JP4815032B2 - Microbubble generator and gas-liquid mixing tank - Google Patents

Microbubble generator and gas-liquid mixing tank Download PDF

Info

Publication number
JP4815032B2
JP4815032B2 JP2006009327A JP2006009327A JP4815032B2 JP 4815032 B2 JP4815032 B2 JP 4815032B2 JP 2006009327 A JP2006009327 A JP 2006009327A JP 2006009327 A JP2006009327 A JP 2006009327A JP 4815032 B2 JP4815032 B2 JP 4815032B2
Authority
JP
Japan
Prior art keywords
air
water
water level
air pressure
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006009327A
Other languages
Japanese (ja)
Other versions
JP2007190466A (en
Inventor
敏夫 宮下
Original Assignee
敏夫 宮下
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 敏夫 宮下 filed Critical 敏夫 宮下
Priority to JP2006009327A priority Critical patent/JP4815032B2/en
Publication of JP2007190466A publication Critical patent/JP2007190466A/en
Application granted granted Critical
Publication of JP4815032B2 publication Critical patent/JP4815032B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Percussion Or Vibration Massage (AREA)
  • Devices For Medical Bathing And Washing (AREA)

Description

本願発明は、浴槽、水槽、プール、洗浄装置、殺菌装置等に用いるマイクロバブル発生装置とそのマイクロバブル発生装置に用いる気液混合タンクに関する。   The present invention relates to a microbubble generator used in a bathtub, water tank, pool, cleaning device, sterilizer, and the like and a gas-liquid mixing tank used in the microbubble generator.

図4により従来のマイクロバブル発生装置と気液混合タンクについて説明する。
図4のマイクロバブル発生装置は、浴槽に用いる例で、気液混合タンクにより発生した空気溶解水(空気が溶解した水)を浴槽へ供給して浴槽の水(温水)にマイクロバブル(微細気泡)を発生する(例えば特許文献1参照)。
図4(a)は、マイクロバブル発生装置の構成を示し、図4(b)は、マイクロバブル発生装置に用いる気液混合タンクの他の例を示す。
図4において、73は浴槽、71はポンプ、721は気液混合タンク(水に空気を溶解するタンク)、742はベンチュウリー、76は制御装置であり、矢印は、水の流れる方向を示す。
A conventional microbubble generator and gas-liquid mixing tank will be described with reference to FIG.
The microbubble generator shown in FIG. 4 is an example used in a bathtub, and supplies air-dissolved water (water in which air is dissolved) generated by a gas-liquid mixing tank to the bathtub, and microbubbles (fine bubbles) in the bathtub water (hot water). (See, for example, Patent Document 1).
4A shows the configuration of the microbubble generator, and FIG. 4B shows another example of the gas-liquid mixing tank used in the microbubble generator.
In FIG. 4, 73 is a bathtub, 71 is a pump, 721 is a gas-liquid mixing tank (tank for dissolving air in water), 742 is a venturi, 76 is a control device, and an arrow indicates the direction of water flow.

まず図4(a)について説明する。
浴槽73の水731は、吸込口734、吸水管751、ベンチュウリー742、ポンプ71、吐出管752を介して気液混合タンク721内の噴射ノズル722に供給される。気液混合タンク721は、噴射ノズル722から水を噴射して水と空気を撹拌して水に空気を溶解する。空気が溶解した水(空気溶解水)は、供給管753、減圧ノズル732を介して浴槽73へ供給され、浴槽73内でマイクロバブル(微細気泡)を発生して水731を白濁化する。ベンチュウリー742は、電動弁741を介して取り入れた空気を吸水管751の水に混入する。空気が混入した水は、ポンプ71によって加圧され、気液混合タンク721へ供給される。
気液混合タンク721内の空気は、水に溶解して時間とともに減少する。そこで気液混合タンク721内に空気を補充するため、制御装置76は、設定された時間毎に閉じていた電動弁741を開いてベンチュウリー742へ空気を供給する。即ち電動弁741は、所定時間毎に開いてベンチュウリー742へ空気を供給する。制御装置76に設定する電動弁741の駆動時間は、気液混合タンク721内の空気が水に溶解してその空気が所定量以下になる時間を予測して決める。
First, FIG. 4A will be described.
Water 731 in the bathtub 73 is supplied to the injection nozzle 722 in the gas-liquid mixing tank 721 via the suction port 734, the water suction pipe 751, the venturi 742, the pump 71, and the discharge pipe 752. The gas-liquid mixing tank 721 injects water from the injection nozzle 722, stirs the water and air, and dissolves the air in water. Water in which air is dissolved (air-dissolved water) is supplied to the bathtub 73 via the supply pipe 753 and the decompression nozzle 732, and microbubbles (fine bubbles) are generated in the bathtub 73 to make the water 731 cloudy. The venturi 742 mixes the air taken in through the motor operated valve 741 into the water in the water suction pipe 751. The water mixed with air is pressurized by the pump 71 and supplied to the gas-liquid mixing tank 721.
The air in the gas-liquid mixing tank 721 dissolves in water and decreases with time. Therefore, in order to replenish the air into the gas-liquid mixing tank 721, the control device 76 opens the motor-operated valve 741 that is closed every set time and supplies air to the venturi 742. That is, the electric valve 741 is opened at predetermined intervals to supply air to the venturi 742. The driving time of the motor-operated valve 741 set in the control device 76 is determined by predicting the time during which the air in the gas-liquid mixing tank 721 is dissolved in water and the air falls below a predetermined amount.

次に図4(b)について説明する。
図4(b)は、気液混合タンク721に水位センサを設けている点が図4(a)の気液混合タンク721と異なる。他の構成は、図4(a)と同じである。図4(b)の場合は、電動弁41を所定時間毎に開閉する代わりに、気液混合タンク721内の水位によって開閉する。
気液混合タンク721は、内部に水727の上限水位725を検出する上限水位センサ723と、下限水位726を検出する下限水位センサ724を備えている。制御装置76は、気液混合タンク721内の空気の量が減少して水727の水位が上昇して上限水位725に達すると、電動弁41を開いてベンチュウリー742内へ空気を取り入れ、気液混合タンク721に空気が補充する。水727が下限水位726に達すると、制御装置76は、制電動弁41を閉じて気液混合タンク721の水位を上昇させる。
なお水に溶解しない余剰空気が気液混合タンク721内に溜まると、その余剰空気を気液混合タンク721の外へ排気するため、エアー抜き弁77を設けた例もある(例えば特許文献2参照)。
Next, FIG. 4B will be described.
FIG. 4B is different from the gas-liquid mixing tank 721 in FIG. 4A in that a water level sensor is provided in the gas-liquid mixing tank 721. Other configurations are the same as those in FIG. In the case of FIG.4 (b), instead of opening and closing the motor operated valve 41 every predetermined time, it opens and closes by the water level in the gas-liquid mixing tank 721.
The gas-liquid mixing tank 721 includes an upper limit water level sensor 723 that detects the upper limit water level 725 of the water 727 and a lower limit water level sensor 724 that detects the lower limit water level 726. When the amount of air in the gas-liquid mixing tank 721 decreases and the water level of the water 727 rises and reaches the upper limit water level 725, the control device 76 opens the electric valve 41 and takes in air into the venturi 742, Air is added to the mixing tank 721. When the water 727 reaches the lower limit water level 726, the control device 76 closes the motor control valve 41 and raises the water level of the gas-liquid mixing tank 721.
In addition, there is an example in which an air vent valve 77 is provided in order to exhaust the surplus air to the outside of the gas-liquid mixing tank 721 when surplus air that does not dissolve in water accumulates in the gas-liquid mixing tank 721 (see, for example, Patent Document 2). ).

特開平2001−179241号公報Japanese Patent Laid-Open No. 2001-179241 特開平9−173404号公報JP-A-9-173404

従来のマイクロバブル発生装置は、制御装置に設定した時間によって気液混合タンクに空気を間歇的に補充するため、気液混合タンク内の空気が、減少したり過剰になったりし、それに伴って気液混合タンク内の空気圧力も変動する。そのためマイクロバブル発生装置は、動作が不安定になり、気液混合タンク内の空気が過剰になった場合には、気液混合タンク内の未溶解の余剰空気が浴槽の減圧ノズル側へ排出されて、浴槽に大径の空気が大きな音とともに噴出する。かつ気液混合タンク内の空気の溶解量は、気液混合タンク内の空気圧力によって変化するため、従来のマイクロバブル発生装置は、空気が溶解した水(空気溶解水)を効率よく安定的に連続して発生することが困難である。このことは、気液混合タンク内の水位レベルを検出して気液混合タンクに空気を補充する場合も同様である。   The conventional microbubble generator intermittently replenishes the gas-liquid mixing tank with the time set in the control device, so that the air in the gas-liquid mixing tank decreases or becomes excessive. The air pressure in the gas-liquid mixing tank also varies. Therefore, when the operation of the microbubble generator becomes unstable and the air in the gas-liquid mixing tank becomes excessive, the undissolved surplus air in the gas-liquid mixing tank is discharged to the decompression nozzle side of the bathtub. Then, large-diameter air spouts into the bathtub with a loud sound. In addition, since the amount of air dissolved in the gas-liquid mixing tank varies depending on the air pressure in the gas-liquid mixing tank, conventional microbubble generators efficiently and stably use water (air-dissolved water) in which air is dissolved. It is difficult to generate continuously. The same applies to the case where the water level in the gas-liquid mixing tank is detected and air is supplied to the gas-liquid mixing tank.

従来のマイクロバブル発生装置は、電動弁によって制御するベンチュウリーを用いているため、制御が難しく、かつベンチュウリーは、高価で大掛かりになるため、マイクロバブル発生装置は、高価になり、また小型化が困難である。
従来のマイクロバブル発生装置において、気液混合タンク内の余剰空気を排気するためのエアー抜き弁を設けた場合には、排気の度に気液混合タンク内の空気圧力が低下するため、空気溶解水を効率よく安定的に連続的に発生することが困難になる
本願発明は、従来のマイクロバブル発生装置の前記諸問題を解決することを目的とし、空気溶解水を効率よく安定的に連続的に発生してマイクロバブルを安定的に連続して発生するともに、ベンチュウリーに代えてオリフィス固定弁を用いて簡単な構造の空気取入部を構成し、安価で小型のマイクロバブル発生装置を提供することを目的とする。
The conventional microbubble generator uses a venturi controlled by a motorized valve, so it is difficult to control, and the venturi is expensive and bulky, so the microbubble generator is expensive and difficult to downsize. It is.
In the conventional microbubble generator, when an air vent valve for exhausting excess air in the gas-liquid mixing tank is provided, the air pressure in the gas-liquid mixing tank decreases each time the exhaust is performed. It becomes difficult to generate water efficiently and stably. The present invention aims to solve the above-mentioned problems of conventional microbubble generators, and continuously dissolves air-dissolved water efficiently and stably. To generate microbubbles stably and continuously, and use an orifice fixed valve instead of a venturi to form an air intake with a simple structure to provide an inexpensive and small microbubble generator. With the goal.

本願の発明は、その目的を達成するため、請求項1に記載のマイクロバブル発生装置は、水に空気取入部の空気が混入した水を加圧するポンプ、ポンプの吐出水を混合容器の上部に取付けた噴射ノズルから噴射して空気溶解水を発生しその空気溶解水を水貯留槽へ供給する気液混合タンクを備えたマイクロバブル発生装置において、
空気取入部は、オリフィス固定弁と電磁弁からなり、混合容器は、噴射ノズルの噴射孔と対向するように配置した噴射ノズルの噴射水が衝突する衝突板、混合容器の空気領域の空気圧力を検出する空気圧力センサ、衝突板の上部の上限水位を検出する上限水位センサ、及び衝突板の上部の下限水位を検出する下限水位センサを内部に備えており、空気圧力センサの検出した空気圧力と制御装置に設定した空気圧力とを比較して混合容器内の空気領域の空気圧力が制御装置に設定した空気圧力となるようにポンプの吐出圧力を制御し、
上限水位センサが上限水位を検出すると空気取入部の電磁弁を開いて空気の取入れを開始し、下限水位センサが下限水位を検出すると空気取入部の電磁弁を閉じて空気の取入れを停止して混合容器内の水位が衝突板よりも高くなるように制御する制御装置を備えていることを特徴とする。
請求項2に記載のマイクロバブル発生装置は、請求項1に記載のマイクロバブル発生装置において、前記制御装置に設定した空気圧力は、前記水貯留槽の水が所定時間で白濁する前記空気領域の空気圧力であることを特徴とする。
In order to achieve the object of the invention of the present application, the microbubble generator according to claim 1 is a pump for pressurizing water in which air in the air intake section is mixed with water, and discharge water from the pump is provided at an upper portion of the mixing container. In a microbubble generator equipped with a gas-liquid mixing tank that jets from an attached jet nozzle to generate air-dissolved water and supplies the air-dissolved water to a water storage tank,
The air intake part is composed of an orifice fixed valve and a solenoid valve.The mixing container has a collision plate on which the spray water of the injection nozzle arranged so as to face the injection hole of the injection nozzle collides, and the air pressure in the air region of the mixing container. Air pressure sensor to detect, upper limit water level sensor to detect the upper limit water level of the upper part of the collision plate, and lower limit water level sensor to detect the lower limit water level of the upper part of the collision plate, and the air pressure detected by the air pressure sensor Compare the air pressure set in the control device and control the discharge pressure of the pump so that the air pressure in the air region in the mixing container becomes the air pressure set in the control device,
When the upper limit water level sensor detects the upper limit water level, the solenoid valve of the air intake section is opened to start intake of air.When the lower limit water level sensor detects the lower limit water level, the solenoid valve of the air intake section is closed to stop intake of air. A control device for controlling the water level in the mixing vessel to be higher than the collision plate is provided.
The microbubble generating device according to claim 2 is the microbubble generating device according to claim 1, wherein the air pressure set in the control device is the air region in which the water in the water storage tank becomes clouded in a predetermined time. It is characterized by air pressure.

本願発明のマイクロバブル発生装置は、気液混合タンクの混合容器内の空気圧力が一定になるように、ポンプを制御するから、水に空気を効率よく安定的に連続して溶解することができ、したがってマイクロバブルを安定的に連続して発生することができる。
本願発明のマイクロバブル発生装置は、気液混合タンクの混合容器内の空気圧力を一定に保持するとともに、混合容器内に衝突板を設置してあるから、混合容器内の水と空気の撹拌を効率的に行い、空気の溶解効率を高くすることができる。
Since the microbubble generator of the present invention controls the pump so that the air pressure in the mixing container of the gas-liquid mixing tank is constant, air can be efficiently and stably dissolved in water continuously. Therefore, microbubbles can be generated stably and continuously.
Since the microbubble generator of the present invention keeps the air pressure in the mixing container of the gas-liquid mixing tank constant and the collision plate is installed in the mixing container, the water and air in the mixing container are agitated. Efficiently, the efficiency of air dissolution can be increased.

本願発明のマイクロバブル発生装置は、気液混合タンクの混合容器内の空気圧力を一定に保持するとともに、混合容器内に衝突板を設置し、混合容器内の水位を衝突板よりも高く保持するように設定できるから、混合容器内の水と空気の撹拌を効率的に行い、空気の溶解効率を高くすることができる。
本願発明のマイクロバブル発生装置は、気液混合タンクの混合容器内の空気圧力が一定になるように、ポンプを制御するから、空気取入部は、簡単の構造のオリフィス固定弁を使用することができる。したがって空気取入部の構造や制御が簡単になり、マイクロバブル発生装置の小型化が可能になり、かつマイクロバブル発生装置を安価に作製することができる。
The microbubble generator of the present invention keeps the air pressure in the mixing container of the gas-liquid mixing tank constant, installs a collision plate in the mixing container, and keeps the water level in the mixing container higher than the collision plate. Therefore, it is possible to efficiently stir the water and air in the mixing container and increase the air dissolution efficiency.
Since the microbubble generator of the present invention controls the pump so that the air pressure in the mixing container of the gas-liquid mixing tank is constant, the air intake part can use an orifice fixing valve with a simple structure. it can. Therefore, the structure and control of the air intake section are simplified, the microbubble generator can be miniaturized, and the microbubble generator can be manufactured at low cost.

本願発明のマイクロバブル発生装置用の気液混合タンクは、混合容器の上部に噴射ノズルを取付け、その噴射ノズルと対向するように衝突板を設けてあるから、混合容器の深さに関係なく衝突板の上部の水のみを撹拌することができるから、水と空気の撹拌を効率的に行なうことができる。
本願発明のマイクロバブル発生装置用の気液混合タンクは、混合容器の上部に噴射ノズルを取付け、その噴射ノズルと対向するように衝突板を設け、衝突板15の上部の水の上限水位と下限水位を検出する上限水位センサと下限水位センサを設けてあるから、衝突板15の上部の水位を、撹拌に適した水位に保持することができる。
The gas-liquid mixing tank for the microbubble generator of the present invention has an injection nozzle attached to the upper part of the mixing container, and a collision plate is provided so as to face the injection nozzle, so that the collision occurs regardless of the depth of the mixing container. Since only water at the top of the plate can be stirred, water and air can be stirred efficiently.
The gas-liquid mixing tank for the microbubble generator according to the present invention has an injection nozzle attached to the upper part of the mixing container, a collision plate is provided so as to face the injection nozzle, and an upper limit water level and a lower limit of water on the upper part of the collision plate 15. Since the upper limit water level sensor and the lower limit water level sensor for detecting the water level are provided, the water level at the upper part of the collision plate 15 can be maintained at a water level suitable for stirring.

図1〜図3により本願発明の実施例を説明する。なお各図に共通の部分は、同じ符号を使用している。   An embodiment of the present invention will be described with reference to FIGS. In addition, the same code | symbol is used for the part common to each figure.

図1は、本願発明の実施例に係るマイクロバブル発生装置の全体の構成を示し、図2は、気液混合タンクの詳細を示し、図3は、オリフィス固定弁の構造を示す。なお図1〜図3において、斜線の部分は断面を示す。
まず図1について説明する。
図1において、1は気液混合タンク(水に空気を溶解するタンク)、2はポンプ、3は浴槽、5は空気取入部、61はマイクロプロセッサ等からなる制御装置、62は電源、63は制御装置61の設定部であり、矢印は、水の流れる方向を示す。
気液混合タンク1は、混合容器11、噴射ノズル14、衝突板15を備え、混合容器11には、空気圧力センサ64、水位センサ65を取付けてある。空気取入部5は、空気取入用のオリフィス固定弁51、電磁弁52、逆止弁53を備えている。制御装置61は、電源62からポンプ2の駆動モータ(図示せず)へ供給する電源周波数を制御してポンプ2の吐出圧力(或いは吐出流量)を制御し、また電磁弁52の開閉を制御する。
FIG. 1 shows the overall configuration of a microbubble generator according to an embodiment of the present invention, FIG. 2 shows details of a gas-liquid mixing tank, and FIG. 3 shows the structure of an orifice fixed valve. In FIG. 1 to FIG. 3, the hatched portion indicates a cross section.
First, FIG. 1 will be described.
In FIG. 1, 1 is a gas-liquid mixing tank (tank that dissolves air into water), 2 is a pump, 3 is a bathtub, 5 is an air intake unit, 61 is a control device including a microprocessor, 62 is a power source, and 63 is It is a setting part of the control apparatus 61, and the arrow shows the direction through which water flows.
The gas-liquid mixing tank 1 includes a mixing container 11, an injection nozzle 14, and a collision plate 15, and an air pressure sensor 64 and a water level sensor 65 are attached to the mixing container 11. The air intake unit 5 includes an orifice fixed valve 51 for air intake, a solenoid valve 52, and a check valve 53. The control device 61 controls the power supply frequency supplied from the power source 62 to the drive motor (not shown) of the pump 2 to control the discharge pressure (or discharge flow rate) of the pump 2 and also controls the opening and closing of the electromagnetic valve 52. .

浴槽3の水311は、吸込口33、吸水管411、切替弁471、吸水管412、ポンプ2、吐出管42を介して気液混合タンク1へ供給される。気液混合タンク1は、水と空気を撹拌して空気が溶解した水(空気溶解水)13を発生する。気液混合タンク1の空気溶解水13は、供給管431、切替弁472、供給管432、減圧ノズル32を介して浴槽3へ供給され、浴槽3内にマイクロバブル(微細気泡)312を発生して水311を白濁する。   Water 311 in the bathtub 3 is supplied to the gas-liquid mixing tank 1 through the suction port 33, the water absorption pipe 411, the switching valve 471, the water absorption pipe 412, the pump 2, and the discharge pipe 42. The gas-liquid mixing tank 1 generates water (air-dissolved water) 13 in which air is dissolved by stirring water and air. The air-dissolved water 13 in the gas-liquid mixing tank 1 is supplied to the bathtub 3 through the supply pipe 431, the switching valve 472, the supply pipe 432, and the decompression nozzle 32, and generates microbubbles (fine bubbles) 312 in the bathtub 3. The water 311 becomes cloudy.

空気取入部5のオリフィス固定弁51(詳細は後述する)は、一端の開口部から空気を取り入れ、そのオリフィス(通気孔)を通して空気取入管541へ空気を供給する。空気は、電磁弁53、空気取入管542、逆止弁53、空気取入管543を介して管結合部44へ供給され、管結合部44において吸水管412へ供給される。管結合部44は、吸水管412の側面に空気取入管543の1端をT字状に接続してある。空気は、管結合部44において吸水管412の水に混入し、その空気が混入した水は、ポンプ2によって加圧され、吐出管42を介して気液混合タンク1へ供給される。
気液混合タンク1に供給された水は、混合容器11内において、混合容器11の上部に取付けた噴射ノズル14から噴射水161が衝突板15に向かって噴射される。噴射水161は、衝突板15に衝突して衝突板15の上部の水を巻き上げるように上昇して撹拌する(詳細は後述する)。
An orifice fixing valve 51 (details will be described later) of the air intake section 5 takes in air from an opening at one end, and supplies air to the air intake pipe 541 through the orifice (vent hole). Air is supplied to the pipe coupling portion 44 through the electromagnetic valve 53, the air intake pipe 542, the check valve 53, and the air intake pipe 543, and is supplied to the water absorption pipe 412 at the pipe coupling portion 44. In the pipe coupling portion 44, one end of the air intake pipe 543 is connected to the side surface of the water absorption pipe 412 in a T shape. The air is mixed into the water in the water absorption pipe 412 in the pipe coupling portion 44, and the water mixed with the air is pressurized by the pump 2 and supplied to the gas-liquid mixing tank 1 through the discharge pipe 42.
The water supplied to the gas-liquid mixing tank 1 is sprayed toward the collision plate 15 from the spray nozzle 14 attached to the upper portion of the mixing container 11 in the mixing container 11. The jet water 161 rises and stirs so as to collide with the collision plate 15 and wind up the water above the collision plate 15 (details will be described later).

次に制御装置61の制御について説明する。
空気圧力センサ64は、気液混合タンク1の混合容器11内の空気領域(気相領域)12の空気圧力(以下タンク空気圧力と呼ぶ)(PA)を検出する。一方制御装置61には、混合容器11内において空気が水に溶解するのに適した空気領域12の空気圧力(以下設定空気圧力と呼ぶ)(PS)を設定してある。制御装置61は、タンク空気圧力(PA)と設定空気圧力(PS)とを比較して、タンク空気圧力(PA)が設定空気圧力(PS)と略同じなるようにポンプ2の駆動モータを制御する。ポンプ2は、駆動モータの回転力を変えることにより、ポンプ2の吐出圧力が変わり、吐出流量が変わるため、タンク空気圧力(PA)も変わる。このように混合容器11内の空気領域12の空気圧力は、制御装置61の制御によって略一定に保つことができる。
設定空気圧力(PS)等の制御装置61への設定は、設定部63により行なう。
Next, control of the control device 61 will be described.
The air pressure sensor 64 detects the air pressure (hereinafter referred to as tank air pressure) (PA) in the air region (gas phase region) 12 in the mixing container 11 of the gas-liquid mixing tank 1. On the other hand, the control device 61 is set with an air pressure (hereinafter referred to as a set air pressure) (PS) in the air region 12 suitable for dissolving air in water in the mixing container 11. The controller 61 compares the tank air pressure (PA) with the set air pressure (PS) and controls the drive motor of the pump 2 so that the tank air pressure (PA) is substantially the same as the set air pressure (PS). To do. Since the pump 2 changes the rotational force of the drive motor, the discharge pressure of the pump 2 changes and the discharge flow rate changes, so the tank air pressure (PA) also changes. Thus, the air pressure in the air region 12 in the mixing container 11 can be kept substantially constant under the control of the control device 61.
The setting unit 63 sets the setting air pressure (PS) or the like to the control device 61.

ここで設定空気圧力(PS)の設定について説明する。
気液混合タンク1から浴槽3へ空気溶解水を供給して、浴槽3の水311が白濁化するまでの時間は、気液混合タンク1から供給される空気溶解水の流量によって決まり、その流量は、混合容器空気圧力(PA)によって決まる。したがって例えば、浴槽3の水311の体積をX、体積Xの水が白濁するまでの時間(白濁時間)をYとすると、体積Xの水が白濁時間Yで白濁化するのに必要なタンク空気圧力(PA)を測定して設定空気圧力(PS)とすることができる。その場合、設定空気圧力(PS)は、体積Xの水に白濁化時間Yの間空気溶解水を供給して、水が白濁するタンク空気圧力(PA)を測定して求める。その際、水311の白濁化の程度は、白濁を目視によって確認することもできるが、水311の溶存酸素(DO)を測定することによってより正確に確認することができる。
なお空気が水に溶解する量は、水温によって異なり、水温が高くなるほど低下するから、設定空気圧力(PS)は、厳密には混合容器11内の水の温度毎に測定するのが望ましいが、マイクロバブル発生装置が浴槽用の場合、入浴水温は、一般に41℃前後であり、浴槽の容積は、一般に190L前後であるから、例えば、水温41℃、体積190Lの水について測定した空気圧力を使用しても実用上支障はない。また高めの水温について測定した空気圧力設定すれば、水温が低くなっても空気の溶解量は増大するから未溶解の余剰空気が増加することはない。
Here, the setting of the set air pressure (PS) will be described.
The time from the supply of air-dissolved water from the gas-liquid mixing tank 1 to the bathtub 3 until the water 311 of the bathtub 3 becomes clouded is determined by the flow rate of the air-dissolved water supplied from the gas-liquid mixing tank 1. Is determined by the mixing vessel air pressure (PA). Therefore, for example, if the volume of the water 311 in the bathtub 3 is X, and the time until the water of the volume X becomes clouded (white turbidity time) is Y, the tank air necessary for the volume X of water to become clouded in the cloudy time Y The pressure (PA) can be measured to obtain the set air pressure (PS). In this case, the set air pressure (PS) is obtained by supplying air dissolved water to the volume X of water during the clouding time Y and measuring the tank air pressure (PA) at which the water becomes cloudy. At that time, the degree of white turbidity of the water 311 can be confirmed by visual observation, but can be more accurately confirmed by measuring the dissolved oxygen (DO) of the water 311.
Note that the amount of air dissolved in water varies depending on the water temperature and decreases as the water temperature increases. Therefore, strictly speaking, the set air pressure (PS) is preferably measured for each temperature of the water in the mixing vessel 11, When the microbubble generator is for a bathtub, the bathing water temperature is generally around 41 ° C., and the volume of the bathtub is generally around 190 L. For example, the air pressure measured for water with a water temperature of 41 ° C. and a volume of 190 L is used. However, there is no practical problem. If the air pressure measured for a higher water temperature is set, the amount of dissolved air will increase even if the water temperature is lowered, so that the undissolved surplus air will not increase.

次に水温41℃、体積190L(リットル)の浴槽の水を、5分で白濁化する場合のタンク空気圧力(PA)について説明する。試験には、混合容器11の容積が450mL、噴射ノズル14のオリフィスが4mmの気液混合タンクを用いた。この場合、タンク空気圧力(PA)は、250kPaに保持すればよい。因みにそのときのポンプ2の吐出圧力は、290kPa、吐出流量は、毎分5Lである。したがって吸水管、吐出管、供給管の長さ等を考慮して安全性を見込むと、タンク空気圧力(PA)を、280kPaに保持するのがよい。このときのポンプ2の吐出圧力は、320kPa、吐出流量は、毎分6Lである。この場合、オリフィス固定弁51のオリフィスの孔径は、0.15〜0.2mmでよいが、0.2mmに設定した。   Next, tank air pressure (PA) when water in a bathtub having a water temperature of 41 ° C. and a volume of 190 L (liter) is clouded in 5 minutes will be described. In the test, a gas-liquid mixing tank in which the volume of the mixing container 11 was 450 mL and the orifice of the injection nozzle 14 was 4 mm was used. In this case, the tank air pressure (PA) may be maintained at 250 kPa. Incidentally, the discharge pressure of the pump 2 at that time is 290 kPa, and the discharge flow rate is 5 L per minute. Therefore, considering the length of the water absorption pipe, the discharge pipe, the supply pipe, and the like, it is preferable to maintain the tank air pressure (PA) at 280 kPa. At this time, the discharge pressure of the pump 2 is 320 kPa, and the discharge flow rate is 6 L / min. In this case, the hole diameter of the orifice of the orifice fixed valve 51 may be 0.15 to 0.2 mm, but is set to 0.2 mm.

気液混合タンク1の混合容器11には、水13の水位が変化した場合を考慮して水位センサ65を取付けてある。気液混合タンク1は、運転中に混合容器11の水位が低下すると水と空気の撹拌が十分に行なえなくなり、水に溶解する空気が低下する場合がある。そこで水位センサ65によって、混合容器11の水位を検出し、その水位が下限水位に達すると、制御装置61は、電磁弁52を閉じて空気の取入を停止する。空気の取入が停止すると、空気は、吸水管412の水に混入しなくなるから混合容器11の水位は上昇する。混合容器11の水位が上昇して上限水位に達すると、制御装置61は、電磁弁52を開く。   A water level sensor 65 is attached to the mixing container 11 of the gas-liquid mixing tank 1 in consideration of a case where the water level of the water 13 changes. In the gas-liquid mixing tank 1, if the water level of the mixing container 11 decreases during operation, the water and air cannot be sufficiently stirred, and the air dissolved in the water may decrease. Therefore, when the water level of the mixing container 11 is detected by the water level sensor 65 and the water level reaches the lower limit water level, the control device 61 closes the electromagnetic valve 52 and stops the intake of air. When the intake of air is stopped, the air is not mixed into the water in the water absorption pipe 412 and the water level of the mixing container 11 rises. When the water level of the mixing container 11 rises and reaches the upper limit water level, the control device 61 opens the electromagnetic valve 52.

次に気液混合タンク1をシャワーに使用する場合について説明する。
切換弁471,472を切替えて、シャワー用吸水管461を吸水管412に接続し、供給管431をシャワー用供給管462へ接続すると、気液混合タンク1の空気溶解水をシャワーヘッド(図示せず)へ供給することができる。
図1のマイクロバブル発生装置は、吸込口33、減圧ノズル32を浴槽3に取付けてあるが、吸込口33と減圧ノズル32を浴槽3と切り離して、それらを取付けた吸水管411、供給管432を浴槽3の水311内に挿入して使用するように構成してもよい。
Next, the case where the gas-liquid mixing tank 1 is used for a shower will be described.
When the switching valves 471 and 472 are switched to connect the shower water-absorbing pipe 461 to the water-absorbing pipe 412 and the supply pipe 431 to the shower supply pipe 462, the dissolved water in the gas-liquid mixing tank 1 is removed from the shower head (not shown). Z)).
1, the suction port 33 and the pressure reducing nozzle 32 are attached to the bathtub 3. However, the suction port 33 and the pressure reducing nozzle 32 are separated from the bathtub 3, and the water suction pipe 411 and the supply pipe 432 to which they are attached. May be inserted into the water 311 of the bathtub 3 for use.

次に図2について説明する。
図2(a)は、気液混合タンクの断面図、図2(b)は、図2(a)のX1部分の矢印方向の断面図、図2(c)は、撹拌の様子を説明する図である。
まず図2(a)、図2(b)について説明する。
気液混合タンク1は、円筒状の混合容器11を備え、混合容器11には、上部に噴射ノズル14を配置し、そのノズル14の噴射孔と対向する位置に距離L1離して円板状の衝突板15を配置してある。衝突板15は、混合容器11に取付けた支持部17に取付けてある。また混合容器11には、混合容器11の空気領域(気相領域)12の空気圧力(タンク空気圧力(PA))を検出する空気圧力センサ64、混合容器11の水(空気溶解水)13の水位を検出する水位センサ65を取付けてある。
衝突板15は、混合容器11内に同心状に配置し、混合容器11の内面との間にリング状の間隙L3を設けてある。水位センサ65は、水13の上限水位L21を検出する上限水位センサ651と下限水位L22を検出する下限水位センサ652とを備えている。上限水位L21と下限水位L22は、噴射ノズル14と衝突板15の間に設定する。即ち衝突板15の上部の上限水位と下限水位になるように設定する。
Next, FIG. 2 will be described.
2A is a cross-sectional view of the gas-liquid mixing tank, FIG. 2B is a cross-sectional view of the X1 portion of FIG. 2A in the direction of the arrow, and FIG. 2C illustrates the state of stirring. FIG.
First, FIG. 2A and FIG. 2B will be described.
The gas-liquid mixing tank 1 includes a cylindrical mixing container 11, and an injection nozzle 14 is disposed on the upper part of the mixing container 11. The gas-liquid mixing tank 1 is a disc-shaped member separated by a distance L 1 at a position facing the injection hole of the nozzle 14. A collision plate 15 is arranged. The collision plate 15 is attached to a support portion 17 attached to the mixing container 11. The mixing container 11 includes an air pressure sensor 64 that detects an air pressure (tank air pressure (PA)) in an air region (gas phase region) 12 of the mixing container 11, and water (air-dissolved water) 13 in the mixing container 11. A water level sensor 65 for detecting the water level is attached.
The collision plate 15 is disposed concentrically in the mixing container 11, and a ring-shaped gap L 3 is provided between the collision plate 15 and the inner surface of the mixing container 11. The water level sensor 65 includes an upper limit water level sensor 651 that detects an upper limit water level L21 of the water 13 and a lower limit water level sensor 652 that detects a lower limit water level L22. The upper limit water level L21 and the lower limit water level L22 are set between the injection nozzle 14 and the collision plate 15. That is, the upper limit water level and the lower limit water level at the upper part of the collision plate 15 are set.

次に図2(c)について説明する。
吐出管42から噴射ノズル14へ供給された水は、噴射水161となって噴射され、衝突板15に衝突して上昇水162,163となる。上昇水162,163は、水13の衝突板15の上部の水を巻き込むようにして上昇し、下降する。この上昇・下降を繰り返す間に水と空気は撹拌されて、空気が水に溶解する。衝突板15は、平板状であるから、混合容器11の内壁と衝突板15の上面に囲まれた水全体が上昇・下降を繰り返すため、水と空気の撹拌が盛んになり、空気の溶解効率が高くなる。衝突板15の上部で撹拌されて空気が溶解した水は、間隙L3を通って混合容器11の下部へ移動して浴槽へ供給される。
Next, FIG. 2C will be described.
The water supplied from the discharge pipe 42 to the spray nozzle 14 is sprayed as spray water 161, collides with the collision plate 15 and becomes ascending water 162, 163. The ascending water 162, 163 rises and descends so as to involve the water above the collision plate 15 of the water 13. Water and air are agitated while repeating this ascent and descent, and the air dissolves in water. Since the collision plate 15 has a flat plate shape, the entire water surrounded by the inner wall of the mixing vessel 11 and the upper surface of the collision plate 15 repeatedly rises and falls, so that the stirring of water and air becomes active and the efficiency of dissolving the air Becomes higher. The water in which the air is dissolved by being stirred at the upper part of the collision plate 15 moves to the lower part of the mixing container 11 through the gap L3 and is supplied to the bathtub.

衝突板15がない場合には、噴射水161は、水13の中に噴射されるのみで上昇水162,163が発生しないか、発生しても力が弱いため、撹拌作用は小さくなる。即ち本実施例は、混合容器11の内部の途中に衝突板15を設けたことにより撹拌が盛んになり、空気の溶解効率が高くなる。そして撹拌に適した水位は、混合容器11の深さに関係なく衝突板15の位置によって決めることができる。
水と空気の撹拌を盛んにし、空気の溶解効率を高めるには、上昇水162,163が衝突板15の上部の水を巻き上げる必要があるから、水13の水位は、衝突板15よりも高くなるように設定する。その際水13の水位は、低過ぎると衝突板5の上部の水が少ないため、上昇水162,163によって巻き上げられる水が少なくなり、空気の溶解効率が低下する。逆に水13の水位が、高過ぎると撹拌作用が弱くなるため、空気の溶解効率が低下する。
In the absence of the collision plate 15, the jet water 161 is only jetted into the water 13, and ascending water 162, 163 is not generated or even if generated, the stirring action is reduced. That is, in this embodiment, the collision plate 15 is provided in the middle of the mixing container 11, so that the stirring becomes active and the melting efficiency of the air is increased. The water level suitable for stirring can be determined by the position of the collision plate 15 regardless of the depth of the mixing container 11.
In order to increase the agitation of water and air and increase the efficiency of air dissolution, it is necessary for the rising water 162 and 163 to wind up the water above the collision plate 15, so the water level of the water 13 is higher than that of the collision plate 15. Set as follows. At that time, if the water level of the water 13 is too low, the amount of water on the upper side of the collision plate 5 is small, so that the water that is wound up by the rising water 162 and 163 is reduced, and the dissolution efficiency of the air is lowered. On the contrary, if the water level of the water 13 is too high, the stirring action becomes weak, so that the efficiency of dissolving the air is lowered.

そこで前記したように、衝突板15の上部の水位が下限水位L22(図2(a))に達すると、制御装置61(図1)は、電磁弁52(図1)を閉じて空気の取り入れを停止して、混合容器11の水位を上昇させる。水位が上昇して上限水位L21(図2(a))に達すると、制御装置61は、電磁弁52を開いて空気の取り入れを再開する。   Therefore, as described above, when the water level at the upper part of the collision plate 15 reaches the lower limit water level L22 (FIG. 2A), the control device 61 (FIG. 1) closes the electromagnetic valve 52 (FIG. 1) to take in air. Is stopped and the water level of the mixing container 11 is raised. When the water level rises and reaches the upper limit water level L21 (FIG. 2A), the control device 61 opens the electromagnetic valve 52 and resumes the intake of air.

本実施例の気液混合タンク1は、混合容器11の空気領域12の空気圧力を一定に保持するとともに、混合容器11内に衝突板15を設けて、水13の水位を衝突板15よりも高く保持することにより空気の溶解効率を高くし、連続的に安定して空気溶解水を発生することができる。   The gas-liquid mixing tank 1 of the present embodiment keeps the air pressure in the air region 12 of the mixing container 11 constant, and also provides a collision plate 15 in the mixing container 11 so that the water level of the water 13 is higher than that of the collision plate 15. By keeping it high, the dissolution efficiency of air can be increased, and air dissolution water can be generated continuously and stably.

ここで気液混合タンク1の具体的一例について説明する。
混合容器11は、内径66mm、高さ(長さ)170mm、衝突板15は、直径62mmに設定し、噴射ノズル14と衝突板15の距離L1は、55mm、衝突板15と下限水位L22との距離は、25mm、衝突板15と上限水位L21との距離は、45mmに設定した。
Here, a specific example of the gas-liquid mixing tank 1 will be described.
The mixing container 11 has an inner diameter of 66 mm, a height (length) of 170 mm, the collision plate 15 has a diameter of 62 mm, the distance L1 between the injection nozzle 14 and the collision plate 15 is 55 mm, and the collision plate 15 and the lower limit water level L22. The distance was set to 25 mm, and the distance between the collision plate 15 and the upper limit water level L21 was set to 45 mm.

図3によりオリフィス固定弁の構造を説明する。
図3(a)は、オリフィス固定弁の軸方向の断面図、図3(b)は、図3(a)のX2部分の矢印方向の断面図である。
オリフィス固定弁51は、円筒部511、開口部512、オリフィス(通気孔)513からなる。開口部512から空気を取り入れ、オリフィス513から空気取入管541へ空気を供給する。
オリフィス固定弁51は、制御機構を有しないから構造が簡単になり、かつ小型になる。
The structure of the orifice fixed valve will be described with reference to FIG.
3A is a cross-sectional view in the axial direction of the orifice fixed valve, and FIG. 3B is a cross-sectional view in the arrow direction of the portion X2 in FIG. 3A.
The orifice fixed valve 51 includes a cylindrical portion 511, an opening portion 512, and an orifice (vent hole) 513. Air is taken in from the opening 512 and air is supplied from the orifice 513 to the air intake pipe 541.
Since the orifice fixed valve 51 does not have a control mechanism, the structure is simplified and the size is reduced.

前記実施例のマイクロバブル発生装置は、浴槽に使用する例について説明したが、浴槽に限らず水槽、プール、洗浄装置、殺菌装置等の水貯留槽に使用することもできる。   Although the microbubble generator of the said Example demonstrated the example used for a bathtub, it can also be used for water storage tanks, such as not only a bathtub but a water tank, a pool, a washing | cleaning apparatus, and a sterilizer.

本願発明の実施例に係るマイクロバブル発生装置の全体の構成を示す図である。It is a figure which shows the whole structure of the microbubble generator which concerns on the Example of this invention. 本願発明の実施例に係るマイクロバブル発生装置の気液混合タンクの構成を示す図である。It is a figure which shows the structure of the gas-liquid mixing tank of the microbubble generator which concerns on the Example of this invention. 本願発明の実施例に係るマイクロバブル発生装置のオリフィス固定弁の構成を示す図である。It is a figure which shows the structure of the orifice fixed valve of the microbubble generator which concerns on the Example of this invention. 従来のマイクロバブル発生装置の構成を示す図である。It is a figure which shows the structure of the conventional microbubble generator.

符号の説明Explanation of symbols

1 気液混合タンク
11 混合容器
12 混合容器の空気領域
13 空気が溶解した水(空気溶解水)
14 噴射ノズル
15 衝突板
2 ポンプ
3 浴槽
32 減圧弁
33 吸込口
471,472 切替弁
51 オリフィス固定弁
52 電磁弁
53 逆止弁
61 制御装置
62 電源
63 設定部
64 空気圧力センサ
65 水位センサ
DESCRIPTION OF SYMBOLS 1 Gas-liquid mixing tank 11 Mixing container 12 Air area | region 13 of mixing container Water which air melt | dissolved (air dissolution water)
14 Injection nozzle 15 Collision plate 2 Pump 3 Bath 32 Pressure reducing valve 33 Suction port 471,472 Switching valve 51 Orifice fixed valve 52 Solenoid valve 53 Check valve 61 Controller 62 Power supply 63 Setting part 64 Air pressure sensor 65 Water level sensor

Claims (2)

水に空気取入部の空気が混入した水を加圧するポンプ、ポンプの吐出水を混合容器の上部に取付けた噴射ノズルから噴射して空気溶解水を発生しその空気溶解水を水貯留槽へ供給する気液混合タンクを備えたマイクロバブル発生装置において、
空気取入部は、オリフィス固定弁と電磁弁からなり、混合容器は、噴射ノズルの噴射孔と対向するように配置した噴射ノズルの噴射水が衝突する衝突板、混合容器の空気領域の空気圧力を検出する空気圧力センサ、衝突板の上部の上限水位を検出する上限水位センサ、及び衝突板の上部の下限水位を検出する下限水位センサを内部に備えており、空気圧力センサの検出した空気圧力と制御装置に設定した空気圧力とを比較して混合容器内の空気領域の空気圧力が制御装置に設定した空気圧力となるようにポンプの吐出圧力を制御し、
上限水位センサが上限水位を検出すると空気取入部の電磁弁を開いて空気の取入れを開始し、下限水位センサが下限水位を検出すると空気取入部の電磁弁を閉じて空気の取入れを停止して混合容器内の水位が衝突板よりも高くなるように制御する制御装置を備えていることを特徴とするマイクロバブル発生装置。
A pump that pressurizes water in which air in the air intake section is mixed into water, and discharge water from the pump is injected from an injection nozzle attached to the top of the mixing container to generate air-dissolved water and supply the air-dissolved water to the water storage tank In a microbubble generator equipped with a gas-liquid mixing tank that
The air intake part is composed of an orifice fixed valve and a solenoid valve.The mixing container has a collision plate on which the spray water of the injection nozzle arranged so as to face the injection hole of the injection nozzle collides, and the air pressure in the air region of the mixing container. Air pressure sensor to detect, upper limit water level sensor to detect the upper limit water level of the upper part of the collision plate, and lower limit water level sensor to detect the lower limit water level of the upper part of the collision plate, and the air pressure detected by the air pressure sensor Compare the air pressure set in the control device and control the discharge pressure of the pump so that the air pressure in the air region in the mixing container becomes the air pressure set in the control device,
When the upper limit water level sensor detects the upper limit water level, the solenoid valve of the air intake section is opened to start intake of air.When the lower limit water level sensor detects the lower limit water level, the solenoid valve of the air intake section is closed to stop intake of air. A microbubble generator characterized by comprising a control device for controlling the water level in the mixing vessel to be higher than the collision plate.
請求項1に記載のマイクロバブル発生装置において、前記制御装置に設定した空気圧力は、前記水貯留槽の水が所定時間で白濁する前記空気領域の空気圧力であることを特徴とするマイクロバブル発生装置。   2. The microbubble generator according to claim 1, wherein the air pressure set in the control device is an air pressure in the air region in which water in the water storage tank becomes clouded in a predetermined time. apparatus.
JP2006009327A 2006-01-17 2006-01-17 Microbubble generator and gas-liquid mixing tank Expired - Fee Related JP4815032B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006009327A JP4815032B2 (en) 2006-01-17 2006-01-17 Microbubble generator and gas-liquid mixing tank

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006009327A JP4815032B2 (en) 2006-01-17 2006-01-17 Microbubble generator and gas-liquid mixing tank

Publications (2)

Publication Number Publication Date
JP2007190466A JP2007190466A (en) 2007-08-02
JP4815032B2 true JP4815032B2 (en) 2011-11-16

Family

ID=38446559

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006009327A Expired - Fee Related JP4815032B2 (en) 2006-01-17 2006-01-17 Microbubble generator and gas-liquid mixing tank

Country Status (1)

Country Link
JP (1) JP4815032B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101317655B1 (en) * 2012-01-27 2013-11-06 (주)신대양 Generator for micro buble and Method for generating micro buble

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100843970B1 (en) * 2008-03-20 2008-07-03 유정호 Apparatus of generating microbubble
JP2010051846A (en) * 2008-08-26 2010-03-11 Panasonic Electric Works Co Ltd Gas dissolving apparatus
JP5266015B2 (en) * 2008-10-28 2013-08-21 パナソニック株式会社 Oxygen-enriched air introduction device
JP5666086B2 (en) * 2008-12-25 2015-02-12 ジルトロニック アクチエンゲゼルシャフトSiltronic AG Silicon wafer cleaning equipment
JP5729998B2 (en) * 2010-12-15 2015-06-03 三相電機株式会社 Gas-liquid dissolution tank
JP7265891B2 (en) * 2018-04-10 2023-04-27 リンナイ株式会社 Fine bubble generator
JP7314577B2 (en) * 2019-04-04 2023-07-26 ケーピーエス工業株式会社 Fine bubble generator
CN109999682B (en) * 2019-04-23 2024-04-09 上海行恒科技有限公司 High-concentration micro-nano bubble shower system
KR102256682B1 (en) * 2020-02-05 2021-05-26 주식회사 디알오토텍 release and recycling supply system device of release agent
CN112220654A (en) * 2020-10-14 2021-01-15 贵州融创大健康有限公司 Main unit of traditional Chinese medicine physiotherapy instrument
JP2023085007A (en) * 2021-12-08 2023-06-20 パナソニックIpマネジメント株式会社 Air bubble containing liquid generator

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61271019A (en) * 1985-05-25 1986-12-01 Matsushita Electric Works Ltd Foam generation method
JP2669917B2 (en) * 1990-02-05 1997-10-29 松下電工株式会社 Micro bubble generator
JPH04161235A (en) * 1990-10-23 1992-06-04 Mitsuo Takano Pressurized aqueous solution supplying apparatus
JP3081983B2 (en) * 1994-11-30 2000-08-28 日本技建株式会社 Fine bubble generator
JP2002210488A (en) * 2000-12-26 2002-07-30 Shinkyu Zen Purification apparatus
JP2002331011A (en) * 2001-05-11 2002-11-19 Matsushita Electric Ind Co Ltd Fine bubble generation device
JP2003010662A (en) * 2001-06-29 2003-01-14 Hitachi Ltd Bubble generator
JP4016628B2 (en) * 2001-10-04 2007-12-05 松下電工株式会社 Nozzle for fine bubble generator
JP3925711B2 (en) * 2002-12-09 2007-06-06 横河電機株式会社 Oxygen supply device for water
JP2005224677A (en) * 2004-02-12 2005-08-25 Yokogawa Electric Corp Apparatus for feeding oxygen into water

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101317655B1 (en) * 2012-01-27 2013-11-06 (주)신대양 Generator for micro buble and Method for generating micro buble

Also Published As

Publication number Publication date
JP2007190466A (en) 2007-08-02

Similar Documents

Publication Publication Date Title
JP4815032B2 (en) Microbubble generator and gas-liquid mixing tank
JP4891127B2 (en) Microbubble / carbonated spring generator
JP2007289903A (en) Micro-bubble generating device and bath system
KR101024658B1 (en) Ozonized Water Generator
JP2007130601A (en) Device for generating micro bubbles and shampoo apparatus using the device
JP2018034148A (en) Hydrogen water production device and hydrogen water production method
JP4470936B2 (en) Chemical-mixed water discharge device and flush toilet device
JP2005144320A (en) Fluid mixing apparatus
JP6393152B2 (en) Microbubble generator
WO2014050521A1 (en) Gas dissolving device
JP4085121B1 (en) Dental gargle water supply device
JP4631561B2 (en) Microbubble generator
JP2009226328A (en) Gas dissolving vessel
JP4872459B2 (en) Gas dissolving device
JP2010155213A (en) Minute bubble generation apparatus
JP5508235B2 (en) Microbubble generator
JP2005095878A (en) Gas-liquid dissolving tank
JP2002330885A (en) Bathtub system
JP2010029770A (en) Air bubble generation apparatus
EP4083299A1 (en) Water inlet method of washing device and washing device using water inlet method
JP4356558B2 (en) Bubble generator
JP2008178780A (en) Microbubble generating apparatus
KR20050043159A (en) Ozonized water formulating apparatus
JP2009178702A (en) Gas-liquid mixing equipment
KR102587567B1 (en) Gas emulsion reactor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070821

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100126

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100308

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110301

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110422

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110823

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110827

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140902

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees