JP2016079500A - Measuring device and measuring method for evaluating reduction degradation - Google Patents

Measuring device and measuring method for evaluating reduction degradation Download PDF

Info

Publication number
JP2016079500A
JP2016079500A JP2015154083A JP2015154083A JP2016079500A JP 2016079500 A JP2016079500 A JP 2016079500A JP 2015154083 A JP2015154083 A JP 2015154083A JP 2015154083 A JP2015154083 A JP 2015154083A JP 2016079500 A JP2016079500 A JP 2016079500A
Authority
JP
Japan
Prior art keywords
reduction
measuring
raw material
index
oxide raw
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015154083A
Other languages
Japanese (ja)
Other versions
JP6565449B2 (en
Inventor
守利 水谷
Moritoshi Mizutani
守利 水谷
宏治 景山
Koji Kageyama
宏治 景山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel and Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumitomo Metal Corp filed Critical Nippon Steel and Sumitomo Metal Corp
Publication of JP2016079500A publication Critical patent/JP2016079500A/en
Application granted granted Critical
Publication of JP6565449B2 publication Critical patent/JP6565449B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To measure AE waves for evaluating the reduction degradation for iron oxide raw material for iron making.SOLUTION: Provided is a measuring device for measuring the total of AE energy from AE waves during the reduction of iron oxide raw material for iron making, comprising: a reduction furnace part; a gas feeding part; and an AE measuring part. The reduction furnace part includes: a reaction tube of storing the iron oxide raw material for iron making; and a heating furnace of involving the reaction tube and heating the same. The gas feeding part feeds a reduction gas at least including one kind of CO and Hto the reaction tube. The AE measuring part includes: an AE waveguide member for conducting the AE waves from the iron oxide raw material for ion making; and an AE measuring apparatus for measuring the conducted AE waves.SELECTED DRAWING: Figure 2

Description

本発明は、焼結鉱、焼成ペレットといった製鉄用酸化鉄原料の還元粉化を評価するための測定装置および測定方法に関するものである。特に、本発明は、JISやISOに規定された還元粉化量の測定方法を簡易化するものである。   The present invention relates to a measuring apparatus and a measuring method for evaluating reduction powdering of iron oxide raw materials for iron making such as sintered ore and fired pellets. In particular, the present invention simplifies the method for measuring the reduced powder amount defined in JIS and ISO.

鉄鉱石から銑鉄を取り出すための炉である高炉の安定操業において、シャフト部の通気確保はたいへん重要な課題である。しかし、シャフト上部において、焼結鉱が還元粉化した場合、発生した粉がシャフト部の通気を阻害する。そのため、従来より、焼結鉱の還元粉化を管理する指標として、RDI試験(ISO4696−2)が使用されている。   In the stable operation of a blast furnace, which is a furnace for extracting pig iron from iron ore, securing the ventilation of the shaft part is a very important issue. However, when the sintered ore is reduced to powder in the upper part of the shaft, the generated powder inhibits the ventilation of the shaft part. Therefore, conventionally, the RDI test (ISO4696-2) has been used as an index for managing the reduction powdering of sintered ore.

上述したRDI試験の還元試験条件は、焼結鉱粒径:16〜20mm、焼結鉱重量:500g、還元温度:550℃、還元時間:30分、還元ガス組成は、CO:N2=30:70である。RDI試験では、還元の後、ドラム試験と呼ばれる所定径の筒に試料を入れ、30rpmで30分、合計900回転を実施し、その後、篩分けを行い、3.15mm角の網を通過したものの割合を測定し、その値がRDI値となる。   The reduction test conditions of the RDI test described above were as follows: sintered ore particle size: 16 to 20 mm, sintered ore weight: 500 g, reduction temperature: 550 ° C., reduction time: 30 minutes, reducing gas composition: CO: N 2 = 30: 70. In the RDI test, after the reduction, the sample was put into a cylinder of a predetermined diameter called a drum test, and a total of 900 rotations were carried out at 30 rpm for 30 minutes, followed by sieving and passing through a 3.15 mm square net. The ratio is measured and the value becomes the RDI value.

一方、製鉄法の一つの方法として直接還元製鉄法がある。これは、還元ガスとして、天然ガス、又は天然ガスを改質したガス(CO及びHが主成分)や石炭ガス(石炭をガス化した時に発生するガス)などを用いて、酸化鉄原料を直接還元する方法である(例えば特許文献1及び2参照)。高炉法と同様にシャフト上部において、焼結鉱が還元粉化した場合、発生した粉がシャフト部の通気を阻害する。そのため、高炉法とは試験条件が異なるものの還元粉化を管理する指標として、DR−RDI試験(ISO11257)が使用されている。 On the other hand, there is a direct reduction iron making method as one of the iron making methods. This is because, as a reducing gas, natural gas or a gas obtained by reforming natural gas (CO and H 2 are the main components), coal gas (gas generated when coal is gasified), etc. This is a direct reduction method (see, for example, Patent Documents 1 and 2). Similar to the blast furnace method, when the sintered ore is reduced to powder at the upper part of the shaft, the generated powder inhibits the ventilation of the shaft part. For this reason, the DR-RDI test (ISO11257) is used as an index for managing reduced powdering, although the test conditions differ from those of the blast furnace method.

このように、高炉法および直接還元製鉄法の還元粉化指数を測定する試験方法は、加熱した電気炉内で酸化鉄原料を処理し、常温まで冷却した後に回転試験を実施することから、測定工数が限定され、複数種類の酸化鉄原料の還元粉化指数を迅速に測定することは困難である。また、試験装置および試験方法は複雑であり、装置の購入および測定者の技術の養成などが必要不可欠である。   In this way, the test method for measuring the reduced pulverization index of the blast furnace method and the direct reduction iron manufacturing method is because the iron oxide raw material is processed in a heated electric furnace and cooled to room temperature, and then a rotation test is performed. The number of man-hours is limited, and it is difficult to quickly measure the reduced powder index of a plurality of types of iron oxide raw materials. Moreover, the test apparatus and the test method are complicated, and it is indispensable to purchase the apparatus and train the technique of the measurer.

還元粉化現象については、高炉における焼結鉱のそれに関してこれまでさまざまな研究がなされている。それによると、粉化はヘマタイト(Fe)からマグネタイト(Fe)に還元する際の体積膨張によって生じる内部応力によって発生する歪エネルギーによって酸化鉄原料中に亀裂が生成することに起因しており、焼結鉱では550℃付近の温度で顕著となることがわかっている(非特許文献1参照)。マグネタイト(Fe)からウスタイト(FeO)へ還元する際に強度が回復すること、すなわち、還元粉化指数はマグネタイト含有量と相関関係があることが知られている(非特許文献2参照)。 Various researches have been conducted on the reduction powdering phenomenon regarding sintered ore in blast furnaces. According to it, cracking occurs in the iron oxide raw material due to strain energy generated by internal stress generated by volume expansion when reducing from hematite (Fe 2 O 3 ) to magnetite (Fe 3 O 4 ). This is attributed to the fact that the sintered ore is prominent at temperatures around 550 ° C. (see Non-Patent Document 1). It is known that the strength recovers when reducing from magnetite (Fe 3 O 4 ) to wustite (FeO), that is, the reduced powdering index correlates with the magnetite content (see Non-Patent Document 2). ).

亀裂および亀裂破壊を評価する手法として、Acoustic Emission(以下、AE)を測定し、得られた波形を解析するAE法がある。AEとは亀裂の発生や進展などの破壊に伴ってAE波(振動、音波といった弾性波)が発生する現象であり、木材が折れる時の「ポキッ」という可聴領域の音の発生もAEである。このAE波をAEセンサーにより検出し、非破壊的に評価する方法をAE法と呼ぶ。   As a method for evaluating cracks and crack fracture, there is an AE method in which an acoustic emission (hereinafter referred to as AE) is measured and the obtained waveform is analyzed. AE is a phenomenon in which AE waves (elastic waves such as vibrations and sound waves) are generated along with fractures such as the occurrence and development of cracks, and the generation of sound in the audible area called “pick” when wood breaks is also AE. . A method of detecting this AE wave with an AE sensor and evaluating it nondestructively is called an AE method.

AE法は材料自らが割れや変形に伴って放出するAE波を検出する受動的な手法である。すなわち、AE法は亀裂の進展をリアルタイムで評価することが可能である。稼働中の大型設備の診断に関しても、AE波が伝搬すれば連続的に監視することができ、設備の停止につながる突発的な異常にも対応できる評価法である。   The AE method is a passive method for detecting an AE wave emitted by a material itself as it cracks or deforms. That is, the AE method can evaluate the progress of cracks in real time. It is an evaluation method that can continuously monitor large-scale facilities in operation as long as AE waves propagate, and can respond to sudden abnormalities that lead to facility shutdown.

小型の材料を評価する手法としてもAE法は活用されている。例えば、鋼材の引張試験やセラミックの4点曲げ試験時に発生する亀裂および亀裂破壊を評価する手法が知られている(非特許文献3,4参照)。   The AE method is also used as a method for evaluating small materials. For example, a technique for evaluating cracks and crack fractures that occur during a steel material tensile test or a ceramic four-point bending test is known (see Non-Patent Documents 3 and 4).

AEセンサーの材料には、一般的にはジルコン酸チタン酸塩(PZT)系の圧電素子が使われている。圧電素子とは、応力を加えるとその表面に電荷を発生する材料である。PZT系の圧電素子は圧電性が消失する温度(キュリー点)が300℃程度であるため、高温環境での使用方法は限られる。そのため、亀裂発生媒体のサイズが大型または小型であるかを問わずAE法による評価は冷間条件下で行うことが大多数である。   As a material for the AE sensor, a zirconate titanate (PZT) type piezoelectric element is generally used. A piezoelectric element is a material that generates a charge on its surface when stress is applied. Since the temperature (Curie point) at which the piezoelectricity disappears is about 300 ° C., the PZT type piezoelectric element has a limited use in a high temperature environment. Therefore, the evaluation by the AE method is often performed under a cold condition regardless of whether the size of the crack generation medium is large or small.

高温環境下で使用する方法として、導波棒や冷却器などを用いる手法もある。例えば、導波棒を用いることで耐火物の高温化での熱膨張による亀裂の測定方法などが知られている(非特許文献5参照)。   As a method for use in a high temperature environment, there is a method using a waveguide rod or a cooler. For example, a method of measuring cracks due to thermal expansion at a high temperature of a refractory by using a waveguide rod is known (see Non-Patent Document 5).

AE法は金属、セラミックス、プラスチックなどさまざまな材料の亀裂測定に適用されている。   The AE method is applied to crack measurement of various materials such as metals, ceramics, and plastics.

特開昭63−213613号公報JP 63-213613 A 特開2010−043314号公報JP 2010-043314 A 米国特許第3617227号明細書US Pat. No. 3,617,227 米国特許第3748120号明細書US Pat. No. 3,748,120

鉄と鋼,Vol.68,(1982)740Iron and steel, Vol. 68, (1982) 740 材料とプロセス,Vol.15(1)(2002)114Materials and Processes, Vol. 15 (1) (2002) 114 D.Tromans amd J.A. Meech:Minerals Engineering, 15 (2002) 1027D. Tromans amd J.M. A. Meech: Minerals Engineering, 15 (2002) 1027 M. Takeda, T. Onishi, S. Nakakubo and S. Fujimoto: Materials transaction, 50 (2009) 2242.M.M. Takeda, T .; Onishi, S .; Nakakubo and S.N. Fujimoto: Materials transaction, 50 (2009) 2242. G. Briche et al.: Journal of the European Ceramic Society,28 (2008) 2835G. Briche et al. : Journal of the European Ceramic Society, 28 (2008) 2835

AE法を、製鉄プロセスの高炉法や直接還元製鉄法の還元粉化指数の評価手法に適用した事例はなく、またそもそも還元粉化時にAE波が発生しているかも明らかとなっていなかった。   There has been no case where the AE method is applied to the blast furnace method of the iron making process or the evaluation method of the reduced powdering index of the direct reduction iron making method, and it has not been clarified whether AE waves are generated at the time of reducing powdering.

前述したように、高炉法および直接還元製鉄法では、酸化鉄原料が還元粉化した場合、発生した粉によって炉(シャフト部)の通気性が阻害され、生産障害を招く可能性がある。そのため、還元プロセス毎に還元粉化の管理指標が存在するものの、複数種類の酸化鉄原料の還元粉化指数を迅速に測定することは困難である。   As described above, in the blast furnace method and the direct reduction iron manufacturing method, when the iron oxide raw material is reduced to powder, the air permeability of the furnace (shaft portion) is hindered by the generated powder, which may cause production failure. Therefore, although there is a management index for reducing powderization for each reduction process, it is difficult to quickly measure the reduced powdering index of a plurality of types of iron oxide raw materials.

そこで、本発明は、酸化鉄原料の還元粉化を評価するためのAE波を測定することを目的とする。また、本発明は、酸化鉄原料の還元粉化の評価指標である還元粉化指数の測定について迅速化を図りながら、簡易化することを目的とする。   Then, an object of this invention is to measure the AE wave for evaluating the reduction | restoration powdering of an iron oxide raw material. Another object of the present invention is to simplify the measurement of the reduced powdering index, which is an evaluation index of reduced powdering of the iron oxide raw material, while speeding up the measurement.

本発明者らは、上記課題を解決する手法について、AEの適用を検討した。そこで、焼結鉱、焼成ペレットに限らず、酸化鉄原料の還元時に還元粉化によってAE波が多数発生すること、また発生したAE波から算出されるAEエネルギーの総和と還元粉化指数変化量(酸化鉄原料の還元粉化指数及び回転強度の差である)に相関関係があることを見出した。さらに、この相関関係は、酸化鉄原料の種類によって異なることも見出した。   The present inventors examined the application of AE as a method for solving the above-described problems. Therefore, not only sintered or fired pellets, but also a large number of AE waves are generated by reduction powdering when reducing iron oxide raw materials, and the total amount of AE energy calculated from the generated AE waves and the amount of reduction powdered index change It was found that there is a correlation between the reduced powdering index and the rotational strength of the iron oxide raw material. Furthermore, it has also been found that this correlation varies depending on the type of iron oxide raw material.

ここにAEエネルギーの総和とは、測定したAE波形をフーリエ変換することで得られる周波数スペクトルの面積を表す。AEエネルギーは亀裂面積と相関関係があることが知られている。図1に還元粉化時に発生したAE波形および周波数スペクトルの一例を示す。   Here, the sum of AE energies represents the area of the frequency spectrum obtained by Fourier transforming the measured AE waveform. It is known that AE energy correlates with crack area. FIG. 1 shows an example of an AE waveform and a frequency spectrum generated during reduction powdering.

本発明は上記知見に基づいてなされたもので、酸化鉄原料の還元粉化を評価するためにAE波を測定することや、酸化鉄原料の還元中に発生するAEエネルギーの総和から還元粉化指数を推定することを骨子とする。その要旨は以下のとおりである。   The present invention has been made on the basis of the above knowledge, and it is possible to measure AE waves in order to evaluate reduction powdering of iron oxide raw materials, and to reduce powdering from the sum of AE energies generated during the reduction of iron oxide raw materials. The main point is to estimate the index. The summary is as follows.

(1)還元炉部、ガス供給部およびAE測定部を有し、製鉄用酸化鉄原料の還元中のAE波からAEエネルギーの総和を測定する測定装置であって、
前記還元炉部は、前記製鉄用酸化鉄原料を収納する反応管および、前記反応管を内包して加熱する加熱炉を有し、
前記ガス供給部は、COおよびHの少なくとも一種を含む還元ガスを前記反応管に供給し、
前記AE測定部は、前記製鉄用酸化鉄原料からのAE波を伝達するAE導波部材および伝達されたAE波を測定するAE測定器を有する、測定装置。
(1) A measuring apparatus that has a reduction furnace section, a gas supply section, and an AE measurement section, and measures the total AE energy from AE waves during the reduction of the iron oxide raw material for iron making,
The reduction furnace section includes a reaction tube that contains the iron oxide raw material for iron making, and a heating furnace that encloses and heats the reaction tube,
The gas supply unit supplies a reducing gas containing at least one of CO and H 2 to the reaction tube,
The AE measuring unit includes an AE waveguide member that transmits an AE wave from the iron oxide raw material for iron making, and an AE measuring instrument that measures the transmitted AE wave.

(2)予め、還元粉化指数(RDI)と回転強度(TIBR)との差である還元粉化指数変化量(ΔRDI=RDI−TIBR)と、還元粉化中に発生するAEエネルギーの総和(Etotal)と、の相関関係(EQ1)を定めておき、次のa)〜c)の手順で還元粉化指数を求める還元粉化指数の測定方法。
a)前記製鉄用酸化鉄原料の回転強度(TIBR)を測定する第1工程。
b)(1)の測定装置を用いて、前記製鉄用酸化鉄原料の還元中のAEエネルギー
の総和を測定する第2工程。
c)前記相関関係(EQ1)に基づいて、前記第2工程で測定されたAEエネルギ
ーの総和から還元粉化指数変化量(ΔRDI)を推定し、前記還元粉化指数変
化量(ΔRDI)と前記第1工程で測定された回転強度(TIBR)から、還
元粉化指数(RDI)を下記式(I)で求める第3工程。
RDI=ΔRDI+TIBR ・・・(I)
(2) A reduction powder index change amount (ΔRDI = RDI−TI BR ), which is a difference between the reduced powder index (RDI) and the rotational strength (TI BR ), and the AE energy generated during the reduction powder. A method for measuring a reduced pulverization index, in which a correlation (EQ1) with the sum (E total ) is determined and a reduced pulverization index is obtained by the following steps a) to c).
a) A first step of measuring the rotational strength (TI BR ) of the iron oxide raw material for iron making.
b) AE energy during reduction of the iron oxide raw material for iron making using the measuring device of (1)
A second step of measuring the sum of
c) AE energy measured in the second step based on the correlation (EQ1).
The amount of change in reduced powder index (ΔRDI) is estimated from the sum of
From the amount of crystallization (ΔRDI) and the rotational strength (TI BR ) measured in the first step, the return
3rd process which calculates | requires original powdering index (RDI) by following formula (I).
RDI = ΔRDI + TI BR (I)

(3)前記相関関係(EQ1)を前記製鉄用酸化鉄原料の種類ごとに定めることを特徴とする(2)の還元粉化指数の測定方法。 (3) The method for measuring a reduced powder index according to (2), wherein the correlation (EQ1) is determined for each type of iron oxide raw material for iron making.

(4)前記製鉄用酸化鉄原料が焼結鉱であるとき、前記相関関係(EQ1)が下記式(II)で表されることを特徴とする(3)の還元粉化指数の測定方法。
ΔRDI=2.59×10−8total+7.26 ・・・(II)
(4) When the iron oxide raw material for iron making is a sintered ore, the correlation (EQ1) is represented by the following formula (II).
ΔRDI = 2.59 × 10 −8 E total +7.26 (II)

(5)前記製鉄用酸化鉄原料が焼成ペレットであるとき、前記相関関係(EQ1)が下記式(III)で表されることを特徴とする(3)の還元粉化指数の測定方法。
ΔRDI=6.28×10−9total+5.22×10−1 ・・・(III)
(5) When the iron oxide raw material for iron making is a calcined pellet, the correlation (EQ1) is represented by the following formula (III).
ΔRDI = 6.28 × 10 −9 E total + 5.22 × 10 −1 (III)

本発明の測定装置によれば、酸化鉄原料の還元粉化を評価するためのAE波を測定することができる。   According to the measuring apparatus of the present invention, it is possible to measure an AE wave for evaluating reduction powdering of an iron oxide raw material.

本発明の測定方法によれば、相関関係(EQ1)を用いることにより、AEエネルギーの総和から還元粉化指数変化量を推定し、還元粉化指数変化量及び回転強度から酸化鉄原料の還元粉化指数を迅速に測定することができる。また、相関関係(EQ1)を予め定めておくことにより、還元粉化指数の測定を簡易化することができる。さらに、酸化鉄原料の種類ごとに相関関係(EQ1)を定めることにより、還元粉化指数の測定精度を向上させることができる。   According to the measuring method of the present invention, by using the correlation (EQ1), the amount of reduction powdered index change is estimated from the sum of AE energy, and the reduced powder of iron oxide raw material from the amount of reduced powdered index change and the rotational strength. The chemical index can be measured quickly. Moreover, the measurement of a reduction | restoration powdering index | exponent can be simplified by presetting correlation (EQ1). Furthermore, by determining the correlation (EQ1) for each type of iron oxide raw material, the measurement accuracy of the reduced powder index can be improved.

還元粉化時に発生するAE波形および周波数スペクトルの一例を示す図である。It is a figure which shows an example of the AE waveform and frequency spectrum which generate | occur | produce at the time of reduction | restoration powdering. 還元粉化指数の簡易測定装置の概略図である。It is the schematic of the simple measuring apparatus of a reduction | restoration powdering index | exponent. 還元粉化指数簡易測定方法のフローチャートを示す図である。It is a figure which shows the flowchart of the reduced-powdering index simple measuring method. 実施例におけるAEエネルギーの総和とΔRDIの相関関係を示す図である。It is a figure which shows the correlation of the sum total of AE energy and (DELTA) RDI in an Example. 実施例におけるRDIについて、実測値と計算値の関係を示す図である。It is a figure which shows the relationship between a measured value and a calculated value about RDI in an Example.

(本発明の還元粉化指数の測定装置)
図2に還元粉化指数の測定装置の概略図を示す。還元粉化指数測定装置は、還元炉部、ガス供給部およびAE測定部を有する。
(Measurement device for reduced powder index of the present invention)
FIG. 2 shows a schematic diagram of a measuring apparatus for reducing powder index. The reduced-powdering index measuring device has a reducing furnace part, a gas supply part, and an AE measuring part.

前記還元炉部は、測定対象である製鉄用酸化鉄原料(試料)を収納する反応管およびそれを内包して加熱する加熱炉を有する。さらに、前記反応管は、反応管外管1と、反応管内管2と、反応管内管2の上下方向において互いに離隔した一対のガス整流用穴あき目皿3と、ガス流入口4と、ガス排出口5と、試料温度測定用熱電対7と、反応管蓋10とを有する。一対のガス整流用穴あき目皿3の間に白抜きの丸印で示す試料Sが装入される。また、前記加熱炉は、炉温制御用熱電対8と電気加熱炉本体9を有する。   The said reduction furnace part has a reaction tube which accommodates the iron oxide raw material (sample) for iron manufacture which is a measuring object, and a heating furnace which encloses and heats it. Further, the reaction tube includes a reaction tube outer tube 1, a reaction tube inner tube 2, a pair of gas rectifying perforated plates 3 separated from each other in the vertical direction of the reaction tube inner tube 2, a gas inlet 4, A discharge port 5, a sample temperature measuring thermocouple 7, and a reaction tube lid 10 are provided. A sample S indicated by a white circle is inserted between a pair of gas rectifying perforated plates 3. The heating furnace includes a furnace temperature control thermocouple 8 and an electric heating furnace body 9.

前記ガス供給部は、COおよびHの少なくとも一種を含む還元ガスをガス流入口4に導き、前記還元炉部における反応管内管2の内部に供給する。反応管内管2の内部に供給された還元ガスは、上側のガス整流用穴あき目皿3を通過して、試料Sに到達する。これにより、試料Sが還元される。前記ガス供給部は、ガスシリンダ15とガス流量計16とガス混合容器17とを有しており、前記還元ガスを製造する。ガスシリンダ15はガスの種類だけ設けられており、本実施形態ではN、CO、CO、Hをそれぞれ収容した複数のガスシリンダ15が設けられている。また、ガス流量計16もガスシリンダ15の数だけ設けられている。ガス混合容器17には、一種類のガス(例えば、Nガス)だけを供給してもよいし、或いは複数種類のガス(例えば、CO及びH)を供給してもよい。 The gas supply unit guides a reducing gas containing at least one of CO and H 2 to the gas inlet 4 and supplies it to the inside of the reaction tube inner pipe 2 in the reduction furnace unit. The reducing gas supplied to the inside of the reaction tube inner tube 2 passes through the upper gas rectifying perforated plate 3 and reaches the sample S. Thereby, the sample S is reduced. The gas supply unit includes a gas cylinder 15, a gas flow meter 16, and a gas mixing container 17, and produces the reducing gas. The gas cylinder 15 is provided only for the type of gas. In this embodiment, a plurality of gas cylinders 15 each containing N 2 , CO, CO 2 , and H 2 are provided. Further, as many gas flow meters 16 as the number of gas cylinders 15 are provided. Only one type of gas (for example, N 2 gas) may be supplied to the gas mixing container 17 or a plurality of types of gases (for example, CO and H 2 ) may be supplied.

前記AE測定部は、前記試料SからのAE波を伝達するAE導波部材および、AE導波部材で伝達されたAE波を測定するAE測定器を有する。本実施形態では、前記AE導波部材として、棒状のAE導波棒6を用いている。前記AE測定器は、AEセンサー11と、信号線12と、AE測定装置13と、解析用PC(Personal Computer)14とを有する。AE導波棒6は、一対のガス整流用穴あき目皿3の間に装入された試料S内に延出しており、還元時に試料Sから発生するAE波をAEセンサー11に伝達する。AEセンサー11によって検出されたAE波は信号線12を介してAE測定装置13に送信され、AE測定装置13においてAE波形が特定される。AE波形は、信号線12を介してAE測定装置13から解析用PC14に送信され、解析用PC14においてAE波形が高速フーリエ変換される。   The AE measurement unit includes an AE waveguide member that transmits an AE wave from the sample S and an AE measurement device that measures the AE wave transmitted by the AE waveguide member. In the present embodiment, a rod-shaped AE waveguide rod 6 is used as the AE waveguide member. The AE measuring instrument includes an AE sensor 11, a signal line 12, an AE measuring device 13, and an analysis PC (Personal Computer) 14. The AE waveguide rod 6 extends into the sample S inserted between the pair of gas rectifying perforated plates 3 and transmits the AE wave generated from the sample S to the AE sensor 11 during reduction. The AE wave detected by the AE sensor 11 is transmitted to the AE measuring device 13 via the signal line 12, and the AE waveform is specified in the AE measuring device 13. The AE waveform is transmitted from the AE measurement device 13 to the analysis PC 14 via the signal line 12, and the AE waveform is subjected to fast Fourier transform in the analysis PC 14.

本測定装置から排出されるガスは毒性のあるCOガスや爆発性のHガスなどを含有する。排出ガスは、ガス排出口5を介して排ガス処理設備18に送られる。発生するガスの種類や量に応じて適切な排ガス処理設備18を設置することができる。 The gas discharged from this measuring apparatus contains toxic CO gas, explosive H 2 gas, and the like. The exhaust gas is sent to the exhaust gas treatment facility 18 through the gas discharge port 5. An appropriate exhaust gas treatment facility 18 can be installed according to the type and amount of gas generated.

本測定装置は還元ガスとして毒性のあるCOガスや爆発性のHガスを使用する。必要に応じて還元ガスが測定装置外に漏洩しないよう適切な処置を施す。例えば、反応管(反応管内管2)と反応管蓋10の継ぎ目部などにはOリングなどを装着することができる。 This measuring device uses toxic CO gas or explosive H 2 gas as the reducing gas. Appropriate measures are taken to prevent the reducing gas from leaking outside the measuring device as necessary. For example, an O-ring or the like can be attached to the joint portion of the reaction tube (reaction tube inner tube 2) and the reaction tube lid 10 or the like.

(本発明の還元粉化指数測定方法の概要(焼結鉱の場合))
図3のフローチャートを参照しながら、酸化鉄原料が焼結鉱の場合の還元粉化指数の簡易推定方法について説明する。
(Outline of the method for measuring reduced powder index of the present invention (in the case of sintered ore))
With reference to the flowchart of FIG. 3, a simple estimation method of the reduced powder index when the iron oxide raw material is sintered ore will be described.

ステップS100において、測定対象である試料Sの回転強度(TIBR)を測定する。測定対象の酸化鉄原料重量:500g、をドラム試験と呼ばれる所定径の筒に試料を入れ、30rpmで30分、合計900回転を実施し、その後、篩分けを行い、3.15mm角の網を通過したものの割合(mass%)を測定し、その値が回転強度(TIBR)となる。 In step S100, the rotational strength (TI BR ) of the sample S to be measured is measured. A sample of iron oxide raw material weight to be measured: 500 g is put in a cylinder of a predetermined diameter called a drum test, and a total of 900 rotations are performed at 30 rpm for 30 minutes. The ratio (mass%) of what passed is measured, and the value becomes the rotational strength (TI BR ).

ステップS101において、還元中のAEエネルギーの総和(Etotal)を測定する。具体的には、測定対象の酸化鉄原料(試料S)を還元粉化指数測定装置の還元炉部(一対のガス整流用穴あき目皿3の間)に装入し、N雰囲気で測定温度まで昇温し、ガスの種類を還元ガスに切り替える(この際、酸化鉄原料(試料S)の装入量や測定温度、還元ガス組成などの実験条件はJISやISOの規格に準ずるため、詳細な説明を省略する)。還元粉化指数測定装置のAE測定部は、還元中に酸化鉄原料(試料S)から発生するAE波を測定し、解析用PC14を用いてAE波を高速フーリエ変換した周波数スペクトルから還元中のAEエネルギーの総和(Etotal)を測定する。 In step S101, the total AE energy (E total ) during reduction is measured. Specifically, the iron oxide raw material (sample S) to be measured is charged into the reduction furnace section (between a pair of gas rectifying perforated plates 3) of the reduced powder index measuring device and measured in an N 2 atmosphere. The temperature is raised to a temperature, and the type of gas is switched to a reducing gas (in this case, the experimental conditions such as the charged amount of the iron oxide raw material (sample S), the measurement temperature, the reducing gas composition conform to JIS and ISO standards, Detailed description is omitted). The AE measuring unit of the reduced powder index measuring apparatus measures the AE wave generated from the iron oxide raw material (sample S) during the reduction, and is reducing the AE wave from the frequency spectrum obtained by fast Fourier transform using the analysis PC 14. The total AE energy (E total ) is measured.

ステップS102において、ステップS101で測定されたAEエネルギーの総和(Etotal)を下記式(1)に代入し還元粉化指数変化量(ΔRDI)を導出する。例えば、解析用PC14を用いてステップS102の処理を行うことができる。 In step S102, to derive a sum of the measured AE energy (E total) substitution were reduction degradation index variation by the following formula (1) (ΔRDI) at step S101. For example, the process of step S102 can be performed using the analysis PC 14.

ΔRDI=2.59×10−8total+7.26 ・・・(1)
上記式(1)は、酸化鉄原料が焼結鉱である場合において、AEエネルギーの総和(Etotal)及び還元粉化指数変化量(ΔRDI)の相関関係を表す。上記式(1)において、ΔRDI(mass%)は還元粉化指数変化量であり、Etotal(e.u.)は還元中のAEエネルギーの総和である。
ΔRDI = 2.59 × 10 −8 E total +7.26 (1)
The above formula (1) represents the correlation between the total AE energy (E total ) and the reduction powder index change (ΔRDI) when the iron oxide raw material is sintered ore. In the above formula (1), ΔRDI (mass%) is a reduction powdering index change amount, and E total (eu) is a total of AE energy during reduction.

ステップ103において、ステップS100で測定した回転強度(TIBR)とステップS102で求めた還元粉化指数変化量(ΔRDI)を下記式(2)に代入し、還元粉化指数(RDI)を導出する。例えば、解析用PC14を用いてステップS103の処理を行うことができる。 In step 103, the rotational strength (TI BR ) measured in step S100 and the reduced powdering index change amount (ΔRDI) obtained in step S102 are substituted into the following formula (2) to derive the reduced powdering index (RDI). . For example, the process of step S103 can be performed using the analysis PC 14.

RDI=ΔRDI+TIBR ・・・(2) RDI = ΔRDI + TI BR (2)

上記式(2)において、RDI(mass%)は還元粉化指数であり、TIBR(mass%)は還元前の試料Sの回転強度であり、ΔRDI(mass%)は還元粉化指数変化量(RDIとTIBRの差として表される)である。 In the above formula (2), RDI (mass%) is the reduced powder index, TI BR (mass%) is the rotational strength of the sample S before reduction, and ΔRDI (mass%) is the reduction powder index change amount. (Expressed as the difference between RDI and TI BR ).

還元粉化指数の測定方法はISO4696−1やISO4696−2など同じ高炉法を対象とした測定方法であっても、還元温度や還元ガス組成が異なると、還元粉化指数が異なる。還元粉化挙動は還元温度や還元ガス組成によっても変化するが、発生するAE波は還元粉化挙動と相関関係があるため、本発明の測定装置はいずれの還元粉化指数の測定にも適用できる。   Even if the measurement method of the reduction powdering index is a measurement method for the same blast furnace method such as ISO4696-1 and ISO4696-2, the reduction powdering index is different if the reduction temperature and the reducing gas composition are different. Although the reduction powdering behavior varies depending on the reduction temperature and reducing gas composition, the generated AE wave has a correlation with the reduction powdering behavior, so the measuring device of the present invention is applicable to any reduction powdering index measurement. it can.

このように、本発明によれば、酸化鉄原料のAEエネルギーの総和(Etotal)から、簡易的かつ直接的に還元粉化指数(RDI)を推定することが可能となる。 Thus, according to the present invention, it is possible to simply and directly estimate the reduced powder index (RDI) from the total AE energy (E total ) of the iron oxide raw material.

(酸化鉄原料が焼成ペレットの場合)
図3のフローチャートを参照しながら、酸化鉄原料が焼成ペレットの場合の還元粉化指数の簡易推定方法について説明する。ステップS100において、焼結鉱の場合と同様に、測定対象である試料Sの回転強度(TIBR)を測定する。測定対象の酸化鉄原料重量:500g、をドラム試験と呼ばれる所定径の筒に試料を入れ、30rpmで30分、合計900回転を実施し、その後、篩分けを行い、3.15mm角の網を通過したものの割合(mass%)を測定し、その値が回転強度(TIBR)となる。
(When iron oxide raw material is fired pellets)
With reference to the flowchart of FIG. 3, a simple estimation method of the reduced powder index when the iron oxide raw material is calcined pellets will be described. In step S100, similarly to the case of the sintered ore, the rotational strength (TI BR ) of the sample S to be measured is measured. A sample of iron oxide raw material weight to be measured: 500 g is put in a cylinder of a predetermined diameter called a drum test, and a total of 900 rotations are performed at 30 rpm for 30 minutes. The ratio (mass%) of what passed is measured, and the value becomes the rotational strength (TI BR ).

焼結鉱の場合と同様に、ステップS101において、還元中のAEエネルギーの総和(Etotal)を測定する。 As in the case of the sintered ore, in step S101, the total AE energy (E total ) during reduction is measured.

ステップS102において、ステップS101で測定されたAEエネルギーの総和(Etotal)を下記式(3)に代入し還元粉化指数変化量(ΔRDI)を導出する。例えば、解析用PC14を用いてステップS102の処理を行うことができる。 In step S102, to derive a sum of the measured AE energy (E total) substitution were reduction degradation index variation by the following formula (3) (ΔRDI) at step S101. For example, the process of step S102 can be performed using the analysis PC 14.

ΔRDI=6.28×10−9total+5.22×10−1 ・・・(3)
上記式(3)は、酸化鉄原料が焼成ペレットである場合において、AEエネルギーの総和(Etotal)及び還元粉化指数変化量(ΔRDI)の相関関係を表す。上記式(3)において、ΔRDI(mass%)は還元粉化量変化量であり、Etotal(e.u.)は還元中のAEエネルギーの総和である。
ΔRDI = 6.28 × 10 −9 E total + 5.22 × 10 −1 (3)
The above formula (3) represents the correlation between the total AE energy (E total ) and the reduction powder index change amount (ΔRDI) when the iron oxide raw material is calcined pellets. In the above formula (3), ΔRDI (mass%) is a reduction powder amount change amount, and E total (eu) is a total of AE energy during reduction.

ステップ103において、ステップS100で測定した回転強度(TIBR)とステップS102で求めた還元粉化指数変化量(ΔRDI)を下記式(4)に代入し、還元粉化指数(RDI)を導出する。 In step 103, the rotational strength (TI BR ) measured in step S100 and the reduced powdering index change amount (ΔRDI) obtained in step S102 are substituted into the following equation (4) to derive the reduced powdering index (RDI). .

RDI=ΔRDI+TIBR ・・・(4) RDI = ΔRDI + TI BR (4)

上記式(4)において、RDI(mass%)は還元粉化指数であり、TIBR(mass%)は還元前の試料Sの回転強度であり、ΔRDI(mass%)は還元粉化量変化量(RDIとTIBRの差として表される)である。 In the above formula (4), RDI (mass%) is a reduction powder index, TI BR (mass%) is the rotational strength of the sample S before reduction, and ΔRDI (mass%) is the amount of change in reduction powder. (Expressed as the difference between RDI and TI BR ).

還元粉化量変化量(ΔRDI)とAEエネルギーの総和(Etotal)の相関関係については、焼結鉱、焼成ペレット以外の高炉用酸化鉄原料においても、それに固有の相関関係が成り立つ。そこで、酸化鉄原料の種類に応じて、上記式(1)、上記式(3)に相当する還元粉化指数変化量(ΔRDI)と還元中のAEエネルギーの総和(Etotal)との相関関係を予め導出することにより、上述の焼結鉱、焼成ペレットの場合と同様に本発明を実施して、還元粉化指数(RDI)を推定できる。 As for the correlation between the reduction powder amount change amount (ΔRDI) and the total AE energy (E total ), the iron oxide raw materials for blast furnace other than the sintered ore and the calcined pellets also have an inherent correlation. Therefore, depending on the type of iron oxide raw material, there is a correlation between the reduced powdering index change amount (ΔRDI) corresponding to the above formulas (1) and (3) and the total AE energy during reduction (E total ). By deriving in advance, the reduced powdering index (RDI) can be estimated by implementing the present invention in the same manner as in the case of the above-mentioned sintered ore and calcined pellets.

なお、本実施形態では、還元粉化指数変化量(ΔRDI)を導出するために、上記式(1)や上記式(3)を定めているが、これに限るものではない。具体的には、AEエネルギーの総和(Etotal)と還元粉化指数変化量(ΔRDI)を対応づけたマップを予め定めておくことができる。このマップを用いることにより、AEエネルギーの総和(Etotal)から還元粉化指数変化量(ΔRDI)を特定することができる。
(実施例)
In the present embodiment, the above formula (1) and the above formula (3) are defined in order to derive the reduced powdering index change amount (ΔRDI), but the present invention is not limited to this. Specifically, a map in which the total AE energy (E total ) and the reduced powdering index change amount (ΔRDI) are associated with each other can be determined in advance. By using this map, it is possible to specify the reduction powderization index change amount (ΔRDI) from the total AE energy (E total ).
(Example)

以下の実施例を用いて、AEエネルギーの総和(Etotal)と還元粉化指数変化量(ΔRDI)との相関関係であるEQ1の決定方法(上記式(1)および上記式(3))を説明する。また、本発明で規定した還元粉化指数(RDI)推定方法の妥当性を示す。本実施例では、品質の異なる焼結鉱2種類と焼成ペレット2種類を用いた。焼結鉱および焼成ペレットの平均直径は12.5mmであった。焼結鉱2種類と焼成ペレット2種類の品質を表1に示す。還元粉化の試験方法は、JISの還元粉化試験方法に準じた。すなわち、試料重量:500g、還元時間:30min、還元ガス流量:15NL/minで、還元温度と還元ガス組成が異なる5つの条件で実施した。還元後の試料を所定径の筒内で回転粉化を行わせ、ついで篩分を行い、3.15mm角の網を通過したものの割合を測定し、還元粉化指数(RDI)を評価する。還元前の回転強度TIBR(mass%)および試験条件(還元温度(℃)および還元ガス組成(%))、還元中のAEエネルギーの総和(Etotal)(e.u.)、還元粉化指数(RDI)および還元粉化指数変化量(ΔRDI)を表2に示す。 Using the following examples, a method of determining EQ1 (the above formula (1) and the above formula (3)), which is a correlation between the total AE energy (E total ) and the reduced powdered index change amount (ΔRDI), explain. Moreover, the validity of the reduced powder index (RDI) estimation method defined in the present invention is shown. In this example, two types of sintered ore and two types of fired pellets having different qualities were used. The average diameter of the sintered ore and fired pellets was 12.5 mm. Table 1 shows the quality of two types of sintered ore and two types of fired pellets. The test method for reduction powdering was in accordance with the reduction powdering test method of JIS. That is, the sample weight was 500 g, the reduction time was 30 min, the reducing gas flow rate was 15 NL / min, and the measurement was performed under five conditions with different reducing temperatures and reducing gas compositions. The reduced sample is subjected to rotary powdering in a cylinder having a predetermined diameter, followed by sieving, and the ratio of those passing through a 3.15 mm square net is measured to evaluate the reduced powdering index (RDI). Rotational strength TI BR (mass%) before reduction and test conditions (reduction temperature (° C.) and reducing gas composition (%)), total AE energy during reduction (E total ) (eu), reduced powdering Table 2 shows the index (RDI) and the reduction powder reduction index change (ΔRDI).

Figure 2016079500
Figure 2016079500

Figure 2016079500
Figure 2016079500

図4の黒色で塗り潰した四角形(焼結鉱)又はひし形(焼成ペレット)は、還元粉化指数変化量(ΔRDI)の実測値である。これに基づいて、最小自乗法により直線回帰(図中の実線)を行いEQ1の相関関係を定めた。得られた回帰式(y=ΔRDI、x=Etotal)も図4に示す。実施形態で記載した焼結鉱の還元粉化指数変化量(ΔRDI)を導出する上記式(1)と焼成ペレットの還元粉化指数変化量(ΔRDI)を導出する上記式(3)は、本実施例で得られた回帰式を実施形態の一例として示したものである。図5に、還元粉化指数(RDI)の実測値と本発明の測定方法によって測定された還元粉化指数(RDI)の計算値の関係を示す。両者はよく一致しており、本発明の還元粉化指数の測定方法によって、従来のそれと同等の結果が得られることがわかった。 The squares (sintered ore) or rhombuses (fired pellets) filled with black in FIG. 4 are measured values of the reduction powder index change (ΔRDI). Based on this, linear regression (solid line in the figure) was performed by the method of least squares to determine the correlation of EQ1. The obtained regression equation (y = ΔRDI, x = E total ) is also shown in FIG. The above formula (1) for deriving the reduced powdered index change amount (ΔRDI) of the sintered ore described in the embodiment and the above formula (3) for deriving the reduced powdered index change amount (ΔRDI) of the calcined pellet are The regression equation obtained in the example is shown as an example of the embodiment. FIG. 5 shows the relationship between the measured value of the reduced powder index (RDI) and the calculated value of the reduced powder index (RDI) measured by the measurement method of the present invention. Both were in good agreement, and it was found that the method equivalent to that of the prior art can be obtained by the method for measuring the reduced powder index of the present invention.

前述したように、本発明によれば、酸化鉄原料の種類ごとに相関関係(EQ1)を定めておけばよく、還元温度、還元ガスの組成等を考慮する必要がないため、複数種類の酸化鉄原料の還元粉化指数を迅速に測定(推定)することができる。これにより、還元粉化指数の測定の迅速化を図りながら、測定方法を簡易化することができる。さらに、上述した実施例に示すように、還元粉化指数(RDI)の計算値を還元粉化指数(RDI)の実測値に一致させることができ、還元粉化指数の計算値の精度を向上させることもできる。よって、本発明は、製鉄産業において利用可能性が高いものである。   As described above, according to the present invention, it is only necessary to determine the correlation (EQ1) for each type of iron oxide raw material, and it is not necessary to consider the reduction temperature, the composition of the reducing gas, and the like. It is possible to quickly measure (estimate) the reduced powder index of the iron raw material. Thereby, the measurement method can be simplified while speeding up the measurement of the reduced powdering index. Furthermore, as shown in the above-described embodiment, the calculated value of the reduced powder index (RDI) can be made to coincide with the actual measured value of the reduced powder index (RDI), thereby improving the accuracy of the calculated value of the reduced powder index. It can also be made. Therefore, the present invention has high applicability in the steel industry.

1:反応管外管、2:反応管内管、3:ガス整流用穴あき目皿、4:ガス流入口、
5:ガス排出口、6:AE導波棒、7:試料温度測定用熱電対、8:炉温制御用熱電対、
9:電気加熱炉本体、10:反応管蓋、11:AEセンサー、12:信号線、
13:AE測定装置、14:解析用PC
1: Outer tube, 2: Inner tube, 3: Perforated plate for gas rectification, 4: Gas inlet,
5: Gas outlet, 6: AE waveguide rod, 7: Thermocouple for measuring sample temperature, 8: Thermocouple for controlling furnace temperature,
9: Electric heating furnace body, 10: Reaction tube lid, 11: AE sensor, 12: Signal line,
13: AE measuring device, 14: PC for analysis

Claims (5)

還元炉部、ガス供給部およびAE測定部を有し、製鉄用酸化鉄原料の還元中のAE波からAEエネルギーの総和を測定する測定装置であって、
前記還元炉部は、前記製鉄用酸化鉄原料を収納する反応管および、前記反応管を内包して加熱する加熱炉を有し、
前記ガス供給部は、COおよびHの少なくとも一種を含む還元ガスを前記反応管に供給し、
前記AE測定部は、前記製鉄用酸化鉄原料からのAE波を伝達するAE導波部材および伝達されたAE波を測定するAE測定器を有する、測定装置。
A measuring apparatus that has a reduction furnace part, a gas supply part, and an AE measurement part, and measures the total AE energy from AE waves during reduction of the iron oxide raw material for iron making,
The reduction furnace section includes a reaction tube that contains the iron oxide raw material for iron making, and a heating furnace that encloses and heats the reaction tube,
The gas supply unit supplies a reducing gas containing at least one of CO and H 2 to the reaction tube,
The AE measuring unit includes an AE waveguide member that transmits an AE wave from the iron oxide raw material for iron making, and an AE measuring instrument that measures the transmitted AE wave.
予め、還元粉化指数(RDI)と回転強度(TIBR)との差である還元粉化指数変化量(ΔRDI=RDI−TIBR)と、還元粉化中に発生するAEエネルギーの総和(Etotal)と、の相関関係(EQ1)を定めておき、次のa)〜c)の手順で還元粉化指数を求める還元粉化指数の測定方法。
a)製鉄用酸化鉄原料の回転強度(TIBR)を測定する第1工程、
b)請求項1に記載の測定装置を用いて、前記製鉄用酸化鉄原料の還元中のAEエネル
ギーの総和を測定する第2工程、
c)前記相関関係(EQ1)に基づいて、前記第2工程で測定されたAEエネルギーの
総和から還元粉化指数変化量(ΔRDI)を推定し、前記還元粉化指数変化量(Δ
RDI)と前記第1工程で測定された回転強度(TIBR)から、還元粉化指数(
RDI)を下記式(I)で求める第3工程
RDI=ΔRDI+TIBR ・・・(I)
The reduction powder index change amount (ΔRDI = RDI−TI BR ), which is the difference between the reduced powder index (RDI) and the rotational strength (TI BR ), and the sum of the AE energy generated during the reduced powder (E total ) and a correlation (EQ1) is determined, and the reduced powdered index is determined by the following procedures a) to c).
a) a first step of measuring the rotational strength (TI BR ) of the iron oxide raw material for iron making,
b) a second step of measuring the total AE energy during the reduction of the iron oxide raw material for iron making using the measuring device according to claim 1;
c) Based on the correlation (EQ1), the reduced powdered index change amount (ΔRDI) is estimated from the sum of the AE energies measured in the second step, and the reduced powdered index change amount (Δ
RDI) and the rotational strength (TI BR ) measured in the first step, the reduced powdering index (
RDI) is obtained by the following formula (I). Third step RDI = ΔRDI + TI BR (I)
前記相関関係(EQ1)を前記製鉄用酸化鉄原料の種類ごとに定めることを特徴とする請求項2に記載の還元粉化指数の測定方法。   3. The method for measuring a reduced powder index according to claim 2, wherein the correlation (EQ1) is determined for each type of iron oxide raw material for iron making. 前記製鉄用酸化鉄原料が焼結鉱であるとき、前記相関関係(EQ1)が下記式(II)で表されることを特徴とする請求項3に記載の還元粉化指数の測定方法。
ΔRDI=2.59×10−8total+7.26 ・・・(II)
When the said iron oxide raw material for iron manufacture is a sintered ore, the said correlation (EQ1) is represented by following formula (II), The measuring method of the reduced-powdering index | exponent of Claim 3 characterized by the above-mentioned.
ΔRDI = 2.59 × 10 −8 E total +7.26 (II)
前記製鉄用酸化鉄原料が焼成ペレットであるとき、前記相関関係(EQ1)が下記式(III)で表されることを特徴とする請求項3に記載の還元粉化指数の測定方法。
ΔRDI=6.28×10−9total+5.22×10−1 ・・・(III)
When the said iron oxide raw material for iron manufacture is a baking pellet, the said correlation (EQ1) is represented by following formula (III), The measuring method of the reduction | restoration powder index of Claim 3 characterized by the above-mentioned.
ΔRDI = 6.28 × 10 −9 E total + 5.22 × 10 −1 (III)
JP2015154083A 2014-10-15 2015-08-04 Measuring apparatus and measuring method for evaluating reduced powdering Active JP6565449B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014211179 2014-10-15
JP2014211179 2014-10-15

Publications (2)

Publication Number Publication Date
JP2016079500A true JP2016079500A (en) 2016-05-16
JP6565449B2 JP6565449B2 (en) 2019-08-28

Family

ID=55955944

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015154083A Active JP6565449B2 (en) 2014-10-15 2015-08-04 Measuring apparatus and measuring method for evaluating reduced powdering

Country Status (1)

Country Link
JP (1) JP6565449B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019173051A (en) * 2018-03-27 2019-10-10 日本製鉄株式会社 Reduction degradation control device, reduction degradation control program, and reduction degradation control method
CN110592370A (en) * 2019-09-09 2019-12-20 中南大学 Low-carbon and low-emission sintering method based on coupling injection of multiple types of fuel gases
JP2020012789A (en) * 2018-07-20 2020-01-23 日本製鉄株式会社 Particle size distribution constant estimation device, particle size distribution constant estimation program and particle size distribution constant estimation method
JP2020063986A (en) * 2018-10-17 2020-04-23 日本製鉄株式会社 Measurement method and measuring device of ae wave
CN112147182A (en) * 2020-08-31 2020-12-29 广西北投交通养护科技集团有限公司 Method for determining disintegration characteristics of carbonaceous rock based on porous medium heat transfer indexes

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5534655A (en) * 1978-08-31 1980-03-11 Sumitomo Metal Ind Ltd Method and apparatus for measuring reduction powdering ratio of sintered ore
JPS60135860A (en) * 1983-12-26 1985-07-19 Toshiba Corp Method for evaluating fault of ceramics product
JPS60157048A (en) * 1984-01-27 1985-08-17 Nippon Kokan Kk <Nkk> Rdi measuring method of sintered ore
JP2008215933A (en) * 2007-03-01 2008-09-18 Nippon Steel Corp State evaluation method of measuring object
JP2010168631A (en) * 2009-01-23 2010-08-05 Jfe Steel Corp Method for estimating low-temperature reduced powderizing of sintered ore
US20130002258A1 (en) * 2011-06-30 2013-01-03 Schlumberger Technology Corporation Device for dielectric permittivity and resistivity high temperature measurement of rock samples
US20140078863A1 (en) * 2012-09-17 2014-03-20 Elwha Llc Assaying gold with a microwave pulse

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5534655A (en) * 1978-08-31 1980-03-11 Sumitomo Metal Ind Ltd Method and apparatus for measuring reduction powdering ratio of sintered ore
JPS60135860A (en) * 1983-12-26 1985-07-19 Toshiba Corp Method for evaluating fault of ceramics product
JPS60157048A (en) * 1984-01-27 1985-08-17 Nippon Kokan Kk <Nkk> Rdi measuring method of sintered ore
JP2008215933A (en) * 2007-03-01 2008-09-18 Nippon Steel Corp State evaluation method of measuring object
JP2010168631A (en) * 2009-01-23 2010-08-05 Jfe Steel Corp Method for estimating low-temperature reduced powderizing of sintered ore
US20130002258A1 (en) * 2011-06-30 2013-01-03 Schlumberger Technology Corporation Device for dielectric permittivity and resistivity high temperature measurement of rock samples
US20140078863A1 (en) * 2012-09-17 2014-03-20 Elwha Llc Assaying gold with a microwave pulse

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019173051A (en) * 2018-03-27 2019-10-10 日本製鉄株式会社 Reduction degradation control device, reduction degradation control program, and reduction degradation control method
JP7003782B2 (en) 2018-03-27 2022-02-04 日本製鉄株式会社 Reduced pulverization property management device, reduced pulverization property management program, and reduced pulverization property management method
JP2020012789A (en) * 2018-07-20 2020-01-23 日本製鉄株式会社 Particle size distribution constant estimation device, particle size distribution constant estimation program and particle size distribution constant estimation method
JP7087766B2 (en) 2018-07-20 2022-06-21 日本製鉄株式会社 Particle size distribution constant estimation device, particle size distribution constant estimation program, and particle size distribution constant estimation method
JP2020063986A (en) * 2018-10-17 2020-04-23 日本製鉄株式会社 Measurement method and measuring device of ae wave
JP7070319B2 (en) 2018-10-17 2022-05-18 日本製鉄株式会社 AE wave measurement method and measuring device
CN110592370A (en) * 2019-09-09 2019-12-20 中南大学 Low-carbon and low-emission sintering method based on coupling injection of multiple types of fuel gases
CN112147182A (en) * 2020-08-31 2020-12-29 广西北投交通养护科技集团有限公司 Method for determining disintegration characteristics of carbonaceous rock based on porous medium heat transfer indexes
CN112147182B (en) * 2020-08-31 2021-03-23 广西北投交通养护科技集团有限公司 Method for determining disintegration characteristics of carbonaceous rock based on porous medium heat transfer indexes

Also Published As

Publication number Publication date
JP6565449B2 (en) 2019-08-28

Similar Documents

Publication Publication Date Title
JP6565449B2 (en) Measuring apparatus and measuring method for evaluating reduced powdering
AU2005203598A1 (en) Systems, methods and apparatus for non-disruptive and non-destructive inspection of metallurgical furnaces and similar vessels
Wisner et al. In situ microscopic investigation to validate acoustic emission monitoring
Yang et al. Acoustic emission assessment of interface cracking in thermal barrier coatings
JP2018044210A (en) Method and system for estimating fracture toughness value of sintered ore
JP7003782B2 (en) Reduced pulverization property management device, reduced pulverization property management program, and reduced pulverization property management method
Xie et al. Oxidation behavior of carbon steel in simulated kerosene combustion atmosphere: A valuable tool for fire investigations
JP3728286B2 (en) Nondestructive high temperature creep damage evaluation method
JP7087766B2 (en) Particle size distribution constant estimation device, particle size distribution constant estimation program, and particle size distribution constant estimation method
CN109613059B (en) Metallurgical gas calorific value online measuring and calculating method based on combustion system operation parameters
JP2010174335A (en) Method for evaluating low-temperature reduction disintegration of sintered ore
JP5625240B2 (en) Evaluation method of low-temperature reduced powdering of sintered ore
JPH06222053A (en) Deterioration diagnostic method for ferrite based heat-resistant steel
Mizutani et al. In-situ evaluation for crack generation behavior of iron ore agglomeration during low temperature reduction by applying acoustic emission method and analysis of reduction disintegration behavior
CN109632881B (en) Metallurgical gas calorific value soft measurement method based on gas preheating system heat exchange parameters
OSUMI et al. Diagnosis of fire damage depth in mortar using nonlinear harmonic method and scanning airborne ultrasound technique
Bach et al. Constraint-based fracture mechanics analysis of cylinders with internal circumferential cracks
Motova et al. Concerning the possibility of examining compressor blades according to attenuation and speed of ultrasound
Shiau et al. Results of tuyere coke sampling with regard to application of appropriate coke strength after reaction (CSR) for a blast furnace
Sadri et al. Monitoring and control of refractory wear for intensive operation of blast furnace
Reddy et al. Real-Time Condition Monitoring of Burner Lance Tubes at Elevated Temperature in Lime Kilns
Xu et al. Constitutive analysis to predict the hot deformation behavior of 34CrMo4 steel with an optimum solution method for stress multiplier
JP2010196151A (en) Quantitative evaluation method of temperature of thermal reserve zone of blast furnace
RU2452913C2 (en) Method of controlling industrial furnace state
Acosta et al. Microstructure-based Lifetime Assessment of Austenitic Steel AISI 347 Exposed to Corrosion and Fatigue

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180404

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190314

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190702

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190715

R151 Written notification of patent or utility model registration

Ref document number: 6565449

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151