JP2016087524A - Fine bubble generator - Google Patents

Fine bubble generator Download PDF

Info

Publication number
JP2016087524A
JP2016087524A JP2014223459A JP2014223459A JP2016087524A JP 2016087524 A JP2016087524 A JP 2016087524A JP 2014223459 A JP2014223459 A JP 2014223459A JP 2014223459 A JP2014223459 A JP 2014223459A JP 2016087524 A JP2016087524 A JP 2016087524A
Authority
JP
Japan
Prior art keywords
liquid
gas
dissolution tank
introduction pipe
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014223459A
Other languages
Japanese (ja)
Other versions
JP6393152B2 (en
Inventor
清 廣瀬
Kiyoshi Hirose
清 廣瀬
竜一 谷村
Ryuichi Tanimura
竜一 谷村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Seiko Co Ltd
Original Assignee
Nitto Seiko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Seiko Co Ltd filed Critical Nitto Seiko Co Ltd
Priority to JP2014223459A priority Critical patent/JP6393152B2/en
Publication of JP2016087524A publication Critical patent/JP2016087524A/en
Application granted granted Critical
Publication of JP6393152B2 publication Critical patent/JP6393152B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Accessories For Mixers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a fine bubble generator which enables even a liquid injected first after a start-up to contain a large amount of fine bubbles.SOLUTION: The fine bubble generator includes a liquid introduction pipe 24, a gas injection part 4 for injecting a gas into the liquid introduction pipe, a booster pump 21 for pressurizing and pressure-feeding a gas-liquid mixture formed by introducing a gas into the liquid in the liquid introduction pipe by the gas injection part, a dissolving tank 1 for pressure-dissolving the liquid and the gas in the gas-liquid mixture fed by the booster pump, a liquid leading-out pipe 41 for leading out the liquid in the dissolving tank, a fine bubble generation nozzle 43 for generating fine bubbles in the liquid in the liquid leading-out pipe and injecting the liquid containing the fine bubbles, a check valve 23 provided in the liquid introduction pipe and configured to permit the flow of the liquid from a liquid supply source to the booster pump while blocking a flow in a reverse direction, a solenoid valve 42 for opening/closing the liquid leading-out pipe, and a control unit 5 for controlling the solenoid valve and closing the solenoid valve when the booster pump is stopped.SELECTED DRAWING: Figure 1

Description

本発明は、洗浄一般に用いられ、特に機械加工の部品洗浄に用いられる微細気泡発生装置に関する。   The present invention relates to a fine bubble generating apparatus that is generally used for cleaning, and particularly used for cleaning parts in machining.

従来から、マイクロバブルあるいはナノバブルと呼ばれる微細気泡を発生させる方法としては、気体と液体を高速旋回させ、せん断力によりマイクロ粒径のバブルを発生させる旋回流方式や、液中に圧縮した気体を一気に解放させることによりマイクロ粒径のバブルを発生させる加圧溶解方式のほかに、超音波方式、微細孔方式などが知られている。
そこで、加圧溶解方式により微細気泡を発生する装置の一例として、特許文献1(特開2012−254407号公報)に示す微細気泡発生装置がある。この微細気泡発生装置は、管路を流れる液体中に気体を加圧溶解させた後に、液槽内の液体中に微細気泡を噴出させる微細気泡発生装置であって、液体供給源から液体が供給される吸込管と、気体を吸引し、前記吸込管内の液体に気体を導入する気体導入部と、この気体導入部により前記吸込管内の液体に気体が導入された気液混合液体を加圧して圧送する加圧ポンプと、この加圧ポンプにより送られてきた気液混合液体中の液体と気体を加圧溶解させる気液溶解タンクと、この気液溶解タンクにより加圧溶解された気液溶解液体を減圧して微細気泡を発生させる気泡発生ノズルとから構成されている。
また、旋回流方式により微細気泡を発生する場合には、専用のノズルを使用し、例えば特許文献2(特開2010−158680号公報)に示す旋回式微細気泡発生装置の付加装置を、上記微細気泡発生装置の気泡発生ノズルに装着する。
Conventionally, as a method of generating fine bubbles called microbubbles or nanobubbles, a swirling flow method in which gas and liquid are swirled at a high speed and bubbles having a micro particle diameter are generated by shearing force, or a gas compressed in a liquid at a stroke is used. In addition to the pressure dissolution method that generates bubbles with a micro particle size by releasing, an ultrasonic method, a fine pore method, and the like are known.
Thus, as an example of an apparatus for generating fine bubbles by a pressure dissolution method, there is a fine bubble generating apparatus disclosed in Patent Document 1 (Japanese Patent Laid-Open No. 2012-254407). This fine bubble generating device is a fine bubble generating device that jets fine bubbles into the liquid in the liquid tank after the gas is pressurized and dissolved in the liquid flowing through the pipeline, and the liquid is supplied from the liquid supply source. A suction pipe, a gas introduction part that sucks gas and introduces the gas into the liquid in the suction pipe, and pressurizes the gas-liquid mixed liquid in which the gas is introduced into the liquid in the suction pipe by the gas introduction part. Pressurizing pump for pumping, gas-liquid dissolving tank for pressurizing and dissolving the liquid and gas in the gas-liquid mixed liquid sent by this pressurizing pump, and gas-liquid dissolution pressurized and dissolved by this gas-liquid dissolving tank It is comprised from the bubble generation nozzle which decompresses a liquid and generate | occur | produces a fine bubble.
In addition, when generating fine bubbles by the swirling flow method, a dedicated nozzle is used. For example, the additional device of the swirl type fine bubble generating device shown in Patent Document 2 (Japanese Patent Laid-Open No. 2010-158680) is used as the above-mentioned fine bubbles. Attach to the bubble generation nozzle of the bubble generator.

特開2012−254407号公報JP 2012-254407 A 特開2010−158680号公報JP 2010-158680 A

しかしながら、従来の微細気泡発生装置では、加圧ポンプを停止すると、気液溶解タンクを含め流路全体の内部圧力が低下してしまう。このため、加圧ポンプの運転再開直後では流路全体の内部圧力が所定の値に達しておらず、最初に噴射される液体は、微細気泡の含有率が低下してしまう問題を有していた。   However, in the conventional fine bubble generator, when the pressurization pump is stopped, the internal pressure of the entire flow path including the gas-liquid dissolution tank decreases. For this reason, immediately after resuming operation of the pressurizing pump, the internal pressure of the entire flow path does not reach a predetermined value, and the liquid that is ejected first has a problem that the content of fine bubbles is reduced. It was.

本発明は、上記課題に鑑みて創成されたものであり、運転開始後に最初に噴射される液体であっても微細気泡を多く含む微細気泡発生装置を提供することを目的とする。   The present invention has been made in view of the above problems, and an object of the present invention is to provide a fine bubble generating device that contains a large amount of fine bubbles even when the liquid is first ejected after the start of operation.

上記目的を達成するため、本発明の微細気泡発生装置は、
液体供給源から液体が導入される液体導入管と、
前記液体導入管内の液体に気体を注入する気体注入部と、
前記気体注入部により前記液体導入管の液体に気体が導入された気液混合体を加圧して圧送する加圧ポンプと、
前記加圧ポンプにより送られてきた気液混合体中の液体と気体を加圧溶解する溶解タンクと、
前記溶解タンク内で気体の溶解濃度が高められた液体が導出される液体導出管と、
前記液体導出管内の液体中に微細気泡を生成し、当該微細気泡を含む液体を噴射する微細気泡発生ノズルと、
前記液体導入管に設けられ、前記液体供給源から前記加圧ポンプへ向かう方向に液体の流れを許し逆方向の流れを阻止する逆止弁と、
前記液体導出管を開閉する電磁弁と、
前記電磁弁を制御し、前記加圧ポンプを停止したとき、当該電磁弁を閉状態とする制御部と、
から構成されることを特徴とする。
In order to achieve the above object, the fine bubble generator of the present invention comprises:
A liquid introduction pipe into which liquid is introduced from a liquid supply source;
A gas injection part for injecting gas into the liquid in the liquid introduction pipe;
A pressurizing pump for pressurizing and feeding the gas-liquid mixture in which the gas is introduced into the liquid in the liquid introduction pipe by the gas injection unit;
A dissolution tank for pressure-dissolving the liquid and gas in the gas-liquid mixture sent by the pressure pump;
A liquid outlet pipe from which a liquid having an increased concentration of dissolved gas is derived in the dissolution tank;
A fine bubble generating nozzle for generating fine bubbles in the liquid in the liquid outlet pipe and injecting a liquid containing the fine bubbles;
A check valve provided in the liquid introduction pipe, allowing a flow of liquid in a direction from the liquid supply source toward the pressurizing pump and preventing a reverse flow;
An electromagnetic valve for opening and closing the liquid outlet pipe;
When the solenoid valve is controlled and the pressurizing pump is stopped, the controller that closes the solenoid valve;
It is comprised from these.

なお、前記加圧ポンプを駆動するとき、前記液体導入管、溶解タンク及び液体導出管の内部圧力が所定値よりも低い場合、前記制御部は、前記電磁弁を閉状態のまま加圧ポンプを駆動し、当該内部圧力が所定値に達してから、当該電磁弁を開状態とすることが好ましい。   When driving the pressurizing pump, if the internal pressures of the liquid introduction pipe, the dissolution tank, and the liquid outlet pipe are lower than predetermined values, the control unit operates the pressurization pump with the electromagnetic valve closed. It is preferable to drive the solenoid valve after the internal pressure reaches a predetermined value.

なお、前記液体導入管、溶解タンク及び液体導出管の内部圧力は、0.2〜0.4〔MPa〕とすることが好ましい。
In addition, it is preferable that the internal pressures of the liquid introduction pipe, the dissolution tank, and the liquid lead-out pipe are 0.2 to 0.4 [MPa].

本発明の微細気泡発生装置によれば、加圧ポンプを停止しても流路全体の内部圧力が維持されるので、加圧ポンプの運転再開後に、最初に噴射される液体であっても微細気泡を多く含ませることができる。   According to the fine bubble generating device of the present invention, the internal pressure of the entire flow path is maintained even when the pressurization pump is stopped. Many bubbles can be included.

微細気泡発生装置の全体構成を示す図である。It is a figure which shows the whole structure of a microbubble generator. 制御部と他のセンサ等の部材との信号のやりとりを説明するための図である。It is a figure for demonstrating exchange of the signal between members, such as a control part and other sensors. 制御部による圧力制御のタイミングチャートを示す図である。It is a figure which shows the timing chart of the pressure control by a control part. 溶解タンクの内部圧力を0.2MPa及び0.4MPaに設定したときに、噴射液1ミリリットルあたりに含まれる微細気泡個数についての粒径別分布を示すグラフである。It is a graph which shows distribution according to particle size about the number of fine bubbles contained per 1 milliliter of jetting liquid, when the internal pressure of a dissolution tank is set as 0.2MPa and 0.4MPa. 溶解タンクの内部圧力を0.6MPa及び0.8MPaに設定したときに、噴射液1ミリリットルあたりに含まれる微細気泡個数についての粒径別分布を示すグラフである。It is a graph which shows distribution according to particle size about the number of fine bubbles contained per 1 milliliter of propellants when the internal pressure of a dissolution tank is set as 0.6 MPa and 0.8 MPa.

以下、本発明に係る微細気泡発生装置の実施の形態を、図面を参照しながら説明する。図1は、微細気泡発生装置10の全体構成を示す図である。同図に示すように、微細気泡発生装置10は、溶解タンク1と、液体導入部2と、気体注入部3と、液体導出部4と、制御部5(図2参照)を備える。   Embodiments of a microbubble generator according to the present invention will be described below with reference to the drawings. FIG. 1 is a diagram showing an overall configuration of the fine bubble generating device 10. As shown in the figure, the fine bubble generating apparatus 10 includes a dissolution tank 1, a liquid introduction unit 2, a gas injection unit 3, a liquid lead-out unit 4, and a control unit 5 (see FIG. 2).

溶解タンク1は、水9と空気の混合体が収容される圧力容器であり、水9に空気中の酸素を溶解させて、水9の酸素濃度を高めるためのタンクである。水9は、ここでは工業用水であり、液体導入部2により溶解タンク1内に供給される。溶解タンク1に設けられているLS1Lは、溶解タンク1内の9の水位が下がったときの下限を検出するためのセンサであり、LS1Uは、水位が上がったことを検出するためのセンサである。また、溶解タンク1には、溶解タンク1の内部圧力を測定するための圧力センサPS1が設けてある。各センサの検出に基づく制御内容については、後述する。   The dissolution tank 1 is a pressure vessel in which a mixture of water 9 and air is accommodated, and is a tank for increasing oxygen concentration in the water 9 by dissolving oxygen in the air in the water 9. The water 9 is industrial water here, and is supplied into the dissolution tank 1 by the liquid introduction part 2. LS1L provided in the dissolution tank 1 is a sensor for detecting the lower limit when the water level of 9 in the dissolution tank 1 is lowered, and LS1U is a sensor for detecting that the water level has increased. . The dissolution tank 1 is provided with a pressure sensor PS1 for measuring the internal pressure of the dissolution tank 1. The contents of control based on the detection of each sensor will be described later.

液体導入部2は、加圧ポンプ21と、ストレーナ22と、逆止弁23と、液体導入管24を備える。加圧ポンプ21と、ストレーナ22と、逆止弁23は、液体導入管24の途中に設けられており、液体導入管24の一端は、水槽7に接続され、液体供給管24の他端は溶解タンク1の頂部の開口11に接続されており、水槽7の水9を溶解タンク1に供給する供給路を構成する。   The liquid introduction unit 2 includes a pressurizing pump 21, a strainer 22, a check valve 23, and a liquid introduction pipe 24. The pressurizing pump 21, the strainer 22, and the check valve 23 are provided in the middle of the liquid introduction pipe 24, one end of the liquid introduction pipe 24 is connected to the water tank 7, and the other end of the liquid supply pipe 24 is It is connected to the opening 11 at the top of the dissolution tank 1 and constitutes a supply path for supplying water 9 of the water tank 7 to the dissolution tank 1.

加圧ポンプ21が駆動されると、加圧ポンプ21により水槽7内の水9が液体導入管24内に吸い込まれる。液体導入管24内に吸い込まれた水9は、矢印aで示す方向に流れ、ストレーナ22を通過する際に濾過された後、逆止弁23を通過する。逆止弁23は、矢印bで示す方向にだけ水9の流れを許し、その逆の方向には流れを阻止するものであり、逆止弁23を通過した後の水9は、気体注入部3により、水9と空気との混合体となる。この混合体は、矢印cで示す方向に流れ、加圧ポンプ21で例えば0.3〔MPa〕程度の圧力まで加圧されて、矢印dで示す方向に流れて溶解タンク1に送られる。   When the pressurizing pump 21 is driven, the water 9 in the water tank 7 is sucked into the liquid introduction pipe 24 by the pressurizing pump 21. The water 9 sucked into the liquid introduction pipe 24 flows in the direction indicated by the arrow a, is filtered when passing through the strainer 22, and then passes through the check valve 23. The check valve 23 allows the flow of the water 9 only in the direction indicated by the arrow b and blocks the flow in the opposite direction. The water 9 after passing through the check valve 23 is a gas injection part. 3 is a mixture of water 9 and air. This mixture flows in the direction indicated by the arrow c, is pressurized to a pressure of, for example, about 0.3 [MPa] by the pressure pump 21, flows in the direction indicated by the arrow d, and is sent to the dissolution tank 1.

気体注入部3は、気体導入管31と、電磁弁32と、逆止弁33と、気体吸入口34を備える。気体導入管31は、液体導入管24と交流地点Aで合流し、気体吸入口34から吸入した空気を前記液体導入管24へ送り込むための導入路であり、前記加圧ポンプにより矢印eで示す方向に空気を送り出す。そして、合流地点Aで空気と水9との混合体が生成される。また、気体導入管31には、電磁弁32と、逆止弁33が設けられている。逆止弁33は、矢印fで示す方向にだけ空気の流れを許し、その逆の方向には空気及び水9の流れを阻止するものである。電磁弁32は、液体導入管31の気体の流路を開閉することにより、気体吸入口34から液体導入管24への空気の導出とその禁止とを切り替える。   The gas injection unit 3 includes a gas introduction pipe 31, an electromagnetic valve 32, a check valve 33, and a gas suction port 34. The gas introduction pipe 31 joins the liquid introduction pipe 24 at the AC point A and is an introduction path for sending the air sucked from the gas suction port 34 to the liquid introduction pipe 24, and is indicated by an arrow e by the pressurizing pump. Send air in the direction. Then, a mixture of air and water 9 is generated at the merge point A. The gas introduction pipe 31 is provided with an electromagnetic valve 32 and a check valve 33. The check valve 33 allows the flow of air only in the direction indicated by the arrow f, and blocks the flow of air and water 9 in the opposite direction. The electromagnetic valve 32 switches between the derivation of air from the gas inlet 34 to the liquid introduction pipe 24 and its prohibition by opening and closing the gas flow path of the liquid introduction pipe 31.

液体導出部4は、液体導出管41と、液体導出管41に設けられる電磁弁42と、微細気泡発生ノズル43を備える。液体導出管41は、一端が溶解タンク1の底部に設けられた開口(図示せず)に接続され、矢印gで示す方向へ溶解タンク1内の空気と水9の混合体が流れる。液体導出管41の他端には微細気泡発生ノズル43が接続される。電磁弁42は、液体導出管42の液体の流路を開閉することにより、溶解タンク1から微細気泡生成ノズル43への液体の導出とその禁止とを切り替える。電磁弁42が開状態のときには、矢印hで示す方向へ空気と水9の混合体が流れ、微細気泡生成ノズル43から微細気泡を含む液体が噴射される。なお、微細気泡生成ノズル43は、旋回流方式により微細気泡を発生するように構成された周知のものであり、例えば特開2010−158680号公報に示す旋回式微細気泡発生装置の付加装置を用いる。   The liquid lead-out unit 4 includes a liquid lead-out pipe 41, an electromagnetic valve 42 provided in the liquid lead-out pipe 41, and a fine bubble generation nozzle 43. One end of the liquid outlet pipe 41 is connected to an opening (not shown) provided at the bottom of the dissolution tank 1, and the mixture of air and water 9 in the dissolution tank 1 flows in the direction indicated by the arrow g. A fine bubble generating nozzle 43 is connected to the other end of the liquid outlet pipe 41. The electromagnetic valve 42 switches between the derivation of the liquid from the dissolution tank 1 to the fine bubble generating nozzle 43 and the prohibition thereof by opening and closing the liquid flow path of the liquid derivation tube 42. When the electromagnetic valve 42 is in the open state, a mixture of air and water 9 flows in the direction indicated by the arrow h, and a liquid containing fine bubbles is ejected from the fine bubble generating nozzle 43. The fine bubble generating nozzle 43 is a well-known one configured to generate fine bubbles by a swirling flow method, and uses, for example, an additional device of a swirling fine bubble generating device disclosed in Japanese Patent Application Laid-Open No. 2010-158680. .

図2は、制御部5と他のセンサ等の部材との信号のやりとりを説明するための図であり、図3は、制御部5による圧力制御のタイミングチャートを示す図である。図2に示すように、制御部5は、液面下限検出センサLS1L、液面上限検出センサLS1U及び圧力センサPS1の信号を受け付け、受け付けた信号に基づき、電磁弁32及び電磁弁42の開閉を制御する。また、制御部5は、操作部からの動作指示信号を受け付け、圧力ポンプ21の作動を制御する。ここでは、加圧ポンプ21の動作指示信号は、操作部に設けられたスイッチなどが操作者により操作されたことにより発せられる。   FIG. 2 is a diagram for explaining exchange of signals between the control unit 5 and other members such as sensors, and FIG. 3 is a diagram illustrating a timing chart of pressure control by the control unit 5. As shown in FIG. 2, the control unit 5 receives signals from the liquid level lower limit detection sensor LS1L, the liquid level upper limit detection sensor LS1U, and the pressure sensor PS1, and opens and closes the electromagnetic valve 32 and the electromagnetic valve 42 based on the received signals. Control. The control unit 5 receives an operation instruction signal from the operation unit and controls the operation of the pressure pump 21. Here, the operation instruction signal of the pressurizing pump 21 is generated when a switch or the like provided in the operation unit is operated by the operator.

図3に示すように、時点T1において、加圧ポンプ駆動指示信号を受けると、圧力ポンプ21の運転を開始するとともに、液面下限検出センサLS1L、液面上限検出センサLS1U及び圧力センサPS1の信号を受け付ける。このとき、溶解タンク1の内部圧力が所定値(例えば、0.3MPa)に達していない場合は、電磁弁42は、閉状態を維持する。これにより、溶解タンク1の内部圧力が上昇する。また、溶解タンク1内に水9が所定量収容されていない場合は、電磁弁32は、閉状態を維持する。これにより、溶解タンク1内の水位が上昇する。   As shown in FIG. 3, when the pressure pump drive instruction signal is received at time T1, the operation of the pressure pump 21 is started and signals from the liquid level lower limit detection sensor LS1L, the liquid level upper limit detection sensor LS1U and the pressure sensor PS1 are displayed. Accept. At this time, when the internal pressure of the dissolution tank 1 does not reach a predetermined value (for example, 0.3 MPa), the electromagnetic valve 42 maintains a closed state. Thereby, the internal pressure of the dissolution tank 1 rises. Further, when a predetermined amount of water 9 is not stored in the dissolution tank 1, the electromagnetic valve 32 is kept closed. Thereby, the water level in the dissolution tank 1 rises.

時点T2において、溶解タンク1の水位が下限値まで上昇して、水9の液面が液面下限検出値センサLS1Lにより検出されると、液面下限検出センサLS1LからON信号が出力される。このON信号を受け付けると、水9が溶解タンク1内に所定量収容されたとして、電磁弁32には、間欠運転指示信号が発せられ、電磁弁32は1秒間隔で開閉を繰り返す。開状態のタイミングでは、気体吸入口34から空気が吸引されるため、空気と水9の混合体が溶解タンク1に供給される。一方、閉状態のタイミングでは、空気の吸引が遮断されるため、水9だけが溶解タンク1に供給される。   At time T2, when the water level of the dissolution tank 1 rises to the lower limit value and the liquid level of the water 9 is detected by the liquid level lower limit detection value sensor LS1L, an ON signal is output from the liquid level lower limit detection sensor LS1L. When this ON signal is received, assuming that a predetermined amount of water 9 has been stored in the dissolution tank 1, an intermittent operation instruction signal is issued to the electromagnetic valve 32, and the electromagnetic valve 32 repeats opening and closing at intervals of 1 second. At the open timing, air is sucked from the gas suction port 34, so that a mixture of air and water 9 is supplied to the dissolution tank 1. On the other hand, since the suction of air is blocked at the timing of the closed state, only water 9 is supplied to the dissolution tank 1.

時点T3において、溶解タンク1内に水9が所定量収容され、かつ溶解タンク1内の圧力が所定値まで上昇すると、電磁弁42には、開放指示信号が発せられ、電磁弁42は開状態となり、微細気泡生成ノズル43から当該微細気泡を含む液体が噴射される。   At a time T3, when a predetermined amount of water 9 is stored in the dissolution tank 1 and the pressure in the dissolution tank 1 rises to a predetermined value, an opening instruction signal is issued to the electromagnetic valve 42, and the electromagnetic valve 42 is opened. Thus, the liquid containing the fine bubbles is ejected from the fine bubble generating nozzle 43.

時点T4において、噴射の最中に何らかの不具合で、溶解タンク1の水位が上限値まで上昇して、水9の液面が液面上限検出センサLS1Uにより検出されると、液面上限検出センサLS1UからON信号が出力される。このON信号を受け付けると、溶解タンク9内の水量が所定量を超過したとして、電磁弁32には、開放指示信号が発せされ、電磁弁32は間欠運転を停止し開状態となる。これにより、溶解タンク1へ供給される空気の割合が高くなるので、結果的に溶解タンク1の水位が下降する。   At time T4, when the water level of the dissolution tank 1 rises to the upper limit value due to some trouble during injection and the liquid level of the water 9 is detected by the liquid level upper limit detection sensor LS1U, the liquid level upper limit detection sensor LS1U. An ON signal is output from. When this ON signal is received, an opening instruction signal is issued to the electromagnetic valve 32, assuming that the amount of water in the dissolution tank 9 exceeds a predetermined amount, and the electromagnetic valve 32 stops intermittent operation and enters an open state. Thereby, since the ratio of the air supplied to the dissolution tank 1 becomes high, the water level of the dissolution tank 1 falls as a result.

時点T5において、溶解タンク1の水位が下降して、水9の液面が液面上限検出センサLS1Uにより検出されなくなると、液面上限検出センサLS1UからOFF信号が出力される。このOFF信号を受け付けると、溶解タンク9内の水量が所定量に戻ったとして、再び、電磁弁32には、間欠運転指示信号が発せられ、電磁弁32は1秒間隔で開閉を繰り返す。   At time T5, when the water level of the dissolution tank 1 falls and the liquid level of the water 9 is no longer detected by the liquid level upper limit detection sensor LS1U, an OFF signal is output from the liquid level upper limit detection sensor LS1U. When this OFF signal is received, assuming that the amount of water in the dissolution tank 9 has returned to a predetermined amount, an intermittent operation instruction signal is issued again to the electromagnetic valve 32, and the electromagnetic valve 32 repeats opening and closing at intervals of 1 second.

時点T6において、噴射の最中に何らかの不具合で、溶解タンク1の水位が下限値まで下降して、水9の液面が液面下限検出センサLS1Lにより検出されなくなると、液面下限検出センサLS1LからOFF信号が出力される。このOFF信号を受け付けると、溶解タンク9内の水量不足として、電磁弁32には、閉鎖指示信号が発せされ、電磁弁32は間欠運転を停止し閉状態となる。これにより、溶解タンク1へ供給される水9の割合が高くなるので、結果的に溶解タンク1の水位が上昇する。   At time T6, when the water level in the dissolution tank 1 drops to the lower limit value due to some trouble during the injection and the liquid level of the water 9 is not detected by the liquid level lower limit detection sensor LS1L, the liquid level lower limit detection sensor LS1L Outputs an OFF signal. When this OFF signal is received, the solenoid valve 32 is issued a closing instruction signal because the amount of water in the dissolution tank 9 is insufficient, and the solenoid valve 32 stops intermittent operation and enters a closed state. Thereby, since the ratio of the water 9 supplied to the dissolution tank 1 becomes high, the water level of the dissolution tank 1 rises as a result.

時点T7において、溶解タンク1の水位が上昇して、水9の液面が液面下限検出センサLS1Lにより検出されると、液面上限検出センサLS1LからON信号が出力される。このON信号を受け付けると、溶解タンク9内の水量が所定量に戻ったとして、再び、電磁弁32には、間欠運転指示信号が発せられ、電磁弁32は1秒間隔で開閉を繰り返す。   At time T7, when the water level of the dissolution tank 1 rises and the liquid level of the water 9 is detected by the liquid level lower limit detection sensor LS1L, an ON signal is output from the liquid level upper limit detection sensor LS1L. When this ON signal is received, assuming that the amount of water in the dissolution tank 9 has returned to a predetermined amount, an intermittent operation instruction signal is issued again to the electromagnetic valve 32, and the electromagnetic valve 32 repeats opening and closing at intervals of 1 second.

時点T8において、加圧ポンプ停止指示信号を受け付けると、圧力ポンプ21の運転を停止して、電磁弁32及び電磁弁42には、閉鎖指示信号が発せられ、電磁弁32及び電磁弁42は、閉状態となる。これにより、微細気泡発生装置10全体の内部圧力が所定値に維持される。   When the pressurization pump stop instruction signal is received at time T8, the operation of the pressure pump 21 is stopped, and a close instruction signal is issued to the solenoid valve 32 and the solenoid valve 42, and the solenoid valve 32 and the solenoid valve 42 are Closed. Thereby, the internal pressure of the whole microbubble generator 10 is maintained at a predetermined value.

時点T9において、微細気泡生成ノズル43から微細気泡を含む液体の噴射を再開すべく、加圧ポンプ再駆動指示信号を受けると、圧力ポンプ21の運転を再開するとともに、液面下限検出センサLS1L、液面上限検出センサLS1U及び圧力センサPS1の信号を受け付ける。このとき、溶解タンク1の内部圧力が所定値(例えば、0.3MPa)に維持されており、電磁弁42には、開放指示信号が発せられる。また、溶解タンク1内に水9が所定量収容されている場合は、電磁弁32には、間欠運転指示信号が発せられる。万一、溶解タンク1の内部圧力が所定値になっていない場合には、電磁弁42は溶解タンク1の内部圧力が所定値に達するまで閉状態を維持し、溶解タンク1内に水9が所定量収容されている場合には、電磁弁32は溶解タンク1内に水9が所定量収容されるまで閉状態を維持する。   At time T9, when the pressurization pump re-drive instruction signal is received from the micro-bubble generating nozzle 43 to restart the injection of the liquid containing the micro-bubbles, the operation of the pressure pump 21 is restarted and the liquid level lower limit detection sensor LS1L, The signals of the liquid level upper limit detection sensor LS1U and the pressure sensor PS1 are received. At this time, the internal pressure of the dissolution tank 1 is maintained at a predetermined value (for example, 0.3 MPa), and an opening instruction signal is issued to the electromagnetic valve 42. When a predetermined amount of water 9 is stored in the dissolution tank 1, an intermittent operation instruction signal is issued to the electromagnetic valve 32. If the internal pressure of the dissolution tank 1 does not reach a predetermined value, the solenoid valve 42 remains closed until the internal pressure of the dissolution tank 1 reaches a predetermined value, and water 9 When a predetermined amount is accommodated, the electromagnetic valve 32 is kept closed until a predetermined amount of water 9 is accommodated in the dissolution tank 1.

図4及び図5は、溶解タンク1の内部圧力を0.2MPa(図4の上図)、0.4MPa(図4の下図)、0.6MPa(図5の上図)及び0.8MPa(図5の下図)にそれぞれ設定したとき、微細気泡生成ノズル43から噴射される液1ミリリットルあたりに含まれる微細気泡個数についての粒径別分布を示すグラフである。この結果は、溶解タンク1の内部圧力が0.2MPa〜0.4MPaのときに、10μmの微細気泡の個数が多く分布していることを示すものであり、つまり、マイクロ径の微細気泡を多く生成することができる。   4 and 5 show that the internal pressure of the dissolution tank 1 is 0.2 MPa (upper view of FIG. 4), 0.4 MPa (lower view of FIG. 4), 0.6 MPa (upper view of FIG. 5), and 0.8 MPa ( FIG. 6 is a graph showing the distribution according to particle diameter with respect to the number of fine bubbles contained per milliliter of liquid ejected from the fine bubble generating nozzle 43 when set in the lower diagram of FIG. This result indicates that when the internal pressure of the dissolution tank 1 is 0.2 MPa to 0.4 MPa, a large number of 10 μm fine bubbles are distributed. Can be generated.

上記微細気泡発生装置10によれば、加圧ポンプ21を停止しても装置の流路全体の内部圧力が維持されるので、加圧ポンプ21の運転再開直後から良質な微細気泡を安定して供給することができる。特に、内部圧力を0.2MPa〜0.4MPaに設定することで、マイクロ径の微細気泡を多く生成することができる。   According to the fine bubble generating device 10, since the internal pressure of the entire flow path of the device is maintained even when the pressurizing pump 21 is stopped, high-quality fine bubbles can be stably stabilized immediately after the operation of the pressurizing pump 21 is resumed. Can be supplied. In particular, by setting the internal pressure to 0.2 MPa to 0.4 MPa, a large number of micro bubbles having a micro diameter can be generated.

1 溶解タンク
2 液体導入部
3 液体導出部
4 気体注入部
5 制御部
7 水槽
9 水
21 加圧ポンプ
23,33 逆止弁
24 液体導入管
32,42 電磁弁
41 液体導出管
43 微細気泡生成ノズル
DESCRIPTION OF SYMBOLS 1 Dissolution tank 2 Liquid introduction part 3 Liquid lead-out part 4 Gas injection part 5 Control part 7 Water tank 9 Water 21 Pressurization pumps 23 and 33 Check valve 24 Liquid introduction pipes 32 and 42 Electromagnetic valve 41 Liquid lead-out pipe 43 Fine bubble generation nozzle

Claims (3)

液体供給源から液体が導入される液体導入管と、
前記液体導入管内の液体に気体を注入する気体注入部と、
前記気体注入部により前記液体導入管の液体に気体が導入された気液混合体を加圧して圧送する加圧ポンプと、
前記加圧ポンプにより送られてきた気液混合体中の液体と気体を加圧溶解する溶解タンクと、
前記溶解タンク内で気体の溶解濃度が高められた液体が導出される液体導出管と、
前記液体導出管内の液体中に微細気泡を生成し、当該微細気泡を含む液体を噴射する微細気泡発生ノズルと、
前記液体導入管に設けられ、前記液体供給源から前記加圧ポンプへ向かう方向に液体の流れを許し逆方向の流れを阻止する逆止弁と、
前記液体導出管を開閉する電磁弁と、
前記電磁弁を制御し、前記加圧ポンプを停止したとき、当該電磁弁を閉状態とする制御部と、
から構成されることを特徴とする微細気泡発生装置。
A liquid introduction pipe into which liquid is introduced from a liquid supply source;
A gas injection part for injecting gas into the liquid in the liquid introduction pipe;
A pressurizing pump for pressurizing and feeding the gas-liquid mixture in which the gas is introduced into the liquid in the liquid introduction pipe by the gas injection unit;
A dissolution tank for pressure-dissolving the liquid and gas in the gas-liquid mixture sent by the pressure pump;
A liquid outlet pipe from which a liquid having an increased concentration of dissolved gas is derived in the dissolution tank;
A fine bubble generating nozzle for generating fine bubbles in the liquid in the liquid outlet pipe and injecting a liquid containing the fine bubbles;
A check valve provided in the liquid introduction pipe, allowing a flow of liquid in a direction from the liquid supply source toward the pressurizing pump and preventing a reverse flow;
An electromagnetic valve for opening and closing the liquid outlet pipe;
When the solenoid valve is controlled and the pressurizing pump is stopped, the controller that closes the solenoid valve;
A microbubble generator characterized by comprising:
前記加圧ポンプを駆動するとき、前記液体導入管、溶解タンク及び液体導出管の内部圧力が所定値よりも低い場合、前記制御部は、前記電磁弁を閉状態のまま加圧ポンプを駆動し、当該内部圧力が所定値に達してから、当該電磁弁を開状態とすることを特徴とする請求項1に記載の微細気泡発生装置。   When driving the pressurizing pump, if the internal pressure of the liquid introduction pipe, the dissolution tank, and the liquid outlet pipe is lower than a predetermined value, the control unit drives the pressurization pump with the electromagnetic valve closed. 2. The fine bubble generating device according to claim 1, wherein the electromagnetic valve is opened after the internal pressure reaches a predetermined value. 前記液体導入管、溶解タンク及び液体導出管の内部圧力は、0.2〜0.4〔MPa〕とすることを特徴とする請求項1乃至3の何れかに記載の微細気泡発生装置。
4. The microbubble generator according to claim 1, wherein internal pressures of the liquid introduction pipe, the dissolution tank, and the liquid outlet pipe are 0.2 to 0.4 [MPa].
JP2014223459A 2014-10-31 2014-10-31 Microbubble generator Active JP6393152B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014223459A JP6393152B2 (en) 2014-10-31 2014-10-31 Microbubble generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014223459A JP6393152B2 (en) 2014-10-31 2014-10-31 Microbubble generator

Publications (2)

Publication Number Publication Date
JP2016087524A true JP2016087524A (en) 2016-05-23
JP6393152B2 JP6393152B2 (en) 2018-09-19

Family

ID=56017631

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014223459A Active JP6393152B2 (en) 2014-10-31 2014-10-31 Microbubble generator

Country Status (1)

Country Link
JP (1) JP6393152B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107869027A (en) * 2016-09-27 2018-04-03 东部大宇电子株式会社 Washing machine
CN108854614A (en) * 2017-05-10 2018-11-23 青岛经济技术开发区海尔热水器有限公司 Micro-bubble water generating device and automatic water draining method thereof
KR20200126530A (en) * 2019-04-30 2020-11-09 주식회사 일성 Dissolving device for Nano-bubble generator system

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06182170A (en) * 1992-12-17 1994-07-05 Shimanishi Kaken Kk Microbubble generation device
JP2005246351A (en) * 2004-03-08 2005-09-15 Irie Shingo Fine bubble forming apparatus for improving water quality
JP2008284109A (en) * 2007-05-16 2008-11-27 Rinnai Corp Fine bubble generating apparatus and fine bubble generating method
JP2010158680A (en) * 2007-12-14 2010-07-22 Yasumasa Nishiyama Additional device for whirling type fine bubble generation apparatus
WO2012084023A1 (en) * 2010-12-21 2012-06-28 Stigebrandt Hydroteknik Ab Apparatus and method for supplying gas to a liquid within a receptacle and use of such an apparatus
JP2012120945A (en) * 2010-12-06 2012-06-28 Nikuni:Kk Liquid treatment device
JP2012157789A (en) * 2011-01-28 2012-08-23 Nitto Seiko Co Ltd Micro bubble generating method and micro bubble generating apparatus
JP2012254407A (en) * 2011-06-09 2012-12-27 Sanso Electric Co Ltd Microbubble generation device
JP2013010075A (en) * 2011-06-29 2013-01-17 Nitto Seiko Co Ltd Gas injection device and gas-liquid contact device
JP2014104441A (en) * 2012-11-29 2014-06-09 Idec Corp Fine bubble generating nozzle and fine bubble generating device
JP2015112506A (en) * 2013-12-09 2015-06-22 日東精工株式会社 Cleaning device

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06182170A (en) * 1992-12-17 1994-07-05 Shimanishi Kaken Kk Microbubble generation device
JP2005246351A (en) * 2004-03-08 2005-09-15 Irie Shingo Fine bubble forming apparatus for improving water quality
JP2008284109A (en) * 2007-05-16 2008-11-27 Rinnai Corp Fine bubble generating apparatus and fine bubble generating method
JP2010158680A (en) * 2007-12-14 2010-07-22 Yasumasa Nishiyama Additional device for whirling type fine bubble generation apparatus
JP2012120945A (en) * 2010-12-06 2012-06-28 Nikuni:Kk Liquid treatment device
WO2012084023A1 (en) * 2010-12-21 2012-06-28 Stigebrandt Hydroteknik Ab Apparatus and method for supplying gas to a liquid within a receptacle and use of such an apparatus
JP2012157789A (en) * 2011-01-28 2012-08-23 Nitto Seiko Co Ltd Micro bubble generating method and micro bubble generating apparatus
JP2012254407A (en) * 2011-06-09 2012-12-27 Sanso Electric Co Ltd Microbubble generation device
JP2013010075A (en) * 2011-06-29 2013-01-17 Nitto Seiko Co Ltd Gas injection device and gas-liquid contact device
JP2014104441A (en) * 2012-11-29 2014-06-09 Idec Corp Fine bubble generating nozzle and fine bubble generating device
JP2015112506A (en) * 2013-12-09 2015-06-22 日東精工株式会社 Cleaning device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107869027A (en) * 2016-09-27 2018-04-03 东部大宇电子株式会社 Washing machine
CN108854614A (en) * 2017-05-10 2018-11-23 青岛经济技术开发区海尔热水器有限公司 Micro-bubble water generating device and automatic water draining method thereof
KR20200126530A (en) * 2019-04-30 2020-11-09 주식회사 일성 Dissolving device for Nano-bubble generator system
KR102312598B1 (en) * 2019-04-30 2021-10-14 지현숙 Dissolving device for Nano-bubble generator system

Also Published As

Publication number Publication date
JP6393152B2 (en) 2018-09-19

Similar Documents

Publication Publication Date Title
US9550156B2 (en) Generation apparatus for dissolving gas in liquid and fluid nozzle
WO2009116711A3 (en) Apparatus of generating microbubbles
CN102992471B (en) Liquid treatment device
JP4815032B2 (en) Microbubble generator and gas-liquid mixing tank
KR101024658B1 (en) Ozonized Water Generator
JP6393152B2 (en) Microbubble generator
JP2007289903A (en) Micro-bubble generating device and bath system
JP6449531B2 (en) Microbubble generator
JP2008284109A (en) Fine bubble generating apparatus and fine bubble generating method
JP2016112477A (en) Microbubble generator
JP2011078858A (en) Method for generating microbubble and microbubble generator
JP2007268390A (en) Bubble generating device
CN108854610B (en) Micro-bubble water generating device and control method thereof
JP2010022955A (en) Apparatus for generating microbubble
JP5816605B2 (en) Gas dissolving device
JPH10244138A (en) Method and device for mixing and dissolving gas and liquid
JP2014069134A (en) Gas dissolving apparatus
JP2008100225A (en) Air/liquid mixer
JP2007000846A (en) Fine bubble generating device
JP2002191949A (en) Fine air bubble generator
JP5717245B2 (en) Fine bubble-containing liquid generation apparatus and fine bubble-containing liquid generation method
JP2011183350A (en) Gas-liquid mixing apparatus
JP5001327B2 (en) Gas dissolving device
US20090184060A1 (en) System and Process for Forming Micro Bubbles in Liquid
JP2008178780A (en) Microbubble generating apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170929

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180514

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180706

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180803

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180820

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180824

R150 Certificate of patent or registration of utility model

Ref document number: 6393152

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250