 mm or more and 0.65 mm or less. The outer diameter α 1 of the heat transfer tube 11 (outer diameter before expansion α 1 ) is, for example, 6 mm or more and 8 mm or less.
The heat transfer tube 11 is expanded at a tube expansion rate of 3% to 8%, for example, with the tube expansion plug 1 inserted. In this case, the outer diameter α 2 after pipe expansion (outer diameter after pipe expansion α 2 ) is set to 5.15 mm to 10.8 mm.

伝熱管11は、銅合金、アルミニウム又はアルミニウム合金からなるものを用いることができる。
伝熱管11にアルミニウム合金を用いる場合は、そのアルミニウム合金に特に制限はなく、JISで規定される1050、1100、1200等の純アルミニウム系、あるいは、これらにMnを添加した3003に代表される3000系のアルミニウム合金等を適用できる。勿論、これら以外にJISに規定されている5000系〜7000系のアルミニウム合金のいずれかを用いて伝熱管11を構成しても良い。
The heat transfer tube 11 may be made of copper alloy, aluminum, or aluminum alloy.
When an aluminum alloy is used for the heat transfer tube 11, the aluminum alloy is not particularly limited, and is typically pure aluminum such as 1050, 1100, 1200, etc. defined by JIS, or 3000 represented by 3003 with Mn added thereto. A series aluminum alloy or the like can be applied. Of course, you may comprise the heat exchanger tube 11 using either the 5000 type | system | group -7000 type | system | group aluminum alloy prescribed | regulated to JIS other than these.

アルミニウム又はアルミニウム合金は、銅合金に比べて強度に劣る。したがって、耐圧強度の面から伝熱管11の底肉厚tを銅合金で形成した伝熱管の底肉厚と比較して厚くする必要がある。底肉厚tが厚いアルミニウム及びアルミニウム合金からなる伝熱管11を拡管しようとすると、拡管荷重が大きくなる。これにより、アルミニウム又はアルミニウム合金からなる伝熱管11は、拡管工程において座屈が発生しやすくなる。   Aluminum or an aluminum alloy is inferior in strength to a copper alloy. Therefore, it is necessary to make the bottom wall thickness t of the heat transfer tube 11 thicker than the bottom wall thickness of the heat transfer tube formed of a copper alloy in terms of pressure resistance. When the heat transfer tube 11 made of aluminum and aluminum alloy having a thick bottom wall thickness t is to be expanded, the tube expansion load increases. Thereby, the heat transfer tube 11 made of aluminum or an aluminum alloy is likely to be buckled in the tube expansion process.

伝熱管11としてアルミニウム又はアルミニウム合金を用いる場合において、拡管前の伝熱管11の外径αに対する伝熱管11の底肉厚tの比(t/α)が、0.05以上0.11以下であることが好ましい。
第1実施形態の拡管プラグ1(若しくは第2実施形態の拡管プラグ21)は、このような伝熱管11に対して、拡管荷重を抑制しつつ拡管率を高めて拡管工程を行うことができる。また、t/αが0.11を超える場合は、アルミニウム又はアルミニウム合金からなる伝熱管11の拡管時の拡管荷重が大きくなりすぎる虞がある。さらに、t/αが、0.05に満たない場合は、アルミニウム又はアルミニウム合金からなる伝熱管11の耐圧強度が不足する虞がある。
In the case of using aluminum or an aluminum alloy as the heat transfer tube 11, the ratio (t / α 1 ) of the bottom wall thickness t of the heat transfer tube 11 to the outer diameter α 1 of the heat transfer tube 11 before the expansion is 0.05 or more and 0.11. The following is preferable.
The tube expansion plug 1 of the first embodiment (or the tube expansion plug 21 of the second embodiment) can perform the tube expansion step with respect to such a heat transfer tube 11 while increasing the tube expansion rate while suppressing the tube expansion load. Also, if the t / alpha 1 exceeds 0.11, there is a risk that the tube expansion load tube expansion of the heat transfer tubes 11 made of aluminum or aluminum alloy becomes too large. Furthermore, when t / α 1 is less than 0.05, the pressure resistance of the heat transfer tube 11 made of aluminum or an aluminum alloy may be insufficient.

<拡管プラグの第1実施形態>
図5(a)は本発明に係る一実施形態の拡管プラグ1を示す斜視図である。また、図5(b)は、この拡管プラグ1のヘッド部3の側面図である。
図5(a)に示すように、拡管プラグ1は、軸部2とその先端側に一体形成されたヘッド部3とからなる。軸部2の後端側には、ねじ軸2aが形成されている。拡管プラグ1は、ねじ軸2aの部分に対し、嵌合自在なねじ穴を有する図示略の延長ロッドをねじ接合して拡管プラグ1の長さを調整できる。これにより、拡管プラグ1の長さを調整し、伝熱管11の全長に渡り、拡管できるように調整できる。
<First Embodiment of Tube Expansion Plug>
Fig.5 (a) is a perspective view which shows the pipe expansion plug 1 of one Embodiment which concerns on this invention. FIG. 5B is a side view of the head portion 3 of the tube expansion plug 1.
As shown in FIG. 5A, the tube expansion plug 1 includes a shaft portion 2 and a head portion 3 that is integrally formed on the distal end side thereof. A screw shaft 2 a is formed on the rear end side of the shaft portion 2. The pipe expansion plug 1 can adjust the length of the pipe expansion plug 1 by screwing an unillustrated extension rod having a screw hole that can be fitted to the screw shaft 2a. Thereby, it is possible to adjust the length of the tube expansion plug 1 so that the tube can be expanded over the entire length of the heat transfer tube 11.

図5(b)に示すように、ヘッド部3は、樽型形状をなして軸部2より径が大きくなるように膨出形成されている。また、ヘッド部3の横断面は、略円形に形成されている。なお、横断面が「略円形」とは、円形である伝熱管11の内周に沿った形状であることを意味している。例えば、横断面円形のヘッド部3の表面に溝が設けられ横断面に凸部が形成されていてもよい。   As shown in FIG. 5B, the head portion 3 is formed in a barrel shape so as to bulge so as to have a larger diameter than the shaft portion 2. Moreover, the cross section of the head part 3 is formed in a substantially circular shape. The “substantially circular” cross section means a shape along the inner periphery of the heat transfer tube 11 having a circular shape. For example, a groove may be provided on the surface of the head portion 3 having a circular cross section, and a convex portion may be formed on the cross section.

ヘッド部3は、平坦面をなす先端部3aと、軸部2と接続される後端部3dとを有している。また、先端部3aと後端部3dの間には、最大径部3cが形成されている。ヘッド部3の横断面は、直径FDの先端部3aから直径Dの最大径部3cにかけて徐々に大きくなっている。また、最大径部3cから後端部3dにかけては、徐々に小さくなっていく。   The head portion 3 has a front end portion 3 a that forms a flat surface, and a rear end portion 3 d that is connected to the shaft portion 2. A maximum diameter portion 3c is formed between the front end portion 3a and the rear end portion 3d. The cross section of the head portion 3 gradually increases from the tip portion 3a having the diameter FD to the maximum diameter portion 3c having the diameter D. Further, it gradually decreases from the maximum diameter portion 3c to the rear end portion 3d.

ヘッド部3において、先端部3aから最大径部3cまでは、主拡管部6とされる。また、最大径部3cから後端部3dまでは、後面拡管部7とされる。即ち、ヘッド部3は、最大径部3cを境に先端側が主拡管部6、後端側が後面拡管部7とされる。
先端部3aの直径FDは、拡管対象である伝熱管11の最小内径β(図2参照)より小さい径に形成されており伝熱管11の内径にスムーズに挿入できる。
In the head portion 3, a portion from the distal end portion 3 a to the maximum diameter portion 3 c is a main expanded portion 6. Further, a portion from the maximum diameter portion 3c to the rear end portion 3d is a rear surface expanded portion 7. In other words, the head portion 3 has the main expanded portion 6 on the front end side and the rear expanded portion 7 on the rear end side with respect to the maximum diameter portion 3c.
The diameter FD of the tip 3a is formed to be smaller than the minimum inner diameter β (see FIG. 2) of the heat transfer tube 11 to be expanded, and can be smoothly inserted into the inner diameter of the heat transfer tube 11.

最大径部3cの直径(最大直径)Dは、拡管される伝熱管11の内径βと、必要な拡管率から適宜設定される。本実施形態の拡管プラグ1においては、最大直径Dを、5.7mm以上7.0mm以下とすることで、拡管荷重を抑制しつつ拡管率を高めて拡管工程を行うことができる。   The diameter (maximum diameter) D of the maximum diameter portion 3c is appropriately set based on the inner diameter β of the heat transfer tube 11 to be expanded and the necessary expansion rate. In the tube expansion plug 1 of this embodiment, the tube expansion process can be performed by increasing the tube expansion rate while suppressing the tube expansion load by setting the maximum diameter D to 5.7 mm or more and 7.0 mm or less.

主拡管部6は、拡管プラグ1を伝熱管11に挿入する際に、伝熱管11を径方向外側に押し広げて拡管する役割を果たす。主拡管部6は、先端部3aから最大径部3cまでを曲率半径Rで接続する曲面である。   When the main pipe expansion portion 6 is inserted into the heat transfer tube 11, the main pipe expansion portion 6 plays a role of expanding and expanding the heat transfer pipe 11 radially outward. The main expanded pipe portion 6 is a curved surface that connects the distal end portion 3a to the maximum diameter portion 3c with a radius of curvature R.

主拡管部6の曲率半径Rは、3mm以上30mm以下であることが好ましい。主拡管部6の曲率半径Rを3mm以上とすることで、内面フィン12の倒れを抑制できる。また、主拡管部6の曲率半径Rが、30mmを超える場合は、拡管荷重が大きくなり、拡管工程において伝熱管11が座屈する懸念が高まる。したがって、主拡管部6の曲率半径Rは30mm以下とすることが好ましい。   The radius of curvature R of the main expanded portion 6 is preferably 3 mm or greater and 30 mm or less. By setting the radius of curvature R of the main pipe expanding portion 6 to 3 mm or more, the fall of the inner fin 12 can be suppressed. Moreover, when the curvature radius R of the main pipe expansion part 6 exceeds 30 mm, a pipe expansion load will become large and the concern that the heat exchanger tube 11 will buckle in a pipe expansion process will increase. Therefore, it is preferable that the curvature radius R of the main pipe expansion portion 6 is 30 mm or less.

また、主拡管部6の曲率半径Rは、最大径部3cの直径Dを用いた以下の(式1)の上限を超えず、以下の(式2)の下限を下回らない。
上限R=−9.37×D+196.69×D−1375.5×D+3214…(式1)
下限R=−14.43×D+286.66×D−1897.6×D+4190…(式2)
Moreover, the curvature radius R of the main expansion part 6 does not exceed the upper limit of the following (Formula 1) using the diameter D of the maximum diameter part 3c, and does not fall below the lower limit of the following (Formula 2).
Upper limit R = −9.37 × D 3 + 196.69 × D 2 −1375.5 × D + 3214 (Formula 1)
Lower limit R = −14.43 × D 3 + 286.66 × D 2 −1897.6 × D + 4190 (Formula 2)

主拡管部6の曲率半径Rを(式1)、(式2)に示す関係とすることで、拡管工程における拡管荷重と拡管率とのバランスを最適とする拡管プラグ1を供給できる。
上述の(式1)、(式2)は、最大径部3cの直径Dと、主拡管部6の縦断面の曲率半径Rとを様々に変えた複数の拡管プラグ1を想定したシミュレーションから得られている。このシミュレーションは、複数の拡管プラグ1により伝熱管11を拡管した際の拡管率と拡管荷重とをグラフにプロットし、複数の拡管プラグ1のうち、最大径部3cの直径Dが同一のものを一群として、グラフの各群同士の共通接線をとり、最大径部3cの直径Dが同一の一群に対し、共通接線に最も近接する曲率半径Rを最適な曲率半径とすることで求められている。
なお、上述の(式1)、(式2)の根拠については、後段の実施例で詳しく説明する。
By setting the radius of curvature R of the main pipe expansion portion 6 to the relationship shown in (Expression 1) and (Expression 2), it is possible to supply the expansion plug 1 that optimizes the balance between the expansion load and the expansion ratio in the expansion process.
The above (Formula 1) and (Formula 2) are obtained from a simulation assuming a plurality of pipe expansion plugs 1 in which the diameter D of the maximum diameter section 3c and the radius of curvature R of the longitudinal section of the main pipe expansion section 6 are variously changed. It has been. In this simulation, the expansion rate and the expansion load when the heat transfer tube 11 is expanded by a plurality of tube expansion plugs 1 are plotted on a graph. Among the plurality of tube expansion plugs 1, the diameter D of the maximum diameter portion 3c is the same. As a group, the common tangent line of each group of the graph is taken, and the radius of curvature R closest to the common tangent line is determined as the optimum radius of curvature for the group having the same diameter D of the maximum diameter portion 3c. .
Note that the grounds of the above (formula 1) and (formula 2) will be described in detail in a later embodiment.

ヘッド部3の最大径部3cより後方には、後面拡管部7が形成されている。後面拡管部7は、曲率半径BRを有する曲面である。後面拡管部7は、拡管プラグ1を伝熱管11から引き抜く際に(引抜工程において)、弾性変形分だけ縮径した伝熱管11を再度径方向外側に押し広げて引抜をスムーズにさせる役割を果たす。加えて、把持治具によるクランプによって、縮径した伝熱管11の開口部11a(図1参照)の近傍を再度拡管する役割を果たす。   A rear pipe expanding portion 7 is formed behind the maximum diameter portion 3 c of the head portion 3. The rear surface expanded portion 7 is a curved surface having a curvature radius BR. When the tube expansion plug 1 is pulled out from the heat transfer tube 11 (in the drawing step), the rear surface tube expansion portion 7 plays a role of smoothing the drawing by expanding the heat transfer tube 11 whose diameter is reduced by the elastic deformation again radially outward. . In addition, it plays a role of expanding the vicinity of the opening 11a (see FIG. 1) of the heat transfer tube 11 having a reduced diameter again by clamping with a gripping jig.

この再度拡管される伝熱管11の開口部11aは、拡管と縮径を経ているため、加工硬化が起こっている。したがって、後面拡管部7の曲率半径BRを適切に設定しない場合は、引抜工程において、伝熱管11に過度に引張応力が加わり、伝熱管11の破断が起こる。また、この引抜工程において、過度の引張応力が加わると、伝熱管11自身が伸長しその際に径方向に引けが生じる。即ち、拡管した伝熱管11が縮径されてしまう。
このような現象を防ぐために、後面拡管部7の曲率半径BRは、10mm以下とすることが好ましい。10mm以下とすることで、伝熱管11に過度な引張応力が加わることを抑制できる。
Since the opening 11a of the heat transfer tube 11 that is expanded again has undergone expansion and contraction, work hardening has occurred. Therefore, when the curvature radius BR of the rear surface expanded portion 7 is not set appropriately, excessive stress is applied to the heat transfer tube 11 in the drawing process, and the heat transfer tube 11 is broken. Moreover, in this drawing process, when an excessive tensile stress is applied, the heat transfer tube 11 itself is stretched, and at that time, shrinkage occurs in the radial direction. That is, the expanded heat transfer tube 11 is reduced in diameter.
In order to prevent such a phenomenon, it is preferable that the curvature radius BR of the rear surface expanded portion 7 is 10 mm or less. By setting it as 10 mm or less, it can suppress that an excessive tensile stress is added to the heat exchanger tube 11.

拡管プラグ1の軸部2は、強度の高い鋼材、例えば、JIS規定SCM435で示されるクロムモリブデン鋼からなる。また、拡管プラグ1のヘッド部3は超硬合金から一体形成されている。ヘッド部3は軸部2に対しカシメ加工により結合されているか、銀ろう等を用いたろう付け手段により結合されている。   The shaft portion 2 of the pipe expansion plug 1 is made of a steel material having high strength, for example, chromium molybdenum steel represented by JIS regulation SCM435. The head portion 3 of the tube expansion plug 1 is integrally formed from a cemented carbide. The head portion 3 is coupled to the shaft portion 2 by caulking, or is coupled by brazing means using silver brazing or the like.

ヘッド部3を構成する超硬合金としては、周期律表IVa、Va、VIa族元素の炭化物をFe、Co、Niなどの鉄系金属で焼結した超硬合金を用いることができる。一例として、WC−Co系合金、WC−TiC−Co系合金、WC−Ta−Co系合金、WC−TiC−Ta−Co系合金、WC−Ni系合金、WC−Ni−Cr系合金などを適宜用いることができる。
一例としてWC粒子にCoを5〜17質量%添加した超硬合金においてHRC85〜95の範囲を得ることができるので、本実施形態の拡管プラグ1の構成材料に適用することができる。上述の超硬合金としてJISV10、V20、V30、V40、V50、V60などで規定されている種類の超硬合金を利用することができる。
As the cemented carbide constituting the head portion 3, a cemented carbide obtained by sintering carbides of Group IVa, Va, and VIa group elements with an iron-based metal such as Fe, Co, or Ni can be used. For example, WC-Co alloy, WC-TiC-Co alloy, WC-Ta-Co alloy, WC-TiC-Ta-Co alloy, WC-Ni alloy, WC-Ni-Cr alloy, etc. It can be used as appropriate.
As an example, a range of HRC 85 to 95 can be obtained in a cemented carbide obtained by adding 5 to 17% by mass of Co to WC particles, and thus can be applied to the constituent material of the tube expansion plug 1 of the present embodiment. As the above-mentioned cemented carbide, a cemented carbide of the kind specified by JISV10, V20, V30, V40, V50, V60, etc. can be used.

拡管プラグ1とともに拡管時に用いる潤滑油は、引火点100℃以下、動粘度1.0mm/S(at40℃)以上の潤滑油を用いることが好ましい。
この条件に用いることができる潤滑油として例示するならば、ダフニーパンチオイルAF−2A(出光興産製:動粘度1.37mm/S)を挙げることができる。
It is preferable to use a lubricating oil having a flash point of 100 ° C. or lower and a kinematic viscosity of 1.0 mm 2 / S (at 40 ° C.) or higher as the lubricating oil used together with the pipe expanding plug 1 for expanding the pipe.
If it illustrates as a lubricating oil which can be used for this condition, Daphne punch oil AF-2A (Idemitsu Kosan make: kinematic viscosity 1.37mm < 2 > / S) can be mentioned.

第1実施形態の拡管プラグ1によれば、ヘッド部3に形成された主拡管部6の曲率半径を最適化し、拡管工程における拡管荷重を抑制しつつ拡管率を高めることができる。拡管時の拡管荷重を抑制することで、伝熱管11の座屈を防止するとともに、ヘッド部3の摩耗を低減でき、拡管プラグ1の寿命を長くすることができる。   According to the tube expansion plug 1 of the first embodiment, the radius of curvature of the main tube expansion portion 6 formed in the head portion 3 can be optimized, and the tube expansion rate can be increased while suppressing the tube expansion load in the tube expansion step. By suppressing the tube expansion load during tube expansion, buckling of the heat transfer tube 11 can be prevented, wear of the head portion 3 can be reduced, and the life of the tube expansion plug 1 can be extended.

<拡管プラグの第2実施形態>
次に、拡管プラグの第2実施形態について説明する。
図6に、第2実施形態の拡管プラグ21を示す。また、図7(a)、(b)に、拡管プラグ21を用いて伝熱管11(図3、図4参照)の拡管工程を行う際の伝熱管11の部分断面図を示す。
第2実施形態の拡管プラグ21は、上述の第1実施形態の拡管プラグ1と比較して、ヘッド部23において、主拡管部26Bと先端部23aとの間に、予備拡管部26Aが形成されている点が異なる。
なお、上述の第1実施形態と同一態様の構成要素については、同一符号を付し、その説明を省略する。
<Second Embodiment of Tube Expansion Plug>
Next, a second embodiment of the tube expansion plug will be described.
FIG. 6 shows a tube expansion plug 21 according to the second embodiment. 7A and 7B are partial cross-sectional views of the heat transfer tube 11 when the tube expansion process of the heat transfer tube 11 (see FIGS. 3 and 4) is performed using the tube expansion plug 21. FIG.
In the tube expansion plug 21 of the second embodiment, as compared with the tube expansion plug 1 of the first embodiment described above, a preliminary tube expansion portion 26A is formed between the main tube expansion portion 26B and the tip portion 23a in the head portion 23. Is different.
In addition, about the component of the same aspect as the above-mentioned 1st Embodiment, the same code | symbol is attached | subjected and the description is abbreviate | omitted.

図14に、一般的な拡管プラグを用いた場合の、拡管工程におけるストローク(押込み量)と拡管荷重(拡管プラグに加わる挿入方向の荷重)の相関関係の一例を示す。図14に示すように、拡管工程の拡管荷重は、拡管プラグ挿入直後にピークを迎える。これは、拡管プラグのヘッド部を伝熱管の開口部に挿入する際に最も大きな拡管荷重(初期拡管荷重)が生じることを意味する。
第2実施形態の拡管プラグ21は、予備拡管部26Aを有していることにより、開口部11aに挿入する際の初期拡管荷重を抑制できる。
FIG. 14 shows an example of the correlation between the stroke (pushing amount) and the tube expansion load (load in the insertion direction applied to the tube expansion plug) in the tube expansion process when a general tube expansion plug is used. As shown in FIG. 14, the tube expansion load in the tube expansion process peaks immediately after the tube expansion plug is inserted. This means that the largest tube expansion load (initial tube expansion load) is generated when the head portion of the tube expansion plug is inserted into the opening of the heat transfer tube.
The tube expansion plug 21 of 2nd Embodiment can suppress the initial tube expansion load at the time of inserting in the opening part 11a by having the preliminary | backup expansion part 26A.

拡管プラグ21は、軸部22とその先端側に一体形成されたヘッド部23とからなる。ヘッド部23は、樽型形状をなして軸部22より径が大きくなるように膨出形成されている。ヘッド部23は、平坦面をなす先端部23aと、軸部22と接続される後端部23dとの間に最大径部23cが形成されている。また、ヘッド部23の横断面は、略円形に形成されている。横断面の直径は、先端部23aから最大径部23cにかけて徐々に大きくなっていき、最大径部23cから後端部23dにかけて徐々に小さくなっていく。先端部23aは直径FDに形成され、最大径部23cは直径Dに形成されている。   The tube expansion plug 21 includes a shaft portion 22 and a head portion 23 that is integrally formed on the distal end side thereof. The head part 23 is formed in a barrel shape so as to bulge so as to be larger in diameter than the shaft part 22. In the head portion 23, a maximum diameter portion 23 c is formed between a front end portion 23 a forming a flat surface and a rear end portion 23 d connected to the shaft portion 22. Moreover, the cross section of the head part 23 is formed in a substantially circular shape. The diameter of the cross section gradually increases from the front end portion 23a to the maximum diameter portion 23c, and gradually decreases from the maximum diameter portion 23c to the rear end portion 23d. The tip portion 23a is formed to have a diameter FD, and the maximum diameter portion 23c is formed to have a diameter D.

ヘッド部23は、先端部23aから最大径部23cまでを前面拡管部26とされる。また、ヘッド部23は、最大径部23cから後端部23dまでを後面拡管部27とされる。   The head portion 23 has a front tube expansion portion 26 from the tip portion 23a to the maximum diameter portion 23c. Further, the head portion 23 is a rear-surface expanded portion 27 from the maximum diameter portion 23c to the rear end portion 23d.

前面拡管部26は、拡管プラグ21を伝熱管11に挿入する際に、伝熱管11を径方向外側に押し広げて拡管する役割を果たす。前面拡管部26は、それぞれ異なる曲率半径を有する予備拡管部26Aと主拡管部26Bに、予備拡管終了部23bを境として分けられる。
予備拡管部26Aは、曲率半径SRを有する一様な曲面である。また、主拡管部26Bは、曲率半径Rを有する一様な曲面である。
予備拡管部26Aの曲面と主拡管部26Bの曲面は、予備拡管終了部23bにおいて、滑らかに接続されている。即ち、予備拡管部26Aと主拡管部26Bは、縦断面をとった時に互いの接線の傾きが一致した点でエッヂを生じることなく接続されている。
The front pipe expansion part 26 plays a role of expanding and expanding the heat transfer tube 11 radially outward when the tube expansion plug 21 is inserted into the heat transfer tube 11. The front expanded portion 26 is divided into a preliminary expanded portion 26A and a main expanded portion 26B having different radii of curvature, with the preliminary expanded end portion 23b as a boundary.
The pre-expanded portion 26A is a uniform curved surface having a curvature radius SR. The main expanded portion 26B is a uniform curved surface having a curvature radius R.
The curved surface of the preliminary pipe expansion portion 26A and the curved surface of the main pipe expansion portion 26B are smoothly connected at the preliminary pipe expansion end portion 23b. That is, the pre-expanded portion 26A and the main expanded portion 26B are connected without causing an edge at the point where the inclinations of the tangent lines coincide with each other when the longitudinal section is taken.

予備拡管部26Aは、図7(a)に示すように、伝熱管11の開口部11aに当接し、初期拡管荷重を受けながら伝熱管11を最初に拡管する部分である。
予備拡管部26Aの曲率半径SRは、5mm以上7.9mm以下であることが好ましい。
一般的に拡管荷重は、伝熱管に拡管プラグを挿入する時の拡管荷重(初期拡管荷重)が最も大きくなる(図14に示すグラフ参照)。予備拡管部26Aの曲率半径SRを小さくすることで、伝熱管11の開口部11aに挿入した直後の拡管荷重(初期拡管荷重)を低減できる。予備拡管部26Aの曲率半径SRを7.9mm以下とすることで、初期拡管荷重を低減し、伝熱管11の座屈を抑制できる。また、予備拡管部26Aの曲率半径SRを5mm以上とすることで、内面フィン12の倒れを抑制できる。
As shown in FIG. 7A, the preliminary pipe expanding portion 26A is a part that abuts the opening 11a of the heat transfer tube 11 and first expands the heat transfer tube 11 while receiving an initial tube expansion load.
The radius of curvature SR of the pre-expanded portion 26A is preferably 5 mm or more and 7.9 mm or less.
Generally, the tube expansion load is the largest when the tube expansion plug is inserted into the heat transfer tube (initial tube expansion load) (see the graph shown in FIG. 14). By reducing the radius of curvature SR of the preliminary expanded portion 26A, the expanded tube load (initial expanded tube load) immediately after being inserted into the opening 11a of the heat transfer tube 11 can be reduced. By setting the curvature radius SR of the pre-expanded portion 26A to 7.9 mm or less, the initial tube expansion load can be reduced and the buckling of the heat transfer tube 11 can be suppressed. Moreover, the fall of the inner surface fin 12 can be suppressed by setting the curvature radius SR of the preliminary expanded portion 26A to 5 mm or more.

主拡管部26Bは、図7(b)に示すように、伝熱管11の拡管工程において、予備拡管部26Aに沿って予備拡管された伝熱管11をさらに径方向外側に押し広げる役割を果たす。
また、主拡管部26Bの曲率半径Rは、最大径部23cの直径Dを用いた以下の(式1)の上限を超えず、以下の(式2)の下限を下回らない。
上限R=−9.37×D+196.69×D−1375.5×D+3214…(式1)
下限R=−14.43×D+286.66×D−1897.6×D+4190…(式2)
As shown in FIG. 7B, the main pipe expanding portion 26 </ b> B plays a role of further expanding the heat transfer tubes 11 that have been preliminarily expanded along the preliminary expansion portions 26 </ b> A outward in the radial direction in the expansion process of the heat transfer tubes 11.
Further, the radius of curvature R of the main expanded portion 26B does not exceed the upper limit of the following (Formula 1) using the diameter D of the maximum diameter portion 23c, and does not fall below the lower limit of the following (Formula 2).
Upper limit R = −9.37 × D 3 + 196.69 × D 2 −1375.5 × D + 3214 (Formula 1)
Lower limit R = −14.43 × D 3 + 286.66 × D 2 −1897.6 × D + 4190 (Formula 2)

主拡管部26Bの曲率半径Rを(式1)、(式2)に示す関係とすることで、拡管工程における拡管荷重と拡管率とのバランスを最適とする拡管プラグ21を供給できる。   By setting the curvature radius R of the main pipe expanding portion 26B to the relationship shown in (Expression 1) and (Expression 2), it is possible to supply the expanded pipe 21 that optimizes the balance between the expanded load and the expanded ratio in the expanded process.

さらに、本実施形態において、主拡管部26Bの曲率半径Rは、20.1mm以上30mm以下であることが好ましい。主拡管部26Bは、伝熱管11の拡管工程において、予備拡管部26Aに沿って予備拡管された伝熱管11をさらに径方向外側に押し広げる役割を果たす(図7(b)参照)。したがって、主拡管部26Bは、予備拡管部26Aに対して内面フィン12に大きな負荷を加える。即ち、主拡管部26Bは、内面フィン12の倒れに対し支配的に作用する。主拡管部26Bの曲率半径Rを大きくすることで、内面フィン12の倒れを抑制できる。
主拡管部26Bの曲率半径Rが、20.1mm未満の場合は、内面フィン12の倒れが顕著となり好ましくない。また、30mmを超える場合は、拡管荷重が大きくなり、それに伴い、初期拡管荷重も大きくなる。したがって、伝熱管11の座屈発生の懸念が高まる。
Furthermore, in this embodiment, it is preferable that the curvature radius R of the main pipe expansion part 26B is 20.1 mm or more and 30 mm or less. The main pipe expansion part 26B plays a role of further expanding the heat transfer pipe 11 preliminarily expanded along the preliminary pipe expansion part 26A outward in the radial direction in the pipe expansion process of the heat transfer pipe 11 (see FIG. 7B). Therefore, the main pipe expanding portion 26B applies a large load to the inner surface fin 12 with respect to the preliminary pipe expanding portion 26A. That is, the main pipe expanding portion 26 </ b> B acts predominantly against the falling of the inner fin 12. Increasing the radius of curvature R of the main expanded portion 26B can suppress the collapse of the inner fin 12.
When the radius of curvature R of the main expanded portion 26B is less than 20.1 mm, the inner fin 12 is not easily collapsed. Moreover, when it exceeds 30 mm, a pipe expansion load becomes large, and an initial stage pipe expansion load also becomes large in connection with it. Therefore, the concern about the occurrence of buckling of the heat transfer tube 11 is increased.

予備拡管部26Aと主拡管部26Bの境界となる予備拡管終了部23bの径D(予備拡管終了径D)は、伝熱管11の最小内径βより大きく形成されている。したがって、拡管工程において、伝熱管11の最小内径部(即ち、内面フィン12の頂部12a)は、予備拡管部26Aに当接した後に主拡管部26Bに当接する。 The diameter D 2 (preliminary pipe expansion end diameter D 2 ) of the preliminary pipe expansion end portion 23 b that becomes the boundary between the preliminary pipe expansion portion 26 A and the main pipe expansion portion 26 B is formed larger than the minimum inner diameter β of the heat transfer tube 11. Therefore, in the tube expansion process, the minimum inner diameter portion of the heat transfer tube 11 (that is, the top portion 12a of the inner fin 12) contacts the main tube expansion portion 26B after contacting the preliminary tube expansion portion 26A.

また、予備拡管終了径Dは、予備拡管係数Kを0.45以上0.65以下として、以下の(式3)を満たすことが好ましい。
={K×β×(α−α)/α}+β …(式3)
なお、βは、拡管前の伝熱管11の最小管内径であり、αは、拡管前の伝熱管11の外径であり、αは、拡管後の伝熱管11の外径である。
Also, pre-expanded tube ends diameter D 2 is the pre-expanded tube coefficient K as 0.45 to 0.65, it is preferable to satisfy the following (Equation 3).
D 2 = {K × β × (α 2 −α 1 ) / α 1 } + β (Formula 3)
Note that β is the minimum tube inner diameter of the heat transfer tube 11 before the tube expansion, α 1 is the outer diameter of the heat transfer tube 11 before the tube expansion, and α 2 is the outer diameter of the heat transfer tube 11 after the tube expansion.

予備拡管係数Kを大きくすると予備拡管終了径Dが大きくなる。これに伴い、前面拡管部26において、予備拡管部26Aが相対的に大きくなり、主拡管部26Bが相対的に小さくなる。予備拡管部26Aは曲率半径SRを小さく形成されているため、予備拡管部26Aが相対的に大きくなることで、内面フィン12の倒れが顕著となる虞がある。
反対に、予備拡管係数Kを小さくすると予備拡管終了径Dが小さくなる。これに伴い、前面拡管部26において、予備拡管部26Aが相対的に小さくなり、主拡管部26Bが相対的に大きくなる。主拡管部26Bは曲率半径Rを大きく形成されているため、主拡管部26Bが相対的に大きくなることで、拡管時の初期拡管荷重が大きくなり伝熱管11が座屈する虞がある。
予備拡管係数Kを0.45以上0.65以下とすることで、内面フィン12の倒れ及び伝熱管11の座屈を同時に抑制できる。
Preliminary expanded tube ends diameter D 2 is increased by increasing the pre-expanded tube coefficient K. Accordingly, in the front pipe expansion section 26, the preliminary pipe expansion section 26A is relatively large and the main pipe expansion section 26B is relatively small. Since the pre-expanded portion 26A is formed to have a small radius of curvature SR, there is a risk that the inner fin 12 will fall significantly because the pre-expanded portion 26A is relatively large.
Conversely, pre-expanded tube ends diameter D 2 is smaller Smaller preliminary pipe expansion coefficients K. Accordingly, in the front pipe expansion section 26, the preliminary pipe expansion section 26A is relatively small, and the main pipe expansion section 26B is relatively large. Since the main expanded portion 26B is formed to have a large radius of curvature R, there is a possibility that the initial expanded load during expansion is increased and the heat transfer tube 11 is buckled because the main expanded portion 26B is relatively large.
By setting the preliminary tube expansion coefficient K to 0.45 or more and 0.65 or less, the collapse of the inner fin 12 and the buckling of the heat transfer tube 11 can be suppressed at the same time.

ヘッド部23の最大径部23cより後方には、後面拡管部27が形成されている。後面拡管部27、曲率半径BRを有する一様な曲面である。後面拡管部27の曲率半径BRは、10mm以下とすることが好ましい。10mm以下とすることで、伝熱管11に過度な引張応力が加わることを抑制できる。   A rear pipe expanding portion 27 is formed behind the maximum diameter portion 23 c of the head portion 23. It is a uniform curved surface having a rear surface expanded portion 27 and a radius of curvature BR. The radius of curvature BR of the rear surface expanded portion 27 is preferably 10 mm or less. By setting it as 10 mm or less, it can suppress that an excessive tensile stress is added to the heat exchanger tube 11.

第2実施形態の拡管プラグ21によれば、第1実施形態と同様の主拡管部26Bを有することで、第1実施形態と同様の効果を得ることができる。
また、第2実施形態の拡管プラグ21は、ヘッド部23の先端側に、曲率半径SRが比較的小さい予備拡管部26Aが形成されている。これによって、拡管プラグ21を伝熱管11に挿入する際の初期拡管荷重を低減し、伝熱管11の座屈を抑制できる。
According to the tube expansion plug 21 of the second embodiment, the same effect as that of the first embodiment can be obtained by having the main tube expansion portion 26B similar to that of the first embodiment.
Further, in the tube expansion plug 21 of the second embodiment, a preliminary tube expansion portion 26 </ b> A having a relatively small curvature radius SR is formed on the distal end side of the head portion 23. Thereby, the initial tube expansion load when inserting the tube expansion plug 21 into the heat transfer tube 11 can be reduced, and buckling of the heat transfer tube 11 can be suppressed.

以下、実施例を示しつつ本発明を更に詳細に説明するが、本発明はこれらの実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example is shown and this invention is demonstrated further in detail, this invention is not limited to these Examples.

拡管プラグの主拡管部の曲率半径Rと最大径部の直径(最大直径)Dとの関係(上述した(式1)、(式2)に示す関係)は、以下のシミュレーション結果に基づくものである。   The relationship between the radius of curvature R of the main expansion portion of the expansion plug and the diameter (maximum diameter) D of the maximum diameter portion (relationship shown in the above (Expression 1) and (Expression 2)) is based on the following simulation results. is there.

(第1のシミュレーション)
第1のシミュレーションとして、表1に示す伝熱管(拡管前)に対して、最大直径Dが、5.7mm、5.8mm、5.85mm、5.9mm、5.95mm、6.0mm、6.1mm、6.5mm、7.0mmの拡管プラグを用いて行う拡管工程を想定する。また、それぞれの最大直径Dに対し主拡管部の曲率半径Rが2mm、4mm、5mm、6mm、7mm、9mm、11mm、12mm、13mm、15mm、17mm、20mm、25mm、30mm、40mm、50mmである拡管プラグを想定する。
(First simulation)
As a first simulation, the maximum diameter D is 5.7 mm, 5.8 mm, 5.85 mm, 5.9 mm, 5.95 mm, 6.0 mm, 6 with respect to the heat transfer tube (before tube expansion) shown in Table 1. Assume a tube expansion process performed using tube expansion plugs of 1 mm, 6.5 mm, and 7.0 mm. Further, the radius of curvature R of the main expanded portion is 2 mm, 4 mm, 5 mm, 6 mm, 7 mm, 9 mm, 11 mm, 12 mm, 13 mm, 15 mm, 17 mm, 20 mm, 25 mm, 30 mm, 40 mm, and 50 mm with respect to each maximum diameter D. A tube expansion plug is assumed.

このような拡管プラグを用い表1に示す伝熱管を拡管するシミュレーションを行った。シミュレーションは、有限要素法(Finite Element Method、FEM)によるものであり、拡管時の拡管荷重、及び拡管率を導出する。   A simulation for expanding the heat transfer tube shown in Table 1 using such a tube expansion plug was performed. The simulation is based on the finite element method (FEM), and derives the tube expansion load and the tube expansion rate at the time of tube expansion.

Figure 2016087675
Figure 2016087675

図8は、縦軸に拡管荷重、横軸に拡管率を取り第1のシミュレーションの結果のグラフである。なお、図8のグラフは、わかりやすさのために、シミュレーション結果のうち、要点のなるものを抽出してプロットしたものである。
当然のことながら、ヘッド部の最大直径D(図5参照)を大きくするに伴って、拡管率と拡管荷重は上昇する。
FIG. 8 is a graph showing the result of the first simulation in which the vertical axis represents the tube expansion load and the horizontal axis represents the tube expansion rate. Note that the graph of FIG. 8 is obtained by extracting and plotting the main points of the simulation results for the sake of easy understanding.
As a matter of course, as the maximum diameter D (see FIG. 5) of the head portion is increased, the tube expansion rate and the tube expansion load increase.

次に、ヘッド部の最大直径Dを同一とする一群(図8において、同一マークのプロットの一群)に着目する。同一の最大直径Dを有する一群において、ヘッド部の曲率半径R(図5参照)を変えることで、拡管率及び拡管荷重が変わることがわかる。同一の最大直径Dを有する一群において、ヘッド部の曲率半径Rを大きくすると、拡管率及び拡管荷重は、ともに大きくなる。拡管荷重の上昇は、拡管率の上昇に対し一定ではなく、下に凸の曲線を描く。拡管荷重は、拡管率が高まるにしたがって当初緩やかな傾きで上昇し、次第に大きな傾きとなる。このことは、拡管率を上昇させつつ拡管荷重を抑制するバランスのとれた曲率半径Rが存在することを示唆している。   Next, attention is focused on a group (a group of plots of the same mark in FIG. 8) having the same maximum diameter D of the head portion. It can be seen that in a group having the same maximum diameter D, the pipe expansion rate and the pipe expansion load change by changing the curvature radius R (see FIG. 5) of the head portion. In a group having the same maximum diameter D, when the curvature radius R of the head portion is increased, both the tube expansion rate and the tube expansion load are increased. The increase in the tube expansion load is not constant with respect to the increase in the tube expansion rate, and a convex curve is drawn downward. As the tube expansion rate increases, the tube expansion load initially increases with a gentle slope and gradually increases. This suggests that there is a well-balanced radius of curvature R that suppresses the tube expansion load while increasing the tube expansion rate.

図8に示すように、ヘッド部の最大直径Dを同一とする一群のグラフ同士は、共通の接線(以下共通接線)を引くことができる。それぞれの群における曲率半径は、共通接線上の点、若しくは最も近接した点が、拡管荷重と拡管率のバランスが最もとれた曲率半径であるといえる。それぞれの群における共通接線上の点、若しくは最も近接した点の曲率半径Rを最適点と呼ぶこととする。   As shown in FIG. 8, a group of graphs having the same maximum diameter D of the head portion can draw a common tangent (hereinafter, a common tangent). Regarding the radius of curvature in each group, it can be said that the point on the common tangent line or the closest point is the radius of curvature in which the balance between the pipe expansion load and the pipe expansion ratio is the best. A point on the common tangent line in each group or the radius of curvature R of the closest point will be referred to as an optimum point.

それぞれの群において、最適点の近傍の曲率半径を用いることで、拡管荷重を低減しつつ、拡管率を高めることができる。
最適の曲率半径に対し、曲率半径が大きくなると拡管荷重が増大し、拡管プラグが摩耗しやすくなる。これにより、拡管プラグの損傷を早める虞がある。最適点の曲率半径の拡管プラグを用いた場合の拡管荷重を1として、拡管荷重が1.05以下、即ち、最適点の拡管荷重に対し105%以下の拡管荷重となる曲率半径に設定すれば、拡管プラグの摩耗を抑制できる。
By using the radius of curvature in the vicinity of the optimum point in each group, it is possible to increase the tube expansion rate while reducing the tube expansion load.
When the curvature radius is increased with respect to the optimum curvature radius, the tube expansion load increases and the tube expansion plug is easily worn. Thereby, there exists a possibility of damaging a pipe expansion plug. If the tube expansion load when the tube expansion plug having the optimal radius of curvature is used is 1, the tube expansion load is 1.05 or less, that is, the radius of curvature is 105% or less with respect to the tube expansion load at the optimal point. The wear of the tube expansion plug can be suppressed.

また、最適の曲率半径に対し、曲率半径が小さくなると拡管率が減少し、伝熱管を放熱板に十分に密着させることができず、伝熱管と放熱板との接合不良を引き起こす虞がある。最適点の曲率半径の拡管プラグを用いた場合の拡管率を1として、拡管率が0.95以上、即ち、最適点の拡管荷重に対し95%以上の拡管率となる曲率半径に設定すれば、拡管率を十分に確保できる。
このような観点から、個別の最大直径Dに対し曲率半径Rの最適点、と有効な曲率半径の範囲を確認した。
Further, when the curvature radius is smaller than the optimum curvature radius, the tube expansion ratio is reduced, and the heat transfer tube cannot be sufficiently adhered to the heat radiating plate, which may cause a poor connection between the heat transfer tube and the heat radiating plate. If the expansion ratio when the expansion plug with the optimal radius of curvature is used is 1, the expansion ratio is 0.95 or higher, that is, the radius of curvature is 95% or higher with respect to the optimal point expansion load. The tube expansion rate can be secured sufficiently.
From such a viewpoint, the optimum point of the radius of curvature R with respect to the individual maximum diameter D and the range of the effective radius of curvature were confirmed.

ヘッド部の最大直径Dを5.7mm、5.8mm、5.85mm、5.9mm、5.95mm、6.0mm、6.1mm、6.5mm、7.0mmとした場合のシミュレーション結果を、それぞれ表2〜表10にまとめる。
また、表2〜表10には、曲率半径の最適点と、拡管荷重を抑制しつつ拡管率を高めるための有効な曲率半径の範囲に含まれるか否かの判定結果を記載する。
なお、表2〜表10の最適点は、今回のシミュレーションを行った曲率半径の中で理想的な最適点に対し最も近接した曲率半径のものを最適点として設定している。
Simulation results when the maximum diameter D of the head portion is 5.7 mm, 5.8 mm, 5.85 mm, 5.9 mm, 5.95 mm, 6.0 mm, 6.1 mm, 6.5 mm, 7.0 mm, These are summarized in Tables 2 to 10, respectively.
Tables 2 to 10 describe the optimum point of the curvature radius and the determination result of whether or not it is included in the range of the effective curvature radius for increasing the tube expansion rate while suppressing the tube expansion load.
Note that the optimum points in Tables 2 to 10 are set as the optimum points with the curvature radii closest to the ideal optimum point among the radii of curvature performed in this simulation.

Figure 2016087675
Figure 2016087675

Figure 2016087675
Figure 2016087675

Figure 2016087675
Figure 2016087675

Figure 2016087675
Figure 2016087675

Figure 2016087675
Figure 2016087675

Figure 2016087675
Figure 2016087675

Figure 2016087675
Figure 2016087675

Figure 2016087675
Figure 2016087675

Figure 2016087675
Figure 2016087675

表2〜表10に示す曲率半径の最適点と、拡管荷重を抑制しつつ拡管率を高めるための有効な曲率半径の範囲に含まれる曲率半径のうち、最大値と最小値の曲率半径を、プラグ径を横軸にとり図9にまとめた。
また、図9において、曲率半径の最大値の近似曲線を最小二乗法によって描いた。同様に、曲率半径の最小値の近似曲線を最小二乗法によって描いた。
Among the curvature radii shown in Tables 2 to 10 and the curvature radii included in the range of effective curvature radii for increasing the expansion ratio while suppressing the expansion load, the maximum and minimum curvature radii are: The plug diameter is plotted on the horizontal axis and summarized in FIG.
In FIG. 9, an approximate curve of the maximum value of the radius of curvature is drawn by the method of least squares. Similarly, an approximate curve of the minimum value of the radius of curvature was drawn by the least square method.

曲率半径は、最大値の近似曲線と最小値の近似曲線によって挟まれる領域が、拡管荷重を抑制しつつ拡管率を高めるために有効な範囲と見なすことができる。曲率半径の最大値の近似曲線および最小値の近似曲線から、主拡管部の曲率半径Rの上限及び下限は、最大径部の直径(最大直径)を、Dを用いて(式1)、(式2)で表される。
上限R=−9.37×D+196.69×D−1375.5×D+3214…(式1)
下限R=−14.43×D+286.66×D−1897.6×D+4190…(式2)
上限の曲率半径と下限の曲率半径との間の曲率半径とすることで、拡管荷重を抑制しつつ拡管率を高めるバランスの良い拡管プラグを提供できる。
The radius of curvature can be regarded as an effective range for increasing the tube expansion ratio while suppressing the tube expansion load in the region between the maximum value approximate curve and the minimum value approximate curve. From the approximate curve of the maximum value of the radius of curvature and the approximate curve of the minimum value, the upper limit and the lower limit of the radius of curvature R of the main expanded portion are the diameter (maximum diameter) of the maximum diameter portion using D (Equation 1), ( It is represented by Formula 2).
Upper limit R = −9.37 × D 3 + 196.69 × D 2 −1375.5 × D + 3214 (Formula 1)
Lower limit R = −14.43 × D 3 + 286.66 × D 2 −1897.6 × D + 4190 (Formula 2)
By setting the curvature radius between the upper limit curvature radius and the lower limit curvature radius, a well-balanced tube expansion plug that increases tube expansion rate while suppressing tube expansion load can be provided.

(第2のシミュレーション)
次に、上述の第1のシミュレーション結果を基に得られた(式1)、(式2)が、他の伝熱管に対して同様の結果が得られることを確かめるために、第2のシミュレーションを行った。第2のシミュレーションでは、外径、底肉厚、フィン高さ、捻れ角が異なる表11に示す伝熱管に対する拡管工程を想定した。また、第2のシミュレーションは、表11に示す伝熱管(拡管前)に対して、最大直径Dが、5.7mm、5.9mm、6.1mm、7.0mmの拡管プラグを想定する。上述した最大直径Dの拡管プラグについて、主拡管部の曲率半径Rを様々に変更したシミュレーションを行った。
(Second simulation)
Next, in order to confirm that (Equation 1) and (Equation 2) obtained on the basis of the first simulation result described above can obtain the same result for other heat transfer tubes, the second simulation is performed. Went. In the 2nd simulation, the pipe expansion process with respect to the heat exchanger tube shown in Table 11 from which an outer diameter, bottom wall thickness, fin height, and a twist angle differ was assumed. The second simulation assumes a tube expansion plug having a maximum diameter D of 5.7 mm, 5.9 mm, 6.1 mm, and 7.0 mm with respect to the heat transfer tube (before tube expansion) shown in Table 11. With respect to the above-mentioned expanded plug with the maximum diameter D, a simulation was performed in which the radius of curvature R of the main expanded portion was variously changed.

Figure 2016087675
Figure 2016087675

図10は、縦軸に拡管荷重、横軸に拡管率を取り第2のシミュレーションの結果のグラフである。なお、図10のグラフは、わかりやすさのために、シミュレーション結果のうち、要点のなるものを抽出してプロットしたものである。
図10においても、第1のシミュレーション結果を示す図8と同様に、ヘッド部の最大直径Dを同じとする一群のグラフ同士には、共通接線を引くことができる。
FIG. 10 is a graph of the result of the second simulation, where the vertical axis represents the tube expansion load and the horizontal axis represents the tube expansion rate. Note that the graph of FIG. 10 is obtained by extracting and plotting the main points of the simulation results for the sake of easy understanding.
Also in FIG. 10, a common tangent line can be drawn between a group of graphs having the same maximum diameter D of the head portion as in FIG. 8 showing the first simulation result.

第1のシミュレーションと同様に、同一の最大直径Dを有する一群において、最適点の近傍の曲率半径を用いることで、拡管荷重を低減しつつ、拡管率を高めることができる。
ヘッド部の最大直径Dを5.7mm、5.9mm、6.1mm、7.0mmとした場合のシミュレーション結果を、それぞれ表12〜表15にまとめる。
また、表12〜表15には、曲率半径の最適点と、拡管荷重を抑制しつつ拡管率を高めるための有効な曲率半径の範囲に含まれるか否かの判定結果を記載する。
なお、表12〜表15の最適点は、今回のシミュレーションを行った曲率半径の中で理想的な最適点に対し最も近接した曲率半径のものを最適点として設定している。
Similar to the first simulation, in the group having the same maximum diameter D, the expansion rate can be increased while reducing the expansion load by using the radius of curvature near the optimum point.
The simulation results when the maximum diameter D of the head portion is 5.7 mm, 5.9 mm, 6.1 mm, and 7.0 mm are summarized in Tables 12 to 15, respectively.
Tables 12 to 15 describe the optimum point of the curvature radius and the determination result as to whether or not it is included in the effective radius of curvature for increasing the tube expansion rate while suppressing the tube expansion load.
The optimum points in Tables 12 to 15 are set as the optimum points with the curvature radii closest to the ideal optimum point among the radii of curvature performed in this simulation.

Figure 2016087675
Figure 2016087675

Figure 2016087675
Figure 2016087675

Figure 2016087675
Figure 2016087675

Figure 2016087675
Figure 2016087675

表12〜表15に示す曲率半径の最適点と、拡管荷重を抑制しつつ拡管率を高めるための有効な曲率半径の範囲に含まれる曲率半径のうち、最大値と最小値の曲率半径を、プラグ径を横軸にとり図11にまとめた。また、図11に、第1のシミュレーションの結果から得られた(式1)、(式2)の範囲を重ねて示す。図11に示すように、第2のシミュレーションの結果が、(式1)、(式2)の範囲に含まれる。このことから、表11に示す外径、底肉厚、フィン高さ、捻れ角が異なる伝熱管であっても、(式1)、(式2)に示される範囲が好ましい範囲として適用できることがわかる。   Among the curvature radii shown in Tables 12 to 15 and the curvature radii included in the range of effective curvature radii for increasing the expansion ratio while suppressing the expansion load, the maximum and minimum curvature radii are: The plug diameter is plotted on the horizontal axis and summarized in FIG. FIG. 11 shows the ranges of (Expression 1) and (Expression 2) obtained from the result of the first simulation in an overlapping manner. As shown in FIG. 11, the result of the second simulation is included in the range of (Expression 1) and (Expression 2). From this, even if it is a heat exchanger tube from which the outer diameter shown in Table 11, a bottom wall thickness, fin height, and a twist angle differ, the range shown in (Formula 1) and (Formula 2) can be applied as a preferable range. Recognize.

(第3のシミュレーション)
次に、上述の第1のシミュレーション結果を基に得られた(式1)、(式2)が、さらに材質の異なる他の伝熱管に対して同様の結果が得られることを確かめるために、第3のシミュレーションを行った。
第3のシミュレーションは、表16に示す伝熱管(拡管前)に対して、最大直径Dが、5.7mm、5.9mm、6.1mm、7.0mmの拡管プラグを想定する。上述した最大直径Dの拡管プラグについて、主拡管部の曲率半径Rを様々に変更したシミュレーションを行った。
(Third simulation)
Next, in order to confirm that (Equation 1) and (Equation 2) obtained on the basis of the first simulation result described above can obtain similar results for other heat transfer tubes of different materials, A third simulation was performed.
The third simulation assumes tube expansion plugs having a maximum diameter D of 5.7 mm, 5.9 mm, 6.1 mm, and 7.0 mm with respect to the heat transfer tubes (before tube expansion) shown in Table 16. With respect to the above-mentioned expanded plug with the maximum diameter D, a simulation was performed in which the radius of curvature R of the main expanded portion was variously changed.

Figure 2016087675
Figure 2016087675

図12は、縦軸に拡管荷重、横軸に拡管率を取り第3のシミュレーションの結果のグラフである。なお、図12のグラフは、わかりやすさのために、シミュレーション結果のうち、要点のなるものを抽出してプロットしたものである。
図12においても、第1のシミュレーション結果を示す図8と同様に、ヘッド部の最大直径Dを同じとする一群のグラフ同士には、共通接線を引くことができる。
FIG. 12 is a graph showing the result of the third simulation, where the vertical axis represents the tube expansion load and the horizontal axis represents the tube expansion rate. Note that the graph of FIG. 12 is obtained by extracting and plotting the main points from the simulation results for the sake of easy understanding.
Also in FIG. 12, as in FIG. 8 showing the first simulation result, a common tangent line can be drawn between a group of graphs having the same maximum diameter D of the head portion.

第1のシミュレーションと同様に、同一の最大直径Dを有する一群において、最適点の近傍の曲率半径を用いることで、拡管荷重を低減しつつ、拡管率を高めることができる。
ヘッド部の最大直径Dを5.7mm、5.9mm、6.1mm、7.0mmとした場合のシミュレーション結果を、それぞれ表17〜表20にまとめる。
また、表17〜表20には、曲率半径の最適点と、拡管荷重を抑制しつつ拡管率を高めるための有効な曲率半径の範囲に含まれるか否かの判定結果を記載する。
なお、表17〜表20の最適点は、今回のシミュレーションを行った曲率半径の中で理想的な最適点に対し最も近接した曲率半径のものを最適点として設定している。
Similar to the first simulation, in the group having the same maximum diameter D, the expansion rate can be increased while reducing the expansion load by using the radius of curvature near the optimum point.
The simulation results when the maximum diameter D of the head part is 5.7 mm, 5.9 mm, 6.1 mm, and 7.0 mm are summarized in Tables 17 to 20, respectively.
Tables 17 to 20 describe the optimum point of the radius of curvature and the determination result as to whether it is included in the effective radius of curvature for increasing the tube expansion rate while suppressing the tube expansion load.
Note that the optimum points in Tables 17 to 20 are set as the optimum points with the curvature radius closest to the ideal optimum point among the curvature radii in this simulation.

Figure 2016087675
Figure 2016087675

Figure 2016087675
Figure 2016087675

Figure 2016087675
Figure 2016087675

Figure 2016087675
Figure 2016087675

表17〜表20に示す曲率半径の最適点と、拡管荷重を抑制しつつ拡管率を高めるための有効な曲率半径の範囲に含まれる曲率半径のうち、最大値と最小値の曲率半径を、プラグ径を横軸にとり図13にまとめた。
また、図13に、第1のシミュレーションの結果から得られた(式1)、(式2)の範囲を重ねて示す。図13に示すように、第3のシミュレーションの結果が(式1)、(式2)の範囲に含まれる。このことから、表16に示す材質の異なる伝熱管であっても、(式1)、(式2)に示される範囲が好ましい範囲として適用できることがわかる。
Among the curvature radii shown in Table 17 to Table 20 and the curvature radii included in the range of effective curvature radii for increasing the expansion ratio while suppressing the expansion load, the maximum and minimum curvature radii are: The plug diameter is plotted on the horizontal axis and summarized in FIG.
FIG. 13 also shows the ranges of (Expression 1) and (Expression 2) obtained from the result of the first simulation. As shown in FIG. 13, the result of the third simulation is included in the range of (Expression 1) and (Expression 2). From this, it can be seen that the ranges shown in (Equation 1) and (Equation 2) can be applied as preferable ranges even with heat transfer tubes of different materials shown in Table 16.

(試験1)
次に、拡管プラグの前面拡管部と、初期拡管荷重及び内面フィンの倒れについて試験1として調査した。
図6に示す主拡管部と予備拡管部を備えた拡管プラグを数種類用意した。なお、拡管プラグのヘッド部は、VM40相当の超硬合金(HRA90)からなり、軸部は、JIS規定SCM435からなる。これらの拡管プラグの後面拡管部は、曲率半径7.5mmである。
(Test 1)
Next, the front expanded portion of the expanded plug, the initial expanded load and the collapse of the inner fin were investigated as Test 1.
Several types of pipe expansion plugs having a main pipe expansion section and a preliminary pipe expansion section shown in FIG. 6 were prepared. The head portion of the tube expansion plug is made of cemented carbide (HRA90) equivalent to VM40, and the shaft portion is made of JIS standard SCM435. The rear surface expanded portion of these expanded plugs has a curvature radius of 7.5 mm.

これらの拡管プラグによって拡管される伝熱管を数種類用意した。また、この伝熱管はJIS3003合金からなる。
用意した拡管プラグを用いて、伝熱管の拡管工程を行った。拡管の際、伝熱管を潤滑油(ダフニーパンチオイルAF−2A:出光興産製:動粘度1.37mm/S)に浸漬後、直ちに拡管した。拡管時の拡管プラグの挿入速度は、500mm/minとした。
拡管プラグ、及び伝熱管の組み合わせをNo.1〜No.28として表21にまとめる。
なお、表21において、外径拡管率とは、以下の式で百分率として表される。
100×(α−α)/α
ただし、αを拡管前の伝熱管の外径、αを拡管後の伝熱管の外径とする。
このような拡管工程の結果として生じた、初期拡管荷重、安定拡管荷重、内面フィンの減少率を表22に示す。なお、安定拡管荷重とは、図14に示すように、拡管荷重が安定した領域の荷重を意味する。
Several types of heat transfer tubes that were expanded by these expansion plugs were prepared. The heat transfer tube is made of JIS3003 alloy.
Using the prepared tube expansion plug, the tube expansion process of the heat transfer tube was performed. During the expansion, the heat transfer tube was immersed in a lubricating oil (Daphney punch oil AF-2A: manufactured by Idemitsu Kosan Co., Ltd .: kinematic viscosity 1.37 mm 2 / S) and immediately expanded. The insertion speed of the expansion plug during expansion was 500 mm / min.
The combination of expansion pipe and heat transfer tube is No. 1-No. 28 is summarized in Table 21.
In Table 21, the outer diameter tube expansion rate is expressed as a percentage in the following equation.
100 × (α 2 −α 1 ) / α 1
Here, α 1 is the outer diameter of the heat transfer tube before the expansion, and α 2 is the outer diameter of the heat transfer tube after the expansion.
Table 22 shows the initial tube expansion load, the stable tube expansion load, and the reduction rate of the inner fins, which are generated as a result of the tube expansion process. The stable tube expansion load means a load in a region where the tube expansion load is stable as shown in FIG.

Figure 2016087675
Figure 2016087675

Figure 2016087675
Figure 2016087675

表21において、サンプルNo.1〜No.4、サンプルNo.7、No.8、サンプルNo.13、No.14、サンプルNo.21、No.22、サンプルNo.25〜No.28は、以下の(式1)、(式2)を満たす。
上限R=−9.37×D+196.69×D−1375.5×D+3214…(式1)
下限R=−14.43×D+286.66×D−1897.6×D+4190…(式2)
ただし、Rは主拡管部の曲率半径R、Dはヘッド部の最大直径である。
In Table 21, sample no. 1-No. 4, sample no. 7, no. 8, sample no. 13, no. 14, sample no. 21, no. 22, sample no. 25-No. 28 satisfies the following (Expression 1) and (Expression 2).
Upper limit R = −9.37 × D 3 + 196.69 × D 2 −1375.5 × D + 3214 (Formula 1)
Lower limit R = −14.43 × D 3 + 286.66 × D 2 −1897.6 × D + 4190 (Formula 2)
Here, R is the radius of curvature R of the main expanded portion, and D is the maximum diameter of the head portion.

一例として、(式1)、(式2)を満たすサンプルNo.2と、(式1)、(式2)を満たさないサンプルNo.5、No.6とを比較する。サンプルNo.2、No.5、No.6は、主拡管部の曲率半径だけが異なる。
表22から、サンプルNo.2、No.5、No.6の拡管率はともに5.71%で、拡管率に差がないことがわかる。また、サンプルNo.2の安定拡管荷重は、250Nであるのに対して、サンプルNo.5の安定拡管荷重は320N、サンプルNo.6の安定拡管荷重は400Nである。このように、拡管プラグの主拡管部の曲率半径を(式1)、(式2)を満たすようにすることで、拡管率を変えることなく拡管荷重を低減できる。
As an example, sample No. 1 satisfying (Expression 1) and (Expression 2) is used. 2 and a sample No. that does not satisfy (Expression 1) and (Expression 2). 5, no. 6 is compared. Sample No. 2, No. 5, no. 6 differs only in the radius of curvature of the main expanded portion.
From Table 22, sample no. 2, No. 5, no. The expansion ratios of 6 were 5.71%, indicating that there was no difference in the expansion ratio. Sample No. The stable tube expansion load of No. 2 is 250 N, whereas sample No. 5 is 320 N, sample No. The stable tube expansion load of 6 is 400N. As described above, by satisfying (Equation 1) and (Equation 2) for the radius of curvature of the main expanded portion of the expanded tube plug, the expanded tube load can be reduced without changing the expanded tube rate.

初期拡管荷重が500N以上になると座屈が生じやすくなる。また、安定拡管荷重は450N以上になると、座屈が生じやすくなる。
内面フィンの減少率は、15%以上となると、内面フィンが倒れて熱交換効率が下がり好ましくない。また、内面フィンの倒れによって、外径が十分に拡管されないことがある。
If the initial tube expansion load is 500 N or more, buckling tends to occur. Further, when the stable tube expansion load is 450 N or more, buckling tends to occur.
If the reduction rate of the inner fins is 15% or more, the inner fins fall and the heat exchange efficiency decreases, which is not preferable. In addition, the outer diameter may not be expanded sufficiently due to the fall of the inner fin.

表21、表22に示すように、様々な組み合わせの拡管プラグと伝熱管を用いた拡管工程のうち、No.1〜No.24の拡管工程においては、拡管荷重、及び内面フィンの高さ減少率を抑えることができている。これに対して、No.25〜No.28の拡管工程においては、拡管荷重が高いか、又は内面フィンの減少率が大きくなっている。特に、No.26、No.27の拡管工程においては、拡管初期において座屈が生じた。
表21、表22に示す結果から、予備拡管部の曲率半径、主拡管部の曲率半径、予備拡管終了部の直径を適切に設定することで、初期拡管荷重を抑制しつつ、内面フィンの倒れを抑制可能であることを確認した。
また、伝熱管の外径αに対する底肉厚tの比(t/α)が、0.05以上0.11以下である場合に、好ましい拡管工程を行うことができることが確認された。
As shown in Table 21 and Table 22, among the tube expansion processes using various combinations of the tube expansion plug and the heat transfer tube, No. 1-No. In 24 pipe expansion processes, the pipe expansion load and the height reduction rate of the inner surface fins can be suppressed. In contrast, no. 25-No. In the tube expansion process 28, the tube expansion load is high or the reduction rate of the internal fins is large. In particular, no. 26, no. In the tube expansion process No. 27, buckling occurred at the beginning of tube expansion.
From the results shown in Tables 21 and 22, by setting the radius of curvature of the pre-expanded pipe part, the radius of curvature of the main pipe-expanded part, and the diameter of the end part of the pre-expanded pipe, the inner fin collapses while suppressing the initial pipe expansion load. It was confirmed that it can be suppressed.
Moreover, it was confirmed that a preferable tube expansion process can be performed when the ratio (t / α 1 ) of the bottom wall thickness t to the outer diameter α 1 of the heat transfer tube is 0.05 or more and 0.11 or less.

(試験2)
次に、拡管プラグの後面拡管部と、初期拡管荷重及び内面フィンの倒れについて試験2として調査した。
図6に示す拡管プラグであって、後面拡管部の曲率半径が異なる拡管プラグを数種類用意した。これらの拡管プラグは、予備拡管部の曲率半径が7mm、主拡管部の曲率半径が22mm、予備拡管終了径が5.57mm、最大径部の直径が5.86mmである。ヘッド部及び軸部の材質は、上述の試験1と同等である。
これらの拡管プラグによって拡管される伝熱管として、JIS3003合金からなる伝熱管を用意した。これらの伝熱管の拡管前の最小内径は、5.4mm、外径は、7.0mm、底肉厚は、0.5mm、外径/底肉厚は、14.0、フィン幅は、0.15mm、フィンピッチは、0.38mm、フィンピッチ/フィン幅は、0.4、内面フィンの数は、50個である。
用意した拡管プラグを用いて、伝熱管の拡管工程を行った結果をNo.29〜No.32として表23にまとめる。なお、拡管後の伝熱管の外径は、7.4mmとなっていた。
拡管工程は、押込み式の拡管工程後に把持治具により伝熱管の開口部をクランプし、次いで吊下げ式の拡管工程、引抜工程を順次行った。クランプにより、伝熱管の開口部は、外径7.0mmに縮径されており、引抜工程において後面拡管部により再度拡管されている。
(Test 2)
Next, the rear surface expanded portion of the expanded tube plug, the initial expanded tube load, and the collapse of the inner fin were investigated as Test 2.
Several types of tube expansion plugs shown in FIG. 6 with different curvature radii of the rear surface tube expansion portion were prepared. These expanded pipes have a radius of curvature of the preliminary expanded portion of 7 mm, a radius of curvature of the main expanded portion of 22 mm, an end diameter of the expanded preliminary tube of 5.57 mm, and a diameter of the maximum diameter portion of 5.86 mm. The material of the head part and the shaft part is the same as in Test 1 described above.
As a heat transfer tube expanded by these tube expansion plugs, a heat transfer tube made of JIS3003 alloy was prepared. These tubes have a minimum inner diameter of 5.4 mm, an outer diameter of 7.0 mm, a bottom wall thickness of 0.5 mm, an outer diameter / bottom wall thickness of 14.0, and a fin width of 0 mm. .15 mm, fin pitch is 0.38 mm, fin pitch / fin width is 0.4, and the number of internal fins is 50.
The result of the expansion process of the heat transfer tube using the prepared expansion plug is No. 29-No. 32 is summarized in Table 23. In addition, the outer diameter of the heat transfer tube after the tube expansion was 7.4 mm.
In the tube expansion process, the opening portion of the heat transfer tube was clamped by a holding jig after the push-in tube expansion step, and then the hanging tube expansion step and the drawing step were sequentially performed. The opening of the heat transfer tube is reduced to an outer diameter of 7.0 mm by the clamp, and is expanded again by the rear surface expanded portion in the drawing process.

Figure 2016087675
Figure 2016087675

表23に示すように、複数の拡管プラグを用いた拡管工程のうち、No.29においては、引抜工程時に、伝熱管の開口部付近で非常に大きな引抜力が生じ、伝熱管に破断が生じた。
また、No.30においては、引抜時の抵抗で伝熱管が長手方向に延ばされ、それに伴い引けが生じた(伝熱管の外径が小さくなった)。これにより、伝熱管が全長に亘り外径7.35mmとなっていた。これに対して、No.31、No.32の拡管工程においては、正常に引抜工程が行われた。
試験2の結果から、後面拡管部の曲率半径を10mm以下とすることで、引抜時に伝熱管に過度な引張応力が加わることがないことが確認された。
As shown in Table 23, in the pipe expansion process using a plurality of pipe expansion plugs, In No. 29, during the drawing process, a very large drawing force was generated near the opening of the heat transfer tube, and the heat transfer tube was broken.
No. In No. 30, the heat transfer tube was elongated in the longitudinal direction due to the resistance at the time of drawing, and the shrinkage occurred accordingly (the outer diameter of the heat transfer tube was reduced). As a result, the heat transfer tube had an outer diameter of 7.35 mm over the entire length. In contrast, no. 31, no. In 32 pipe expansion processes, the drawing process was normally performed.
From the results of Test 2, it was confirmed that an excessive tensile stress was not applied to the heat transfer tube at the time of drawing by setting the radius of curvature of the rear surface expanded portion to 10 mm or less.

以上に、本発明の様々な実施形態を説明したが、各実施形態における各構成及びそれらの組み合わせ等は一例であり、本発明の趣旨から逸脱しない範囲内で、構成の付加、省略、置換、及びその他の変更が可能である。また、本発明は実施形態によって限定されることはない。
例えば、実施形態の拡管プラグは、拡管対象の伝熱管として内面に螺旋溝が設けられた内面螺旋溝付管に適用する例について説明したが、直線溝が形成された伝熱管に対しても、有効に適用できる。また、拡管プラグは、拡管対象の伝熱管として、銅又は銅合金からなる伝熱管に適用しても良い。
Although various embodiments of the present invention have been described above, each configuration in each embodiment and combinations thereof are examples, and addition, omission, replacement, and configuration of configurations are within the scope not departing from the spirit of the present invention. And other changes are possible. Further, the present invention is not limited by the embodiment.
For example, the tube expansion plug according to the embodiment has been described as an example of application to an inner surface spiral grooved tube in which a spiral groove is provided on the inner surface as a heat transfer tube to be expanded, but also to a heat transfer tube in which a linear groove is formed, It can be applied effectively. The tube expansion plug may be applied to a heat transfer tube made of copper or a copper alloy as a heat transfer tube to be expanded.

また、実施形態に示したように、本発明によれば、ヘッド部に、最大径部から先端部側に向かって形成される主拡管部を設け、主拡管部の縦断面の曲率半径と最大径部の直径との関係を以下の(式1)、(式2)とする拡管プラグの設計方法を提供できる。
上限R=−9.37×D+196.69×D−1375.5×D+3214…(式1)
下限R=−14.43×D+286.66×D−1897.6×D+4190…(式2)
ただし、Dは、最大径部の直径であり、Rは、主拡管部の縦断面の曲率半径である。
In addition, as shown in the embodiment, according to the present invention, the head portion is provided with a main expanded portion formed from the maximum diameter portion toward the distal end portion, and the radius of curvature of the longitudinal section of the main expanded portion and the maximum It is possible to provide a tube expansion plug design method in which the relationship with the diameter of the diameter portion is expressed by the following (formula 1) and (formula 2).
Upper limit R = −9.37 × D 3 + 196.69 × D 2 −1375.5 × D + 3214 (Formula 1)
Lower limit R = −14.43 × D 3 + 286.66 × D 2 −1897.6 × D + 4190 (Formula 2)
However, D is a diameter of the maximum diameter part, and R is a curvature radius of the longitudinal section of the main expansion part.

1、21…拡管プラグ、2、22…軸部、2a…ねじ軸、3、23…ヘッド部、3a、23a…先端部、3c、23c…最大径部、3d、23d…後端部、6、26B…主拡管部、7、27…後面拡管部、11…伝熱管、11a…開口部、11b…U字部、12…内面フィン、12a…頂部、12b…傾斜部、14…フィン溝、15…フィン材、15a…挿通孔、16…フィン集合体、23b…予備拡管終了部、26…前面拡管部、26A…予備拡管部、R、BR、SR…曲率半径、D…最大直径(直径)、D…予備拡管終了径、FD…直径、h…高さ、i…フィンピッチ、j…フィン幅、t…底肉厚、α…拡管前外径、α…拡管後外径、β…最小内径、θ…捻れ角 1, 21 ... tube expansion plug, 2, 22 ... shaft part, 2 a ... screw shaft, 3, 23 ... head part, 3 a, 23 a ... tip part, 3 c, 23 c ... maximum diameter part, 3 d, 23 d ... rear end part, 6 , 26B ... main expanded portion, 7, 27 ... rear expanded portion, 11 ... heat transfer tube, 11a ... opening, 11b ... U-shaped portion, 12 ... inner fin, 12a ... top portion, 12b ... inclined portion, 14 ... fin groove, DESCRIPTION OF SYMBOLS 15 ... Fin material, 15a ... Insertion hole, 16 ... Fin assembly, 23b ... Preliminary pipe expansion end part, 26 ... Front pipe expansion part, 26A ... Preliminary pipe expansion part, R, BR, SR ... Curvature radius, D ... Maximum diameter (diameter ), D 2 ... reserve tube expansion finished diameter, FD ... diameter, h ... height, i ... fin pitch, j ... fin width, t ... bottom wall thickness, alpha 1 ... expanded tube before the outer diameter, alpha 2 ... pipe expansion Kosoto径, Β ... minimum inner diameter, θ ... twist angle

Claims (7)

内周面に複数の内面フィンが形成された伝熱管に挿入することで、前記伝熱管を拡管する拡管プラグであって、
軸部と、その先端側に形成されるヘッド部と、を有し、
前記ヘッド部は、その横断面が先端部側から最大径部まで徐々に直径を大きくする略円形状であり、
前記ヘッド部は、前記最大径部から前記先端部側に向かって形成される主拡管部を備え、
前記主拡管部の縦断面の曲率半径Rの上限及び下限が、前記最大径部の直径Dと以下の式の関係を有する拡管プラグ。
上限R=−9.37×D+196.69×D−1375.5×D+3214
下限R=−14.43×D+286.66×D−1897.6×D+4190
A tube expansion plug that expands the heat transfer tube by inserting it into a heat transfer tube in which a plurality of internal fins are formed on the inner peripheral surface,
A shaft portion, and a head portion formed on the tip side thereof,
The head part has a substantially circular shape whose transverse section gradually increases in diameter from the tip side to the maximum diameter part,
The head portion includes a main expansion portion that is formed from the maximum diameter portion toward the tip portion side,
The tube expansion plug in which the upper limit and the lower limit of the curvature radius R of the longitudinal section of the main tube expansion portion have a relationship of the following formula with the diameter D of the maximum diameter portion.
Upper limit R = −9.37 × D 3 + 196.69 × D 2 −1375.5 × D + 3214
Lower limit R = −14.43 × D 3 + 286.66 × D 2 −1897.6 × D + 4190
前記ヘッド部が、前記先端部と前記主拡管部との間に、前記主拡管部と滑らかに接続される予備拡管部を備え、
前記予備拡管部が、前記伝熱管の最小管内径より小径の前記先端部から前記最小管内径より大径の予備拡管終了部までを5mm以上7.9mm以下の曲率半径で接続し、
前記予備拡管終了部の直径である予備拡管終了径が、以下の式で表されることを特徴とする請求項1に記載の拡管プラグ。
={K×β×(α−α)/α}+β
ただし、Dは、予備拡管終了径であり、
Kは0.45以上0.65以下の予備拡管係数であり、
βは、拡管前の前記伝熱管の最小管内径であり、
αは、拡管前の前記伝熱管の外径であり、
αは、拡管後の前記伝熱管の外径である。
The head portion includes a preliminary expanded portion that is smoothly connected to the main expanded portion between the tip portion and the main expanded portion,
The preliminary expanded portion connects the tip portion having a diameter smaller than the minimum tube inner diameter of the heat transfer tube to the preliminary expanded end portion having a diameter larger than the minimum tube inner diameter with a radius of curvature of 5 mm or more and 7.9 mm or less,
The expansion pipe plug according to claim 1, wherein a preliminary expansion end diameter, which is a diameter of the preliminary expansion end portion, is represented by the following expression.
D 2 = {K × β × (α 2 −α 1 ) / α 1 } + β
However, D 2 is a pre-expanded tube end diameter,
K is a preliminary expansion coefficient of 0.45 or more and 0.65 or less,
β is the minimum tube inner diameter of the heat transfer tube before expansion,
α 1 is the outer diameter of the heat transfer tube before expansion,
α 2 is the outer diameter of the heat transfer tube after tube expansion.
前記最大径部の直径が、5.7mm以上7.0mm以下であることを特徴とする請求項1又は2に記載の拡管プラグ。   The tube expansion plug according to claim 1 or 2, wherein a diameter of the maximum diameter portion is 5.7 mm or more and 7.0 mm or less. 拡管前の前記伝熱管が、
アルミニウム又はアルミニウム合金からなり、
外径が6mm以上8mm以下であり、
底肉厚が0.45mm以上0.65mm以下であり、
外径に対する底肉厚の比が0.05以上0.11以下であり、
前記内面フィンが前記伝熱管の長手方向に対し螺旋状に形成されていることを特徴とする請求項1〜3の何れか一項に記載の拡管プラグ。
The heat transfer tube before expansion is
Made of aluminum or aluminum alloy,
The outer diameter is 6 mm or more and 8 mm or less,
The bottom wall thickness is 0.45 mm or more and 0.65 mm or less,
The ratio of the bottom wall thickness to the outer diameter is 0.05 to 0.11,
The said internal fin is formed in the spiral with respect to the longitudinal direction of the said heat exchanger tube, The pipe expansion plug as described in any one of Claims 1-3 characterized by the above-mentioned.
前記ヘッド部が、前記最大径部と当該最大径部より小径の後端部との間に後面拡管部を有し、
前記後面拡管部が、前記最大径部から前記後端部までを10mm以下の曲率半径で接続することを特徴とする請求項1又は2に記載の拡管プラグ。
The head portion has a rear surface expanded portion between the maximum diameter portion and a rear end portion having a smaller diameter than the maximum diameter portion,
The tube expansion plug according to claim 1 or 2, wherein the rear surface tube expansion portion connects the maximum diameter portion to the rear end portion with a radius of curvature of 10 mm or less.
内周面に複数の内面フィンが形成された伝熱管に挿入することで、前記伝熱管を拡管する拡管プラグの設計方法であって、
軸部と、その先端側に形成されるヘッド部と、を有し、前記ヘッド部は、その横断面が先端部側から最大径部まで徐々に直径を大きくする略円形状である拡管プラグにおいて、
前記ヘッド部に、前記最大径部から前記先端部側に向かって形成される主拡管部を設け、
前記主拡管部の縦断面の曲率半径Rを、前記最大径部の直径Dにより表される以下の式の上限及び下限の間とする拡管プラグの設計方法。
上限R=−9.37×D+196.69×D−1375.5×D+3214
下限R=−14.43×D+286.66×D−1897.6×D+4190
A tube expansion plug design method for expanding the heat transfer tube by inserting it into a heat transfer tube in which a plurality of internal fins are formed on the inner peripheral surface,
In the tube expansion plug having a shaft portion and a head portion formed on a tip end side thereof, the head portion having a substantially circular shape whose transverse section gradually increases in diameter from the tip end portion side to the maximum diameter portion. ,
The head portion is provided with a main expansion portion formed from the maximum diameter portion toward the distal end portion,
A method for designing a tube expansion plug, wherein a radius of curvature R of a longitudinal section of the main tube expansion portion is between an upper limit and a lower limit of the following expression represented by the diameter D of the maximum diameter portion.
Upper limit R = −9.37 × D 3 + 196.69 × D 2 −1375.5 × D + 3214
Lower limit R = −14.43 × D 3 + 286.66 × D 2 −1897.6 × D + 4190
内周面に複数の内面フィンが形成された伝熱管に挿入することで、前記伝熱管を拡管する拡管プラグの設計方法であって、
軸部と、その先端側に形成されるヘッド部と、を有し、前記ヘッド部は、その横断面が先端部側から最大径部まで徐々に直径を大きくする略円形状であり、前記ヘッド部に、前記最大径部から前記先端部側に向かって形成される主拡管部を設け、前記最大径部の直径と、前記主拡管部の縦断面の曲率半径とを様々に変えた複数の拡管プラグを想定し、
複数の前記拡管プラグにより前記伝熱管を拡管した際の拡管率と拡管荷重とをグラフにプロットし、
複数の前記拡管プラグのうち、前記最大径部の直径が同一のものを一群として、前記グラフの各群同士の共通接線をとり、
前記最大径部の直径が同一の一群に対し、前記共通接線に最も近接する前記曲率半径を最適な曲率半径とする拡管プラグの設計方法。
A tube expansion plug design method for expanding the heat transfer tube by inserting it into a heat transfer tube in which a plurality of internal fins are formed on the inner peripheral surface,
A shaft portion and a head portion formed on a tip side thereof, and the head portion has a substantially circular shape whose transverse section gradually increases in diameter from the tip portion side to the maximum diameter portion, The portion is provided with a main expanded portion formed from the maximum diameter portion toward the distal end side, and a plurality of diameters of the maximum diameter portion and a curvature radius of a longitudinal section of the main expanded portion are variously changed. Assuming an expansion plug,
Plotting the expansion rate and the expansion load when the heat transfer tube is expanded by a plurality of the expansion plugs,
Among the plurality of tube expansion plugs, a group having the same diameter of the maximum diameter portion as a group, taking a common tangent line between each group of the graph,
A tube expansion plug design method in which the radius of curvature closest to the common tangent is set to an optimum radius of curvature for a group having the same maximum diameter portion.
JP2014228027A 2014-11-10 2014-11-10 Expansion pipe and design method for expansion pipe Expired - Fee Related JP6521424B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014228027A JP6521424B2 (en) 2014-11-10 2014-11-10 Expansion pipe and design method for expansion pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014228027A JP6521424B2 (en) 2014-11-10 2014-11-10 Expansion pipe and design method for expansion pipe

Publications (2)

Publication Number Publication Date
JP2016087675A true JP2016087675A (en) 2016-05-23
JP6521424B2 JP6521424B2 (en) 2019-05-29

Family

ID=56015909

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014228027A Expired - Fee Related JP6521424B2 (en) 2014-11-10 2014-11-10 Expansion pipe and design method for expansion pipe

Country Status (1)

Country Link
JP (1) JP6521424B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108344322A (en) * 2018-03-28 2018-07-31 长沙格力暖通制冷设备有限公司 Fin heat exchanger and air conditioner

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001289585A (en) * 2000-04-05 2001-10-19 Mitsubishi Alum Co Ltd Inner grooved aluminum tube and heat exchanger comprising the same
JP2006130558A (en) * 2004-10-04 2006-05-25 Furukawa Electric Co Ltd:The Method for manufacturing heat exchanger
JP2011208823A (en) * 2010-03-29 2011-10-20 Furukawa Electric Co Ltd:The Method of manufacturing heat exchanger

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001289585A (en) * 2000-04-05 2001-10-19 Mitsubishi Alum Co Ltd Inner grooved aluminum tube and heat exchanger comprising the same
JP2006130558A (en) * 2004-10-04 2006-05-25 Furukawa Electric Co Ltd:The Method for manufacturing heat exchanger
JP2011208823A (en) * 2010-03-29 2011-10-20 Furukawa Electric Co Ltd:The Method of manufacturing heat exchanger

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108344322A (en) * 2018-03-28 2018-07-31 长沙格力暖通制冷设备有限公司 Fin heat exchanger and air conditioner
CN108344322B (en) * 2018-03-28 2023-12-15 长沙格力暖通制冷设备有限公司 Fin heat exchanger and air conditioner

Also Published As

Publication number Publication date
JP6521424B2 (en) 2019-05-29

Similar Documents

Publication Publication Date Title
JP5649715B2 (en) Heat exchanger, refrigerator equipped with this heat exchanger, and air conditioner
JP4759226B2 (en) Tube expansion tool and tube expansion method using the same
JP6762719B2 (en) How to make a heat exchanger
JP2007271123A (en) Inner face-grooved heat transfer tube
JPWO2009131072A1 (en) Heat exchanger and air conditioner using this heat exchanger
WO2008007694A1 (en) Fin-and-tube type heat exchanger, and its return bend pipe
CN103913092B (en) Fin and heat exchanger
EP2738506A2 (en) Heat exchanger and method of manufacturing the same
JP6238063B2 (en) Expansion plug
JP2015150566A (en) Tube expansion plug
JPWO2012043492A1 (en) Aluminum alloy inner surface grooved heat transfer tube
JP4550451B2 (en) Heat exchanger using inner surface grooved heat transfer tube and inner surface grooved heat transfer tube
JP2005076915A (en) Composite heat exchanger tube
JP5023911B2 (en) Spiral fin tube heat exchanger
WO2011122388A1 (en) Heat exchanger producing method
JP6521424B2 (en) Expansion pipe and design method for expansion pipe
JP2008267791A (en) Leakage detecting tube and heat exchanger using the same
JP4913371B2 (en) Manufacturing method of heat exchanger
JP6173317B2 (en) Plug for expansion
JP6288581B2 (en) Method of expanding aluminum or aluminum alloy heat transfer tubes
JP2008190858A (en) Leakage detecting tube
JP2011257084A (en) All-aluminum heat exchanger
JP5006155B2 (en) Heat transfer tube
JP6958238B2 (en) How to manufacture heat exchangers and heat exchangers
JP2013092335A (en) Aluminum capillary tube for heat exchanger, and heat exchanger using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171020

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180719

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180724

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181002

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20181116

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190326

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190419

R150 Certificate of patent or registration of utility model

Ref document number: 6521424

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees