JP5816605B2 - Gas dissolving device - Google Patents

Gas dissolving device Download PDF

Info

Publication number
JP5816605B2
JP5816605B2 JP2012262059A JP2012262059A JP5816605B2 JP 5816605 B2 JP5816605 B2 JP 5816605B2 JP 2012262059 A JP2012262059 A JP 2012262059A JP 2012262059 A JP2012262059 A JP 2012262059A JP 5816605 B2 JP5816605 B2 JP 5816605B2
Authority
JP
Japan
Prior art keywords
gas
liquid
ejector
mixing
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012262059A
Other languages
Japanese (ja)
Other versions
JP2014104459A (en
Inventor
荘一郎 大崎
荘一郎 大崎
佳浩 照屋
佳浩 照屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikuni KK
Original Assignee
Nikuni KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikuni KK filed Critical Nikuni KK
Priority to JP2012262059A priority Critical patent/JP5816605B2/en
Publication of JP2014104459A publication Critical patent/JP2014104459A/en
Application granted granted Critical
Publication of JP5816605B2 publication Critical patent/JP5816605B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Accessories For Mixers (AREA)

Description

本発明は、気液混合エジェクタを備えた気体溶解装置に関する。   The present invention relates to a gas dissolving apparatus provided with a gas-liquid mixing ejector.

液体と気体を密閉タンク内に噴射して液体中に気体を溶解させる気体溶解装置としては、密閉タンク(耐圧容器)の頂部に、外部より加圧された液体と気体または気泡混じりの液体を下方に向けて噴射する1個または複数の穴を有するノズルを設け、密閉タンク下部内の空間に碗状の気液分離材を支持し、密閉タンク内面と気液分離材の外面とのすき間の面積と流量による流下速度と気泡の液体中での上昇速度の関係から選択的に気液分離をする気体溶解装置が提案されている(例えば、特許文献1参照)。   As a gas dissolving device that injects liquid and gas into a closed tank and dissolves the gas in the liquid, the liquid pressurized from the outside and the liquid mixed with gas or bubbles are placed on the top of the closed tank (pressure vessel) A nozzle having one or a plurality of holes for spraying toward the surface, supporting a bowl-shaped gas-liquid separator in the space in the lower part of the sealed tank, and the clearance between the inner surface of the sealed tank and the outer surface of the gas-liquid separator And a gas dissolution apparatus that selectively performs gas-liquid separation based on the relationship between the flow-down speed depending on the flow rate and the rising speed of bubbles in the liquid (see, for example, Patent Document 1).

特開2010−269299号公報JP 2010-269299 A

この気体溶解装置は、気液分離材よりも上部の密閉タンク内で発生する循環流や渦流により気体溶解が可能になるというものであるが、このような密閉タンクの頂部に設けられたノズルより加圧された液体と気体または気泡混じりの液体を密閉タンク内に噴射するのみでは、液体中に高濃度の気体溶解を行なうことは困難である。   This gas dissolution device is capable of gas dissolution by a circulating flow or vortex generated in a closed tank above the gas-liquid separator, but from a nozzle provided at the top of such a closed tank. It is difficult to dissolve a high-concentration gas in the liquid only by injecting the pressurized liquid and the liquid in which the gas or bubbles are mixed into the sealed tank.

本発明は、このような点に鑑みなされたもので、液体中に高濃度の気体溶解を行なえる気体溶解装置を提供することを目的とする。   This invention is made | formed in view of such a point, and it aims at providing the gas dissolving apparatus which can perform high concentration gas dissolution in the liquid.

請求項1に記載された発明は、密閉タンクと、この密閉タンク内に上向きに設置され、外部より下部に供給された気体および液体の気液混合流に密閉タンク内の液体を吸引して形成した気液混合噴射流を上方へ噴射する気液混合エジェクタと、この気液混合エジェクタに気体および液体を供給する気液供給手段と、気液混合エジェクタより下側に位置する液取出口から密閉タンク内の気体が溶解された液体を外部に取り出す液取出手段とを具備し、密閉タンクは、下部の液体が溜まる液体室に対して上部の気体が溜まる気体室を有し、気液供給手段は、気液混合エジェクタから噴射した気液混合噴射流を密閉タンク内の液面から気体室に噴出させて気体室内の気体中で飛沫化させることを可能とする程度に気液混合エジェクタに供給される液体を加圧するポンプを備え、気体室内では、飛沫化した液体が気体と接触して液体中への気体の溶解を促進させる構成の気体溶解装置である。 The invention described in claim 1 is formed by sucking the liquid in the closed tank into the closed tank and a gas-liquid mixed flow of gas and liquid that is installed upward in the closed tank and supplied to the lower part from the outside. A gas-liquid mixing ejector that injects the gas-liquid mixing jet flow upward, gas-liquid supply means for supplying gas and liquid to the gas-liquid mixing ejector, and a liquid outlet located below the gas-liquid mixing ejector. A liquid take-out means for taking out the liquid in which the gas in the tank is dissolved, and the sealed tank has a gas chamber in which the upper gas is stored with respect to the liquid chamber in which the lower liquid is stored. Supplies the gas-liquid mixing ejector jetted from the gas-liquid mixing ejector to the gas-liquid mixing ejector to the extent that it can be ejected from the liquid level in the sealed tank into the gas chamber and sprayed in the gas in the gas chamber Liquid The a pump for pressurizing, in a gas chamber, a gas dissolution apparatus configuration splashes of liquid is to promote the dissolution of gas into contact with a gas in a liquid.

請求項2に記載された発明は、請求項1記載の気体溶解装置において、密閉タンク内の液体中への気体溶解濃度の上昇に応じて液体中への気体溶解速度が低下し気体室の容積が拡大することにより下降する液面の下降限界位置を検知する液面検知手段と、この液面検知手段による液面の下降限界位置の検知により気液混合エジェクタへの気体の供給を停止させるための信号を出力する制御手段と構成である。 According to a second aspect of the present invention, there is provided the gas dissolving apparatus according to the first aspect, wherein the gas dissolution rate in the liquid decreases as the gas dissolution concentration in the liquid in the sealed tank increases and the volume of the gas chamber is reduced. In order to stop the gas supply to the gas-liquid mixing ejector by detecting the lower limit position of the liquid level that descends by expanding the liquid level and detecting the lower limit position of the liquid level by the liquid level detecting means The control means and the configuration for outputting the above signal.

請求項3に記載された発明は、請求項1または2記載の気体溶解装置における気液供給手段が、気体および液体をそれぞれ気液混合エジェクタに加圧供給するとしたものである。   The invention described in claim 3 is such that the gas-liquid supply means in the gas dissolving apparatus according to claim 1 or 2 pressurizes and supplies gas and liquid to the gas-liquid mixing ejector.

請求項4に記載された発明は、請求項1または2記載の気体溶解装置における気液混合エジェクタが、外部より加圧供給された液体により生じた液体流に外部より供給された気体を吸引させて気液混合流を生じさせる第1エジェクタと、この第1エジェクタから吐出された気液混合流に密閉タンク内の液体を吸引させて加えた気液混合流を噴射する第2エジェクタとを具備したものである。   According to a fourth aspect of the present invention, the gas-liquid mixing ejector in the gas dissolving device according to the first or second aspect causes the gas supplied from the outside to be sucked into the liquid flow generated by the liquid pressurized and supplied from the outside. A first ejector for generating a gas-liquid mixed flow and a second ejector for injecting a gas-liquid mixed flow obtained by sucking the liquid in the sealed tank into the gas-liquid mixed flow discharged from the first ejector. It is a thing.

請求項5に記載された発明は、請求項1または2記載の気体溶解装置における気液供給手段が、液体とともに気体を吸引して気液を混合しながら移送しつつ昇圧させて気液混合エジェクタに気液混合流を加圧供給する渦流ポンプを備えたものである。   According to a fifth aspect of the present invention, there is provided a gas-liquid mixing ejector wherein the gas-liquid supply means in the gas dissolving apparatus according to the first or second aspect of the present invention sucks the gas together with the liquid and raises the pressure while mixing and transferring the gas-liquid. Is equipped with a vortex pump that pressurizes the gas-liquid mixed flow.

請求項1記載の発明によれば、気液供給手段によって気液混合エジェクタの下部に供給された気体および液体の気液混合流に密閉タンク内の液体を吸引させ内部で混合して形成した気液混合噴射流を気液混合エジェクタの上部よりさらに密閉タンク内の液体中に噴射させることで気液を気液混合エジェクタの内外で激しく混合攪拌する過程と、気液混合エジェクタから噴射した気液混合噴射流を密閉タンク内の液面から気体室に噴出させてこの気体室内の気体中で飛沫化させ気体と大きな接触面積で衝突接触させることで液体中への気体の溶解を促進させる過程とを組み合せることで、液体中に気体を効率よく溶解させることができ、液体中に高濃度の気体溶解を行なうことができる。さらに、液取出手段は、気液混合エジェクタより下側に位置する液取出口から密閉タンク内の気体溶解状態の液体を外部に取り出すので、密閉タンク内の液体中に溶解されていない未溶解の気泡は、タンク内液面から液循環流に乗って下降する際でも液取出口に到達する前に気液混合エジェクタにエジェクタ周囲液体とともに吸い込まれて再度気液混合されるため、気体が溶解された液体のみを外部に取り出すことができる。   According to the first aspect of the present invention, the gas formed by sucking the liquid in the sealed tank into the gas-liquid mixed flow of gas and liquid supplied to the lower part of the gas-liquid mixing ejector by the gas-liquid supply means and mixing them inside. The process of vigorously mixing and stirring gas and liquid inside and outside the gas-liquid mixing ejector by injecting the liquid-mixed jet flow from the upper part of the gas-liquid mixing ejector into the liquid in the sealed tank, and the gas and liquid jetted from the gas-liquid mixing ejector A process of accelerating dissolution of the gas in the liquid by ejecting the mixed jet flow from the liquid level in the sealed tank to the gas chamber, spraying it in the gas in the gas chamber, and bringing it into collision contact with the gas in a large contact area; In combination, gas can be efficiently dissolved in the liquid, and high-concentration gas can be dissolved in the liquid. Further, the liquid take-out means takes out the gas-dissolved liquid in the closed tank from the liquid take-out outlet located below the gas-liquid mixing ejector, so that the undissolved liquid not dissolved in the liquid in the closed tank. Even when the air bubbles descend from the liquid level in the tank, they are sucked into the gas-liquid mixing ejector together with the liquid around the ejector before reaching the liquid outlet, so that the gas is dissolved. Only the liquid can be taken out.

請求項2記載の発明によれば、密閉タンク内の液体中への気体溶解濃度が上昇するに応じて液体中への気体溶解速度が低下し、気体室の容積が拡大する現象、すなわち密閉タンク内の液面が下降する現象を利用して、液面検知手段による液面の下降限界位置の検知により、制御手段は気液混合エジェクタへの気体の供給を停止させるための信号を出力するので、簡易なシステムにより気体溶解濃度を管理できる。   According to the second aspect of the present invention, the gas dissolution rate in the liquid decreases as the gas dissolution concentration in the liquid in the sealed tank increases, and the volume of the gas chamber increases, that is, the sealed tank. Since the control means outputs a signal for stopping the supply of gas to the gas-liquid mixing ejector by detecting the lower limit position of the liquid level by the liquid level detecting means by utilizing the phenomenon that the liquid level in the inside is lowered. The gas dissolution concentration can be managed by a simple system.

請求項3記載の発明によれば、液体だけでなく気体も気液混合エジェクタに加圧供給するので、液体を供給するためのポンプは低圧域で用いることができる安価なものであってもよく、気液混合エジェクタが有する気体吸引機能によって多量の気体を液体中に効率よく溶解させることができ、液体中に高濃度の気体溶解を行なえる。   According to the third aspect of the invention, not only the liquid but also the gas is pressurized and supplied to the gas-liquid mixing ejector, so the pump for supplying the liquid may be an inexpensive one that can be used in a low pressure region. The gas suction function of the gas-liquid mixing ejector can efficiently dissolve a large amount of gas in the liquid and can dissolve the gas at a high concentration in the liquid.

請求項4記載の発明によれば、第1エジェクタにより外部より加圧供給された液体により生じた液体流に外部より供給された気体を吸引させるので、気体の圧力源が不要であるとともに多量の気体を吸引でき、さらに、第1エジェクタにより気液を混合して気液混合流を作る過程と、第2エジェクタにより気液混合流に密閉タンク内の液体を吸引させて混合し気液混合噴射流を作る過程と、この気液混合噴射流を密閉タンク内の液面から気体室に噴出させて気体室内で気液を混合する過程とで、液体中に気体を効率よく溶解させることができ、液体中に高濃度の気体を溶解させることができる。   According to the invention of claim 4, since the gas supplied from the outside is sucked into the liquid flow generated by the liquid pressurized and supplied from the outside by the first ejector, a gas pressure source is unnecessary and a large amount Gas can be sucked, and the gas-liquid mixed flow is made by mixing the gas and liquid by the first ejector, and the liquid in the sealed tank is sucked and mixed into the gas-liquid mixed flow by the second ejector, and the gas-liquid mixed injection The process of creating a flow and the process of jetting this gas-liquid mixed jet from the liquid level in the sealed tank to the gas chamber to mix the gas and liquid in the gas chamber can efficiently dissolve the gas in the liquid. High concentration gas can be dissolved in the liquid.

請求項5記載の発明によれば、渦流ポンプは液体とともに気体を吸引するので、気体の圧力源が不要であり、さらに、渦流ポンプは気液を混合しながら移送しつつ昇圧させて気液混合エジェクタに気液混合流を加圧供給するので、渦流ポンプ内で気液を混合して気液混合流を作る過程と、気液混合エジェクタにより気液混合流に密閉タンク内の液体を吸引させて混合し気液混合噴射流を作る過程と、この気液混合噴射流を気体室に噴出させて気液を混合する過程とで、液体中に気体を効率よく溶解させることができ、液体中に高濃度の気体溶解を行なえる。   According to the fifth aspect of the present invention, since the vortex pump sucks the gas together with the liquid, there is no need for a gas pressure source. Since the gas-liquid mixed flow is pressurized and supplied to the ejector, the gas-liquid mixed flow is created by mixing the gas-liquid in the vortex pump, and the gas-liquid mixed flow is sucked into the gas-liquid mixed flow by the gas-liquid mixed flow. The gas-liquid mixed jet flow and the gas-liquid mixed jet flow jetting the gas-liquid mixed jet flow into the gas chamber and mixing the gas-liquid can efficiently dissolve the gas in the liquid. High concentration gas dissolution can be achieved.

本発明に係る気体溶解装置の第1実施の形態を示す回路図である。1 is a circuit diagram showing a first embodiment of a gas dissolving apparatus according to the present invention. 同上装置の気液混合エジェクタを示す断面図である。It is sectional drawing which shows the gas-liquid mixing ejector of an apparatus same as the above. 本発明に係る気体溶解装置の第2実施の形態を示す回路図である。It is a circuit diagram which shows 2nd Embodiment of the gas dissolving apparatus which concerns on this invention. 同上装置の気液混合エジェクタを示す断面図である。It is sectional drawing which shows the gas-liquid mixing ejector of an apparatus same as the above. 本発明に係る気体溶解装置の第3実施の形態を示す回路図である。It is a circuit diagram which shows 3rd Embodiment of the gas dissolving apparatus which concerns on this invention. 同上装置の気液混合エジェクタを示す断面図である。It is sectional drawing which shows the gas-liquid mixing ejector of an apparatus same as the above. 同上装置の渦流ポンプを示す断面図である。It is sectional drawing which shows the eddy current pump of an apparatus same as the above.

以下、本発明を、図1および図2に示された第1実施の形態、図3および図4に示された第2実施の形態、図5乃至図7に示された第3実施の形態に基いて詳細に説明する。   Hereinafter, the present invention will be described with reference to the first embodiment shown in FIGS. 1 and 2, the second embodiment shown in FIGS. 3 and 4, and the third embodiment shown in FIGS. This will be described in detail based on the above.

先ず、図1および図2に示された第1実施の形態を説明する。   First, the first embodiment shown in FIGS. 1 and 2 will be described.

図1は、気体溶解装置11の全体を示し、球面状のタンク下底部12aおよびタンク天蓋部12bを有する円筒状の密閉タンク12を中心に構成されている。この密閉タンク12は、下部の液体が溜まる液体室13に対して上部の気体が溜まる気体室14を有する。この密閉タンク12内の液体室13に、気液混合エジェクタ15Aが上向きに設置されている。   FIG. 1 shows the entirety of a gas dissolving apparatus 11, which is configured around a cylindrical sealed tank 12 having a spherical tank lower bottom 12a and a tank canopy 12b. The closed tank 12 has a gas chamber 14 in which an upper gas is stored with respect to a liquid chamber 13 in which a lower liquid is stored. In the liquid chamber 13 in the sealed tank 12, a gas-liquid mixing ejector 15A is installed upward.

図2に示されるように、この気液混合エジェクタ15Aは、ノズル部16の先端上にディフューザ17の入口17aが対向する状態で、複数の連結部18によりノズル部16とディフューザ17とを一体化したものであり、これらのノズル部16の先端とディフューザ17の入口17aとの間に液体を吸い込むための液体吸込口19が、複数の連結部18間に設けられたエジェクタ構造である。   As shown in FIG. 2, the gas-liquid mixing ejector 15 </ b> A integrates the nozzle portion 16 and the diffuser 17 by a plurality of connecting portions 18 with the inlet 17 a of the diffuser 17 facing the tip of the nozzle portion 16. This is an ejector structure in which a liquid suction port 19 for sucking liquid between the tip of the nozzle portion 16 and the inlet 17a of the diffuser 17 is provided between the plurality of connecting portions 18.

ディフューザ17は、入口17aに対して通路を絞るように形成したスロート部17bが連続的に成形され、このスロート部17bに対して通路断面積を漸次拡大するラッパ形の通路断面拡大部17cが連続的に形成され、出口17dが上方に開放されている。   The diffuser 17 is continuously formed with a throat portion 17b formed so as to restrict the passage with respect to the inlet 17a, and a trumpet-shaped passage cross-sectional enlarged portion 17c that gradually expands the passage cross-sectional area with respect to the throat portion 17b. The outlet 17d is opened upward.

ノズル部16の入口側には、気液混合エジェクタ15Aに気体Aおよび液体Bを供給する気液供給手段21Aの気液供給管部22が接続されている。この気液供給管部22は、気体Aを注入する気体注入管23が、液体Bを供給する液体供給管24内に周方向の通液間隙を介して同心状に挿入されたものである。   Connected to the inlet side of the nozzle portion 16 is a gas-liquid supply pipe portion 22 of gas-liquid supply means 21A for supplying the gas A and the liquid B to the gas-liquid mixing ejector 15A. The gas-liquid supply pipe section 22 is configured such that a gas injection pipe 23 for injecting gas A is inserted concentrically into a liquid supply pipe 24 for supplying liquid B via a circumferential liquid passage gap.

よって、気液混合エジェクタ15Aは、外部より下部のノズル部16に、気液供給手段21Aから気体Aおよび液体Bの気液混合流Cを供給すると、ノズル部16の先端から噴出する気液混合流Cに密閉タンク12内の液体Dが吸引されて混合され噴射される気液混合噴射流Eが形成され、この気液混合噴射流Eを上部の出口17dより噴射するように構成されている。   Therefore, when the gas-liquid mixing ejector 15A supplies the gas-liquid mixed flow C of the gas A and the liquid B from the gas-liquid supply means 21A to the nozzle portion 16 below from the outside, the gas-liquid mixing ejected from the tip of the nozzle portion 16 A gas-liquid mixed jet stream E is formed in which the liquid D in the closed tank 12 is sucked into the stream C, mixed, and jetted, and the gas-liquid mixed jet stream E is jetted from the upper outlet 17d. .

図1に示されるように、密閉タンク12のタンク天蓋部12bには密閉タンク12内の気液を分離して気体のみを外部に排出する気液分離器26が設けられ、この気液分離器26に密閉タンク12内の圧力を計測する圧力計27と、密閉タンク12内の圧力を抜く電磁式の圧抜弁28とが接続されている。圧抜弁28は、大気に解放できない気体の場合は、その気体を回収する設備に接続されている。   As shown in FIG. 1, the tank canopy 12b of the sealed tank 12 is provided with a gas-liquid separator 26 that separates the gas-liquid in the sealed tank 12 and discharges only the gas to the outside. A pressure gauge 27 for measuring the pressure in the closed tank 12 and an electromagnetic pressure release valve 28 for releasing the pressure in the closed tank 12 are connected to 26. In the case of a gas that cannot be released to the atmosphere, the pressure relief valve 28 is connected to a facility for collecting the gas.

気液供給手段21Aは、気体および液体をそれぞれ気液混合エジェクタ15Aに加圧供給するものであり、酸素ボンベや炭酸ガスボンベなどの気体供給源31からバルブ32、電磁式に開閉されるバルブ33および逆止弁34を経て気液混合エジェクタ15Aに酸素や炭酸ガスなどの気体を加圧状態で供給する気体供給配管系35と、下水処理場や浴槽などの液体槽36より液体を汲み出して加圧するポンプ37Aから逆止弁38および圧力計39を経て気液混合エジェクタ15Aに液体を加圧供給する液体供給配管系40とを備えている。   The gas-liquid supply means 21A supplies gas and liquid to the gas-liquid mixing ejector 15A under pressure, and includes a valve 32 from a gas supply source 31 such as an oxygen cylinder or a carbon dioxide gas cylinder, a valve 33 that is opened and closed electromagnetically, and Pumps and pressurizes liquid from a gas supply piping system 35 that supplies a gas such as oxygen or carbon dioxide in a pressurized state to the gas-liquid mixing ejector 15A via a check valve 34 and a liquid tank 36 such as a sewage treatment plant or a bathtub. A liquid supply piping system 40 that pressurizes and supplies liquid from the pump 37A to the gas-liquid mixing ejector 15A through the check valve 38 and the pressure gauge 39 is provided.

この液体供給配管系40のポンプ37Aは、気液混合エジェクタ15Aから噴射した気液混合噴射流Eを密閉タンク12内の液面Fから気体室14に噴出させてこの気体室14内の気体中で飛沫化させ気体と大きな接触面積で衝突接触させることを可能とする程度に気液混合エジェクタ15Aに供給される液体Bを加圧する機能を備えている。   The pump 37A of the liquid supply piping system 40 jets the gas-liquid mixed jet stream E injected from the gas-liquid mixing ejector 15A from the liquid surface F in the sealed tank 12 to the gas chamber 14, and in the gas in the gas chamber 14 Is provided with a function of pressurizing the liquid B supplied to the gas-liquid mixing ejector 15A to such an extent that it can be sprayed and brought into collision contact with the gas with a large contact area.

密閉タンク12のタンク下底部12aには、密閉タンク12内の気体が溶解された液体を外部に取り出す液取出手段41が設けられている。この液取出手段41は、密閉タンク12のタンク下底部12aに、気液混合エジェクタ15Aより下側に位置する液取出口42を設け、この液取出口42から取り出した気体溶解液体をバルブ43を経て液体槽36に戻す戻し配管系44を設けたものである。   A liquid take-out means 41 for taking out the liquid in which the gas in the closed tank 12 is dissolved is provided on the bottom bottom 12a of the closed tank 12. This liquid take-out means 41 is provided with a liquid take-out outlet 42 located below the gas-liquid mixing ejector 15A in the tank lower bottom portion 12a of the sealed tank 12, and the gas-dissolved liquid taken out from the liquid take-out outlet 42 is supplied with a valve 43. A return piping system 44 that returns to the liquid tank 36 is provided.

密閉タンク12の内部には、気液混合エジェクタ15Aの液体吸込口19と液取出口42との間に気液分離層部45が形成されている。この気液分離層部45では、液体中へ溶解されなかった大粒の泡状気体が分離され、この分離された泡状気体は、気液混合エジェクタ15Aの液体吸込口19にエジェクタ周囲液体とともに吸い込まれ、再度液体中に溶解処理されるように構成されている。   Inside the sealed tank 12, a gas-liquid separation layer portion 45 is formed between the liquid inlet 19 and the liquid outlet 42 of the gas-liquid mixing ejector 15A. The gas-liquid separation layer 45 separates the large bubble gas that was not dissolved in the liquid, and the separated bubble gas is sucked into the liquid suction port 19 of the gas-liquid mixing ejector 15A together with the liquid around the ejector. Then, it is configured to be dissolved again in the liquid.

密閉タンク12の外部には密閉タンク12内の液面Fのレベルを検出するための液面計46が密閉タンク12に沿って設置されている。この液面計46は、密閉タンク12のタンク下底部12aとタンク天蓋部12bとを、密閉タンク12と平行に配管された透明の連通管47により連通し、この連通管47の液位は密閉タンク12内の液位と連動しているので、密閉タンク12内の液面Fのレベルを連通管47を透して外部から目視確認できるようにしたものである。   A liquid level gauge 46 for detecting the level of the liquid level F in the closed tank 12 is installed along the closed tank 12 outside the closed tank 12. This liquid level gauge 46 communicates the tank bottom 12a and the tank canopy 12b of the sealed tank 12 with a transparent communication pipe 47 piped in parallel with the closed tank 12, and the liquid level of the communication pipe 47 is sealed. Since it is interlocked with the liquid level in the tank 12, the level of the liquid level F in the sealed tank 12 can be visually confirmed from the outside through the communication pipe 47.

この連通管47の比較的下部には、密閉タンク12内の液体中への気体溶解濃度の上昇に応じて下降する液面Fの下降限界位置を検知する例えば静電容量式液面センサ、電極式液面センサなどの液面検知手段48が設けられている。   At a relatively lower portion of the communication pipe 47, for example, a capacitive liquid level sensor, an electrode for detecting the lower limit position of the liquid level F that falls in accordance with the increase of the gas dissolution concentration in the liquid in the sealed tank 12 Liquid level detecting means 48 such as a liquid level sensor is provided.

この液面検知手段48による液面Fの下降限界位置の検知により気液混合エジェクタ15Aへの気体Aの供給を停止させるための信号を出力する制御盤などの制御手段49が設けられている。この制御手段49からは、電磁式の圧抜弁28を開閉する信号、気体供給配管系35に設けられた電磁式のバルブ33を開閉する信号、ポンプ37Aを始動・停止させる信号、またはブザーやランプなどの異常報知器50を作動する信号が出力される。   Control means 49 such as a control panel for outputting a signal for stopping the supply of the gas A to the gas-liquid mixing ejector 15A by detecting the lower limit position of the liquid level F by the liquid level detection means 48 is provided. From this control means 49, a signal for opening and closing the electromagnetic pressure relief valve 28, a signal for opening and closing the electromagnetic valve 33 provided in the gas supply piping system 35, a signal for starting and stopping the pump 37A, or a buzzer and a lamp A signal for operating the abnormality alarm 50 is output.

次に、この図1および図2に示された実施の形態の作用効果を説明する。   Next, the function and effect of the embodiment shown in FIGS. 1 and 2 will be described.

液体槽36内からポンプ37Aによって気液混合エジェクタ15Aの下部に供給した液体に、気体供給源31から気体供給配管系35を通して供給した気体を混合して、気液混合エジェクタ15Aのノズル部16に気液混合流Cを加圧供給し、このノズル部16の先端からディフューザ17の入口17aを経てスロート部17bに向けて高速の気液混合流Cを噴出させる。   The gas supplied from the gas supply source 31 through the gas supply piping system 35 is mixed with the liquid supplied from the liquid tank 36 to the lower part of the gas-liquid mixing ejector 15A by the pump 37A, and the liquid is supplied to the nozzle portion 16 of the gas-liquid mixing ejector 15A. A gas-liquid mixed stream C is pressurized and supplied, and a high-speed gas-liquid mixed stream C is ejected from the tip of the nozzle part 16 through the inlet 17a of the diffuser 17 toward the throat part 17b.

この高速気液混合流の周囲には負圧空間が形成されるので、この負圧空間に吸い込まれるように周囲の液体吸込口19より密閉タンク12内の液体Dが吸引され、これらの気液混合流Cと液体Dとが混合された気液混合流は、ディフューザ17のスロート部17bからラッパ形の通路断面拡大部17cで混合攪拌されつつ昇圧されて上部の出口17dより噴射される気液混合噴射流Eとなり、この気液混合エジェクタ15Aから噴射した気液混合噴射流Eは、密閉タンク12内の液体中を通して密閉タンク12内の液面Fから気体室14に噴出して飛沫化し、この気体室14内の気体中で飛沫化した液体は、気体との接触面積を拡大した状態で、気体と衝突接触しつつ、タンク内液面に落下する。   Since a negative pressure space is formed around the high-speed gas-liquid mixed flow, the liquid D in the sealed tank 12 is sucked from the surrounding liquid suction port 19 so as to be sucked into the negative pressure space. The gas-liquid mixed flow in which the mixed flow C and the liquid D are mixed is pressurized while being mixed and stirred from the throat portion 17b of the diffuser 17 by the trumpet-shaped passage cross-sectional enlarged portion 17c and injected from the upper outlet 17d. The gas-liquid mixed jet E ejected from the gas-liquid mixed ejector 15A is jetted from the liquid level F in the sealed tank 12 to the gas chamber 14 through the liquid in the sealed tank 12, and is splattered. The liquid splashed in the gas in the gas chamber 14 falls to the liquid level in the tank while colliding with the gas in a state where the contact area with the gas is enlarged.

このとき、気液混合エジェクタ15Aの内部で激しい気液混合作用が生じ、また、気液混合エジェクタ15Aから噴射した気液混合噴射流Eとタンク内液体との間で激しい気液混合撹拌作用が生じ、さらに、気体室14内での気液混合噴射流Eの噴出、飛沫化および気体との衝突接触により激しい気液混合作用が生じ、密閉タンク12内の液体中への気体の溶解が促進される。   At this time, a vigorous gas-liquid mixing action occurs inside the gas-liquid mixing ejector 15A, and a vigorous gas-liquid mixing and stirring action occurs between the gas-liquid mixing jet E ejected from the gas-liquid mixing ejector 15A and the liquid in the tank. Furthermore, the gas-liquid mixed jet stream E in the gas chamber 14 is ejected, splashed, and collided with the gas to cause a vigorous gas-liquid mixing action, which promotes the dissolution of the gas in the liquid in the sealed tank 12 Is done.

気液混合エジェクタ15Aを用いることによって、ノズル部16よりディフューザ17のスロート部17bに高速で噴出した気液混合流Cの周囲は真空状態となり、気液混合流Cは周囲の液体Dを大量に吸込みながら通路断面拡大部17cに流入して、この通路断面拡大部17cの内部で混合攪拌されつつ昇圧されて噴射される気液混合噴射流Eとなるので、ノズル部16に供給された気液混合流Cの元供給量に対し、密閉タンク12内の液体Dの周囲吸込量は3〜4倍にもなり、ディフューザ17から噴射される気液混合噴射流Eの総噴射量は、気液混合流Cの元供給量と、その元供給量の3〜4倍の周囲吸込量との和となる。よって、気液混合エジェクタ15Aから噴射される気液混合噴射流Eの噴射量は著しく増大するので、上記密閉タンク12内の各段階における気液混合撹拌能力が高まり、液体中への気体の溶解効率が高くなる。   By using the gas-liquid mixing ejector 15A, the periphery of the gas-liquid mixed flow C ejected from the nozzle portion 16 to the throat portion 17b of the diffuser 17 at a high speed becomes a vacuum state, and the gas-liquid mixed flow C generates a large amount of the surrounding liquid D. The gas-liquid mixed injection flow E flows into the passage cross-sectional enlarged portion 17c while being sucked and is pressurized and injected while being mixed and stirred inside the passage cross-sectional enlarged portion 17c. The ambient suction amount of the liquid D in the closed tank 12 is 3 to 4 times the original supply amount of the mixed flow C, and the total injection amount of the gas-liquid mixed injection flow E injected from the diffuser 17 is This is the sum of the original supply amount of the mixed flow C and the ambient suction amount that is 3 to 4 times the original supply amount. Therefore, since the injection amount of the gas-liquid mixed injection flow E injected from the gas-liquid mixing ejector 15A is remarkably increased, the gas-liquid mixing and stirring ability at each stage in the closed tank 12 is enhanced, and the gas is dissolved in the liquid. Increases efficiency.

特に、気液混合エジェクタ15Aから噴射された気液混合噴射流Eは、気液接触空間として機能する気体室14に噴出すると、この気体室14内で飛沫化し、この気体室14の気体と大きな接触面積で衝突接触するので、液体中への気体の溶解を効率良く促進させることができる。   In particular, when the gas-liquid mixed jet E ejected from the gas-liquid mixing ejector 15A is ejected into the gas chamber 14 functioning as the gas-liquid contact space, the gas-liquid mixed jet flow E is splashed in the gas chamber 14 and is larger than the gas in the gas chamber 14. Since the collision contact is made in the contact area, the dissolution of the gas in the liquid can be efficiently promoted.

また、気液混合エジェクタ15Aが周囲から液体とともに未溶解の気体を吸込むので、すなわち、液体中に溶解せずに気体室14から比較的大粒の泡状のまま対流に乗って下降する未溶解の気体は、気液分離層部45より上方に位置する気液混合エジェクタ15Aにより液体と共に吸い込まれるので、密閉タンク12の液取出口42から未溶解の気体が排出されることを防止できる。   Further, since the gas-liquid mixing ejector 15A sucks undissolved gas together with the liquid from the surroundings, that is, undissolved that descends by convection from the gas chamber 14 without being dissolved in the liquid while remaining in the form of relatively large bubbles. Since the gas is sucked together with the liquid by the gas-liquid mixing ejector 15A located above the gas-liquid separation layer part 45, the undissolved gas can be prevented from being discharged from the liquid outlet 42 of the sealed tank 12.

すなわち、液取出手段41は、気液混合エジェクタ15Aより気液分離層部45を介して下側に位置する液取出口42から密閉タンク12内の気体溶解状態の液体を外部に取り出すので、密閉タンク12内の液体中に溶解されていない未溶解の気泡は、液面Fから液循環流に乗って下降する際でも液取出口42に到達する前に、気液混合エジェクタ15Aにエジェクタ周囲液体とともに吸い込まれて再度気液混合されるため、気体が溶解された液体のみを外部に取り出すことができる。   That is, the liquid take-out means 41 takes out the gas-dissolved liquid in the sealed tank 12 from the liquid take-out outlet 42 located below from the gas-liquid mixing ejector 15A through the gas-liquid separation layer 45, Even when undissolved bubbles that are not dissolved in the liquid in the tank 12 descend on the liquid circulation flow from the liquid surface F, the liquid around the ejector is supplied to the gas-liquid mixing ejector 15A before reaching the liquid outlet 42. Since it is sucked together and gas-liquid mixed again, only the liquid in which the gas is dissolved can be taken out.

これらの複数または繰り返し行われる気液混合過程で、液体中に気体が効率よく溶解し、密閉タンク12内の液体中に高濃度の気体が溶解され、例えば、気体供給源31から炭酸ガスを供給する場合は、液体槽36が炭酸泉の浴槽となる。   In these multiple or repeated gas-liquid mixing processes, the gas is efficiently dissolved in the liquid, and the high-concentration gas is dissolved in the liquid in the sealed tank 12. For example, carbon dioxide gas is supplied from the gas supply source 31. When doing so, the liquid tank 36 becomes a carbonated spring bathtub.

また、密閉タンク12内の液面Fを管理することによって、液体中への気体の溶解濃度を間接的に検出し、気体溶解装置11の運転と停止を適切に管理する。   Further, by managing the liquid level F in the closed tank 12, the dissolved concentration of the gas in the liquid is indirectly detected, and the operation and stop of the gas dissolving device 11 are appropriately managed.

すなわち、密閉タンク12内の液体中への気体溶解濃度が上昇するに応じて液体中への気体溶解速度が低下し、気体室14の容積が拡大する現象、すなわち密閉タンク12内の液面Fが下降する現象を利用して、液面検知手段48による液面Fの下降限界位置の検知により、制御手段49は、少なくとも気体供給配管系35に設けられた電磁式のバルブ33を閉じることで、気液混合エジェクタ15Aへの気体Aの供給を自動停止させる機能を備えている。   That is, as the gas dissolution concentration in the liquid in the closed tank 12 increases, the gas dissolution rate in the liquid decreases and the volume of the gas chamber 14 increases, that is, the liquid level F in the closed tank 12. The control means 49 closes at least the electromagnetic valve 33 provided in the gas supply piping system 35 by detecting the lower limit position of the liquid level F by the liquid level detection means 48 using the phenomenon that the liquid level is lowered. A function of automatically stopping the supply of the gas A to the gas-liquid mixing ejector 15A is provided.

その際、制御手段49は、液面検知手段48による最初の液面検知により直ちに気体Aの供給を自動停止させて、液面Fの自然な上昇を監視し、気体Aの供給を再開してもよいが、それに限定されるものではなく、例えば、最初の液面検知で電磁式の圧抜弁28を開き、圧抜き制御して液面Fをいったん所定位置まで上昇させた後で、圧抜弁28を閉じて液面Fを下降させる現象を繰り返させることで、下降限界位置を設定した複数回検知した時点で電磁式のバルブ33を閉じることで、気液混合エジェクタ15Aへの気体Aの供給を自動停止させるようにしてもよい。このようにすると、密閉タンク12内の液体中への気体溶解濃度を、より高めることが可能となる。   At that time, the control means 49 automatically stops the supply of the gas A immediately by the first liquid level detection by the liquid level detection means 48, monitors the natural rise of the liquid level F, and restarts the supply of the gas A. However, the present invention is not limited to this. For example, the electromagnetic pressure relief valve 28 is opened at the first liquid level detection, the pressure relief control is performed, and the liquid level F is once raised to a predetermined position. Supplying gas A to the gas-liquid mixing ejector 15A by closing the electromagnetic valve 33 at the time of detecting multiple times by setting the lowering limit position by repeating the phenomenon of lowering the liquid level F by closing 28 May be automatically stopped. In this way, the gas dissolution concentration in the liquid in the sealed tank 12 can be further increased.

このような気体Aの供給停止によっても液面下降停止効果が現われず、液面Fの下降が続く場合は、ポンプ37Aを停止させ、液体Bの循環を自動停止させる。   If the supply of gas A is stopped, the liquid level lowering stop effect does not appear, and if the liquid level F continues to decrease, the pump 37A is stopped and the circulation of the liquid B is automatically stopped.

または、制御手段49から出力された信号によりブザーやランプなどの異常報知器50を作動して、作業者にバルブ33の閉じ操作やポンプ37Aの停止操作を行なうように指示を出すようにしてもよい。   Alternatively, an abnormality alarm device 50 such as a buzzer or a lamp may be activated by a signal output from the control means 49 to instruct the operator to close the valve 33 or stop the pump 37A. Good.

このように、図1および図2に示された実施の形態は、気体供給源31から気体を加圧供給するので、ガス圧力がありガス流量が多い気体を供給する場合に適し、さらに、この実施の形態によれば、気液供給手段21Aによって気液混合エジェクタ15Aの下部に供給された気体および液体の気液混合流Cに密閉タンク12内の液体Dを吸引させディフューザ17内で混合攪拌しつつ昇圧させた気液混合噴射流Eを気液混合エジェクタ15Aの上部よりさらに密閉タンク12内の液体中に噴射させることで気液を気液混合エジェクタ15Aの内外で激しく混合攪拌する過程と、気液混合エジェクタ15Aから噴射した気液混合噴射流Eを密閉タンク12内の液面Fから気体室14に噴出させて、この気体室14の気体中で飛沫化した液体と、気体室14の気体とを、大きな接触面積で衝突接触させることで、液体中に気体を効率よく溶解させる過程とを組み合せることで、液体中に高濃度の気体溶解を行なうことができる。   As described above, the embodiment shown in FIGS. 1 and 2 pressurizes and supplies the gas from the gas supply source 31, and is therefore suitable for supplying a gas having a gas pressure and a large gas flow rate. According to the embodiment, the liquid D in the closed tank 12 is sucked into the gas-liquid mixed flow C of gas and liquid supplied to the lower part of the gas-liquid mixing ejector 15A by the gas-liquid supply means 21A and mixed and stirred in the diffuser 17. The process of vigorously mixing and stirring the gas and liquid in and out of the gas-liquid mixing ejector 15A by injecting the pressurized gas-liquid mixing jet E from the upper part of the gas-liquid mixing ejector 15A into the liquid in the sealed tank 12 The gas-liquid mixed jet E ejected from the gas-liquid mixing ejector 15A is ejected from the liquid surface F in the sealed tank 12 to the gas chamber 14, and the liquid spattered in the gas in the gas chamber 14 and the gas chamber 14 Collide with a large amount of contact area By bringing them into contact with each other, a high-concentration gas can be dissolved in the liquid by combining the process of efficiently dissolving the gas in the liquid.

特に、気液混合エジェクタ15Aから噴射される気液混合噴射流Eの総噴射量が、気液供給手段21Aからの供給液体流量と、供給気体流量と、これらの気液混合流Cの元供給量の3〜4倍のエジェクタ周囲からの吸込液体流量の総量であり、元供給量より著しく増大するので、密閉タンク12内の各段階における気液混合撹拌能力が高まり、液体中へ高濃度の気体を溶解できる。   In particular, the total injection amount of the gas-liquid mixed injection flow E injected from the gas-liquid mixing ejector 15A is the supply liquid flow rate from the gas-liquid supply means 21A, the supply gas flow rate, and the original supply of these gas-liquid mixed flows C This is the total amount of suction liquid flow from around the ejector that is 3 to 4 times the amount. Since it is significantly higher than the original supply amount, the gas-liquid mixing and stirring ability at each stage in the sealed tank 12 is increased, and a high concentration into the liquid. Gas can be dissolved.

さらに、液取出手段41は、気液混合エジェクタ15Aより気液分離層部45を介して下側に位置する液取出口42から密閉タンク12内の気体溶解状態の液体を外部に取り出すので、密閉タンク12内の液体中に溶解されていない未溶解の気泡は、液面Fから液循環流に乗って下降する際でも液取出口42に到達する前に気液混合エジェクタ15Aにエジェクタ周囲液体とともに吸い込まれて再度気液混合されるため、気体が溶解された液体のみを外部に取り出すことができる。   Further, the liquid take-out means 41 takes out the gas-dissolved liquid in the sealed tank 12 from the liquid take-out outlet 42 located below from the gas-liquid mixing ejector 15A via the gas-liquid separation layer 45, The undissolved bubbles that are not dissolved in the liquid in the tank 12 are brought together with the liquid around the ejector into the gas-liquid mixing ejector 15A before reaching the liquid outlet 42 even when descending on the liquid circulation flow from the liquid level F. Since the liquid is sucked and mixed again, only the liquid in which the gas is dissolved can be taken out.

また、密閉タンク12内での循環方式において密閉タンク12内の液面Fを管理することによって、液体中への気体の溶解濃度を間接的に検出でき、装置の運転と停止を適切に管理できる。   Also, by managing the liquid level F in the closed tank 12 in the circulation system in the closed tank 12, the dissolved concentration of the gas in the liquid can be indirectly detected, and the operation and stoppage of the apparatus can be appropriately managed. .

すなわち、密閉タンク12内の液体中への気体溶解濃度が上昇するに応じて液体中への気体溶解速度が低下すると、気体室14の容積が拡大し、密閉タンク12内の液面Fが下降する現象を利用して、液面検知手段48による液面Fの下降限界位置の検知により、制御手段49は気液混合エジェクタ15Aへの気体の供給を停止させるための信号を出力するので、簡易なシステムにより気体溶解濃度を適切に管理できる。   That is, when the gas dissolution rate in the liquid decreases as the gas dissolution concentration in the liquid in the sealed tank 12 increases, the volume of the gas chamber 14 increases and the liquid level F in the sealed tank 12 decreases. Since the control means 49 outputs a signal for stopping the supply of gas to the gas-liquid mixing ejector 15A by detecting the lowering limit position of the liquid level F by the liquid level detection means 48 using the phenomenon to be performed, it is simple. Gas dissolution concentration can be appropriately managed by a simple system.

さらに、液体Bだけでなく気体Aも気液混合エジェクタ15Aに加圧供給するので、液体Bを供給するためのポンプ37Aは低圧域で用いることができる安価なものであってもよく、気液混合エジェクタ15Aが有する気体吸引機能によって多量の気体Aを液体中に効率よく溶解させることができ、液体中に高濃度の気体溶解を行なえる。   Further, since not only the liquid B but also the gas A is pressurized and supplied to the gas-liquid mixing ejector 15A, the pump 37A for supplying the liquid B may be an inexpensive one that can be used in a low pressure region. A large amount of gas A can be efficiently dissolved in the liquid by the gas suction function of the mixing ejector 15A, and high-concentration gas can be dissolved in the liquid.

加えて、密閉タンク12内の気液混合エジェクタ15Aは、回転羽根式ポンプのような回転軸が不要であるため、回転軸の液密シールも不要であり、構造が簡単で安価な部品により構成できるとともに、メンテナンスも容易になる。   In addition, the gas-liquid mixing ejector 15A in the sealed tank 12 does not require a rotating shaft like a rotary vane pump, so it does not require a liquid-tight seal of the rotating shaft, and is composed of simple and inexpensive parts. As well as being easy to maintain.

次に、図3および図4に示された第2実施の形態を説明する。なお、図1および図2に示された第1実施の形態と同様の部分には、同一符号を付して、その説明を省略または簡略化する。   Next, a second embodiment shown in FIGS. 3 and 4 will be described. 1 and 2 are denoted by the same reference numerals, and description thereof is omitted or simplified.

図3に示されるように、密閉タンク12と、この密閉タンク12内に上向きに設置され、外部より下部に供給された気体Aおよび液体Bの気液混合流Cに密閉タンク12内の液体Dを吸引して形成した気液混合噴射流Eを上方へ噴射する気液混合エジェクタ15Bと、この気液混合エジェクタ15Bに気体および液体を供給する気液供給手段21Bと、気液混合エジェクタ15Bより気液分離層部45を介し下側に位置する液取出口42から密閉タンク12内の気体が溶解された液体を外部に取り出す液取出手段41と、密閉タンク12内の液体中への気体溶解濃度の上昇に応じて下降する液面Fの下降限界位置を検知する液面検知手段48と、この液面検知手段48による液面Fの下降限界位置の検知により気液混合エジェクタ15Bへの気体Aまたは気体Aと液体Bの供給を停止させるための信号を出力する制御手段49とを具備し、密閉タンク12は、下部の液体が溜まる液体室13に対して上部の気体が溜まる気体室14を有し、気液供給手段21Bは、気液混合エジェクタ15Bから噴射した気液混合噴射流Eを密閉タンク12内の液面Fから気体室14に噴出させて気体室14内の気体中で飛沫化させることを可能とする程度に気液混合エジェクタ15Bに供給される液体Bを加圧するポンプ37Bを備えている。   As shown in FIG. 3, the closed tank 12 and the liquid D in the closed tank 12 are connected to the gas-liquid mixed flow C of the gas A and the liquid B which are installed upward in the closed tank 12 and supplied from the outside to the lower part. From the gas-liquid mixing ejector 15B that injects the gas-liquid mixing jet flow E formed by sucking the gas upward, the gas-liquid supply means 21B for supplying gas and liquid to the gas-liquid mixing ejector 15B, and the gas-liquid mixing ejector 15B Liquid take-out means 41 for taking out the liquid in which the gas in the closed tank 12 is dissolved from the liquid take-out outlet 42 located below via the gas-liquid separation layer 45, and gas dissolution in the liquid in the closed tank 12 The liquid level detection means 48 for detecting the lower limit position of the liquid level F that falls in accordance with the increase in concentration, and the gas to the gas-liquid mixing ejector 15B by the detection of the lower limit position of the liquid level F by the liquid level detection means 48 To stop the supply of A or gas A and liquid B The closed tank 12 has a gas chamber 14 in which the upper gas is stored with respect to the liquid chamber 13 in which the lower liquid is stored, and the gas-liquid supply unit 21B Gas-liquid mixing to such an extent that the gas-liquid mixed jet E injected from the mixing ejector 15B can be ejected from the liquid level F in the sealed tank 12 to the gas chamber 14 and sprayed in the gas in the gas chamber 14. A pump 37B for pressurizing the liquid B supplied to the ejector 15B is provided.

図4に示されるように、気液混合エジェクタ15Bは、外部より加圧供給された液体Bにより生じた液体流に外部より供給された気体Aを吸引させて気液混合流Cを生じさせる第1エジェクタ15B1と、この第1エジェクタ15B1から吐出された気液混合流Cに密閉タンク12内の液体Dを吸引させて加えた気液混合噴射流Eを上方へ噴射する第2エジェクタ15B2とを具備したものである。   As shown in FIG. 4, the gas-liquid mixing ejector 15 </ b> B generates a gas-liquid mixing flow C by sucking the gas A supplied from the outside into the liquid flow generated by the liquid B pressurized and supplied from the outside. 1 ejector 15B1 and 2nd ejector 15B2 which injects the gas-liquid mixed injection flow E added by sucking the liquid D in the closed tank 12 to the gas-liquid mixed flow C discharged from the first ejector 15B1 It is equipped.

第2エジェクタ15B2は、図2に示された気液混合エジェクタ15Aと同一の構造であり、第1エジェクタ15B1は、この第2エジェクタ15B2と同様に、ノズル部25aの先端上にディフューザ25bの入口が対向する状態でノズル部25aとディフューザ25bとを一体成形したものであり、これらのノズル部25aの先端とディフューザ25bの入口との間に気体供給配管系35から気体Aを吸い込む構造である。   The second ejector 15B2 has the same structure as the gas-liquid mixing ejector 15A shown in FIG. 2, and the first ejector 15B1 is similar to the second ejector 15B2 and has an inlet for the diffuser 25b on the tip of the nozzle portion 25a. In this state, the nozzle portion 25a and the diffuser 25b are integrally formed, and the gas A is sucked from the gas supply piping system 35 between the tip of the nozzle portion 25a and the inlet of the diffuser 25b.

そして、第1エジェクタ15B1内では、外部より加圧供給された液体Bによりノズル部25aの先端上に液体ジェット流が生じ、この液体ジェット流の周囲に負圧が生じているので、外部よりこの液体ジェット流に吸引された気体Aが液体Bと混合攪拌され、さらに、この第1エジェクタ15B1により形成された気液混合流Cを、第2エジェクタ15B2のノズル部16に供給すると、このノズル部16より噴出する気液混合流Cに密閉タンク12内の液体Dが吸引されて、ディフューザ17内で混合攪拌されつつ昇圧された気液混合噴射流Eが形成される。   In the first ejector 15B1, a liquid jet flow is generated on the tip of the nozzle portion 25a by the liquid B supplied under pressure from the outside, and a negative pressure is generated around the liquid jet flow. When the gas A sucked in the liquid jet flow is mixed and stirred with the liquid B, and further, the gas-liquid mixed flow C formed by the first ejector 15B1 is supplied to the nozzle portion 16 of the second ejector 15B2. The liquid D in the sealed tank 12 is sucked into the gas-liquid mixed flow C ejected from 16, and a gas-liquid mixed jet E that is pressurized while being mixed and stirred in the diffuser 17 is formed.

この気液混合噴射流Eは、密閉タンク12内の液体中を通して密閉タンク12内の液面Fから気体室14に噴出し、この気体室14内の気体中で飛沫化して、大きな接触面積で気体室14内の気体と衝突接触することによって、液体中に気体が効率よく溶解される。   This gas-liquid mixed jet E is ejected from the liquid level F in the closed tank 12 through the liquid in the closed tank 12 to the gas chamber 14 and is sprayed into the gas in the gas chamber 14 with a large contact area. By colliding with the gas in the gas chamber 14, the gas is efficiently dissolved in the liquid.

このような気液混合エジェクタ15Bの内部での気液混合作用と、気液混合エジェクタ15Bから噴射した気液混合噴射流Eとタンク内液体との混合撹拌作用と、気液混合噴射流Eの気体室14内での噴出、飛沫化および気液の衝突接触作用とにより、密閉タンク12内の液体中への気体の溶解が促進される。   The gas-liquid mixing action inside the gas-liquid mixing ejector 15B, the mixing and stirring action of the gas-liquid mixing jet E injected from the gas-liquid mixing ejector 15B and the liquid in the tank, and the gas-liquid mixing jet E Dissolution of the gas in the liquid in the sealed tank 12 is promoted by the jetting, spraying, and gas-liquid collision contact action in the gas chamber 14.

特に、2段エジェクタ構造の気液混合エジェクタ15Bを用いることによって、気体の供給圧力が低い場合や、大気圧で空気などの気体を吸い込む場合でも、第1エジェクタ15B1により多量の気体Aを吸い込むことができるとともに、第2エジェクタ15B2によりその気体Aと密閉タンク12内から吸い込んだ液体Dとを激しく混合撹拌できるので、液体中に気体が効率よく溶解される。   In particular, by using a gas-liquid mixing ejector 15B with a two-stage ejector structure, even when the gas supply pressure is low or when a gas such as air is sucked at atmospheric pressure, a large amount of gas A is sucked by the first ejector 15B1. In addition, since the gas A and the liquid D sucked from the sealed tank 12 can be vigorously mixed and stirred by the second ejector 15B2, the gas is efficiently dissolved in the liquid.

また、気液混合エジェクタ15Bが周囲から液体と気体を吸込むことによって、未溶解の気体を再度噴射し溶解することができ、密閉タンク12の液取出口42から未溶解の気体が排出されることを防止できる。   Further, when the gas-liquid mixing ejector 15B sucks in liquid and gas from the surroundings, the undissolved gas can be injected again and dissolved, and the undissolved gas is discharged from the liquid outlet 42 of the sealed tank 12. Can be prevented.

さらに、密閉タンク12内の液面Fを管理することによって、液体中への気体の溶解濃度を間接的に検出し、装置の運転と停止を適切に管理することが可能である。   Furthermore, by managing the liquid level F in the closed tank 12, it is possible to indirectly detect the dissolved concentration of the gas in the liquid and appropriately manage the operation and stoppage of the apparatus.

このように、図3および図4に示された実施の形態は、第1エジェクタ15B1が気体Aを吸引するので、気体供給源でのガス圧力が低く(すなわち大気圧または大気圧に近い低圧力であり)かつガス流量が多い気体を供給する場合に適し、さらに、この実施の形態によれば、第1エジェクタ15B1により外部より加圧供給された液体Bにより生じた液体流に外部より供給された気体Aを吸引させるので、気体Aの圧力源が不要であるとともに多量の気体Aを吸引でき、さらに、第1エジェクタ15B1により気液を混合して気液混合流Cを作る過程と、第2エジェクタ15B2により気液混合流Cに密閉タンク12内の液体Dを吸引させて混合攪拌し気液混合噴射流Eを作ることで気液混合エジェクタ15Bの内外で気液を激しく混合攪拌させる過程と、気液混合噴射流Eを密閉タンク12内の液面Fから気体室14に噴出させてこの気体室14内で気液を混合する過程とで、液体中に気体を効率よく溶解させることができ、液体中に高濃度の気体を溶解させることができる。   As described above, in the embodiment shown in FIGS. 3 and 4, since the first ejector 15B1 sucks the gas A, the gas pressure at the gas supply source is low (that is, the atmospheric pressure or the low pressure close to the atmospheric pressure). In addition, according to this embodiment, the liquid flow generated by the liquid B pressurized and supplied from the outside by the first ejector 15B1 is supplied from the outside. Since the gas A is sucked, a pressure source of the gas A is unnecessary and a large amount of the gas A can be sucked. Furthermore, the first ejector 15B1 mixes the gas and liquid to form the gas-liquid mixed flow C, The process in which the gas / liquid is vigorously mixed and stirred inside / outside the gas / liquid mixing ejector 15B by sucking the liquid D in the closed tank 12 into the gas / liquid mixing flow C by the ejector 15B2 and mixing and stirring to create the gas / liquid mixing jet E. And gas-liquid mixed injection E is ejected from the liquid level F in the sealed tank 12 to the gas chamber 14 and the gas-liquid is mixed in the gas chamber 14, so that the gas can be efficiently dissolved in the liquid, and the high in the liquid. A concentration of gas can be dissolved.

次に、図5乃至図7に示された第3実施の形態を説明する。なお、図1および図2に示された第1実施の形態と同様の部分には、同一符号を付して、その説明を省略または簡略化する。   Next, the third embodiment shown in FIGS. 5 to 7 will be described. 1 and 2 are denoted by the same reference numerals, and description thereof is omitted or simplified.

図5に示されるように、密閉タンク12と、この密閉タンク12内に上向きに設置され、外部より下部に供給された気体Aおよび液体Bの気液混合流Cに密閉タンク12内の液体Dを吸引して形成した気液混合噴射流Eを上方へ噴射する気液混合エジェクタ15Cと、この気液混合エジェクタ15Cに気体Aおよび液体Bを供給する気液供給手段21Cと、気液混合エジェクタ15Cより下側に位置する液取出口42から密閉タンク12内の気体が溶解された液体を外部に取り出す液取出手段41と、密閉タンク12内の液体中への気体溶解濃度の上昇に応じて下降する液面の下降限界位置を検知する液面検知手段48と、この液面検知手段48による液面Fの下降限界位置の検知により気液混合エジェクタ15Cへの気体Aの供給を停止させるための信号を出力する制御手段49とを具備し、密閉タンク12は、下部の液体が溜まる液体室13に対して上部の気体が溜まる気体室14を有し、気液供給手段21Cは、気液混合エジェクタ15Cから噴射した気液混合噴射流Eを密閉タンク12内の液面Fから気体室14に噴出させて気体室14の気体中で飛沫化させることを可能とする程度に気液混合エジェクタ15Cに供給される液体を加圧するポンプとしての渦流ポンプ(商品名:渦流ターボミキサー)37Cを備えたものである。   As shown in FIG. 5, the closed tank 12 and the liquid D in the closed tank 12 are connected to the gas-liquid mixed flow C of the gas A and the liquid B which are installed upward in the closed tank 12 and supplied from the outside to the lower part. A gas-liquid mixing ejector 15C that injects the gas-liquid mixing jet flow E formed by sucking the gas upward, a gas-liquid supply means 21C for supplying gas A and liquid B to the gas-liquid mixing ejector 15C, and a gas-liquid mixing ejector Liquid take-out means 41 for taking out the liquid in which the gas in the closed tank 12 is dissolved from the liquid take-out outlet 42 located below 15C, and according to the increase in the concentration of dissolved gas in the liquid in the closed tank 12 In order to stop the supply of the gas A to the gas-liquid mixing ejector 15C by detecting the lower limit position of the lowering liquid level and detecting the lower limit position of the liquid level F by the liquid level detecting means 48. Control means 49 for outputting the following signal: The closed tank 12 has a gas chamber 14 in which the upper gas is stored with respect to the liquid chamber 13 in which the lower liquid is stored, and the gas-liquid supply means 21C receives the gas-liquid mixing jet E injected from the gas-liquid mixing ejector 15C. Eddy current as a pump that pressurizes the liquid supplied to the gas-liquid mixing ejector 15C to such an extent that it can be ejected from the liquid level F in the sealed tank 12 into the gas chamber 14 and sprayed in the gas of the gas chamber 14 It is equipped with a pump (trade name: vortex turbo mixer) 37C.

気液供給手段21Cは、渦流ポンプ37Cで混合攪拌した気液混合流Cを気液混合エジェクタ15Cに加圧供給するものであり、電磁式に開閉されるバルブ33および逆止弁34を経て渦流ポンプ37Cに気体を吸引する気体供給配管系35と、液体槽36より液体を汲み出して加圧する渦流ポンプ37Cから逆止弁38および圧力計39を経て気液混合エジェクタ15Cに気液混合流Cを加圧供給する気液供給配管系40Cとを備えている。   The gas-liquid supply means 21C supplies the gas-liquid mixed flow C mixed and stirred by the vortex pump 37C to the gas-liquid mixing ejector 15C under pressure, and the vortex flows through the valve 33 and the check valve 34 that are opened and closed electromagnetically. A gas-liquid mixed flow C is supplied to a gas-liquid mixing ejector 15C through a check valve 38 and a pressure gauge 39 from a gas supply piping system 35 that sucks gas into the pump 37C, and a vortex pump 37C that pumps and pressurizes liquid from the liquid tank 36 And a gas-liquid supply piping system 40C for supplying pressure.

図6に示されるように、気液混合エジェクタ15Cは、渦流ポンプ37Cで混合攪拌された気液混合流Cの供給をノズル部16に受けて、このノズル部16の先端から噴出する気液混合流に、密閉タンク12内の液体Dを吸引して混合攪拌し、上方へ噴射する気液混合噴射流Eを形成するように構成されている。   As shown in FIG. 6, the gas-liquid mixing ejector 15C receives the supply of the gas-liquid mixed flow C mixed and stirred by the vortex pump 37C at the nozzle portion 16, and the gas-liquid mixing ejected from the tip of the nozzle portion 16 In the flow, the liquid D in the closed tank 12 is sucked, mixed and stirred, and a gas-liquid mixed jet stream E that is jetted upward is formed.

図7に示されるように、渦流ポンプ37Cは、ポンプ本体51内に、外周縁に沿って径方向の小羽根52および羽根溝53が交互に形成された羽根車54が、回転軸55により回転可能に設けられ、この羽根車54に沿ってポンプ本体51内に環状に昇圧通路56が形成され、この昇圧通路56の一端に位置する入口部57と、昇圧通路56の他端に位置する出口部58とが、隔離部59を介して配置されている。   As shown in FIG. 7, in the vortex pump 37 </ b> C, the impeller 54 in which the small blades 52 and the blade grooves 53 are alternately formed in the pump body 51 along the outer peripheral edge is rotated by the rotation shaft 55. A booster passage 56 is formed in the pump main body 51 in a ring shape along the impeller 54, and an inlet portion 57 located at one end of the booster passage 56 and an outlet located at the other end of the booster passage 56 The part 58 is disposed via the isolation part 59.

昇圧通路56の入口部57には、羽根車54の回転により液体槽36内から液体Bを吸込む液吸込口60が連通され、昇圧通路56の出口部58には、羽根車54の回転によりポンプ本体51内で撹拌されつつ昇圧された気液混合体を外部へ吐出する気液吐出口61が連通されている。液吸込口60と昇圧通路56の入口部57との間には気体供給配管系35の先端が挿入され、渦流ポンプ37Cが液体Bを吸込む際に吸込通路壁面に生じた負圧によってこの気体供給配管系35より気体Aを吸い込むようにしている。渦流ポンプ37Cに吸い込まれる気体Aを停止させる場合は、上記電磁式のバルブ33を閉じるように制御する。   A liquid suction port 60 for sucking the liquid B from the liquid tank 36 by the rotation of the impeller 54 is communicated with the inlet portion 57 of the pressure increase passage 56, and a pump by the rotation of the impeller 54 is connected to the outlet portion 58 of the pressure increase passage 56. A gas-liquid discharge port 61 for discharging the gas-liquid mixture pressurized while being stirred in the main body 51 to the outside is communicated. The tip of the gas supply piping system 35 is inserted between the liquid suction port 60 and the inlet portion 57 of the pressure increase passage 56, and this gas supply is caused by the negative pressure generated on the wall of the suction passage when the vortex pump 37C sucks the liquid B. Gas A is sucked from the piping system 35. When the gas A sucked into the vortex pump 37C is stopped, the electromagnetic valve 33 is controlled to be closed.

渦流ポンプ37Cは、外部に設けられた図示しないモータによって、回転軸55を介し羽根車54を回転させると、この羽根車54の小羽根52および羽根溝53が、羽根車54と同心円の昇圧通路56内を回転し、昇圧通路56内の液体を連れ回すとともに、液体槽36内の液体を液吸込口60から昇圧通路56の入口部57を経て昇圧通路56に吸い込む。この昇圧通路56内の液体は、羽根車54とともに昇圧通路56を移動しながら、羽根車54の各羽根溝53内と昇圧通路56との間で渦流となり、気体供給配管系35から昇圧通路56に吸い込まれた気体と激しく混合撹拌される。このような現象が各羽根溝53で同時に行われながら、昇圧通路56を進むにつれて徐々に昇圧された気液混合体が気液吐出口61から吐出される。   When the impeller 54C rotates the impeller 54 via the rotating shaft 55 by a motor (not shown) provided outside, the small blade 52 and the blade groove 53 of the impeller 54 are concentric with the impeller 54. The liquid in the pressure increase passage 56 is rotated along with the liquid in the liquid tank 36, and the liquid in the liquid tank 36 is sucked into the pressure increase passage 56 from the liquid suction port 60 through the inlet 57 of the pressure increase passage 56. The liquid in the pressure increase passage 56 becomes a vortex between each pressure groove 56 of the impeller 54 and the pressure increase passage 56 while moving along the pressure increase passage 56 together with the impeller 54, and from the gas supply piping system 35 to the pressure increase passage 56. It is vigorously mixed and stirred with the gas sucked in. While such a phenomenon occurs simultaneously in each of the blade grooves 53, the gas-liquid mixture that is gradually pressurized as it travels through the pressure increase passage 56 is discharged from the gas-liquid discharge port 61.

このように、渦流ポンプ37Cは、液体Bを吸い込む際に発生する負圧によって気体Aも吸込むことができる自吸型ポンプであるので、気体Aを加圧供給する必要がなく、気体Aの供給圧力が低い場合や、大気圧からの吸込を可能とすることができる。また、ポンプ本体51内では、羽根車54の各羽根溝53内で発生する渦流により気液を激しく混合攪拌し、気体Aを液体B中に効率よく溶解できるとともに、渦流により徐々に昇圧された気液混合体を高圧で吐出することができる。   Thus, the vortex pump 37C is a self-priming pump that can also suck in the gas A by the negative pressure generated when the liquid B is sucked in. Therefore, it is not necessary to pressurize and supply the gas A. When the pressure is low, suction from atmospheric pressure can be made possible. Further, in the pump main body 51, the gas and liquid are vigorously mixed and stirred by the vortex generated in each blade groove 53 of the impeller 54, and the gas A can be efficiently dissolved in the liquid B, and the pressure is gradually increased by the vortex. The gas-liquid mixture can be discharged at a high pressure.

このように、図5乃至図7に示された実施の形態は、渦流ポンプ37Cが液体Bとともに気体Aを吸引することが可能な自吸式ポンプであるので、気体供給源でのガス圧力がなくガス流量が少量でもよい気体を供給する場合に適し、さらに、この実施の形態によれば、渦流ポンプ37Cは気液を混合しながら移送しつつ昇圧させて気液混合エジェクタ15Cに気液混合流Cを加圧供給するので、渦流ポンプ37C内で気液を混合して液体中に気体を溶解させる過程と、気液混合エジェクタ15Cにより気液混合流Cに密閉タンク12内の液体Dを吸引して混合攪拌し気液混合噴射流Eを作ることで気液を気液混合エジェクタ15Cの内外で激しく混合攪拌する過程と、気液混合噴射流Eを気体室14に噴出させて気体室14中で気液を混合することで液体中に気体を溶解させる過程とによって、液体中に気体を効率よく溶解させることができる。   Thus, the embodiment shown in FIGS. 5 to 7 is a self-priming pump in which the vortex pump 37C can suck the gas A together with the liquid B, so that the gas pressure at the gas supply source is Suitable for supplying a gas that may be a small gas flow rate. Further, according to this embodiment, the vortex pump 37C increases the pressure while mixing and transferring the gas and liquid to the gas and liquid mixing ejector 15C to mix the gas and liquid. Since the flow C is pressurized, the process of mixing the gas and liquid in the vortex pump 37C to dissolve the gas in the liquid, and the liquid D in the closed tank 12 to the gas-liquid mixed flow C by the gas-liquid mixing ejector 15C. The process of agitating and agitating the mixture to create a gas-liquid mixed jet flow E to mix and stir the gas and liquid vigorously inside and outside the gas-liquid mixing ejector 15C, and jetting the gas-liquid mixed jet E into the gas chamber 14 Gas is dissolved in the liquid by mixing the gas and liquid in 14 By the extent, the gas can be a dissolved efficiently in the liquid.

以上のように、図1および図2に示された第1実施の形態と、図3および図4に示された第2実施の形態と、図5乃至図7に示された第3実施の形態の中から、気体の性質や環境に合わせた気体注入方式を選択すればよい。   As described above, the first embodiment shown in FIGS. 1 and 2, the second embodiment shown in FIGS. 3 and 4, and the third embodiment shown in FIGS. What is necessary is just to select the gas injection system according to the property and environment of gas from the form.

本発明は、気体溶解装置を製造、販売または施工する事業者にとって利用可能性がある。   The present invention may be used by a business operator who manufactures, sells or constructs a gas dissolving device.

A 気体
B 液体
C 気液混合流
D 密閉タンク内の液体
E 気液混合噴射流
F 密閉タンク内の液面
12 密閉タンク
13 液体室
14 気体室
15A,15B,15C 気液混合エジェクタ
15B1 第1エジェクタ
15B2 第2エジェクタ
21A,21B,21C 気液供給手段
37A,37B ポンプ
37C ポンプとしての渦流ポンプ
41 液取出手段
42 液取出口
48 液面検知手段
49 制御手段
A Gas B Liquid C Gas-liquid mixed flow D Liquid in sealed tank E Gas-liquid mixed jet flow F Liquid level in sealed tank
12 Airtight tank
13 Liquid chamber
14 Gas chamber
15A, 15B, 15C Gas-liquid mixing ejector
15B1 First ejector
15B2 Second ejector
21A, 21B, 21C Gas-liquid supply means
37A, 37B pump
Eddy current pump as 37C pump
41 Liquid removal means
42 Liquid outlet
48 Liquid level detection means
49 Control means

Claims (5)

密閉タンクと、
この密閉タンク内に上向きに設置され、外部より下部に供給された気体および液体の気液混合流に密閉タンク内の液体を吸引して形成した気液混合噴射流を上方へ噴射する気液混合エジェクタと、
この気液混合エジェクタに気体および液体を供給する気液供給手段と、
気液混合エジェクタより下側に位置する液取出口から密閉タンク内の気体が溶解された液体を外部に取り出す液取出手段とを具備し、
密閉タンクは、下部の液体が溜まる液体室に対して上部の気体が溜まる気体室を有し、
気液供給手段は、気液混合エジェクタから噴射した気液混合噴射流を密閉タンク内の液面から気体室に噴出させて気体室内の気体中で飛沫化させることを可能とする程度に気液混合エジェクタに供給される液体を加圧するポンプを備え
気体室内では、飛沫化した液体が気体と接触して液体中への気体の溶解を促進させる
ことを特徴とする気体溶解装置。
A sealed tank;
Gas-liquid mixing that is installed upward in this sealed tank and injects upward the gas-liquid mixed jet formed by sucking the liquid in the sealed tank into the gas-liquid mixed flow of gas and liquid supplied to the lower part from the outside An ejector,
Gas-liquid supply means for supplying gas and liquid to the gas-liquid mixing ejector;
A liquid take-out means for taking out the liquid in which the gas in the sealed tank is dissolved from the liquid take-out port located below the gas-liquid mixing ejector, and
The closed tank has a gas chamber in which the upper gas is stored relative to the liquid chamber in which the lower liquid is stored.
The gas-liquid supply means allows the gas-liquid mixed jet flow ejected from the gas-liquid mixing ejector to be ejected from the liquid surface in the sealed tank to the gas chamber to be sprayed into the gas in the gas chamber. A pump for pressurizing the liquid supplied to the mixing ejector ;
A gas dissolution apparatus characterized in that in a gas chamber, the sprayed liquid comes into contact with the gas to promote the dissolution of the gas into the liquid .
密閉タンク内の液体中への気体溶解濃度の上昇に応じて液体中への気体溶解速度が低下し気体室の容積が拡大することにより下降する液面の下降限界位置を検知する液面検知手段と、
この液面検知手段による液面の下降限界位置の検知により気液混合エジェクタへの気体の供給を停止させるための信号を出力する制御手段と
を具備したことを特徴とする請求項1記載の気体溶解装置。
Liquid level detecting means for detecting a descent limit position of a liquid level that falls as the gas dissolution rate in the liquid decreases and the volume of the gas chamber increases as the gas dissolution concentration in the liquid in the sealed tank increases. When,
2. The gas according to claim 1, further comprising a control means for outputting a signal for stopping the supply of gas to the gas-liquid mixing ejector by detecting the lower limit position of the liquid level by the liquid level detecting means. Melting device.
気液供給手段は、気体および液体をそれぞれ気液混合エジェクタに加圧供給する
ことを特徴とする請求項1または2記載の気体溶解装置。
The gas dissolution apparatus according to claim 1 or 2, wherein the gas-liquid supply means pressurizes and supplies gas and liquid to the gas-liquid mixing ejector.
気液混合エジェクタは、
外部より加圧供給された液体により生じた液体流に外部より供給された気体を吸引させて気液混合流を生じさせる第1エジェクタと、
この第1エジェクタから吐出された気液混合流に密閉タンク内の液体を吸引させて加えた気液混合流を噴射する第2エジェクタと
を具備したことを特徴とする請求項1または2記載の気体溶解装置。
Gas-liquid mixing ejector
A first ejector for sucking a gas supplied from the outside into a liquid flow generated by a liquid supplied under pressure and generating a gas-liquid mixed flow;
3. A second ejector for injecting a gas-liquid mixed flow obtained by sucking the liquid in the closed tank and adding the gas-liquid mixed flow discharged from the first ejector to the gas-liquid mixed flow. Gas dissolving device.
気液供給手段は、液体とともに気体を吸引して気液を混合しながら移送しつつ昇圧させて気液混合エジェクタに気液混合流を加圧供給する渦流ポンプを備えた
ことを特徴とする請求項1または2記載の気体溶解装置。
The gas-liquid supply means includes a vortex pump that pressurizes and supplies the gas-liquid mixed flow to the gas-liquid mixing ejector by suctioning the gas together with the liquid and increasing the pressure while mixing and transferring the gas-liquid. Item 3. The gas dissolving device according to Item 1 or 2.
JP2012262059A 2012-11-30 2012-11-30 Gas dissolving device Active JP5816605B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012262059A JP5816605B2 (en) 2012-11-30 2012-11-30 Gas dissolving device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012262059A JP5816605B2 (en) 2012-11-30 2012-11-30 Gas dissolving device

Publications (2)

Publication Number Publication Date
JP2014104459A JP2014104459A (en) 2014-06-09
JP5816605B2 true JP5816605B2 (en) 2015-11-18

Family

ID=51026395

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012262059A Active JP5816605B2 (en) 2012-11-30 2012-11-30 Gas dissolving device

Country Status (1)

Country Link
JP (1) JP5816605B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104710028A (en) * 2015-04-03 2015-06-17 苏州益品德环境科技有限公司 Dynamic aeration system
CN105148757B (en) * 2015-09-07 2017-09-19 中国科学院声学研究所 A kind of utilization air film prepares the device and method of microvesicle
JP6977533B2 (en) * 2017-12-15 2021-12-08 王子ホールディングス株式会社 Mixer
JP6967037B2 (en) * 2019-06-21 2021-11-17 東京都 Water treatment system and water treatment method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09168787A (en) * 1995-12-20 1997-06-30 Tokico Ltd Ozone water making apparatus
JP3747261B2 (en) * 1996-01-26 2006-02-22 株式会社ロキテクノ Dispersion method of gas-liquid mixed fluid and dispersion device used in the method
JP3478142B2 (en) * 1998-10-02 2003-12-15 栗田工業株式会社 Method for producing pressurized water and apparatus for producing pressurized water
JP2011005406A (en) * 2009-06-25 2011-01-13 Eco Design Kk Water treatment facility using ozone

Also Published As

Publication number Publication date
JP2014104459A (en) 2014-06-09

Similar Documents

Publication Publication Date Title
JP3197149U (en) Generator for dissolving gas in liquid and fluid spray nozzle
JP5816605B2 (en) Gas dissolving device
KR101407122B1 (en) Microbubble generating apparatus
JP5555892B2 (en) Micro / nano bubble generating method, generating nozzle and generating device
CN103170264A (en) Gas-liquid mixing device
JP2007289903A (en) Micro-bubble generating device and bath system
CN101516488A (en) Method for mixing a liquid in a sealed container with a fine-particle solid, container of this type, ejector jet and use of a jet of this type
JP2008119567A (en) Microbubble generation device
JP2008237956A (en) Microbubble-carbonate spring generator and gas-liquid mixing tank
JP2009028579A (en) Bubble generating apparatus
JP5331093B2 (en) Liquid processing equipment
JP3819732B2 (en) Gas dissolving device
KR101024575B1 (en) Microbuble generating apparatus
JP5456564B2 (en) Gas-liquid dissolution tank
CN203208985U (en) Gas-liquid mixing device
JP2008168293A (en) Microbubble generator
JP2008100225A (en) Air/liquid mixer
JP2008168178A (en) Dental gargle water feed device
JP2018020305A (en) Gas separator and gas dissolution device
JP5081801B2 (en) Gas-liquid dissolution tank in microbubble generator
JP2014069134A (en) Gas dissolving apparatus
JP5001327B2 (en) Gas dissolving device
JP2009178702A (en) Gas-liquid mixing equipment
JP5914802B2 (en) Gas dissolving device
JP2017113687A (en) Gas-liquid mixer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140604

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150327

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150916

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150928

R150 Certificate of patent or registration of utility model

Ref document number: 5816605

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250