JP2016081821A - Manufacturing method for fuel battery cell - Google Patents

Manufacturing method for fuel battery cell Download PDF

Info

Publication number
JP2016081821A
JP2016081821A JP2014214222A JP2014214222A JP2016081821A JP 2016081821 A JP2016081821 A JP 2016081821A JP 2014214222 A JP2014214222 A JP 2014214222A JP 2014214222 A JP2014214222 A JP 2014214222A JP 2016081821 A JP2016081821 A JP 2016081821A
Authority
JP
Japan
Prior art keywords
metal support
electrode layer
fuel cell
manufacturing
anode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014214222A
Other languages
Japanese (ja)
Other versions
JP6443662B2 (en
Inventor
桂太 入月
Keita Irizuki
桂太 入月
隆夫 和泉
Takao Izumi
隆夫 和泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2014214222A priority Critical patent/JP6443662B2/en
Publication of JP2016081821A publication Critical patent/JP2016081821A/en
Application granted granted Critical
Publication of JP6443662B2 publication Critical patent/JP6443662B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To solve a problem in that, in a conventional fuel battery cell, strength is not imparted to an electrode layer after manufacturing, therefore, improvement has been demanded to increase the strength of the electrode layer.SOLUTION: To manufacture a fuel battery cell 1 having a structure sandwiching an electrolyte layer 2 between a pair of electrode layers 3, 4, and in which a metal support 5 is joined to the one electrode layer 3, the one electrode layer 3, electrolyte layer 2, and the other electrode layer 4 are formed on the surface of the metal support 5 while a formation area A for at least the electrode layer 2 of the metal support 5 is bent and deformed in a spherical shape. After the formation of the electrolyte layer 2 and electrode layers 3, 4, these are flattened. Thereby, residual compression stress can be applied to at least one electrode layer 3. Thus, tensile-resisting load performance for the electrode layer 3 can be improved. Accordingly, the fuel battery cell 1 having an electrode layer 3 excellent in strength can be obtained.SELECTED DRAWING: Figure 1

Description

本発明は、燃料電池の発電要素を構成する燃料電池セルに関し、電解質層を一対の電極層で挟んだ構造を有すると共に、一方の電極層に金属支持体を接合したメタルサポート型の燃料電池セルの製造方法に関するものである。   The present invention relates to a fuel cell constituting a power generation element of a fuel cell, and has a structure in which an electrolyte layer is sandwiched between a pair of electrode layers, and a metal support type fuel cell in which a metal support is joined to one electrode layer. It is related with the manufacturing method.

この種の燃料電池セルの製造方法としては、例えば、特許文献1に記載されているものがある。特許文献1に記載の燃料電池セルの製造方法は、電解質をアノード(燃料極)とカソード(空気極)とで挟んだ構造を有すると共に、カソード側に金属支持体を接合した燃料電池セルを製造するものである。   As a method for manufacturing this type of fuel cell, for example, there is one described in Patent Document 1. The fuel cell manufacturing method described in Patent Document 1 has a structure in which an electrolyte is sandwiched between an anode (fuel electrode) and a cathode (air electrode), and a fuel cell in which a metal support is bonded to the cathode side. To do.

その製造方法は、金属支持体にカソードを形成してこれを加熱手段に収容し、その際、熱膨張率の大きい金属支持体を遮蔽板で遮って熱が伝わり難くすると共に、カソードを選択的に急加熱する。これにより、加熱時における金属支持体とカソードの熱膨張差をできるだけ小さくし、熱膨膨張差による反りを抑制するようにしている。   In the manufacturing method, a cathode is formed on a metal support and accommodated in a heating means. At that time, the metal support having a high coefficient of thermal expansion is shielded by a shielding plate to make it difficult for heat to be transmitted, and the cathode is selectively transferred. Heat rapidly. As a result, the difference in thermal expansion between the metal support and the cathode during heating is made as small as possible to suppress warping due to the difference in thermal expansion.

特開2013−041717号公報JP 2013-041717 A

ところで、上記したようなメタルサポート型の燃料電池セルにおける電解質/電極層は、セラミックス系の脆性材料で形成されているので、圧縮には強いものの引張に弱いという性質がある。これに対して、従来の燃料電池セルの製造方法では、製造時において、熱膨張率差により生じる反りを低減させることはできるが、完全に反りをなくすことや、製造後の電解質/電極層に強度(圧縮残留応力)を付与するものではないことから、電解質/電極層の強度向上を図るうえでの改善が要望されていた。   By the way, since the electrolyte / electrode layer in the metal support type fuel cell as described above is formed of a ceramic brittle material, it has a property of being strong against compression but weak against tension. In contrast, the conventional fuel cell manufacturing method can reduce the warpage caused by the difference in thermal expansion coefficient at the time of manufacturing, but it can eliminate the warp completely, Since strength (compressive residual stress) is not imparted, improvement in improving the strength of the electrolyte / electrode layer has been demanded.

本発明は、上記従来の状況に鑑みて成されたもので、電解質層を一対の電極層で挟んだ構造を有すると共に、一方の電極層に金属支持体を接合したメタルサポート型の燃料電池セルの製造方法であって、強度に優れた電解質/電極層を有する燃料電池セルを提供することを目的としている。   The present invention has been made in view of the above-described conventional situation, and has a structure in which an electrolyte layer is sandwiched between a pair of electrode layers, and a metal support type fuel battery cell in which a metal support is joined to one electrode layer. It is an object of the present invention to provide a fuel cell having an electrolyte / electrode layer excellent in strength.

本発明に係わる燃料電池セルの製造方法は、電解質層を一対の電極層で挟んだ構造を有すると共に、一方の電極層に金属支持体を接合したメタルサポート型の燃料電池セルを製造する方法である。そして、燃料電池セルの製造方法は、金属支持体の少なくとも電極層の形成領域を球面状に曲げ変形させた状態にして、金属支持体の表面に一方の電極層、電解質層及び他方の電極層を形成することを特徴としている。   A method for producing a fuel cell according to the present invention is a method for producing a metal support type fuel cell having a structure in which an electrolyte layer is sandwiched between a pair of electrode layers and a metal support is joined to one electrode layer. is there. And the manufacturing method of a fuel cell makes the state where the formation area of at least the electrode layer of the metal support is bent and deformed into a spherical shape, and forms one electrode layer, electrolyte layer and the other electrode layer on the surface of the metal support. It is characterized by forming.

本発明に係わる燃料電池セルの製造方法によれば、金属支持体に一方の電極層、電解質層及び他方の電極層を形成した後、これを平坦化することで、少なくとも一方の電極層又は電解質に残留圧縮応力を付与することが可能になり、これにより電解質/電極層の耐引張荷重性能を高め、強度に優れた電解質/電極層を有する燃料電池セルを提供することができる。   According to the method of manufacturing a fuel cell according to the present invention, after forming one electrode layer, an electrolyte layer, and the other electrode layer on a metal support, they are flattened, so that at least one electrode layer or electrolyte is formed. Residual compressive stress can be applied to the fuel cell, thereby improving the tensile load resistance of the electrolyte / electrode layer and providing a fuel cell having an electrolyte / electrode layer with excellent strength.

本発明に係わる燃料電池セルの製造方法の第1実施形態を示す図であって、燃料電池セルの平面図(A)、燃料電池セルの要部の断面図(B)、燃料電池セルを曲げ変形させた状態を示す断面図(C)、及び燃料電池セルを平坦化した状態を示す断面図(D)である。BRIEF DESCRIPTION OF THE DRAWINGS It is a figure which shows 1st Embodiment of the manufacturing method of the fuel cell concerning this invention, Comprising: The top view (A) of a fuel battery cell, sectional drawing (B) of the principal part of a fuel battery cell, Bending a fuel battery cell It is sectional drawing (C) which shows the state changed, and sectional drawing (D) which shows the state which planarized the fuel cell. 電極層の塗布及び焼成時における内部応力状態を示す断面説明図(A)、焼成後の冷却時における内部応力状態を示す断面説明図(B)、及び平坦化後の内部応力状態を示す断面説明図(C)である。Cross-sectional explanatory view (A) showing internal stress state during application and firing of electrode layer, cross-sectional explanatory view (B) showing internal stress state during cooling after firing, and cross-sectional explanation showing internal stress state after flattening It is a figure (C). 本発明に係わる燃料電池セルの製造方法の第2実施形態を示す断面図である。It is sectional drawing which shows 2nd Embodiment of the manufacturing method of the fuel cell concerning this invention. 本発明に係わる燃料電池セルの製造方法の第3実施形態を示す断面図である。It is sectional drawing which shows 3rd Embodiment of the manufacturing method of the fuel cell concerning this invention. 本発明に係わる燃料電池セルの製造方法の第4実施形態を示す断面図である。It is sectional drawing which shows 4th Embodiment of the manufacturing method of the fuel cell concerning this invention. 本発明に係わる燃料電池セルの製造方法の第5実施形態を示す燃料電池セルの断面図(A)、及び平坦化した燃料電池セルの断面図(B)である。It is sectional drawing (A) of the fuel battery cell which shows 5th Embodiment of the manufacturing method of the fuel battery cell concerning this invention, and sectional drawing (B) of the planarized fuel battery cell.

〈第1実施形態〉
図1(A)及び(B)に示す燃料電池セル1は、燃料電池の発電要素を構成するものであって、電解質層2を一対の電極層(3,4)で挟持した構造を有すると共に、一方の電極層(3)に金属支持体5を接合したものである。
<First Embodiment>
A fuel cell 1 shown in FIGS. 1A and 1B constitutes a power generation element of a fuel cell, and has a structure in which an electrolyte layer 2 is sandwiched between a pair of electrode layers (3, 4). The metal support 5 is joined to one electrode layer (3).

この実施形態の燃料電池セル1は、円形を成す電解質層2及び電極層(3,4)に対し、これらよりも一回り大きい円形の金属支持体5を同心状に配置した構成である。なお、燃料電池セル1は、当然のことながら円形以外の形状であっても構わない。また、燃料電池セル1は、図1(B)に示す厚さ方向の断面において、金属支持体5が大半を占め、金属支持体5に比べて電解質層2及び電極層(3,4)は非常に薄いものである。   The fuel cell 1 of this embodiment has a configuration in which a circular metal support 5 that is slightly larger than these is disposed concentrically with respect to the circular electrolyte layer 2 and electrode layers (3, 4). The fuel cell 1 may naturally have a shape other than a circle. Further, in the fuel cell 1, the metal support 5 occupies most of the cross section in the thickness direction shown in FIG. 1B, and the electrolyte layer 2 and the electrode layers (3, 4) are in comparison with the metal support 5. It is very thin.

一対の電極層は、アノード(燃料極層)3とカソード(空気極層)4であり、図示例の場合には、アノード3に金属支持体5を接合した構成である。アノード3は、電解質層2やカソード4に比べて温度に対する熱膨張率の変化が大きく、金属支持体5よりも大きい熱膨張率を有している。   The pair of electrode layers are an anode (fuel electrode layer) 3 and a cathode (air electrode layer) 4. In the illustrated example, the metal support 5 is bonded to the anode 3. The anode 3 has a larger thermal expansion coefficient with respect to temperature than the electrolyte layer 2 and the cathode 4, and has a larger thermal expansion coefficient than the metal support 5.

電解質層2は、例えば、8モル%イットリア安定化ジルコニアである。アノード3は、例えば、ニッケル+イットリア安定化ジルコニアなどのセラミックス系の多孔質材料である。カソード4は、例えば、ランタンストロンチウムコバルト鉄酸化物である。また、金属支持体5は、一例として、ステンレス製の多孔質材料で形成してあり、その気孔率は20%〜60%である。   The electrolyte layer 2 is, for example, 8 mol% yttria stabilized zirconia. The anode 3 is a ceramic porous material such as nickel + yttria stabilized zirconia. The cathode 4 is, for example, lanthanum strontium cobalt iron oxide. Moreover, the metal support body 5 is formed with the porous material made from stainless steel as an example, and the porosity is 20%-60%.

上記の燃料電池セル1を製造するには、図1(C)に示すように、金属支持体2の少なくとも電極層(3,4)の形成領域Aを球面状に曲げ変形させた状態にして、金属支持体1の表面に一方の電極層(3)を形成し、その後、電解質層(2)及び他方の電極層(4)を形成する。   In order to manufacture the fuel cell 1 described above, as shown in FIG. 1C, at least the electrode layer (3, 4) formation region A of the metal support 2 is bent and deformed into a spherical shape. Then, one electrode layer (3) is formed on the surface of the metal support 1, and then the electrolyte layer (2) and the other electrode layer (4) are formed.

ここで、金属支持体5を曲げ変形させるには、球面を有する治具50を用いる。すなわち、金属支持体1は、周縁部を保持した状態にして治具50の球面で加圧することで、球面状に曲げ変形される。   Here, in order to bend and deform the metal support 5, a jig 50 having a spherical surface is used. That is, the metal support 1 is bent and deformed into a spherical shape by pressing with the spherical surface of the jig 50 with the peripheral edge held.

この際、治具50の球面は、予め実験的に求めた燃料電池セルの変形量に対応した曲率を有するものである。これは、平坦な金属支持体に各電極層及び電解質層を形成し、形成後の曲げ変形を三次元的に解析したところ、燃料電池セルの半径における反りの高さで定義される二次元円とほぼ重なることが判明した。そこで、治具50の球面は、その二次元円の曲率に対応するものとしている。つまり、治具50の球面は、熱膨張差により生じる反り量(曲げ変形量)を金属支持体5に付与し得る曲率である。なお、図1(C)では、曲げ変形量を誇張して示しており、実際の曲げ変形量は図示よりも小さい。   At this time, the spherical surface of the jig 50 has a curvature corresponding to the deformation amount of the fuel cell obtained experimentally in advance. This is because, when each electrode layer and electrolyte layer are formed on a flat metal support and the bending deformation after the formation is analyzed three-dimensionally, a two-dimensional circle defined by the height of warpage at the radius of the fuel cell is obtained. It turns out that it almost overlaps. Therefore, the spherical surface of the jig 50 corresponds to the curvature of the two-dimensional circle. That is, the spherical surface of the jig 50 has a curvature that can impart to the metal support 5 a warp amount (bending deformation amount) caused by a difference in thermal expansion. In FIG. 1C, the amount of bending deformation is exaggerated, and the actual amount of bending deformation is smaller than shown.

また、この実施形態では、金属支持体5の曲げ変形が弾性変形である。したがって、金属支持体5は、治具50による加圧を解除すれば平坦な初期状態に戻る。さらに、この実施形態では、金属支持体5を曲げ変形させる際に、図1(C)に曲率半径rを示すように、少なくとも電極層(3,4)の形成領域Aを、全体的に一定の曲率で曲げ変形させる。よって、治具50の球面も全体的に一定の曲率を有している。   In this embodiment, the bending deformation of the metal support 5 is elastic deformation. Therefore, the metal support 5 returns to a flat initial state when the pressure applied by the jig 50 is released. Furthermore, in this embodiment, when the metal support 5 is bent and deformed, at least the formation region A of the electrode layers (3, 4) is generally constant as shown in FIG. Bend and deform with the curvature of. Therefore, the spherical surface of the jig 50 also has a constant curvature as a whole.

さらに、この実施形態では、先述したように、一方の電極層であるアノード3の熱膨張率が金属支持体5の熱膨張率よりも大きいことから、曲げ変形させた金属支持体5の凸面にアノード3を形成し、その後、電解質層2及びカソード4を形成する。   Furthermore, in this embodiment, since the thermal expansion coefficient of the anode 3 that is one of the electrode layers is larger than the thermal expansion coefficient of the metal support body 5 as described above, the convex surface of the metal support body 5 deformed by bending is formed. The anode 3 is formed, and then the electrolyte layer 2 and the cathode 4 are formed.

アノード3は、例えば、スクリーン印刷で金属支持体5にアノード材料を塗布し、金属支持体5のヤング率が著しく低下しない温度(例えば1000度以下)で焼成することで形成することができる。なお、アノード3は、スパッタリングで形成することも可能であり、電解質層2及びカソード4は、アノード3と同様の方法で形成し得る。   The anode 3 can be formed, for example, by applying an anode material to the metal support 5 by screen printing and firing at a temperature (for example, 1000 degrees or less) at which the Young's modulus of the metal support 5 does not significantly decrease. The anode 3 can also be formed by sputtering, and the electrolyte layer 2 and the cathode 4 can be formed by the same method as the anode 3.

ここで、図2(A)〜(C)は、燃料電池セル1の製造過程における内部応力状態を示す図である。金属支持体5には、曲げ変形を付与した段階において、図2(A)に示すように、外側(上面側)に引張応力が生じると共に、内側(下面側)に圧縮応力が生じる。この金属支持体5に対して、電極層であるアノード3の塗布及び焼成時においては、同じく図2(A)に示すように、アノード3には応力は生じない(応力フリー)。   Here, FIGS. 2A to 2C are views showing an internal stress state in the manufacturing process of the fuel cell 1. As shown in FIG. 2 (A), tensile stress is generated on the outer side (upper surface side) and compressive stress is generated on the inner side (lower surface side) in the stage where bending deformation is applied to the metal support 5. When the anode 3 as an electrode layer is applied to the metal support 5 and fired, no stress is generated in the anode 3 (stress free) as shown in FIG.

次に、アノード3の焼成後及び冷却時においては、図2(B)に示すように、金属支持体5には収縮に伴って内側で最大となる大きな圧縮応力が生じ、アノード3には引張応力が生じる。そして、図1(D)に示す如く燃料電池セル1を平坦化すると、図2(C)に示すように、金属支持体5には残留圧縮応力が付与され、アノード3には外側で最大となる小さい残留圧縮応力が付与される。   Next, after firing of the anode 3 and during cooling, as shown in FIG. 2B, the metal support 5 is subjected to a large compressive stress on the inside as the shrinkage occurs, and the anode 3 is tensioned. Stress is generated. When the fuel cell 1 is flattened as shown in FIG. 1D, residual compressive stress is applied to the metal support 5 as shown in FIG. A small residual compressive stress is applied.

すなわち、上記の燃料電池セルの製造方法では、アノード3の塗布及び焼成時において、金属支持体5に機械的な引張歪を与えておくことで、焼成後の冷却時に発生する2層間の熱膨張差による歪により、金属支持体5側は引張応力が低減し、アノード3側は引張応力が付与される状態となる。その後、曲げ変形を除去する際に、金属支持体5側は圧縮され、それに追随する形でアノード3側の引張応力が低減して圧縮に転じる。   That is, in the above fuel cell manufacturing method, the thermal expansion between the two layers generated during cooling after firing is performed by applying mechanical tensile strain to the metal support 5 during the application and firing of the anode 3. Due to the strain due to the difference, the tensile stress is reduced on the metal support 5 side, and the tensile stress is applied on the anode 3 side. Thereafter, when the bending deformation is removed, the metal support 5 side is compressed, and the tensile stress on the anode 3 side is reduced to follow the compression.

このように、上記の燃料電池セルの製造方法は、アノード3に用いるセラミック系の脆性材料は圧縮には強いが引張に弱い性質があるため、アノード3に残留圧縮応力を付与しておくことで、実使用時の引張入力を低減させる効果がある。これにより、アノード3の耐引張荷重性能や強度信頼性が高められ、強度に優れたアノード3を有する燃料電池セル1を提供することができる。また、治具50の球面の曲率半径は任意に設定することが可能なため、残留圧縮応力の強弱を使用材料に合わせて調整することが可能である。   As described above, in the fuel cell manufacturing method described above, since the ceramic brittle material used for the anode 3 is strong in compression but weak in tension, the residual compressive stress is applied to the anode 3 in advance. This has the effect of reducing the tensile input during actual use. Thereby, the tensile load resistance performance and strength reliability of the anode 3 are improved, and the fuel cell 1 having the anode 3 having excellent strength can be provided. Moreover, since the curvature radius of the spherical surface of the jig 50 can be arbitrarily set, the strength of the residual compressive stress can be adjusted according to the material used.

さらに、上記の燃料電池セルの製造方法では、金属支持体5の少なくとも電極層の形成領域を球面状に曲げ変形させた状態にして一方の電極層(アノード3)を形成するので、熱膨張差により応力が生じる部分のみに強度向上の対策が行われることとなり、治具50の簡素化や燃料電池セル1への不必要な応力付与を回避することができる。   Further, in the above fuel cell manufacturing method, at least the electrode layer forming region of the metal support 5 is bent into a spherical shape to form one electrode layer (anode 3). As a result, measures for improving the strength are taken only in the portion where the stress is generated, and simplification of the jig 50 and unnecessary application of stress to the fuel cell 1 can be avoided.

さらに、上記の燃料電池セルの製造方法では、金属支持体5の曲げ変形が弾性変形であるから、金属支持体5に対する機械的な荷重を解除すれば、燃料電池セル1を自然に平坦な状態に戻すことができ、特別な加工を行うこと無く、強度に優れたアノード3を有する燃料電池セル1を容易に得ることができる。   Further, in the fuel cell manufacturing method described above, the bending deformation of the metal support 5 is elastic deformation. Therefore, when the mechanical load on the metal support 5 is released, the fuel cell 1 is naturally flat. Thus, the fuel battery cell 1 having the anode 3 having excellent strength can be easily obtained without performing special processing.

さらに、上記の燃料電池セルの製造方法では、一方の電極層(アノード3)の熱膨張率が金属支持体5の熱膨張率よりも大きく、曲げ変形させた金属支持体5の凸面に一方の電極層(アノード3)を形成するので、アノード3に残留圧縮応力を付与して、アノード3の耐引張荷重性能や強度信頼性が高めることができ、強度に優れたアノード3を有する燃料電池セル1を提供することができる。   Furthermore, in the fuel cell manufacturing method described above, the thermal expansion coefficient of one electrode layer (anode 3) is larger than the thermal expansion coefficient of the metal support 5, and one of the convex surfaces of the metal support 5 that is bent and deformed. Since the electrode layer (anode 3) is formed, a residual compressive stress can be applied to the anode 3 to improve the tensile load resistance performance and strength reliability of the anode 3, and the fuel cell having the anode 3 having excellent strength 1 can be provided.

さらに、上記の燃料電池セルの製造方法では、金属支持体5を曲げ変形させる際に、全体的に一定の曲率で曲げ変形させることから、金属支持体5の内部の応力・歪みが全面で同一となり、アノード3との熱膨張差による応力を全面で均一に低減させることが可能になる。   Furthermore, in the above fuel cell manufacturing method, when the metal support 5 is bent and deformed, it is bent and deformed with a constant curvature as a whole, so that the stress and strain inside the metal support 5 are the same over the entire surface. Thus, the stress due to the difference in thermal expansion with the anode 3 can be uniformly reduced over the entire surface.

図3〜図6は、本発明に係わる燃料電池セルの製造方法の第2〜第5の実施形態を説明する図である。以下の各実施形態において、第1実施形態と同一の構成部位は、同一符号を付して詳細な説明を省略する。   3-6 is a figure explaining the 2nd-5th embodiment of the manufacturing method of the fuel cell concerning this invention. In the following embodiments, the same components as those in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.

〈第2実施形態〉
図3に示す燃料電池セルの製造方法は、一方の電極層であるアノード3の熱膨張率が、金属支持体5の熱膨張率よりも小さい場合であって、曲げ変形させた金属支持体5の凹面にアノード3を形成するものである。この場合、金属支持体5を曲げ変形させる手段はとくに限定されないが、例えば、凹面に吸引口を有する治具50を使用し、負圧により金属支持体5を凹面に吸着させて曲げ変形させることが可能である。
Second Embodiment
The fuel cell manufacturing method shown in FIG. 3 is a case where the thermal expansion coefficient of the anode 3 which is one of the electrode layers is smaller than the thermal expansion coefficient of the metal support body 5, and is bent and deformed. The anode 3 is formed on the concave surface. In this case, means for bending and deforming the metal support 5 is not particularly limited. For example, a jig 50 having a suction port on the concave surface is used, and the metal support 5 is attracted to the concave surface by negative pressure to bend and deform. Is possible.

この実施形態においては、金属支持体5及びアノード3には、金属支持体5には図2に示すアノード3と同等の内部応力が生じると共に、アノード3には図2に示す金属支持体5と同等の内部応力が生じることとなる。その結果、平坦化した際には、図2(C)に示す金属支持体5に残留圧縮応力が付与されるのと同様に、アノード3に残留圧縮応力が付与されることとなる。   In this embodiment, the metal support 5 and the anode 3 are subjected to the same internal stress in the metal support 5 as that of the anode 3 shown in FIG. 2, and the anode 3 has the metal support 5 shown in FIG. Equivalent internal stress will occur. As a result, when flattening, the residual compressive stress is applied to the anode 3 in the same manner as the residual compressive stress is applied to the metal support 5 shown in FIG.

このように、上記の燃料電池セルの製造方法では、アノード3の熱膨張率が金属支持体5の熱膨張率よりも小さい場合、しかも、過大になる残留圧縮応力を緩和した場合には、曲げ変形させた金属支持体5の凹面にアノード3を形成する。これにより、アノード3に残留圧縮応力を付与して、アノード3の耐引張荷重性能や強度信頼性が高めることができ、強度に優れたアノード3を有する燃料電池セル1を提供することができる。   As described above, in the fuel cell manufacturing method described above, when the thermal expansion coefficient of the anode 3 is smaller than the thermal expansion coefficient of the metal support 5 and when the excessive residual compressive stress is relieved, bending is performed. The anode 3 is formed on the concave surface of the deformed metal support 5. Thereby, residual compressive stress can be given to the anode 3, the tensile load resistance performance and strength reliability of the anode 3 can be improved, and the fuel cell 1 having the anode 3 having excellent strength can be provided.

〈第3実施形態〉
図4に示す燃料電池セルの製造方法は、金属支持体5を曲げ変形させる際に、発電時において相対的に低温となる低温領域Bの曲率を相対的に小さくして曲げ変形させるものとしている。
<Third Embodiment>
In the method of manufacturing the fuel cell shown in FIG. 4, when the metal support 5 is bent and deformed, the bending of the metal support 5 is performed by relatively reducing the curvature of the low temperature region B that is relatively low in power generation. .

図1(A)に示すような円形の燃料電池セル1では、熱容量の大きい中心付近の温度が相対的に低くなることから、それ以外の外側部分の曲率(曲率半径r)に対して、中心付近の低温領域Bの曲率を小さくしている。したがって、外側部分と低温領域Bとの境界部分Cにおいては、曲率が大きくすなわち曲率半径(r/a)が小さくなる。   In the circular fuel cell 1 as shown in FIG. 1 (A), the temperature in the vicinity of the center having a large heat capacity is relatively low, so that the center of the other outer portion with respect to the curvature (curvature radius r) is relatively small. The curvature of the low temperature region B in the vicinity is reduced. Therefore, at the boundary portion C between the outer portion and the low temperature region B, the curvature is large, that is, the curvature radius (r / a) is small.

上記の燃料電池セルの製造方法は、先の実施形態と同様の作用及び効果を得ることができる。また、上記の燃料電池セルの製造方法では、燃料電池セル1の面内で温度差が付くと、材料内部における熱膨張差によって温度が低い側に引張応力が発生するため、引張応力の大きい箇所である低温領域Bの曲率を小さくすることで、予め大きな残留圧縮応力を部分的に付与して、引張応力によるアノード3の破壊をより確実に防ぐことができる。   The fuel cell manufacturing method described above can achieve the same operations and effects as the previous embodiment. Further, in the fuel cell manufacturing method described above, when a temperature difference occurs in the plane of the fuel cell 1, tensile stress is generated on the low temperature side due to the difference in thermal expansion inside the material. By reducing the curvature of the low-temperature region B, it is possible to partially apply a large residual compressive stress in advance, and to more reliably prevent the anode 3 from being broken by a tensile stress.

〈第4実施形態〉
図5に示す燃料電池セルの製造方法は、金属支持体5が、発電時において相対的に低温となる低温領域Bに対応して、相対的に曲げ剛性の高い高剛性部Dを有している。
<Fourth embodiment>
In the fuel cell manufacturing method shown in FIG. 5, the metal support 5 has a high-rigidity portion D having a relatively high bending rigidity corresponding to the low-temperature region B where the temperature is relatively low during power generation. Yes.

上記の燃料電池セルの製造方法は、先の実施形態と同様の作用及び効果を得ることができる。また、上記の燃料電池セルの製造方法では、燃料電池セル1の面内において、温度が低く且つ引張応力が高く生じる低温領域Bについては、金属支持体5の剛性を大きくすることで、部分的に曲げ応力を高くし、それに伴って曲げ荷重除荷時の残留圧縮応力も大きくすることが可能となる。   The fuel cell manufacturing method described above can achieve the same operations and effects as the previous embodiment. Further, in the fuel cell manufacturing method described above, in the low temperature region B where the temperature is low and the tensile stress is high in the plane of the fuel cell 1, the rigidity of the metal support 5 is increased, thereby partially Accordingly, it is possible to increase the bending stress and to increase the residual compressive stress at the time of unloading the bending load.

〈第5実施形態〉
図6に示す燃料電池セルの製造方法は、金属支持体5の曲げ変形が塑性変形であり、一方の電極層(アノード3)、電解質層4及び他方の電極層(カソード4)を形成した後、金属支持体5を平坦にする。
<Fifth Embodiment>
In the method of manufacturing the fuel cell shown in FIG. 6, after the bending deformation of the metal support 5 is plastic deformation, one electrode layer (anode 3), the electrolyte layer 4 and the other electrode layer (cathode 4) are formed. The metal support 5 is flattened.

すなわち、上記の燃料電池セルの製造方法では、電解質層4及び他方の電極層(カソード4)を形成した後の燃料電池セル1は、図6(A)に示すように、曲面状に変形したままである。そこで、別の手段を用いて燃料電池セル1を平坦にする。なお、先述したように、図面では曲げ変形量を誇張して示しており、実際の曲げ変形量は図示よりも小さい。   That is, in the above fuel cell manufacturing method, the fuel cell 1 after forming the electrolyte layer 4 and the other electrode layer (cathode 4) is deformed into a curved surface as shown in FIG. It remains. Therefore, the fuel cell 1 is flattened using another means. As described above, the amount of bending deformation is exaggerated in the drawings, and the actual amount of bending deformation is smaller than that shown in the drawing.

燃料電池セル1を平坦にするには、図6(B)に示すように、上下に分割されたプレス治具51,52を用いて加圧成形する方法がある。また、湾曲したままの燃料電池セル1を用いて燃料電池を作製し、複数の燃料電池を積層して燃料電池スタックを構成する際に、スタッキングの組み付け面圧で平坦にすることもできる。   In order to make the fuel cell 1 flat, there is a method in which pressure molding is performed using press jigs 51 and 52 that are divided vertically as shown in FIG. 6B. Further, when a fuel cell is manufactured using the fuel cell 1 that is still curved and a fuel cell stack is formed by stacking a plurality of fuel cells, the fuel cell stack can be flattened by an assembly surface pressure of stacking.

上記の燃料電池セルの製造方法では、事前に曲げられた状態においても、アノード3の成膜時の熱膨張差によって金属支持体5には圧縮応力が付与され、アノード3には引張応力が付与された状態となる。したがって、燃料電池セル1を平坦にした段階で、金属支持体5には残留引張応力が、アノード3には残留圧縮応力が付与されるので、結果的には、先の実施形態と同様に、アノード3の耐引張荷重性能や強度信頼性が高めることができる。  In the fuel cell manufacturing method described above, a compressive stress is imparted to the metal support 5 and a tensile stress is imparted to the anode 3 due to the difference in thermal expansion during the film formation of the anode 3 even in a bent state in advance. It will be in the state. Therefore, since the residual tensile stress is applied to the metal support 5 and the residual compressive stress is applied to the anode 3 at the stage where the fuel cell 1 is flattened, as a result, as in the previous embodiment, The tensile load resistance performance and strength reliability of the anode 3 can be improved.

また、燃料電池セル1をスタッキングの組み付け面圧で平坦にする方法を採用した場合には、燃料電池セル1を平坦にする工程が不要になり、製造工数の削減や製造コストの低減などに貢献することができる。   Further, when the method of flattening the fuel cell 1 with the stacking surface pressure of the stacking is adopted, the step of flattening the fuel cell 1 becomes unnecessary, which contributes to reduction of manufacturing man-hours and manufacturing cost. can do.

本発明に係わる燃料電池セルの製造方法は、その構成が上記各実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲において構成の細部を適宜変更することが可能である。また、上記各実施形態では、電解質層やカソードに比べて温度に対する熱膨張率の変化が大きいアノードに、金属支持体5を接合した場合を例示したが、カソード側に金属支持体を接合する場合もあり得る。   The method of manufacturing a fuel cell according to the present invention is not limited to the above embodiments, and the details of the configuration can be changed as appropriate without departing from the gist of the present invention. Further, in each of the above embodiments, the case where the metal support 5 is bonded to the anode having a large change in the coefficient of thermal expansion with respect to the temperature compared to the electrolyte layer and the cathode is illustrated, but the case where the metal support is bonded to the cathode side. There is also a possibility.

1 燃料電池セル
2 電解質層
3 アノード(一方の電極層)
4 カソード(他方の電極層)
5 金属支持体
A 電極層の形成領域
B 低温領域
D 高剛性部
DESCRIPTION OF SYMBOLS 1 Fuel cell 2 Electrolyte layer 3 Anode (one electrode layer)
4 Cathode (the other electrode layer)
5 Metal support A Electrode layer formation area B Low temperature area D High rigidity part

Claims (8)

電解質層を一対の電極層で挟んだ構造を有すると共に、一方の電極層に金属支持体を接合した燃料電池セルを製造するに際し、
金属支持体の少なくとも電極層の形成領域を球面状に曲げ変形させた状態にして、金属支持体の表面に一方の電極層を形成し、その後、電解質層及び他方の電極層を形成することを特徴とする燃料電池セルの製造方法。
In producing a fuel cell having a structure in which an electrolyte layer is sandwiched between a pair of electrode layers and having a metal support bonded to one electrode layer,
Forming at least the electrode layer forming region of the metal support in a spherically deformed state, forming one electrode layer on the surface of the metal support, and thereafter forming the electrolyte layer and the other electrode layer A manufacturing method of a fuel cell characterized by the above.
金属支持体の曲げ変形が弾性変形であることを特徴とする請求項1に記載の燃料電池セルの製造方法。   2. The method of manufacturing a fuel cell according to claim 1, wherein the bending deformation of the metal support is elastic deformation. 金属支持体の曲げ変形が塑性変形であり、一方の電極層、電解質層及び他方の電極層を形成した後、燃料電池セルを平坦にすることを特徴とする請求項1に記載の燃料電池セルの製造方法。   2. The fuel cell according to claim 1, wherein the bending deformation of the metal support is plastic deformation, and the fuel cell is flattened after forming one electrode layer, the electrolyte layer, and the other electrode layer. Manufacturing method. 一方の電極層の熱膨張率が金属支持体の熱膨張率よりも大きく、曲げ変形させた金属支持体の凸面に一方の電極層を形成することを特徴とする請求項1〜3のいずれか1項に記載の燃料電池セルの製造方法。   The thermal expansion coefficient of one electrode layer is larger than the thermal expansion coefficient of the metal support, and one electrode layer is formed on the convex surface of the bent metal support. 2. A method for producing a fuel battery cell according to item 1. 一方の電極層の熱膨張率が金属支持体の熱膨張率よりも小さく、曲げ変形させた金属支持体の凹面に一方の電極層を形成することを特徴とする請求項1〜3のいずれか1項に記載の燃料電池セルの製造方法。   The thermal expansion coefficient of one electrode layer is smaller than the thermal expansion coefficient of the metal support, and one electrode layer is formed on the concave surface of the bent metal support. 2. A method for producing a fuel battery cell according to item 1. 金属支持体を曲げ変形させる際に、全体的に一定の曲率で曲げ変形させることを特徴とする請求項1〜5のいずれか1項に記載の燃料電池セルの製造方法。   The method of manufacturing a fuel cell according to any one of claims 1 to 5, wherein when the metal support is bent and deformed, the metal support is bent and deformed with a constant curvature as a whole. 金属支持体を曲げ変形させる際に、発電時において相対的に低温となる領域の曲率を相対的に小さくして曲げ変形させることを特徴とする請求項1〜5のいずれか1項に記載の燃料電池セルの製造方法。   The bending deformation of the metal support body according to any one of claims 1 to 5, wherein the bending of the metal support is performed by relatively reducing the curvature of a region that is relatively low in temperature during power generation. Manufacturing method of fuel cell. 金属支持体が、発電時において相対的に低温となる領域に対応して、相対的に曲げ剛性の高い高剛性部を有していることを特徴とする請求項1〜5のいずれか1項に記載の燃料電池セルの製造方法。   6. The metal support according to claim 1, wherein the metal support has a high-rigidity portion having a relatively high bending rigidity corresponding to a region where the temperature is relatively low during power generation. The manufacturing method of the fuel cell described in 1.
JP2014214222A 2014-10-21 2014-10-21 Manufacturing method of fuel cell Active JP6443662B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014214222A JP6443662B2 (en) 2014-10-21 2014-10-21 Manufacturing method of fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014214222A JP6443662B2 (en) 2014-10-21 2014-10-21 Manufacturing method of fuel cell

Publications (2)

Publication Number Publication Date
JP2016081821A true JP2016081821A (en) 2016-05-16
JP6443662B2 JP6443662B2 (en) 2018-12-26

Family

ID=55958994

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014214222A Active JP6443662B2 (en) 2014-10-21 2014-10-21 Manufacturing method of fuel cell

Country Status (1)

Country Link
JP (1) JP6443662B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190042894A (en) * 2017-10-17 2019-04-25 주식회사 엘지화학 jig for manufacturing secondary battery
WO2019198372A1 (en) * 2018-04-13 2019-10-17 日産自動車株式会社 Metal-supported cell and method for manufacturing metal-supported cell
JP2020140924A (en) * 2019-03-01 2020-09-03 株式会社デンソー Solid oxide fuel cell stack
JP2020140923A (en) * 2019-03-01 2020-09-03 株式会社デンソー Solid oxide type fuel battery cell stack and method for manufacturing the same
JP2022016758A (en) * 2020-07-13 2022-01-25 株式会社デンソー Solid oxide fuel cell

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08124580A (en) * 1994-10-25 1996-05-17 Mitsubishi Heavy Ind Ltd Coat forming method
JP2003519023A (en) * 1999-12-30 2003-06-17 セラミック・フューエル・セルズ・リミテッド Laminated structure and method for forming the same
JP2006024371A (en) * 2004-07-05 2006-01-26 Tokyo Gas Co Ltd Flat-plate solid oxide fuel cell and its production method
JP2009231209A (en) * 2008-03-25 2009-10-08 Toyota Motor Corp Method of manufacturing fuel cell

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08124580A (en) * 1994-10-25 1996-05-17 Mitsubishi Heavy Ind Ltd Coat forming method
JP2003519023A (en) * 1999-12-30 2003-06-17 セラミック・フューエル・セルズ・リミテッド Laminated structure and method for forming the same
JP2006024371A (en) * 2004-07-05 2006-01-26 Tokyo Gas Co Ltd Flat-plate solid oxide fuel cell and its production method
JP2009231209A (en) * 2008-03-25 2009-10-08 Toyota Motor Corp Method of manufacturing fuel cell

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190042894A (en) * 2017-10-17 2019-04-25 주식회사 엘지화학 jig for manufacturing secondary battery
KR102351243B1 (en) * 2017-10-17 2022-01-17 주식회사 엘지에너지솔루션 jig for manufacturing secondary battery
WO2019198372A1 (en) * 2018-04-13 2019-10-17 日産自動車株式会社 Metal-supported cell and method for manufacturing metal-supported cell
JPWO2019198372A1 (en) * 2018-04-13 2021-04-30 日産自動車株式会社 Manufacturing method of metal support cell and metal support cell
JP7070669B2 (en) 2018-04-13 2022-05-18 日産自動車株式会社 Manufacturing method of metal support cell and metal support cell
JP2020140924A (en) * 2019-03-01 2020-09-03 株式会社デンソー Solid oxide fuel cell stack
JP2020140923A (en) * 2019-03-01 2020-09-03 株式会社デンソー Solid oxide type fuel battery cell stack and method for manufacturing the same
WO2020179222A1 (en) * 2019-03-01 2020-09-10 株式会社デンソー Solid oxide fuel cell stack and method for producing same
JP7147631B2 (en) 2019-03-01 2022-10-05 株式会社デンソー Solid oxide fuel cell stack and manufacturing method thereof
JP2022016758A (en) * 2020-07-13 2022-01-25 株式会社デンソー Solid oxide fuel cell
JP7447715B2 (en) 2020-07-13 2024-03-12 株式会社デンソー solid oxide fuel cell

Also Published As

Publication number Publication date
JP6443662B2 (en) 2018-12-26

Similar Documents

Publication Publication Date Title
JP6443662B2 (en) Manufacturing method of fuel cell
JP2015520480A (en) Method for manufacturing a lithium ion battery module and corresponding lithium ion battery module
KR102197691B1 (en) Pressing Plate Assembly Employed with Flexible Plate and Pressing Device for Battery Cell Comprising the Same
JP2008050222A (en) Ceramic thin plate member
JP5271728B2 (en) Manufacturing method of thin metal plate with irregularities formed
JP7428514B2 (en) Manufacturing method of bonded separator for fuel cells
JP6935784B2 (en) How to manufacture a secondary battery
JP2016143479A (en) Fuel battery gasket
JP6642535B2 (en) Manufacturing method of fuel cell separator
JP5980110B2 (en) Diffusion bonding jig and diffusion bonding method
JP2007141792A (en) Fuel cell and manufacturing method therefor
JP6847401B2 (en) Cell unit
CN110945698B (en) Fuel cell unit
JP5727915B2 (en) Solid oxide fuel cell, solid oxide fuel cell main body, and method for producing solid oxide fuel cell
JP6628166B2 (en) Fuel cell stack
JP5066351B2 (en) Device comprising a ceramic thin plate
JP2008041456A (en) Method of manufacturing separator for fuel cell, and separator for fuel cell
JP2019139966A (en) Method of manufacturing metal molded body
JP2018078003A (en) Method for manufacturing fuel cell
JP2020126757A (en) Manufacturing method for fuel cell separator
JP2019121523A (en) Method of manufacturing fuel cell separator
JP2012246508A (en) Method for producing sintered component
JP2008140745A (en) Membrane electrode assembly manufacturing jig and method
JP6884205B2 (en) Film integrated gasket
JP2021143676A (en) Manufacturing method of gasket

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170804

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180501

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180628

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181101

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181114

R151 Written notification of patent or utility model registration

Ref document number: 6443662

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151