JP7087766B2 - Particle size distribution constant estimation device, particle size distribution constant estimation program, and particle size distribution constant estimation method - Google Patents

Particle size distribution constant estimation device, particle size distribution constant estimation program, and particle size distribution constant estimation method Download PDF

Info

Publication number
JP7087766B2
JP7087766B2 JP2018136883A JP2018136883A JP7087766B2 JP 7087766 B2 JP7087766 B2 JP 7087766B2 JP 2018136883 A JP2018136883 A JP 2018136883A JP 2018136883 A JP2018136883 A JP 2018136883A JP 7087766 B2 JP7087766 B2 JP 7087766B2
Authority
JP
Japan
Prior art keywords
particle size
size distribution
reduction
constant
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018136883A
Other languages
Japanese (ja)
Other versions
JP2020012789A (en
Inventor
守利 水谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2018136883A priority Critical patent/JP7087766B2/en
Publication of JP2020012789A publication Critical patent/JP2020012789A/en
Application granted granted Critical
Publication of JP7087766B2 publication Critical patent/JP7087766B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Description

本発明は、粒度分布定数推定装置、粒度分布定数推定プログラム、及び粒度分布定数推定方法に関する。 The present invention relates to a particle size distribution constant estimation device, a particle size distribution constant estimation program, and a particle size distribution constant estimation method.

高炉及び直接還元製鉄法の還元炉等(以下、単に高炉等と称する)を用いた製鉄法において、高炉等に装入される製鉄用原料の品質を管理して、高炉等の操業を安定させることが知られている。製鉄用原料は、焼結鉱、焼成ペレット、非焼成塊成鉱、塊鉱石等を含む。高炉等の操業のために管理される製鉄用原料の品質は、例えば、鉄分等の化学成分、粉率、強度、被還元性、及び耐還元粉性を含み、測定方法はJISにおいて規定されている。例えば、製鉄用原料の強度は落下強度SI(JIS-M8711(2011))及び回転強度TI(JIS-M8712(2009))で規定され、製鉄用原料の被還元性は還元指数RI(Reduction Index、JIS-M8713(2009))で規定される。また、製鉄用原料の耐還元粉性は、製鉄用原料を昇温する昇温工程、製鉄用原料を還元する還元工程、製鉄用原料を冷却する冷却工程、及び製鉄用原料を転動する転動工程を含むRDI試験で測定された還元粉化指数RDI(Reduction Degradation Index、JIS-M8720(2009))で規定される。高炉等の操業を管理する作業者は、JISで規定される測定方法により測定される製鉄用原料の品質項目が管理条件を充足するように、製鉄用原料の製造方法を調整し、高炉等に装入される製鉄用原料の配合割合を調整することで、高炉等の操業を安定させることができる。 In the iron-making method using a blast furnace and a reduction furnace of the direct reduction iron-making method (hereinafter, simply referred to as a blast furnace, etc.), the quality of the raw materials for iron-making charged into the blast furnace, etc. is controlled to stabilize the operation of the blast furnace, etc. It is known. Raw materials for ironmaking include sinter, calcined pellets, non-firing lump ore, lump ore and the like. The quality of raw materials for iron making controlled for the operation of blast furnaces, etc. includes, for example, chemical components such as iron, powder ratio, strength, reduction resistance, and reduction powder resistance, and the measurement method is specified in JIS. There is. For example, the strength of the raw material for iron making is defined by the drop strength SI (JIS-M8711 (2011)) and the rotational strength TI (JIS-M8712 (2009)), and the reducibility of the raw material for iron making is the reduction index RI (Reduction Index,). It is specified by JIS-M8713 (2009)). The reduction powder resistance of the raw material for iron making includes a temperature raising step for raising the temperature of the raw material for iron making, a reduction step for reducing the raw material for iron making, a cooling step for cooling the raw material for iron making, and a rolling process for rolling the raw material for iron making. It is defined by the reduction degradation index RDI (Reduction Degradation Index, JIS-M8720 (2009)) measured in the RDI test including the dynamic process. Workers who manage the operation of blast furnaces, etc. adjust the manufacturing method of raw materials for iron making so that the quality items of raw materials for iron making measured by the measurement method specified by JIS satisfy the control conditions, and make them into blast furnaces, etc. By adjusting the mixing ratio of the raw materials for iron making to be charged, the operation of the blast furnace and the like can be stabilized.

JIS-M8720(2009)に規定されるRDI試験における作業工程を以下に示す。
(1)約5L/minの流量で窒素を流して還元反応管内の空気を置換しながら、製鉄用原料を収納する還元反応管を電熱炉で加熱して製鉄用原料を550℃±10℃に達するまで加熱する(昇温工程)。
(2)15L/minの流量で窒素を流し、温度平衡のため少なくとも15分間550℃の等温を保持する(保持工程)。
(3)窒素を還元ガスに置換し、還元ガスを還元反応管に15L/min±0.5L/minの流量で30分間流し、製鉄用原料を還元する(還元工程)。
(4)電気炉の加熱を止め、且つ約5L/min±0.5Lの流量で窒素を流して製鉄用原料を100℃以下の温度になるまで冷却する(冷却工程)。
(5)還元反応管から製鉄用原料を取り出し、ドラムに装入してドラムを30回転/分±1回転/分の回転速度で合計900回転させて転動する(転動工程)。
(6)ドラムからすべての製鉄用原料を取り出し、公称目開き2.8mmのふるいを用いて製鉄用原料をふるう(ふるい分け工程)。
(7)還元粉化指数RIDを以下の式によって算出する(算出工程)。

Figure 0007087766000001
The work process in the RDI test specified in JIS-M8720 (2009) is shown below.
(1) While nitrogen is flowed at a flow rate of about 5 L / min to replace the air in the reduction reaction tube, the reduction reaction tube containing the iron-making raw material is heated in an electric heating furnace to bring the iron-making raw material to 550 ° C ± 10 ° C. Heat until it reaches (heating step).
(2) Nitrogen is flowed at a flow rate of 15 L / min to maintain an isothermal temperature of 550 ° C. for at least 15 minutes for temperature equilibrium (holding step).
(3) Nitrogen is replaced with a reducing gas, and the reducing gas is passed through a reduction reaction tube at a flow rate of 15 L / min ± 0.5 L / min for 30 minutes to reduce the raw material for iron making (reduction step).
(4) The heating of the electric furnace is stopped, and nitrogen is flowed at a flow rate of about 5 L / min ± 0.5 L to cool the steelmaking raw material to a temperature of 100 ° C. or lower (cooling step).
(5) The raw material for iron making is taken out from the reduction reaction tube, charged into a drum, and the drum is rotated at a rotation speed of 30 rotations / minute ± 1 rotation / minute for a total of 900 rotations (rolling step).
(6) All the raw materials for iron making are taken out from the drum, and the raw materials for iron making are sifted using a sieve having a nominal opening of 2.8 mm (sieving step).
(7) The reduced powder index RID is calculated by the following formula (calculation step).
Figure 0007087766000001

ここで、m0は製鉄用原料の還元後、転動前の質量(g)であり、m1は2.8mmのふるいに残った製鉄用原料の質量(g)である。JISに規定されるRDI試験では、温度が550℃である還元反応管に還元ガスを流すことで製鉄用原料を還元し、還元された製鉄用原料を回転するドラム内で転動させることで粉化の程度を測定することで、高炉等の模擬的条件下での還元粉化性を測定する。 Here, m 0 is the mass (g) after the reduction of the iron-making raw material and before rolling, and m 1 is the mass (g) of the iron-making raw material remaining in the 2.8 mm sieve. In the RDI test specified in JIS, the raw material for iron making is reduced by passing a reducing gas through a reduction reaction tube having a temperature of 550 ° C., and the reduced raw material for iron making is rolled in a rotating drum to produce powder. By measuring the degree of pulverization, the reducing pulverizability under simulated conditions such as in a blast furnace is measured.

また、亀裂及び亀裂破壊により発生する弾性波のアコースティックエミッション(Acoustic Emission、AE)エネルギを測定し、測定したAEエネルギの波形を解析することで、亀裂等を評価するAE法が知られている。 Further, there is known an AE method for evaluating cracks and the like by measuring the acoustic emission (AE) energy of elastic waves generated by cracks and crack fractures and analyzing the waveform of the measured AE energy.

さらに、AE法を使用して、還元粉化指数RDIを推定する技術が知られている(例えば、特許文献1を参照)。特許文献1に記載される技術では、還元粉化指数RDIは、RDI試験におけるAEエネルギの総和と、還元粉化指数還元粉化指数及び回転強度SIの差である還元粉化指数変化量ΔRDIとの間の相関関係とに基づいて推定される。すなわち、特許文献1に記載される技術では、還元粉化指数RDIは、RDI試験におけるAEエネルギの総和が還元粉化指数変化量ΔRDIに相関するとの知見に基づいて推定される。特許文献1に記載される技術は、RDI測定中に発生するAEエネルギの総和から、簡易的かつ直接的に還元粉化指数RDIを推定することができる。 Further, a technique for estimating the reduced powder index RDI using the AE method is known (see, for example, Patent Document 1). In the technique described in Patent Document 1, the reduction powder index RDI is the sum of the AE energy in the RDI test and the reduction powder index change amount ΔRDI, which is the difference between the reduction powder index reduction powder index and the rotational intensity SI. Estimated based on the correlation between. That is, in the technique described in Patent Document 1, the reduced pulverization index RDI is estimated based on the finding that the total amount of AE energy in the RDI test correlates with the amount of change in the reduced pulverization index ΔRDI. The technique described in Patent Document 1 can easily and directly estimate the reduced powder index RDI from the total amount of AE energy generated during the RDI measurement.

特開2016-79500号公報Japanese Unexamined Patent Publication No. 2016-79500

装入される製鉄用原料の初期粒度、製鉄用原料の還元で発生する粉率(特許文献1に記載される技術において推定される還元粉化指数RDIと関連付けることができる)、及び製鉄用原料の還元で発生する粉の粒度分布が分かれば、製鉄用原料の還元粉化後の炉内での粒度分布を推定できる。この粒度分布から、一田の式、及びErgun式を使用して高炉等の通気性を示す圧力損失を推定することができる。 The initial particle size of the iron-making raw material to be charged, the powder ratio generated by the reduction of the iron-making raw material (which can be associated with the reduction powdering index RDI estimated in the technique described in Patent Document 1), and the iron-making raw material. If the particle size distribution of the powder generated by the reduction of the iron is known, the particle size distribution in the furnace after the reduction powder of the raw material for iron making can be estimated. From this particle size distribution, the pressure loss indicating the air permeability of a blast furnace or the like can be estimated using the Ichida's formula and the Ergun's formula.

しかしながら、高炉等において、製鉄用原料の還元で発生する粉の粒度分布を簡易的かつ直接的に推定する技術は知られていない。 However, in a blast furnace or the like, a technique for simply and directly estimating the particle size distribution of powder generated by the reduction of raw materials for iron making is not known.

そこで、本発明は、製鉄用原料の還元で発生する粉の粒度分布を簡易的かつ直接的に推定可能な粒度分布定数推定方法を提供することを目的とする。 Therefore, an object of the present invention is to provide a method for estimating the particle size distribution constant, which can easily and directly estimate the particle size distribution of the powder generated by the reduction of the raw material for iron making.

このような課題を解決する本発明は、以下に記載する粒度分布定数推定装置、粒度分布定数推定プログラム、及び粒度分布定数推定方法を要旨とするものである。
(1)還元炉における還元過程において、製鉄用原料から伝搬する弾性波を示す弾性波信号を取得し、
弾性波信号のそれぞれに対応するAEエネルギを演算し、
AEエネルギのフラクタル次元を演算し、
フラクタル次元と製鉄用原料の還元で発生する粉の粒度分布を示す粒度分布式の定数との対応関係に基づいて定数を推定し、
定数を示す粒度分布定数信号を出力する、
ことを含むことを特徴とする粒度分布定数推定方法。
(2)定数は、粉の粒度分布と、粉の最大粒度に対する粉のそれぞれの粒度の比率との関係を示す式において、比率を底としたときの指数である(1)に記載の粒度分布定数推定方法。
(3)定数は、フラクタル次元に反比例する(2)に記載の粒度分布定数推定方法。
(4)還元炉における還元過程において、製鉄用原料から伝搬する弾性波を示す弾性波信号を取得し、
弾性波信号のそれぞれに対応するAEエネルギを演算し、
AEエネルギのフラクタル次元を演算し、
フラクタル次元と製鉄用原料の還元で発生する粉の粒度分布を示す粒度分布式の定数との対応関係に基づいて定数を推定し、
定数を示す粒度分布定数信号を出力する、
処理をコンピュータに実行させることを特徴とする粒度分布定数推定プログラム。
(5)還元炉における還元過程において、製鉄用原料から伝搬する弾性波を示す弾性波信号を取得する弾性波取得部と、
弾性波信号のそれぞれに対応するAEエネルギを演算するAEエネルギ演算部と、
AEエネルギのフラクタル次元を演算するフラクタル次元演算部と、
フラクタル次元と製鉄用原料の還元で発生する粉の粒度分布を示す粒度分布式の定数との対応関係に基づいて定数を推定する粒度分布定数推定部と、
定数を示す粒度分布定数信号を出力する粒度分布定数出力部と、
を有することを特徴とする粒度分布定数推定装置。
The gist of the present invention for solving such a problem is the particle size distribution constant estimation device, the particle size distribution constant estimation program, and the particle size distribution constant estimation method described below.
(1) In the reduction process in the reduction furnace, an elastic wave signal indicating an elastic wave propagating from a raw material for iron making is acquired.
Calculate the AE energy corresponding to each elastic wave signal,
Calculate the fractal dimension of AE energy,
Estimate the constant based on the correspondence between the fractal dimension and the constant of the particle size distribution formula showing the particle size distribution of the powder generated by the reduction of the raw material for iron making.
Outputs a particle size distribution constant signal indicating a constant,
A method for estimating the particle size distribution constant, which is characterized by including the above.
(2) The constant is an index when the ratio is the base in the formula showing the relationship between the particle size distribution of the powder and the ratio of each particle size of the powder to the maximum particle size of the powder. Constant estimation method.
(3) The particle size distribution constant estimation method according to (2), wherein the constant is inversely proportional to the fractal dimension.
(4) In the reduction process in the reduction furnace, an elastic wave signal indicating an elastic wave propagating from a raw material for iron making is acquired.
Calculate the AE energy corresponding to each elastic wave signal,
Calculate the fractal dimension of AE energy,
Estimate the constant based on the correspondence between the fractal dimension and the constant of the particle size distribution formula showing the particle size distribution of the powder generated by the reduction of the raw material for iron making.
Outputs a particle size distribution constant signal indicating a constant,
A particle size distribution constant estimation program characterized by having a computer perform processing.
(5) An elastic wave acquisition unit that acquires an elastic wave signal indicating an elastic wave propagating from a raw material for iron making in the reduction process in the reduction furnace.
The AE energy calculation unit that calculates the AE energy corresponding to each elastic wave signal,
A fractal dimension calculation unit that calculates the fractal dimension of AE energy,
A particle size distribution constant estimation unit that estimates the constant based on the correspondence between the fractal dimension and the constant of the particle size distribution formula that shows the particle size distribution of the powder generated by the reduction of the raw material for iron making.
Particle size distribution constant output unit that outputs a particle size distribution constant signal indicating a constant, and a particle size distribution constant output unit
A particle size distribution constant estimation device characterized by having.

一実施形態では、高炉等の内部での製鉄用原料の還元粉化性を精度良く管理することができる。 In one embodiment, it is possible to accurately control the reduced pulverization property of the raw material for iron making inside a blast furnace or the like.

実施形態に係る粒度分布定数推定システムの概略図である。It is a schematic diagram of the particle size distribution constant estimation system which concerns on embodiment. 図1に示す演算装置を示す図である。It is a figure which shows the arithmetic unit shown in FIG. 図1に示す粒度分布定数推定システムが高炉等に装入される製鉄用原料の還元粉化性を管理する粒度分布定数推定処理のフローチャートである。FIG. 5 is a flowchart of a particle size distribution constant estimation process in which the particle size distribution constant estimation system shown in FIG. 1 manages the reduced powderability of a raw material for iron making charged into a blast furnace or the like. AEエネルギのフラクタル次元の一例を示す図である。It is a figure which shows an example of the fractal dimension of AE energy. 式(3)におけるα及びβを決定する実験の結果の一例を示す図である。It is a figure which shows an example of the result of the experiment which determines α and β in the formula (3).

以下図面を参照して、粒度分布定数推定装置、粒度分布定数推定プログラム、及び粒度分布定数推定方法について説明する。但し、本発明の技術的範囲はそれらの実施の形態に限定されない。 The particle size distribution constant estimation device, the particle size distribution constant estimation program, and the particle size distribution constant estimation method will be described below with reference to the drawings. However, the technical scope of the present invention is not limited to those embodiments.

(実施形態に係る粒度分布定数推定方法の概要)
本願発明の発明者らは、還元炉における還元過程に発生するAEエネルギのフラクタル次元と、還元粉化後の粉の粒度分布を示す粒度分布式の定数との対応関係があることを見出した。還元炉における還元過程に発生するAEエネルギのフラクタル次元は、AEエネルギの振幅と、それぞれの振幅を有するAEエネルギに対応する弾性波の個数とが両対数で示したときの傾きで示される。AEエネルギのフラクタル次元の絶対値が大きいとき、製鉄用原料に発生する亀裂により生じるAEエネルギの振幅の広がりが狭いことを示すので、還元炉における還元過程において製鉄用原料に発生する亀裂は均一であることを示す。一方、AEエネルギのフラクタル次元の絶対値が小さいとき、製鉄用原料に発生する亀裂により生じるAEエネルギの振幅の広がりが広いことを示すので、還元炉における還元過程において製鉄用原料に発生する亀裂は不均一であることを示す。このように、還元炉における還元過程に発生するAEエネルギのフラクタル次元は、還元炉における還元過程において製鉄用原料の亀裂による粉化の態様に応じた値となる。
(Outline of particle size distribution constant estimation method according to the embodiment)
The inventors of the present invention have found that there is a correspondence between the fractal dimension of AE energy generated in the reduction process in the reduction furnace and the constant of the particle size distribution formula showing the particle size distribution of the powder after reduction pulverization. The fractal dimension of the AE energy generated in the reduction process in the reduction furnace is indicated by the slope when the amplitude of the AE energy and the number of elastic waves corresponding to the AE energy having each amplitude are shown in both logarithms. When the absolute value of the fractal dimension of the AE energy is large, it indicates that the amplitude spread of the AE energy generated by the cracks generated in the ironmaking raw material is narrow, so that the cracks generated in the ironmaking raw material in the reduction process in the reduction furnace are uniform. Indicates that there is. On the other hand, when the absolute value of the fractal dimension of the AE energy is small, it is shown that the amplitude of the AE energy generated by the cracks generated in the ironmaking raw material is wide, so that the cracks generated in the ironmaking raw material in the reduction process in the reduction furnace are present. Indicates non-uniformity. As described above, the fractal dimension of the AE energy generated in the reduction process in the reduction furnace becomes a value according to the mode of pulverization due to the cracking of the raw material for iron making in the reduction process in the reduction furnace.

実施形態に係る粒度分布定数推定方法は、この知見に基づいて、AEエネルギのフラクタル次元から、AEエネルギのフラクタル次元と製鉄用原料の還元で発生する粉の粒度分布を示す粒度分布式の定数との対応関係に基づいて、粒度分布式の定数を推定するものである。実施形態に係る粒度分布定数推定方法は、AEエネルギのフラクタル次元から粒度分布式の定数を推定することで、製鉄用原料の還元で発生する粉の粒度分布を簡易的かつ直接的に推定することができる。 Based on this finding, the particle size distribution constant estimation method according to the embodiment is based on the fractal dimension of the AE energy, the fractal dimension of the AE energy, and the constant of the particle size distribution formula showing the particle size distribution of the powder generated by the reduction of the raw material for iron making. The constant of the particle size distribution formula is estimated based on the correspondence between. The method for estimating the particle size distribution constant according to the embodiment is to estimate the particle size distribution of the powder generated by the reduction of the raw material for iron making simply and directly by estimating the constant of the particle size distribution formula from the fractal dimension of the AE energy. Can be done.

(実施形態に係る粒度分布定数推定システム)
図1は、実施形態に係る粒度分布定数推定システムの概略図である。
(Particle size distribution constant estimation system according to the embodiment)
FIG. 1 is a schematic diagram of a particle size distribution constant estimation system according to an embodiment.

粒度分布定数推定システム1は、還元炉部10と、ガス供給部20と、排ガス処理部30と、AE検出部40と、演算装置50を有する。粒度分布定数推定システム1は、RDI試験の還元工程におけるAEエネルギのフラクタル次元から製鉄用原料の還元で発生する粉の粒度分布を示す式の定数を推定する。 The particle size distribution constant estimation system 1 includes a reduction furnace unit 10, a gas supply unit 20, an exhaust gas treatment unit 30, an AE detection unit 40, and an arithmetic unit 50. The particle size distribution constant estimation system 1 estimates the constant of the formula showing the particle size distribution of the powder generated by the reduction of the raw material for iron making from the fractal dimension of the AE energy in the reduction step of the RDI test.

還元炉部10は、製鉄用原料Sを収納する反応管11と、反応管11を内包して加熱する加熱炉12とを有する。反応管11は、反応管内管13と、反応管外管14と、一対のガス整流用穴あき目皿15と、ガス流入口16と、ガス排出口17と、試料温度測定用熱電対18と、反応管蓋19とを有する。反応管外管14は反応管11の外縁を形成し、反応管内管13は反応管11の内縁を形成する。一対のガス整流用穴あき目皿15は反応管内管13の上下方向に互いに離隔される。製鉄用原料Sは、一対のガス整流用穴あき目皿15の間に装入される。ガス流入口16はガス供給部20から供給されるガスを反応管11の内部に導入する導入口であり、ガス排出口17は反応管11の内部からガスを排出する排出口である。試料温度測定用熱電対18は、反応管11の内部の温度に応じた電流が流れる熱電対であり、試料温度測定用熱電対18を流れる電流は、不図示の制御装置に供給される。試料温度測定用熱電対18から電流が供給される制御装置は、反応管内管13の内部の温度が所望の温度になるように加熱炉12を制御する。反応管蓋19は、反応管11の開口部に着脱可能に配置され、反応管11を密封する蓋である。 The reduction furnace section 10 has a reaction tube 11 for accommodating the raw material S for iron making, and a heating furnace 12 containing and heating the reaction tube 11. The reaction tube 11 includes a reaction tube inner tube 13, a reaction tube outer tube 14, a pair of gas rectifying perforated plates 15, a gas inlet 16, a gas discharge port 17, and a thermoelectric pair 18 for measuring sample temperature. , With a reaction tube lid 19. The outer tube 14 of the reaction tube forms the outer edge of the reaction tube 11, and the inner tube 13 of the reaction tube forms the inner edge of the reaction tube 11. The pair of gas rectifying perforated plates 15 are separated from each other in the vertical direction of the reaction tube inner tube 13. The iron-making raw material S is charged between the pair of gas rectifying perforated plates 15. The gas inflow port 16 is an introduction port for introducing the gas supplied from the gas supply unit 20 into the inside of the reaction tube 11, and the gas discharge port 17 is an discharge port for discharging gas from the inside of the reaction tube 11. The sample temperature measuring thermocouple 18 is a thermocouple in which a current corresponding to the temperature inside the reaction tube 11 flows, and the current flowing through the sample temperature measuring thermocouple 18 is supplied to a control device (not shown). The control device to which the current is supplied from the thermocouple 18 for measuring the sample temperature controls the heating furnace 12 so that the temperature inside the reaction tube inner tube 13 becomes a desired temperature. The reaction tube lid 19 is a lid that is detachably arranged in the opening of the reaction tube 11 and seals the reaction tube 11.

加熱炉12は、筐体120と、炉温制御用熱電対121とを有する。筐体120は、反応管11を内包可能な大きさを有する。炉温制御用熱電対121のそれぞれは、試料温度測定用熱電対18から電流が供給される制御装置によって制御される電流が、不図示の電源から通電されることで発熱する。炉温制御用熱電対121のそれぞれが発熱することで、製鉄用原料Sを収納する反応管11が加熱される。 The heating furnace 12 has a housing 120 and a thermocouple 121 for controlling the furnace temperature. The housing 120 has a size capable of containing the reaction tube 11. Each of the thermocouples 121 for controlling the furnace temperature generates heat when the current controlled by the control device to which the current is supplied from the thermocouple 18 for measuring the sample temperature is energized from a power source (not shown). The heat generated by each of the thermocouples 121 for controlling the furnace temperature heats the reaction tube 11 that houses the iron-making raw material S.

ガス供給部20は、複数のガスシリンダ21と、複数のガスシリンダ21のそれぞれに接続されたガス流量計22と、ガス混合容器23とを有し、複数のガスシリンダ21のそれぞれから供給されるガスをガス混合容器23で混合して還元ガスを製造する。複数のガスシリンダ21のそれぞれは、N2ガス、COガス、CO2ガス、H2ガスを収容する。ガス流量計22のそれぞれは、複数のガスシリンダ21のそれぞれから供給されるガスの流量を測定する。ガス混合容器23は、例えば、昇温工程、保持工程及び冷却工程では、N2ガスが供給され、還元工程ではCOガスの体積分率が30%及びN2ガスの体積分率が70%である還元ガスが供給される。 The gas supply unit 20 has a plurality of gas cylinders 21, a gas flow meter 22 connected to each of the plurality of gas cylinders 21, and a gas mixing container 23, and is supplied from each of the plurality of gas cylinders 21. The gas is mixed in the gas mixing container 23 to produce a reduced gas. Each of the plurality of gas cylinders 21 accommodates N 2 gas, CO gas, CO 2 gas, and H 2 gas. Each of the gas flow meters 22 measures the flow rate of the gas supplied from each of the plurality of gas cylinders 21. In the gas mixing container 23, for example, N 2 gas is supplied in the temperature raising step, the holding step and the cooling step, and the volume fraction of CO gas is 30% and the volume fraction of N 2 gas is 70% in the reducing step. A certain reducing gas is supplied.

排ガス処理部30は、排ガス管31と、排ガス処理設備32とを有する。排ガス管31は、一端がガス排出口17に接続され、他端が排ガス処理設備32に接続され、反応管11の内部から還元ガス等を排ガス処理装置32に排出する。排ガス処理設備32は、毒性のあるCOガスや爆発性のH2ガスなどを含有する排出ガスの種類及び量に応じた反応処理が実行可能な設備である。 The exhaust gas treatment unit 30 includes an exhaust gas pipe 31 and an exhaust gas treatment facility 32. One end of the exhaust gas pipe 31 is connected to the gas discharge port 17, the other end is connected to the exhaust gas treatment equipment 32, and the reduced gas or the like is discharged from the inside of the reaction pipe 11 to the exhaust gas treatment device 32. The exhaust gas treatment facility 32 is a facility capable of performing reaction treatment according to the type and amount of exhaust gas containing toxic CO gas, explosive H2 gas, and the like.

AE検出部40は、AE導波部材41と、AEセンサ42とを有する。AE導波部材41は、棒状のAE導波棒であり、一対のガス整流用穴あき目皿15の間に装入された試料S内に延出しており、試料Sから発生する弾性波をAEセンサ42に伝搬させる。AEセンサ42は、例えばジルコン酸チタン酸鉛(PZT)等の圧電素子を含み、AE導波部材41を伝搬する弾性波を検出し、検出した弾性波に応じた信号を出力する。 The AE detection unit 40 has an AE waveguide member 41 and an AE sensor 42. The AE waveguide member 41 is a rod-shaped AE waveguide rod, which extends into the sample S charged between the pair of gas rectifying perforated plates 15 and generates elastic waves from the sample S. Propagate to the AE sensor 42. The AE sensor 42 includes a piezoelectric element such as lead zirconate titanate (PZT), detects elastic waves propagating in the AE waveguide member 41, and outputs a signal corresponding to the detected elastic waves.

図2は、演算装置50を示す図である。 FIG. 2 is a diagram showing an arithmetic unit 50.

演算装置50は、通信部51と、記憶部52と、入力部53と、出力部54と、処理部60とを有する。通信部51、記憶部52、入力部53、出力部54及び処理部60は、バス200を介して互いに接続される。演算装置50は、RDI試験の還元工程におけるAEエネルギのフラクタル次元と製鉄用原料の還元で発生する粉の粒度分布を示す式の定数との対応関係に基づいて定数を推定する。一例では、演算装置50は、高炉等への装入物の搬送を監視制御する監視制御装置である。また、演算装置50は、単一の装置として示されるが、複数の装置として構成されてもよい。例えば、演算装置50は、AEセンサ42が検出した弾性波の周波数及びAEエネルギを測定するAE測定装置と、AE測定装置が測定した弾性波の周波数及びAEエネルギから対象物の粒度を想定する解析用パーソナルコンピュータとで構成されてもよい。 The arithmetic unit 50 includes a communication unit 51, a storage unit 52, an input unit 53, an output unit 54, and a processing unit 60. The communication unit 51, the storage unit 52, the input unit 53, the output unit 54, and the processing unit 60 are connected to each other via the bus 200. The arithmetic unit 50 estimates the constant based on the correspondence between the fractal dimension of the AE energy in the reduction step of the RDI test and the constant of the formula indicating the particle size distribution of the powder generated by the reduction of the raw material for iron making. In one example, the arithmetic unit 50 is a monitoring control device that monitors and controls the transfer of charged materials to a blast furnace or the like. Further, although the arithmetic unit 50 is shown as a single device, it may be configured as a plurality of devices. For example, the arithmetic unit 50 is an AE measuring device that measures the frequency and AE energy of the elastic wave detected by the AE sensor 42, and an analysis that assumes the particle size of the object from the frequency and AE energy of the elastic wave measured by the AE measuring device. It may be configured with a personal computer for use.

通信部51は、イーサネット(登録商標)などの有線の通信インターフェース回路を有する。通信部51は、LAN43を介してAEセンサ42及び不図示の上位制御装置と通信を行う。 The communication unit 51 has a wired communication interface circuit such as Ethernet (registered trademark). The communication unit 51 communicates with the AE sensor 42 and a higher-level control device (not shown) via the LAN 43.

記憶部52は、例えば、半導体記憶装置、磁気テープ装置、磁気ディスク装置、又は光ディスク装置のうちの少なくとも一つを備える。記憶部52は、処理部60での処理に用いられるオペレーティングシステムプログラム、ドライバプログラム、アプリケーションプログラム、データ等を記憶する。例えば、記憶部52は、アプリケーションプログラムとして、製鉄用原料の還元で発生する粉の粒度分布を示す粒度分布式の定数を推定する粒度分布定数推定処理を処理部60に実行させるための粒度分布定数推定プログラム等を記憶する。粒度分布定数推定プログラムは、例えばCD-ROM、DVD-ROM等のコンピュータ読み取り可能な可搬型記録媒体から、公知のセットアッププログラム等を用いて記憶部52にインストールされてもよい。また、記憶部52は、粒度分布定数推定処理で使用される種々のデータを記憶する。 The storage unit 52 includes, for example, at least one of a semiconductor storage device, a magnetic tape device, a magnetic disk device, or an optical disk device. The storage unit 52 stores an operating system program, a driver program, an application program, data, and the like used for processing in the processing unit 60. For example, as an application program, the storage unit 52 causes the processing unit 60 to execute a particle size distribution constant estimation process for estimating the constant of the particle size distribution formula indicating the particle size distribution of the powder generated by the reduction of the raw material for iron making. Store the estimation program, etc. The particle size distribution constant estimation program may be installed in the storage unit 52 from a computer-readable portable recording medium such as a CD-ROM or a DVD-ROM using a known setup program or the like. Further, the storage unit 52 stores various data used in the particle size distribution constant estimation process.

入力部53は、データの入力が可能であればどのようなデバイスでもよく、例えば、タッチパネル、キーボード等である。作業者は、入力部53を用いて、文字、数字、記号等を入力することができる。入力部53は、作業者により操作されると、その操作に対応する信号を生成する。そして、生成された信号は、作業者の指示として、処理部60に供給される。 The input unit 53 may be any device as long as data can be input, and is, for example, a touch panel, a keyboard, or the like. The operator can input characters, numbers, symbols, etc. using the input unit 53. When the input unit 53 is operated by an operator, the input unit 53 generates a signal corresponding to the operation. Then, the generated signal is supplied to the processing unit 60 as an instruction of the operator.

出力部54は、映像や画像等の表示が可能であればどのようなデバイスでもよく、例えば、液晶ディスプレイ又は有機EL(Electro-Luminescence)ディスプレイ等である。出力部54は、処理部60から供給された映像データに応じた映像や、画像データに応じた画像等を表示する。また、出力部54は、紙などの表示媒体に、映像、画像又は文字等を印刷する出力装置であってもよい。 The output unit 54 may be any device as long as it can display an image, an image, or the like, and is, for example, a liquid crystal display or an organic EL (Electro-Luminescence) display. The output unit 54 displays a video corresponding to the video data supplied from the processing unit 60, an image corresponding to the image data, and the like. Further, the output unit 54 may be an output device that prints a video, an image, characters, or the like on a display medium such as paper.

処理部60は、一又は複数個のプロセッサ及びその周辺回路を有する。処理部60は、演算装置50の全体的な動作を統括的に制御するものであり、例えば、CPUである。処理部60は、記憶部52に記憶されているプログラム(ドライバプログラム、オペレーティングシステムプログラム、アプリケーションプログラム等)に基づいて処理を実行する。また、処理部60は、複数のプログラム(アプリケーションプログラム等)を並列に実行できる。 The processing unit 60 includes one or more processors and peripheral circuits thereof. The processing unit 60 comprehensively controls the overall operation of the arithmetic unit 50, and is, for example, a CPU. The processing unit 60 executes processing based on a program (driver program, operating system program, application program, etc.) stored in the storage unit 52. Further, the processing unit 60 can execute a plurality of programs (application programs and the like) in parallel.

処理部60は、弾性波取得部61と、AEエネルギ演算部62と、フラクタル次元演算部63と、粒度分布定数推定部64と、粒度分布定数出力部65とを有する。これらの各部は、処理部60が備えるプロセッサで実行されるプログラムにより実現される機能モジュールである。あるいは、これらの各部は、ファームウェアとして演算装置50に実装されてもよい。 The processing unit 60 includes an elastic wave acquisition unit 61, an AE energy calculation unit 62, a fractal dimension calculation unit 63, a particle size distribution constant estimation unit 64, and a particle size distribution constant output unit 65. Each of these units is a functional module realized by a program executed by the processor included in the processing unit 60. Alternatively, each of these parts may be mounted on the arithmetic unit 50 as firmware.

(実施形態に係る粒度分布定数推定システムによる粒度分布定数推定処理)
図3は、粒度分布定数推定システム1により実行される粒度分布定数推定処理のフローチャートである。図3に示す粒度分布定数推定処理は、予め記憶部52に記憶されているプログラムに基づいて、主に処理部60により演算装置50の各要素と協働して実行される。
(Particle size distribution constant estimation process by the particle size distribution constant estimation system according to the embodiment)
FIG. 3 is a flowchart of the particle size distribution constant estimation process executed by the particle size distribution constant estimation system 1. The particle size distribution constant estimation process shown in FIG. 3 is mainly executed by the processing unit 60 in cooperation with each element of the arithmetic unit 50 based on the program stored in the storage unit 52 in advance.

まず、弾性波取得部61は、還元工程の間、AEセンサ42が検出した複数の弾性波のそれぞれの波形を示す弾性波信号を取得する(S101)。弾性波取得部61は、COガスを収容するガスシリンダ21の排出弁が開動作することを検知して弾性波信号の取得を開始してもよく、不図示の作業者による入力部53を介する還元工程開始指示の入力に応じて弾性波信号の取得を開始してもよい。また、弾性波取得部61は、COガスを収容するガスシリンダ21の排出弁が閉動作することを検知して弾性波信号の取得を終了してもよく、不図示の作業者による入力部53を介する還元工程終了指示の入力に応じて弾性波信号の取得を終了してもよい。 First, the elastic wave acquisition unit 61 acquires elastic wave signals indicating the waveforms of the plurality of elastic waves detected by the AE sensor 42 during the reduction step (S101). The elastic wave acquisition unit 61 may detect that the discharge valve of the gas cylinder 21 accommodating the CO gas is opened and start acquisition of the elastic wave signal, via an input unit 53 by an operator (not shown). Acquisition of the elastic wave signal may be started in response to the input of the reduction step start instruction. Further, the elastic wave acquisition unit 61 may end the acquisition of the elastic wave signal by detecting that the discharge valve of the gas cylinder 21 accommodating the CO gas is closed, and the input unit 53 by an operator (not shown) may end the acquisition. The acquisition of the elastic wave signal may be completed in response to the input of the reduction step end instruction via.

次いで、AEエネルギ演算部62は、還元工程の間に弾性波取得部61によって取得された弾性波信号に対応する複数の弾性波のそれぞれのAEエネルギを演算する(S102)。AEエネルギ演算部62は、複数の弾性波のそれぞれの波形の包絡線で囲まれた部分の面積を、複数の弾性波のそれぞれのAEエネルギとして演算する。 Next, the AE energy calculation unit 62 calculates the AE energy of each of the plurality of elastic waves corresponding to the elastic wave signals acquired by the elastic wave acquisition unit 61 during the reduction step (S102). The AE energy calculation unit 62 calculates the area of the portion surrounded by the envelope of each waveform of the plurality of elastic waves as the AE energy of each of the plurality of elastic waves.

次いで、フラクタル次元演算部63は、S102の処理で演算されたAEエネルギのフラクタル次元を演算する(S103)。AEエネルギのフラクタル次元は、式(1)で示されるように、AEエネルギの振幅Aと、それぞれの振幅を有するAEエネルギに対応する弾性波の個数f(A)とが両対数で示したときの傾きFで示される。 Next, the fractal dimension calculation unit 63 calculates the fractal dimension of the AE energy calculated in the process of S102 (S103). As shown in the equation (1), the fractal dimension of the AE energy is when the amplitude A of the AE energy and the number of elastic waves f (A) corresponding to the AE energy having each amplitude are shown in both logarithms. Is indicated by the slope F of.

Figure 0007087766000002
Figure 0007087766000002

式(1)において、cは定数である。 In equation (1), c is a constant.

図4は、AEエネルギのフラクタル次元の一例を示す図である。図4において、横軸はAEエネルギの振幅を対数で示し、縦軸はそれぞれの振幅を有するAEエネルギに対応する弾性波の個数を対数で示す。 FIG. 4 is a diagram showing an example of the fractal dimension of AE energy. In FIG. 4, the horizontal axis shows the amplitude of the AE energy in a logarithm, and the vertical axis shows the number of elastic waves corresponding to the AE energy having each amplitude in a logarithm.

近似直線401で示される1次式は、「y = -1.57 x + 7.60」で示される。近似直線401において、xはAEエネルギの振幅の対数log10Aに対応し、yはそれぞれの振幅を有するAEエネルギに対応する弾性波の個数の対数log10f(A)に対応する。図4において、フラクタル次元Fは、1.57である。 The linear equation shown by the approximate straight line 401 is shown by "y = -1.57 x + 7.60". In the approximate straight line 401, x corresponds to the logarithm log 10 A of the amplitude of the AE energy, and y corresponds to the logarithm log 10 f (A) of the number of elastic waves corresponding to the AE energy having each amplitude. In FIG. 4, the fractal dimension F is 1.57.

次いで、粒度分布定数推定部64は、AEエネルギのフラクタル次元と製鉄用原料の還元で発生する粉の粒度分布を示す式の定数との対応関係に基づいて、製鉄用原料の還元で発生する粉の粒度分布を示す式の定数を推定する(S104)。 Next, the particle size distribution constant estimation unit 64 is based on the correspondence between the fractal dimension of the AE energy and the constant of the formula indicating the particle size distribution of the powder generated by the reduction of the ironmaking raw material, and the powder generated by the reduction of the ironmaking raw material. Estimate the constant of the equation showing the particle size distribution of (S104).

製鉄用原料の還元で発生する粉の粒度分布を示す式は、一例では、式(2)で示されるGaudin-Schuhmann分布を示す式である。 The formula showing the particle size distribution of the powder generated by the reduction of the raw material for iron making is, for example, the formula showing the Gaudin-Schuhmann distribution represented by the formula (2).

Figure 0007087766000003
Figure 0007087766000003

式(2)において、dmaxは製鉄用原料の還元で発生する粉の最大粒度(直径)を示し、dpは製鉄用原料の還元で発生する粉のそれぞれの粒度を示す。mは粒度分布の広がりを表す指数(定数)である。U(dp)は、製鉄用原料の還元で発生する粉の粒度分布を示し、粒径ゼロからdpまでの累積比率で表される。式(2)における指数mは、S104で推定される製鉄用原料の還元で発生する粉の粒度分布を示す式の定数の一例である。すなわち、定数は、粉の粒度分布U(dp)と、粉の最大粒度に対する粉のそれぞれの粒度の比率(dp/dmax)との関係を示す式において、比率(dp/dmax)を底としたときの指数mとしてもよい。 In the formula (2), d max indicates the maximum particle size (diameter) of the powder generated by the reduction of the iron-making raw material, and d p indicates the respective particle sizes of the powder generated by the reduction of the iron-making raw material. m is an exponential (constant) representing the spread of the particle size distribution. U (d p ) indicates the particle size distribution of the powder generated by the reduction of the raw material for iron making, and is represented by the cumulative ratio from zero particle size to d p . The index m in the formula (2) is an example of a constant of the formula indicating the particle size distribution of the powder generated by the reduction of the raw material for iron making estimated in S104. That is, the constant is a ratio (d p / d max ) in the formula showing the relationship between the particle size distribution U (d p ) of the powder and the ratio (d p / d max ) of each particle size of the powder to the maximum particle size of the powder. ) May be the index m at the bottom.

粒度分布定数推定部64は、AEエネルギのフラクタル次元FとGaudin-Schuhmann分布を示す式の指数mとの対応関係情報に基づいて、Gaudin-Schuhmann分布を示す式の指数mを推定する。対応関係情報は、式(3)で示す1次式として記憶部52に記憶されてもよく、AEエネルギのフラクタル次元Fと指数mとの対応関係を示すテーブルとして記憶部52に記憶されてもよい。 The particle size distribution constant estimation unit 64 estimates the exponent m of the equation showing the Gaudin-Schuhmann distribution based on the correspondence information between the fractal dimension F of the AE energy and the exponent m of the equation showing the Gaudin-Schuhmann distribution. The correspondence information may be stored in the storage unit 52 as a linear expression represented by the equation (3), or may be stored in the storage unit 52 as a table showing the correspondence relationship between the fractal dimension F of the AE energy and the exponent m. good.

Figure 0007087766000004
Figure 0007087766000004

式(3)において、α及びβは、複数の製鉄用原料を使用した実験により予め決定される定数である。 In the formula (3), α and β are constants determined in advance by an experiment using a plurality of raw materials for iron making.

図5は式(3)におけるα及びβを決定する実験の結果の一例を示す図である。図5において、横軸は還元炉における還元過程に発生するAEエネルギのフラクタル次元Fを示し、縦軸はGaudin-Schuhmann分布を示す式の指数mを示す。 FIG. 5 is a diagram showing an example of the results of an experiment for determining α and β in the formula (3). In FIG. 5, the horizontal axis shows the fractal dimension F of the AE energy generated in the reduction process in the reduction furnace, and the vertical axis shows the exponent m of the equation showing the Gaudin-Schuhmann distribution.

図5は、表1に示す試料1~9を使用して作成された。試料1~9のそれぞれは焼結鉱であり、表1において、項目「成分」は試料1~9に含まれる化合物の含有量を示し、項目「RDI」はRDI試験により算出される還元粉化指数を示す。また、表1において、項目「GS分布指数」はGaudin-Schuhmann分布を示す式(2)の指数mを示し、項目「AEのフラクタル次元」はRDI試験において発生する弾性波に対応するAEエネルギのフラクタル次元の絶対値を示す。なお、RDI試験では、還元工程のみならず冷却工程においても製鉄用原料に亀裂が発生するので、項目「AEのフラクタル次元」はRDI試験の還元工程及び冷却工程で発生した弾性波に対応するAEエネルギのフラクタル次元の絶対値を示す。 FIG. 5 was prepared using Samples 1-9 shown in Table 1. Each of the samples 1 to 9 is a sinter, and in Table 1, the item "component" indicates the content of the compound contained in the samples 1 to 9, and the item "RDI" is the reduced pulverization calculated by the RDI test. Shows the index. Further, in Table 1, the item "GS distribution index" indicates the index m of the formula (2) indicating the Gaudin-Schuhmann distribution, and the item "Fractal dimension of AE" indicates the AE energy corresponding to the elastic wave generated in the RDI test. Shows the absolute value of the fractal dimension. In the RDI test, cracks occur in the iron-making raw material not only in the reduction process but also in the cooling process. Therefore, the item "AE fractal dimension" corresponds to the elastic wave generated in the reduction process and the cooling process of the RDI test. Shows the absolute value of the fractal dimension of energy.

Figure 0007087766000005
Figure 0007087766000005

図5に示す例では、αは0.487であり、βは1.365である。 In the example shown in FIG. 5, α is 0.487 and β is 1.365.

そして、粒度分布定数出力部65は、S104の処理で演算された製鉄用原料の還元で発生する粉の粒度分布を示す式の定数を示す粒度分布定数信号を出力する(S105)。 Then, the particle size distribution constant output unit 65 outputs a particle size distribution constant signal indicating the constant of the formula indicating the particle size distribution of the powder generated by the reduction of the raw material for iron making calculated in the process of S104 (S105).

(実施形態に係る粒度分布定数推定システムの作用効果)
粒度分布定数推定システム1は、AEエネルギのフラクタル次元から粒度分布を示す粒度分布式の定数を推定することで、製鉄用原料の還元で発生する粉の粒度分布を簡易的かつ直接的に推定することができる。
(Action and effect of the particle size distribution constant estimation system according to the embodiment)
The particle size distribution constant estimation system 1 estimates the particle size distribution of powder generated by the reduction of raw materials for iron making simply and directly by estimating the constant of the particle size distribution formula showing the particle size distribution from the fractal dimension of AE energy. be able to.

(実施形態に係る粒度分布定数推定システムの変形例)
粒度分布定数推定システム1では、粉の粒度分布を示す式としてGaudin-Schuhmann分布を示す式が使用されるが、実施形態に係る粒度分布定数推定システムでは、粉の粒度分布を示す他の式を使用してもよい。式(4)は、実施形態に係る粒度分布定数推定システムにおいて粉の粒度分布を示す式と使用可能なRosin-Rammler分布を示す式である。

Figure 0007087766000006
(Modified example of the particle size distribution constant estimation system according to the embodiment)
In the particle size distribution constant estimation system 1, an equation showing the Gaudin-Schuhmann distribution is used as an equation showing the particle size distribution of the powder, but in the particle size distribution constant estimation system according to the embodiment, another equation showing the particle size distribution of the powder is used. You may use it. Equation (4) is an equation showing the particle size distribution of the powder and the equation showing the rosin-Rammler distribution that can be used in the particle size distribution constant estimation system according to the embodiment.
Figure 0007087766000006

式(4)において、deはRが0.368になる粉の粒径を示し、dは製鉄用原料の還元で発生する粉のそれぞれの粒径を示し、nは粒度分布の広がりを示すパラメータであり、Rはふるい上分布とも称され、粒径がd以上の粉の質量分率を示す。 In the formula (4), de indicates the particle size of the powder having R of 0.368, d indicates the particle size of each of the powders generated by the reduction of the raw material for iron making, and n indicates the spread of the particle size distribution. It is a parameter, and R is also referred to as distribution on a sieve, and indicates the mass fraction of powder having a particle size of d or more.

実施形態に係る粒度分布定数推定システムでは、式(4)に示すパラメータnを製鉄用原料の還元で発生する粉の粒度分布を示す式の定数としてもよい。 In the particle size distribution constant estimation system according to the embodiment, the parameter n shown in the equation (4) may be a constant of the equation indicating the particle size distribution of the powder generated by the reduction of the raw material for iron making.

1 粒度分布定数推定システム
10 還元炉部
20 ガス供給部
30 排ガス処理部
40 AE検出部
50 演算装置
61 弾性波取得部
62 AEエネルギ演算部
63 フラクタル次元演算部
64 粒度分布定数推定部
65 粒度分布定数出力部
1 Particle size distribution constant estimation system 10 Reduction furnace unit 20 Gas supply unit 30 Exhaust gas treatment unit 40 AE detection unit 50 Computing device 61 Elastic wave acquisition unit 62 AE Energy calculation unit 63 Fractal dimension calculation unit 64 Particle size distribution constant estimation unit 65 Particle size distribution constant Output section

Claims (5)

還元炉における還元過程において、製鉄用原料から伝搬する弾性波を示す弾性波信号を取得し、
前記弾性波信号のそれぞれに対応するAEエネルギを演算し、
式(1)を使用して前記AEエネルギのフラクタル次元を演算し、
前記フラクタル次元と前記製鉄用原料の還元で発生する粉の粒度分布を示す粒度分布式の定数との対応関係を示す式(2)及び(3)に基づいて前記定数を推定し、
前記定数を示す粒度分布定数信号を出力する、ことを含み、
Figure 0007087766000007
式(1)において、AはAEエネルギの振幅であり、f(A)はそれぞれの振幅を有するAEエネルギに対応する弾性波の個数であり、
式(2)において、d max は製鉄用原料の還元で発生する粉の最大粒度を示し、d p は製鉄用原料の還元で発生する粉のそれぞれの粒度を示し、U(d p )は製鉄用原料の還元で発生する粉の粒度分布を示し、
式(3)において、α及びβは定数である、ことを特徴とする粒度分布定数推定方法。
In the reduction process in the reduction furnace, an elastic wave signal indicating the elastic wave propagating from the raw material for iron making is acquired.
The AE energy corresponding to each of the elastic wave signals is calculated, and the result is calculated.
The fractal dimension F of the AE energy is calculated using the equation (1) .
The constant m is estimated based on the equations (2) and (3) showing the correspondence between the fractal dimension F and the constant m of the particle size distribution equation showing the particle size distribution of the powder generated by the reduction of the raw material for iron making.
Including outputting a particle size distribution constant signal indicating the constant m .
Figure 0007087766000007
In the formula (1), A is the amplitude of the AE energy, and f (A) is the number of elastic waves corresponding to the AE energy having each amplitude.
In the formula (2), d max indicates the maximum particle size of the powder generated by the reduction of the raw material for iron making, d p indicates the respective particle sizes of the powder generated by the reduction of the raw material for iron making, and U (d p ) indicates the particle size of each of the powders generated by the reduction of the raw material for iron making . The particle size distribution of the powder generated by the reduction of raw materials is shown.
A method for estimating a particle size distribution constant, characterized in that α and β are constants in the equation (3) .
前記定数は、前記粉の粒度分布と、前記粉の最大粒度に対する前記粉のそれぞれの粒度の比率との関係を示す式において、前記比率を底としたときの指数である、請求項1に記載の粒度分布定数推定方法。 The constant is an index when the ratio is at the bottom in the formula showing the relationship between the particle size distribution of the powder and the ratio of each particle size of the powder to the maximum particle size of the powder, according to claim 1. Particle size distribution constant estimation method. 前記定数は、前記フラクタル次元に比例する、請求項2に記載の粒度分布定数推定方法。 The method for estimating a particle size distribution constant according to claim 2, wherein the constant is proportional to the fractal dimension. 還元炉における還元過程において、製鉄用原料から伝搬する弾性波を示す弾性波信号を取得し、
前記弾性波信号のそれぞれに対応するAEエネルギを演算し、
式(1)を使用して前記AEエネルギのフラクタル次元を演算し、
前記フラクタル次元と前記製鉄用原料の還元で発生する粉の粒度分布を示す粒度分布式の定数との対応関係を示す式(2)及び(3)に基づいて前記定数を推定し、
前記定数を示す粒度分布定数信号を出力する、
処理をコンピュータに実行させる分布定数推定プログラムであって、
Figure 0007087766000008
式(1)において、AはAEエネルギの振幅であり、f(A)はそれぞれの振幅を有するAEエネルギに対応する弾性波の個数であり、
式(2)において、d max は製鉄用原料の還元で発生する粉の最大粒度を示し、d p は製鉄用原料の還元で発生する粉のそれぞれの粒度を示し、U(d p )は製鉄用原料の還元で発生する粉の粒度分布を示し、
式(3)において、α及びβは定数である、ことを特徴とする粒度分布定数推定プログラム。
In the reduction process in the reduction furnace, an elastic wave signal indicating the elastic wave propagating from the raw material for iron making is acquired.
The AE energy corresponding to each of the elastic wave signals is calculated, and the result is calculated.
The fractal dimension F of the AE energy is calculated using the equation (1) .
The constant m is estimated based on the equations (2) and (3) showing the correspondence between the fractal dimension F and the constant m of the particle size distribution equation showing the particle size distribution of the powder generated by the reduction of the raw material for iron making.
Outputs a particle size distribution constant signal indicating the constant m .
A distribution constant estimation program that causes a computer to perform processing.
Figure 0007087766000008
In the formula (1), A is the amplitude of the AE energy, and f (A) is the number of elastic waves corresponding to the AE energy having each amplitude.
In the formula (2), d max indicates the maximum particle size of the powder generated by the reduction of the raw material for iron making, d p indicates the respective particle sizes of the powder generated by the reduction of the raw material for iron making, and U (d p ) indicates the particle size of each of the powders generated by the reduction of the raw material for iron making . The particle size distribution of the powder generated by the reduction of raw materials is shown.
A particle size distribution constant estimation program characterized in that α and β are constants in the equation (3) .
還元炉における還元過程において、製鉄用原料から伝搬する弾性波を示す弾性波信号を取得する弾性波取得部と、
前記弾性波信号のそれぞれに対応するAEエネルギを演算するAEエネルギ演算部と、
式(1)を使用して前記AEエネルギのフラクタル次元を演算するフラクタル次元演算部と、
前記フラクタル次元と前記製鉄用原料の還元で発生する粉の粒度分布を示す粒度分布式の定数との対応関係を示す式(2)及び(3)に基づいて前記定数を推定する粒度分布定数推定部と、
前記定数を示す粒度分布定数信号を出力する粒度分布定数出力部と、を有する粒度分布定数推定装置であって、
Figure 0007087766000009
式(1)において、AはAEエネルギの振幅であり、f(A)はそれぞれの振幅を有するAEエネルギに対応する弾性波の個数であり、
式(2)において、d max は製鉄用原料の還元で発生する粉の最大粒度を示し、d p は製鉄用原料の還元で発生する粉のそれぞれの粒度を示し、U(d p )は製鉄用原料の還元で発生する粉の粒度分布を示し、
式(3)において、α及びβは定数である、ことを特徴とする粒度分布定数推定装置。
In the reduction process in the reduction furnace, an elastic wave acquisition unit that acquires an elastic wave signal indicating an elastic wave propagating from a raw material for iron making, and an elastic wave acquisition unit.
An AE energy calculation unit that calculates AE energy corresponding to each of the elastic wave signals,
A fractal dimension calculation unit that calculates the fractal dimension F of the AE energy using the equation (1) ,
The particle size for estimating the constant m based on the equations (2) and (3) showing the correspondence between the fractal dimension F and the constant m of the particle size distribution formula showing the particle size distribution of the powder generated by the reduction of the raw material for iron making. Distribution constant estimation part and
A particle size distribution constant estimation device having a particle size distribution constant output unit that outputs a particle size distribution constant signal indicating the constant m .
Figure 0007087766000009
In the formula (1), A is the amplitude of the AE energy, and f (A) is the number of elastic waves corresponding to the AE energy having each amplitude.
In the formula (2), d max indicates the maximum particle size of the powder generated by the reduction of the raw material for iron making, d p indicates the respective particle sizes of the powder generated by the reduction of the raw material for iron making, and U (d p ) indicates the particle size of each of the powders generated by the reduction of the raw material for iron making . The particle size distribution of the powder generated by the reduction of raw materials is shown.
A particle size distribution constant estimation device, characterized in that α and β are constants in the equation (3) .
JP2018136883A 2018-07-20 2018-07-20 Particle size distribution constant estimation device, particle size distribution constant estimation program, and particle size distribution constant estimation method Active JP7087766B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018136883A JP7087766B2 (en) 2018-07-20 2018-07-20 Particle size distribution constant estimation device, particle size distribution constant estimation program, and particle size distribution constant estimation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018136883A JP7087766B2 (en) 2018-07-20 2018-07-20 Particle size distribution constant estimation device, particle size distribution constant estimation program, and particle size distribution constant estimation method

Publications (2)

Publication Number Publication Date
JP2020012789A JP2020012789A (en) 2020-01-23
JP7087766B2 true JP7087766B2 (en) 2022-06-21

Family

ID=69170944

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018136883A Active JP7087766B2 (en) 2018-07-20 2018-07-20 Particle size distribution constant estimation device, particle size distribution constant estimation program, and particle size distribution constant estimation method

Country Status (1)

Country Link
JP (1) JP7087766B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115003680A (en) 2020-01-29 2022-09-02 住友化学株式会社 Method for preparing nucleic acid oligomer

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008180558A (en) 2007-01-23 2008-08-07 National Univ Corp Shizuoka Univ Damage state detection method, damage state detection program and damage state detector
JP2010168631A (en) 2009-01-23 2010-08-05 Jfe Steel Corp Method for estimating low-temperature reduced powderizing of sintered ore
JP2016060920A (en) 2014-09-16 2016-04-25 新日鐵住金株式会社 Method for estimating reduction degradation index of pellet for iron manufacturing
JP2016079500A (en) 2014-10-15 2016-05-16 新日鐵住金株式会社 Measuring device and measuring method for evaluating reduction degradation
JP2018044210A (en) 2016-09-15 2018-03-22 新日鐵住金株式会社 Method and system for estimating fracture toughness value of sintered ore
JP2019173051A (en) 2018-03-27 2019-10-10 日本製鉄株式会社 Reduction degradation control device, reduction degradation control program, and reduction degradation control method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5863851A (en) * 1981-10-13 1983-04-15 Sumitomo Metal Ind Ltd Testing method for reduction powdering of sintered ore
US4628468A (en) * 1984-04-13 1986-12-09 Exxon Production Research Co. Method and means for determining physical properties from measurements of microstructure in porous media

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008180558A (en) 2007-01-23 2008-08-07 National Univ Corp Shizuoka Univ Damage state detection method, damage state detection program and damage state detector
JP2010168631A (en) 2009-01-23 2010-08-05 Jfe Steel Corp Method for estimating low-temperature reduced powderizing of sintered ore
JP2016060920A (en) 2014-09-16 2016-04-25 新日鐵住金株式会社 Method for estimating reduction degradation index of pellet for iron manufacturing
JP2016079500A (en) 2014-10-15 2016-05-16 新日鐵住金株式会社 Measuring device and measuring method for evaluating reduction degradation
JP2018044210A (en) 2016-09-15 2018-03-22 新日鐵住金株式会社 Method and system for estimating fracture toughness value of sintered ore
JP2019173051A (en) 2018-03-27 2019-10-10 日本製鉄株式会社 Reduction degradation control device, reduction degradation control program, and reduction degradation control method

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
太屋岡 篤憲,信号処理と判別分析法を用いた 廃蛍光管の分類,Journal of MMIJ,2016年03月18日,Vol.132 No.3,DOI: 10.2473/journalofmmij.132.53
水谷守利,AE法による低温還元過程における鉄鉱石塊成鉱の亀裂形成挙動のin‐situ評価,材料とプロセス,2020年03月01日,Vol.33 No.1,Page.ROMBUNNO.21
水谷守利,AE法による鉄鉱石塊成鉱の低温還元過程に発生するき裂のin‐situ評価および還元粉化挙動の解析,日本製鉄技報,2019年08月28日,No.413,Page.49-55
水谷守利,AE法を利用した還元粉化のin‐situ評価手法の検討,材料とプロセス,2016年09月01日,Vol.29 No.2,Page.ROMBUNNO.16
水谷守利,AE法を利用した還元粉化のin‐situ評価手法の検討―2―,材料とプロセス,2018年09月01日,Vol.31 No.2,Page.ROMBUNNO.79

Also Published As

Publication number Publication date
JP2020012789A (en) 2020-01-23

Similar Documents

Publication Publication Date Title
Guo et al. Research on high-cycle fatigue behavior of FV520B stainless steel based on intrinsic dissipation
Xie et al. Constitutive model of 6063 aluminum alloy under the ultrasonic vibration upsetting based on Johnson-Cook model
JP6565449B2 (en) Measuring apparatus and measuring method for evaluating reduced powdering
JP7087766B2 (en) Particle size distribution constant estimation device, particle size distribution constant estimation program, and particle size distribution constant estimation method
JP7003782B2 (en) Reduced pulverization property management device, reduced pulverization property management program, and reduced pulverization property management method
CN104914130B (en) A kind of assay method and device of little particle coke gasification
WO2020149198A1 (en) Analysis system and analysis method
Wilczek et al. Porosity characterization of aluminium castings by using particular non-destructive techniques
JP6206368B2 (en) Blast furnace state estimation apparatus and blast furnace state estimation method
CA2235499C (en) Method and apparatus to determine and control the carbon content of steel in a bof vessel
Grigorovich et al. Analysis and optimization of ladle treatment technology of steels processing
JP2012007204A (en) Method for evaluating disintegration property during reduction of sintered ore
Stadler et al. An experimental investigation of foaming in acidic, high FexO slags
RU2606992C2 (en) Method of coal or coal mix expansion pressure determining and device for its implementation
KR100860775B1 (en) Method for determining sticking and flow properties of particulate solids
JP6344174B2 (en) Corrosion resistance test apparatus and corrosion resistance test method
Bär et al. Combined lock-in thermography and heat flow measurements for analysing heat dissipation during fatigue crack propagation
RU2561014C1 (en) Method of non-destructive resting of degree of exhaustion of protective properties of filter-absorbing articles
CN106680135B (en) Device and method for measuring high-temperature metallurgical property of coke
Shih et al. The frequency effect on the fatigue crack growth rate of 304 stainless steel
JP5625240B2 (en) Evaluation method of low-temperature reduced powdering of sintered ore
JP2010174335A (en) Method for evaluating low-temperature reduction disintegration of sintered ore
CN105571913A (en) Preparation method of novel mixed iron powder chemical analysis sample
Wong et al. Sand erosion modelling
Mizutani et al. In-situ evaluation for crack generation behavior of iron ore agglomeration during low temperature reduction by applying acoustic emission method and analysis of reduction disintegration behavior

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210303

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220310

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220328

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220523

R151 Written notification of patent or utility model registration

Ref document number: 7087766

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151