JP2016079826A - 制御装置 - Google Patents

制御装置 Download PDF

Info

Publication number
JP2016079826A
JP2016079826A JP2014209210A JP2014209210A JP2016079826A JP 2016079826 A JP2016079826 A JP 2016079826A JP 2014209210 A JP2014209210 A JP 2014209210A JP 2014209210 A JP2014209210 A JP 2014209210A JP 2016079826 A JP2016079826 A JP 2016079826A
Authority
JP
Japan
Prior art keywords
correction value
air
fuel ratio
electromotive force
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014209210A
Other languages
English (en)
Inventor
福田 圭佑
Keisuke Fukuda
圭佑 福田
若原 啓二
Keiji Wakahara
啓二 若原
崇生 三島
Takao Mishima
崇生 三島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2014209210A priority Critical patent/JP2016079826A/ja
Publication of JP2016079826A publication Critical patent/JP2016079826A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】起電力セルへの電流印加状態において空燃比学習を適正に実施する。【解決手段】O2センサ16は、固体電解質層32と一対の電極33,34とを含むセンサ素子31を有し、エンジンの排気を検出対象として該排気の空燃比に応じた起電力の信号を出力する。マイコン41は、センサ素子31に印加される印加電流の要求値に基づいて定電流回路43による電流印加を実施し、センサ素子31の起電力特性をシフトさせる特性制御手段と、電流印加に伴い生じる要求噴射量のズレ分に相当する要求ズレ補正値を取得する補正値取得手段と、電流印加を実施し、かつ空燃比フィードバック制御を実施している状態で、要求ズレ補正値を用いて燃料噴射量を制御する噴射量制御手段と、要求ズレ補正値による燃料噴射量の補正が実施されている状態で、フィードバック補正値による空燃比学習の実施を許可する空燃比学習手段と、を備える。【選択図】 図2

Description

本発明は、ガスセンサの検出信号により燃料噴射量の制御を実施する制御装置に関するものである。
例えば車両用エンジンでは、同エンジンから排出される排気を検出対象として酸素濃度を検出する起電力出力型のガスセンサ(いわゆるO2センサ)が一般に用いられている。このガスセンサは、排気の空燃比がリッチかリーンかで異なる起電力信号を出力する起電力セルを有するものであり、具体的には、空燃比がリッチであれば約0.9Vの起電力信号を出力し、空燃比がリーンであれば約0Vの起電力信号を出力する。
また、こうしたガスセンサにおいて、固体電解質層を挟む位置に設けられる一対の電極間に電流を流し、それにより当該ガスセンサの起電力特性(出力特性)をリーン側又はリッチ側にシフトさせるようにした技術が提案されている。例えば特許文献1のガスセンサ制御装置では、ガスセンサの起電力特性を変更する変更要求が有ると判定された場合に、その変更要求に基づいて、一対の電極間に印加する定電流の向きを決定するとともに、該決定した向きで定電流が流れるように定電流回路を制御するようにしている。そして、その定電流の供給により、ガスセンサの起電力特性を好適に制御するようにしている。
特開2012−63345号公報
ところで、ガスセンサの検出信号を用いた空燃比フィードバック制御では、検出空燃比と目標空燃比との偏差に基づいてフィードバック補正値が算出されるとともに、そのフィードバック補正値を用いて空燃比学習が実施される。空燃比学習では、燃料噴射弁等の噴射装置の個体差や経時変化等に起因する噴射量のばらつき分が学習値としてメモリに記憶される。
かかる場合、ガスセンサに電流を印加して起電力特性をリーン側又はリッチ側にシフトさせた状態では、燃料の要求量自体が減少又は増加することになるため、その要求量の減少又は増加の反映としてフィードバック補正値が減量側又は増加側にシフトする。このとき、フィードバック補正値に基づいて空燃比学習を実施すると、誤学習を招くおそれが生じる。また、誤学習の防止を図るべく、ガスセンサへの電流印加時には空燃比学習を停止することも考えられるが、かかる構成では、空燃比学習の機会が減るという不都合が考えられる。
本発明は上記事情を鑑みてなされたものであり、その主たる目的は、起電力セルへの電流印加状態において空燃比学習を適正に実施することができる制御装置を提供することにある。
本発明の制御装置は、固体電解質体(32)と、該固体電解質体を挟む位置に設けられる一対の電極(33,34)とを含む起電力セル(31)を有し、内燃機関(10)の排気を検出対象として該排気の空燃比に応じた起電力の信号を出力するガスセンサ(16)に適用され、前記ガスセンサの検出信号から求めた実空燃比と目標値との偏差に基づいてフィードバック補正値を算出するとともに、そのフィードバック補正値により、燃料噴射手段(12)による燃料噴射量の空燃比フィードバック制御を実施するものである。また、前記起電力セルの前記一対の電極間に対しては通電手段(43)による所定電流の印加が可能になっている。そして、制御装置は、前記起電力セルに印加される印加電流の要求値に基づいて前記通電手段による電流印加を実施し、前記起電力セルの起電力特性をシフトさせる特性制御手段と、前記通電手段による電流印加に伴い生じる要求噴射量のズレ分に相当する要求ズレ補正値を取得する補正値取得手段と、前記通電手段による電流印加を実施し、かつ前記空燃比フィードバック制御を実施している状態で、前記補正値取得手段により取得した要求ズレ補正値を用いて前記燃料噴射量を制御する噴射量制御手段と、前記噴射量制御手段において前記要求ズレ補正値による燃料噴射量の補正が実施されている状態で、前記フィードバック補正値による空燃比学習の実施を許可する空燃比学習手段と、を備えることを特徴とする。
起電力セルに電流を印加し起電力特性(λ変曲点)をシフトさせた状態で空燃比フィードバック制御を実施する場合、起電力特性をシフトさせない状態と比べて、燃料噴射量の総量が減る又は増えるためにフィードバック補正値の数値レベルが変わるのに対し、センサ検出信号のリッチ/リーン変化に基づくフィードバック補正値の増減変動自体は概ね同等なものとなる。この場合、電流印加に伴い生じる要求噴射量のズレ分に相当する要求ズレ補正値を求めておき、その要求ズレ補正値により噴射量補正を実施すれば、フィードバック補正値を、電流印加していない状態と同等レベルで増減変化させることができるようになる。ゆえに、起電力セルの起電力特性をシフトさせた状態にあっても、フィードバック補正値による空燃比学習の実施が可能となる。
こうした着想に基づいて、上記構成では、通電手段による電流印加を実施し、かつ空燃比フィードバック制御を実施している状態で、要求ズレ補正値(電流印加に伴い生じる要求噴射量のズレ分に相当する補正値)を用いて燃料噴射量を制御し、かかる状態下でフィードバック補正値による空燃比学習の実施を許可するようにした。これにより、起電力セルへの電流印加の有無に関係なく、空燃比学習の実施機会が減じられることを抑制できる。その結果、起電力セルへの電流印加状態において空燃比学習を適正に実施することができる。
エンジン制御システムの全体を示す概略構成図。 センサ素子の断面構成とセンサ制御部の概略構成とを示す図。 空燃比とセンサ素子の起電力との関係を示す起電力特性図。 センサ素子の限界電流特性を示す図。 センサ素子におけるガス成分の反応を説明するための概略図。 センサ素子の印加電流と特性変曲点のA/Fとの関係を示す図。 空燃比とセンサ素子の起電力との関係を示す起電力特性図。 特性シフトの処理手順を示すフローチャート。 燃料噴射量制御の処理手順を示すフローチャート。 要求ズレ補正値Feを算出する処理手順を示すフローチャート。 起電力特性の要求シフト量と印加電流との相関を示す図。 印加電流と要求ズレ補正値Feとの相関を示す図。 起電力特性をリーンシフトさせた状態での燃料噴射量制御について具体的に説明するためのタイムチャート。 要求ズレ補正値Feの算出について具体的に説明するためのタイムチャート。
(第1実施形態)
以下、本発明を具体化した実施形態について図面を参照しつつ説明する。本実施形態では、車載エンジン(内燃機関)の排気管に設けられたガスセンサを用い、そのガスセンサの出力に基づいてエンジンの各種制御等を実施するエンジン制御システムについて説明する。当該制御システムにおいては、電子制御ユニット(以下、ECUという)を中枢として燃料噴射量の制御や点火時期の制御等を実施する。図1は、本システムの全体概要を示す構成図である。
図1において、エンジン10は、例えばガソリンエンジンであり、電子制御式のスロットルバルブ11や、燃料噴射弁12、点火装置13等を備えている。エンジン10の排気管14(排気部)には排気浄化装置としての触媒15a,15bが設けられている。触媒15a,15bは、例えばいずれも三元触媒よりなり、そのうち触媒15aが上流側触媒としての第1触媒、触媒15bが下流側触媒としての第2触媒である。三元触媒は、周知のとおり排気の有害三成分であるCO(一酸化炭素)、HC(炭化水素)、NOx(NO等の窒素酸化物)を浄化するものであり、ハニカム状、格子状等をなすセラミックス製の担体に白金、パラジウム、ロジウム等の金属を担持させることで構成されている。この場合、三元触媒ではリッチ成分であるCO、HCが酸化作用により浄化され、リーン成分であるNOxが還元作用により浄化される。
第1触媒15aの上流側と、触媒15a,15bの間(第1触媒15aの下流側でかつ第2触媒15bの上流側)とにはそれぞれO2センサ16,17が設けられている。O2センサ16,17は、排気の空燃比がリッチかリーンかに応じて異なる起電力信号を出力する。
その他、本システムには、スロットルバルブ11の開度を検出するスロットル開度センサ21や、エンジンの所定クランク角毎に(例えば30°CA周期で)矩形状のクランク角信号を出力するクランク角センサ22、エンジン10の吸入空気量を検出する空気量センサ23、エンジン冷却水の温度を検出する冷却水温センサ24等の各種センサが設けられている。
ECU25は、周知のCPU、ROM、RAM等よりなるマイクロコンピュータ(マイコン)を主体として構成されており、ROMに記憶された各種の制御プログラムを実行することで、都度のエンジン運転状態に応じてエンジン10の各種制御を実施する。すなわち、ECU25は、上記各種センサ等から各々信号を入力し、それらの各種信号に基づいて燃料噴射量や点火時期を演算して燃料噴射弁12や点火装置13の駆動を制御する。
特に燃料噴射量制御に関して、ECU25は、第1触媒上流側及び下流側のO2センサ16,17の検出信号に基づいて空燃比フィードバック制御を実施することとしている。この場合、ECU25は、上流側O2センサ16により検出されたフロント空燃比が目標空燃比(例えば理論空燃比)になるようにメインフィードバック制御を実施するとともに、フロント空燃比がリッチ又はリーンに変化してから実際にリッチ判定又はリーン判定がなされるまでの遅延時間を、下流側O2センサ17により検出されたリア空燃比に基づいて可変に設定するサブフィードバック制御を実施する。このメインフィードバック制御及びサブフィードバック制御を以下に簡単に説明する。
ECU25は、上流側O2センサ16の出力値V1(フロント空燃比に相当)が基準値(例えば0.45V)よりもリッチになってからリッチ遅延時間が経過した時点で、空燃比がリッチになったとのリッチ判定を行い、V1が基準値よりもリーンになってからリーン遅延時間が経過した時点で、空燃比がリーンになったとのリーン判定を行う。そして、ECU25は、リッチ/リーンの判定結果に基づいて、スキップ及び積分によりフィードバック補正値(噴射補正値)を増減させ、そのフィードバック補正値により燃料噴射量を補正する。かかる制御がメインフィードバック制御に該当する。また、ECU25は、サブフィードバック制御として、下流側O2センサ17の出力値V2(リア空燃比に相当)がリッチかリーンかに応じてリッチ遅延時間及びリーン遅延時間を可変に制御する。この場合、出力値V2が基準値よりも大きければ(リア空燃比がリッチであれば)、リッチ遅延時間の短縮、及びリーン遅延時間の延長のうち少なくともいずれかを実施する。また、出力値V2が基準値よりも小さければ(リア空燃比がリーンであれば)、リッチ遅延時間の延長及びリーン遅延時間の短縮の少なくともいずれかを実施する。
また、空燃比フィードバック制御の実施に際しては空燃比学習を実施することとしており、フィードバック補正値に基づいて空燃比学習値を算出し、その空燃比学習値をEEPROM等、バックアップ用のメモリに記憶する。この場合、エンジン回転速度やエンジン負荷により区分した複数の運転領域が定められており、その運転領域ごとに空燃比学習値の算出及び記憶が実施されるようになっている。空燃比学習においては、噴射装置の個体差や経年変化等に起因する定常的なフィードバック補正値のズレが算出され、それが空燃比補正値として記憶される。
次に、O2センサ16,17についてその構成を説明する。O2センサ16,17はいずれも同様の基本構成を有するものであるが、ここでは特にO2センサ16について説明する。O2センサ16はコップ型構造のセンサ素子31を有しており、図2にはセンサ素子31の断面構成を示す。実際には当該センサ素子31は素子全体がハウジングや素子カバー内に収容される構成となっており、エンジン排気管内に配設されている。センサ素子31が起電力セルに相当する。
センサ素子31において、固体電解質層32は断面コップ状に形成されており、その外表面には排気側電極33が設けられ、内表面には大気側電極34が設けられている。これら各電極33,34は固体電解質層32の表面に層状に設けられている。固体電解質層32は、ZrO2、HfO2、ThO2、Bi2O3等にCaO、MgO、Y2O3、Yb2O3等を安定剤として固溶させた酸素イオン伝導性酸化物焼結体からなる。また、各電極33,34は共に白金等の触媒活性の高い貴金属からなり、その表面には多孔質の化学メッキ等が施されている。各電極33,34が一対の対向電極(センサ電極)となっている。固体電解質層32にて囲まれる内部空間は、基準ガスである大気が導入される大気室35(基準室)となっており、その大気室35内にはヒータ36が収容されている。ヒータ36は、センサ素子31を活性化するに十分な発熱容量を有しており、その発熱エネルギによりセンサ素子全体が加熱される。O2センサ16の活性温度は、例えば500〜650℃程度である。なお、大気室35は、基準ガスとしての大気が導入されることでその内部が所定酸素濃度に保持されている。
上記センサ素子31では、固体電解質層32の外側(電極33側)が排気雰囲気、同内側(電極34側)が大気雰囲気となっており、これら双方の酸素濃度の差(酸素分圧の差)に応じて電極33,34間で起電力が発生する。つまり、空燃比がリッチかリーンかで異なる起電力が発生する。この場合、基準側電極である大気側電極34からすれば、排気側電極33の側は酸素が低濃度であり、センサ素子31において大気側電極34を正側、排気側電極33を負側として起電力が発生する。これにより、O2センサ16は、排気の酸素濃度(すなわち空燃比)に応じた起電力信号を出力する。
図3は、排気の空燃比とセンサ素子31の起電力との関係を示す起電力特性図である。図3において、横軸は空気過剰率λであり、λ=1がストイキ(理論空燃比)である。センサ素子31は、空燃比がリッチかリーンかで異なる起電力を発生し、ストイキ付近で起電力が急変する特性を有する。具体的には、リッチ時のセンサ起電力は約0.9Vであり、リーン時のセンサ起電力は約0Vである。
また、本実施形態のO2センサ16においては、一般的なO2センサに対して構成の一部を変更しており、図2に示すセンサ素子31では、固体電解質層32の排気側及び大気側のうち排気側に、排気の拡散を制限するガス拡散抵抗層37が設けられている。ガス拡散抵抗層37は、アルミナ、スピネル、ジルコニア等の多孔質体よりなり、排気側電極33を覆うようにしてセンサ素子31の外表面に設けられている。これにより、排気は、所定の透過率でガス拡散抵抗層37を通過して排気側電極33に到達するものとなっている。
上記構成のセンサ素子31は、基本的には起電力出力を行う起電力セルであるものの、一対の電極33,34間に電圧を印加することで酸素濃度に応じた限界電流を出力する限界電流特性を有するものとなっている。そして詳しくは、ガス拡散抵抗層37の形態(例えば層厚さやピンホール径)に応じて、限界電流出力が可能なA/F域(酸素濃度域)が変わり、例えばガス拡散抵抗層37の厚さが大きくなるほど、限界電流出力が可能なA/Fがリーン側に拡張されるようになっている。具体的には、図4(a)に示すように、ガス拡散抵抗層37の厚さが100μmの場合には、A/F=15をリーン側の最大値として限界電流の出力が可能となる。図4(b)に示すように、ガス拡散抵抗層37の厚さが200μmの場合には、A/F=16をリーン側の最大値として限界電流の出力が可能となる。また、図4(c)に示すように、ガス拡散抵抗層37の厚さが300μmの場合には、A/F=18をリーン側の最大値として限界電流の出力が可能となる。
また、図2に示すように、センサ素子31(O2センサ16)にはセンサ制御部40が接続されており、排気の空燃比(酸素濃度)に応じてセンサ素子31にて起電力が発生すると、その起電力に相当するセンサ検出信号(起電力信号)がセンサ制御部40内のマイコン41に対して出力される。マイコン41は、センサ素子31から出力される起電力信号をA/D変換器等を介して取り込み、その起電力信号に基づいて排気の空燃比(特に触媒下流の空燃比)を算出する。センサ制御部40は、図1に示すECU25内に設けられている。なお、ECU25においては、エンジン制御機能とセンサ制御機能とを有する演算手段としてマイコン41が設けられている。この場合、マイコン41は、上述した各種センサの検出結果に基づいて、エンジン回転速度や吸入空気量を算出する。ただし、ECU25において、エンジン制御用のマイコンとセンサ制御用のマイコンとが別々に設けられる構成であってもよい。
また、マイコン41は、センサ素子31の活性状態の判定を行うとともに、その判定結果に基づき、ヒータ駆動回路42を通じてヒータ36の駆動を制御する。
また本実施形態では、O2センサ16の出力特性(起電力特性)を変更すべく、センサ素子31において一対の電極33,34の間に所定の定電流を供給する構成(酸素ポンピングを実施する構成)としており、その出力特性の変更により空燃比フィードバック制御における制御性の向上を図るようにしている。排気側→大気側の向きに定電流を流した場合においてセンサ出力特性が変更される原理は以下のとおりである。
図5に示すように、O2センサ16の排気側電極33の付近には、CO、HC、NOx、O2がそれぞれ存在しており、その状況下で、固体電解質層32を通じて大気側電極34から排気側電極33に酸素イオンが移動するように、センサ素子31に電流を流す。すなわち、センサ素子31において酸素ポンピングを実施する。この場合、排気側電極33では、固体電解質層32を通じて排気側電極33の側に移動した酸素がCO、HCと反応し、CO2やH2Oが生成される。これにより、排気側電極33の付近におけるCO、HCが除去され、O2センサ16の排気側電極付近におけるガス反応の平衡点がリッチ側にシフトする。つまり、空気過剰率λと起電力との関係を示すセンサ起電力特性が全体的にリッチ側にシフトし、それに伴い、起電力がストイキ値(0.45V)となるλ点、すなわちリッチ/リーン変曲点がリッチ側にシフトする。
図2に示すように、センサ制御部40においては、センサ素子31の大気側電極34とマイコン41とを電気的に接続する電気経路の途中に通電手段としての定電流回路43が接続されている。定電流回路43は、センサ素子31において固体電解質層32を通じて排気側電極33から大気側電極34の向き、及び大気側電極34から排気側電極33の向きの少なくともいずれかで定電流を流すことを可能とするものである。また、定電流回路43は、PWM駆動部を有し、PWM制御(デューティ制御)による電流調整が可能となる構成であってもよい。この場合、定電流回路43によれば、センサ素子31において固体電解質層32を通じて排気側→大気側の向き、又は大気側→排気側の向きのいずれかで電流が流れることになり、それに伴い固体電解質層32において酸素イオンが移動する。本実施形態では、マイコン41の指令に基づいて定電流回路43が定電流の供給を行うようにしている。
ここで、上記のとおりガス拡散抵抗層37を有するセンサ素子31では、定電流を供給することによる起電力特性のシフト量の拡張が可能となっている。つまり、起電力特性のリーンシフト量及びリッチシフト量の拡張が可能となっている。これを図4で説明した事項と照らし合わせると、以下のとおりである。
図4(a)のようにガス拡散抵抗層37の厚さを100μmにして、A/F=15までの限界電流出力を可能とした場合には、センサ素子31に定電流を流すことによって、リッチ/リーンの変曲点がA/F=15になるように起電力特性をリーンシフトさせることが可能となる。図4(b)のようにガス拡散抵抗層37の厚さを200μmにして、A/F=16までの限界電流出力を可能とした場合には、センサ素子31に定電流を流すことによって、リッチ/リーンの変曲点がA/F=16になるように起電力特性をリーンシフトさせることが可能となる。また、図4(c)のようにガス拡散抵抗層37の厚さを300μmにして、A/F=18までの限界電流出力を可能とした場合には、センサ素子31に定電流を流すことによって、リッチ/リーンの変曲点がA/F=18になるように起電力特性をリーンシフトさせることが可能となる。
また、センサ素子31では、ガス拡散抵抗層37の厚さを大きくすることで、シフト量を大きくできることに加え、印加電流を大きくすることで、シフト量を大きくできることが確認されている。図6には、センサ素子31の印加電流と、起電力特性をシフトさせた状態での特性変曲点のA/Fとの関係を示す。なお、図6では、ガス拡散抵抗層37の厚さを100μm、200μm、300μmとする場合について印加電流と特性変曲点のA/Fとの関係を示している。
図6によれば、リッチ/リーンの変曲点がA/F=15となるようにリーンシフトさせる場合において、ガス拡散抵抗層37の厚さが300μmであれば印加電流を2.5mA程度とし、ガス拡散抵抗層37の厚さが200μmであれば印加電流を3.4mA程度とし、ガス拡散抵抗層37の厚さが100μmであれば印加電流を5.8mA程度とすればよいことが分かる。
触媒上流側に設けられたO2センサ16では、触媒下流側のO2センサ17に比べて、起電力特性のリッチシフト又はリーンシフトとして要求されるシフト量が大きくなる。また一方で、起電力出力を可能とし、かつ固体電解質層32の排気側にガス拡散抵抗層37を有するセンサ素子31では、所定の電圧印加状態下での限界電流出力が可能となっており、こうした構成を採用することで、起電力特性のシフト量を拡張することが可能となる。かかる場合、ガス拡散抵抗層37を有するセンサ素子31を用いることで、起電力特性のリッチシフト又はリーンシフトの要求量が大きくなっても好適なる対処が可能となっている。
センサ素子31に定電流を供給する場合には、起電力特性の電圧レベルを詳細に示すと、図7のように起電力特性がシフトすると考えられる。つまり、センサ素子31の一対の電極33,34の間において排気側→大気側の向きに定電流を流すと(負の電流を印加すると)、センサ素子31の起電力特性がリッチ側にシフトし、逆に、一対の電極33,34の間において大気側→排気側の向きに定電流を流すと(正の電流を印加すると)、センサ素子31の起電力特性がリーン側にシフトする。この場合、上述のとおりガス拡散抵抗層37を有するセンサ素子31では、起電力特性(λ)をリッチ側及びリーン側に最大20%ほど(例えば3〜10%ほど)シフトさせることが可能となる。
ところで、センサ素子31に電流を印加し起電力特性(λ変曲点)をシフトさせた状態で空燃比フィードバック制御を実施する場合、燃料の要求量自体が減少又は増加することになるために、その要求量の減少又は増加の反映としてフィードバック補正値FAFが減量側又は増加側にシフトする。このとき、フィードバック補正値FAFに基づいて空燃比学習を実施すると、誤学習を招くおそれが生じる。
そこで本実施形態では、センサ素子31への電流印加を実施し、かつ空燃比フィードバック制御を実施している状態で、電流印加に伴い生じる要求噴射量のズレ分に相当する要求ズレ補正値Feを用いて燃料噴射量を制御し、かかる状態下で、フィードバック補正値FAFに基づいて空燃比学習を実施することとしている。また特に、センサ素子31への電流印加を実施している状態下において、その電流印加に伴い生じたフィードバック補正値FAFの減量側又は増量側のズレ分を解消するようにして、要求ズレ補正値Feを算出することとしている。
次に、マイコン41により実施される演算処理について詳しく説明する。図8は、特性シフトの処理手順を示すフローチャートであり、図9は、燃料噴射量制御の処理手順を示すフローチャートであり、図10は、要求ズレ補正値Feを算出する処理手順を示すフローチャートである。これら各処理は、マイコン41により所定周期で繰り返し実施される。
図8において、ステップS11では、センサ素子31について起電力特性(λ変曲点)をシフトする要求の有無を判定し、要求有りの場合に後続のステップS12に進む。本実施形態では、起電力特性をリーンシフトさせる場合とリッチシフトさせる場合とをそれぞれ想定しており、都度のエンジン運転状態に基づいて、リーンシフト及びリッチシフトのいずれかの要求が生じているか否かを判定する。例えば、エンジン10の冷間始動時や、燃費向上を図るべく低燃費走行を実施する際には、リーンシフトの要求が生じていると判定され、高負荷時において触媒等の保護のための高負荷増量を実施する際には、リッチシフトの要求が生じていると判定される。なお、要求無しの場合には、そのまま本処理を終了する。
ステップS12では、今回の特性シフトにおける要求シフト量を設定する。このとき、今現在のエンジン運転状態に基づいてリーンシフト側又はリッチシフト側のλシフト量を要求シフト量として設定する。続くステップS13では、要求シフト量に基づいて印加電流の値を決定する。ここで、図11に示すように、起電力特性の要求シフト量と印加電流との相関はあらかじめ定められており、その相関に基づいて印加電流の値が求められる。
その後、ステップS14では、定電流回路43に対して電流印加の指令信号を出力し、ステップS13で決定した印加電流を、定電流として定電流回路43から供給させるようにする。
次に、図9において、ステップS21では、エンジン回転速度やエンジン負荷、空燃比、水温、バッテリ電圧等のエンジン運転状態を取得し、続くステップS22では、エンジン回転速度とエンジン負荷とに基づいて基本噴射量Tpを算出する。このとき、エンジン回転速度及びエンジン負荷をパラメータとする基本噴射量マップがあらかじめ定められており、マイコン41は、基本噴射量マップを用いて基本噴射量Tpを算出する。
その後、ステップS23では、今現在、センサ素子31に対して電流が印加されていて起電力特性がシフトされているか否かを判定する。そして、特性シフトの実施中であればステップS24に進み、特性シフトの実施中でなければステップS24を読み飛ばす。
ステップS24では、今現在の印加電流(要求シフト量)に対応する要求ズレ補正値Feを取得する。このとき、要求ズレ補正値Feは、印加電流に対応づけてメモリに記憶されており、都度の印加電流の大きさに応じてメモリから要求ズレ補正値Feが読み出される。なお、図12には、印加電流と要求ズレ補正値Feとの相関を示しており、同図においては、印加電流が0である場合にFe=1であり、正の印加電流が大きくなるほどFeを1に対して小さくする一方、負の印加電流が大きくなるほどFeを1に対して大きくするような関係が定められている。要するに、リーンシフトさせる場合には、要求ズレ補正値Feとして減量補正値が取得され、リッチシフトさせる場合には、要求ズレ補正値Feとして増量補正値が取得されるようになっている。
その後、ステップS25では、要求ズレ補正値Fe以外の各種補正値を取得する。具体的には、空燃比補正を実施するためのフィードバック補正値FAFや、水温補正を実施するための水温補正値、バッテリ電圧補正を実施するための電圧補正値等を取得する。
その後、ステップS26では、下記の式(1)を用い、基本噴射量Tpやフィードバック補正値FAF、要求ズレ補正値Fe、他補正値Fh(水温補正値等)に基づいて最終噴射量TAUを算出する。なお、センサ素子31に対して電流を印加していない状況ではFe=1である。
TAU=Tp×FAF×Fe×Fh …(1)
その後、ステップS27では、最終噴射量TAUに基づいて噴射信号を生成し、その噴射信号を噴射装置に対して出力する。
最後に、ステップS28では、フィードバック補正値FAFに基づいて空燃比学習を実施する。具体的には、今現在のエンジン運転領域において空燃比学習が未実施であるか否かを判定し、未実施であれば、フィードバック補正値FAFに基づいて学習値を算出し、その学習値をメモリに記憶する。このとき、燃料噴射弁12等の噴射装置に関する個体差や経時変化に起因するフィードバックズレ分が生じていれば、FAFに基づいて学習値の更新が実施される。なお本実施形態では、例えば車両の1トリップに1回の頻度で各運転領域の空燃比学習を実施することとしている。
上記図9では、センサ素子31に対して電流印加を実施し、かつ空燃比フィードバック制御を実施している状態で、要求ズレ補正値Feを用いて燃料噴射量が制御され、その要求ズレ補正値Feによる噴射量補正が実施されている状態で、フィードバック補正値FAFによる空燃比学習の実施が許可されている。
次に、図10において、ステップS31では、今現在、空燃比フィードバック制御を実施しているか否かを判定し、続くステップS32では、今現在、起電力特性をシフトさせる特性シフトの実施中であるか否かを判定する。そして、ステップS31,S32が共にYESであれば後続のステップS33に進み、いずれかがNOであればそのまま本処理を終了する。
ステップS33では、特性シフトが実施されている状態下でのフィードバック補正値の平均値FAFavを取得する。このとき、平均値FAFavはFAFの移動平均、なまし演算、積分演算等、周知の手法にて求められているとよい。平均値FAFavは、FAFの変動中心の値に相当する。
続くステップS34では、ステップS33で取得したFAFavが、電流印加をしていない状態でのFAFavの基準値である1に略一致しているか否か(FAFav≒1であるか否か)を判定する。具体的には、FAFavが、1付近の所定範囲内に入っているか否かを判定する。そして、ステップS34がNOであればステップS35に進み、YESであればステップS40に進む。
ステップS35では、空燃比学習を禁止する。また、続くステップS36〜S39では、特性シフト(センサ素子31への電流印加)に伴い生じる要求噴射量のズレ分に相当する要求ズレ補正値Feの算出を実施する。詳しくは、ステップS36では、要求ズレ補正値Feの更新条件が成立しているか否かを判定する。ここでは、センサ素子31への電流印加の開始から所定時間が経過した場合に、更新条件が成立したとする。なお、この所定時間は、センサ素子31への電流印加の開始後においてFAFの変化の収束を待つ待ち時間である。
ステップS36がYESになると、ステップS37に進み、FAFavが1未満であるか否かを判定する。そして、FAFav<1であれば、ステップS38に進み、現時点の要求ズレ補正値Feに対して所定値αを減算する。このとき、FAFav<1であることは、フィードバック補正値FAFが減量側にシフトしていることを意味し、かかる状況では要求ズレ補正値Feを減量側の値にすべく小さくしていく。要求ズレ補正値Feの減算は、ステップS34がYESになるまで繰り返し実施される。
また、FAFav>1であれば、ステップS39に進み、現時点の要求ズレ補正値Feに対して所定値αを加算する。このとき、FAFav>1であることは、フィードバック補正値FAFが増量側にシフトしていることを意味し、かかる状況では要求ズレ補正値Feを増量側の値にすべく大きくしていく。要求ズレ補正値Feの加算は、ステップS34がYESになるまで繰り返し実施される。要するに、ステップS38,S39では、フィードバック補正値FAFの変動中心が基準値(=1)と同じ値になっていないと判定されている状況下において、所定の増量幅又は減量幅で更新しつつ要求ズレ補正値Feを算出する。
また、ステップS40では、空燃比学習の実施を許可する。ステップS41では、ステップS38,S39で算出した要求ズレ補正値Feをメモリに記憶する。このとき、今回の印加電流に対応づけて要求ズレ補正値Feを記憶する。
図13は、起電力特性をリーンシフトさせた状態での燃料噴射量制御について具体的に説明するためのタイムチャートである。
図13において、タイミングt1以前には、λ=1を目標λとしてストイキフィードバック制御が実施されており、フィードバック補正値FAFは1又は1付近を変動中心として変動している(FAFav≒1となっている)。そして、タイミングt1で起電力特性をリーンシフトする要求が生じると、ストイキフィードバック制御からリーンフィードバック制御への切り替えが実施される。このとき、センサ素子31の印加電流として正の電流が設定され、その設定値による電流印加が開始される。また、タイミングt1では、要求ズレ補正値Feが1未満の値として設定され、燃料噴射量に対して要求ズレ補正値Feによる補正が実施される。
ここで、センサ素子31の起電力特性がリーンシフトされることで、目標λがリーン化され、総噴射量が減量側に変化するが、要求ズレ補正値Feによる補正が実施されることで、フィードバック補正値FAFは一定レベルの変動のまま保持される。したがって、タイミングt1以降においても、空燃比学習の実施が許可され、必要に応じて空燃比学習が実施されるようになっている。
図14は、要求ズレ補正値Feの算出について具体的に説明するためのタイムチャートである。図14では、図13と同様に、タイミングt11で起電力特性のリーンシフトが実施されている。なお、タイミングt11以前においては要求ズレ補正値Feを1としている。
さて、タイミングt11で起電力特性がリーンシフトされると、フィードバック補正値FAFが減量側に一気に変化し、タイミングt11以降において、減量側の値を変動中心としてフィードバック補正値FAFが変動する(FAFav<1となっている)。タイミングt11では空燃比学習が禁止される。
そして、タイミングt11から所定時間が経過したタイミングt12では、要求ズレ補正値Feの更新が開始される。この場合、FAFav<1であることから、要求ズレ補正値Feが所定周期でαずつ減算される。そしてその後、FAFavが1に収束すると要求ズレ補正値Feが確定される(タイミングt13)。タイミングt13では空燃比学習の実施が許可される。
以上詳述した本実施形態によれば、以下の優れた効果が得られる。
センサ素子31に電流を印加し起電力特性(λ変曲点)をシフトさせた状態で空燃比フィードバック制御を実施する場合、起電力特性をシフトさせない状態と比べて、燃料噴射量の総量が減る又は増えるためにフィードバック補正値FAFの数値レベルが変わるのに対し、センサ検出信号のリッチ/リーン変化に基づくフィードバック補正値FAFの増減変動自体は概ね同等なものとなる。この場合、電流印加に伴い生じる要求噴射量のズレ分に相当する要求ズレ補正値Feを求めておき、その要求ズレ補正値Feにより噴射量補正を実施すれば、フィードバック補正値FAFを、電流印加していない状態と同等レベルで増減変化させることができるようになる。ゆえに、センサ素子31の起電力特性をシフトさせた状態にあっても、フィードバック補正値FAFによる空燃比学習の実施が可能となる。
こうした着想に基づいて、本実施形態では、センサ素子31への電流印加を実施し、かつ空燃比フィードバック制御を実施している状態で、要求ズレ補正値Feを用いて燃料噴射量を制御し、かかる状態下でフィードバック補正値FAFによる空燃比学習の実施を許可するようにした。これにより、センサ素子31への電流印加の有無に関係なく、空燃比学習の実施機会が減じられることを抑制できる。その結果、センサ素子31への電流印加状態において空燃比学習を適正に実施することができる。
起電力特性のリーンシフト時には、ストイキ制御時に比べて基本噴射量(フィードフォワード噴射量)の減量が見込まれ、リッチシフト時には、ストイキ制御時に比べて基本噴射量の増量が見込まれる。この点、リーンシフト時には要求ズレ補正値Feを減量補正値とし、リッチシフト時には要求ズレ補正値Feを増量補正値とする構成にしたため、起電力特性をシフトさせた状態で適正な噴射量補正を実施できる。
センサ素子31への電流印加を行う場合には、印加電流に応じて、空燃比フィードバック制御でのフィードバック補正値FAFが減量側又は増量側に変化する。この場合、そのFAF変化分に相当する補正量を把握すれば、要求ズレ補正値Feを求めることができる。上記構成では、センサ素子31への電流印加を実施し、かつ空燃比フィードバック制御を実施する状態において、FAFav(FAFの変動中心に相当)を、電流印加を実施していない状態での基準値(=1)と同じ値にするのに要する補正値を求めることで、要求ズレ補正値Feを算出するようにした。この場合、都度の印加電流の大きさに見合う要求ズレ補正値Feを適正に算出できる。
センサ素子31への電流印加の開始後(特性シフトの開始後)において、FAFav(FAFの変動中心)が1に収束したか否かを判定しつつ、要求ズレ補正値Feの更新を行う構成とした。これにより、FAFavの変化を監視しながら要求ズレ補正値Feを適正に算出できる。
要求ズレ補正値Feの算出に際して、センサ素子31への電流印加の開始に伴い空燃比学習の実施を禁止するとともに、その開始後において、FAFavが1に収束することにより要求ズレ補正値Feの算出が完了した時点で、空燃比学習の実施を許可する構成とした。これにより、要求ズレ補正値Feが確定していない状態で空燃比学習が誤って実施されることを抑制できる。
(他の実施形態)
上記実施形態を例えば次のように変更してもよい。
・印加電流の要求値又は起電力特性の要求シフト量と、要求ズレ補正値Feとの相関をあらかじめ定めておき、その相関に基づいて要求ズレ補正値Feを取得する構成としてもよい。つまり、図9のステップS24では、図12の関係を用い、都度の印加電流(要求シフト量)に基づいて要求ズレ補正値Feを取得する。なお、あらかじめ定められた図12の相関に対して、図10の処理により要求ズレ補正値Feを更新する構成としてもよい。
・要求ズレ補正値Feは、基本噴射量Tpに乗算される補正係数として付与される以外に、基本噴射量Tpに対して加算又は減算される補正量として付与されるものであってもよい。
・ガス拡散抵抗部を有するO2センサとして、所定厚さのガス拡散抵抗層を有する構成に代えて、所定径のピンホールを有する構成であってもよい。
・ガスセンサは、上記構成のO2センサ以外に、起電力セルとポンプセルとを備える、いわゆる2セル構造のガスセンサであってもよい。この場合、2セル式ガスセンサの起電力セルについても起電力特性を好適に変更できるとともに、適正なる空燃比検出を実現できるものとなる。また、起電力セル(センサ素子)として、コップ型構造のもの以外に、積層型構造のものを用いることも可能である。
10…エンジン(内燃機関)、16…O2センサ(ガスセンサ)、31…センサ素子(起電力セル)、32…固体電解質層、33…排気側電極、34…大気側電極、41…マイコン(特性制御手段、補正値取得手段、噴射量制御手段、空燃比学習手段)、43…定電流回路(通電手段)。

Claims (6)

  1. 固体電解質体(32)と、該固体電解質体を挟む位置に設けられる一対の電極(33,34)とを含む起電力セル(31)を有し、内燃機関(10)の排気を検出対象として該排気の空燃比に応じた起電力の信号を出力するガスセンサ(16)に適用され、前記ガスセンサの検出信号から求めた実空燃比と目標値との偏差に基づいてフィードバック補正値を算出するとともに、そのフィードバック補正値により、燃料噴射手段(12)による燃料噴射量の空燃比フィードバック制御を実施する制御装置(41)であって、
    前記起電力セルの前記一対の電極間に対して通電手段(43)による所定電流の印加が可能になっており、
    前記起電力セルに印加される印加電流の要求値に基づいて前記通電手段による電流印加を実施し、前記起電力セルの起電力特性をシフトさせる特性制御手段と、
    前記通電手段による電流印加に伴い生じる要求噴射量のズレ分に相当する要求ズレ補正値を取得する補正値取得手段と、
    前記通電手段による電流印加を実施し、かつ前記空燃比フィードバック制御を実施している状態で、前記補正値取得手段により取得した要求ズレ補正値を用いて前記燃料噴射量を制御する噴射量制御手段と、
    前記噴射量制御手段において前記要求ズレ補正値による燃料噴射量の補正が実施されている状態で、前記フィードバック補正値による空燃比学習の実施を許可する空燃比学習手段と、
    を備えることを特徴とする制御装置。
  2. 前記補正値取得手段は、前記起電力特性をストイキ点よりもリーン側にシフトさせる場合に、前記要求ズレ補正値として、前記要求噴射量の減量側へのズレに対応する減量補正値を取得し、前記起電力特性をストイキ点よりもリッチ側にシフトさせる場合に、前記要求ズレ補正値として、前記要求噴射量の増量側へのズレに対応する増量補正値を取得するものである請求項1に記載の制御装置。
  3. 前記通電手段による電流印加を実施し、かつ前記空燃比フィードバック制御を実施する状態において、前記フィードバック補正値の変動中心を、前記電流印加を実施していない状態での基準値と同じ値にするのに要する補正値として前記要求ズレ補正値を算出する補正値算出手段を備え、
    前記補正値取得手段は、前記補正値算出手段により算出された前記要求ズレ補正値を取得する請求項1又は2に記載の制御装置。
  4. 前記補正値算出手段は、
    前記通電手段による電流印加の開始後において、前記フィードバック補正値の変動中心が前記基準値と同じ値になっているか否かを判定する手段と、
    前記フィードバック補正値の変動中心が前記基準値と同じ値になっていないと判定されている状況下で、所定の増量幅又は減量幅で更新しつつ前記要求ズレ補正値を算出する手段と、
    を有する請求項3に記載の制御装置。
  5. 前記空燃比学習手段は、前記補正値算出手段による要求ズレ補正値の算出に際して、前記通電手段による電流印加の開始に伴い前記空燃比学習の実施を禁止するとともに、その開始後において、前記フィードバック補正値の変動中心が前記基準値と同じ値に収束することにより前記要求ズレ補正値の算出が完了した時点で、前記空燃比学習の実施を許可する請求項4に記載の制御装置。
  6. 前記印加電流の要求値又は前記起電力特性の要求シフト量と、前記要求ズレ補正値との相関があらかじめ定められており、
    前記補正値取得手段は、前記相関に基づいて、前記要求ズレ補正値を取得する請求項1乃至5のいずれか1項に記載の制御装置。
JP2014209210A 2014-10-10 2014-10-10 制御装置 Pending JP2016079826A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014209210A JP2016079826A (ja) 2014-10-10 2014-10-10 制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014209210A JP2016079826A (ja) 2014-10-10 2014-10-10 制御装置

Publications (1)

Publication Number Publication Date
JP2016079826A true JP2016079826A (ja) 2016-05-16

Family

ID=55955981

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014209210A Pending JP2016079826A (ja) 2014-10-10 2014-10-10 制御装置

Country Status (1)

Country Link
JP (1) JP2016079826A (ja)

Similar Documents

Publication Publication Date Title
JP6237057B2 (ja) ガスセンサ制御装置
JP5126388B2 (ja) ガスセンサ制御装置
JP5817581B2 (ja) 内燃機関の排出ガス浄化装置
JP5884702B2 (ja) 内燃機関の排出ガス浄化装置
JP5884701B2 (ja) 内燃機関の排出ガス浄化装置
JP5867357B2 (ja) 内燃機関の排出ガス浄化装置
JP6119434B2 (ja) ガスセンサ制御装置
JP6888563B2 (ja) 内燃機関の制御装置
JP6562047B2 (ja) 内燃機関の排気浄化装置
JP6319004B2 (ja) ガスセンサ制御装置
US10247694B2 (en) Gas sensor control device
JP5904171B2 (ja) ガスセンサ制御装置
JP6442920B2 (ja) ガスセンサ制御装置及び空燃比検出システム
JP2016079826A (ja) 制御装置
JP2015206692A (ja) 排出ガスセンサのヒータ制御装置
JP2016080407A (ja) 制御装置
JP2016079825A (ja) 制御装置
JP6350414B2 (ja) 内燃機関の制御装置
JP2016080406A (ja) ガスセンサ制御装置
JP2014092135A (ja) 燃料噴射制御装置
JP2015132236A (ja) 内燃機関の燃料噴射制御システム
JP2016003571A (ja) 内燃機関の空燃比制御装置
JP2009281306A (ja) 内燃機関の空燃比検出装置