JP2016079480A - Member for processing low melting point molten metal excellent in erosion resistance - Google Patents

Member for processing low melting point molten metal excellent in erosion resistance Download PDF

Info

Publication number
JP2016079480A
JP2016079480A JP2014213587A JP2014213587A JP2016079480A JP 2016079480 A JP2016079480 A JP 2016079480A JP 2014213587 A JP2014213587 A JP 2014213587A JP 2014213587 A JP2014213587 A JP 2014213587A JP 2016079480 A JP2016079480 A JP 2016079480A
Authority
JP
Japan
Prior art keywords
layer
titanium
titanium oxide
base material
molten metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014213587A
Other languages
Japanese (ja)
Other versions
JP6515379B2 (en
Inventor
一浩 ▲高▼橋
一浩 ▲高▼橋
Kazuhiro Takahashi
哲 川上
Akira Kawakami
哲 川上
藤井 秀樹
Hideki Fujii
秀樹 藤井
清隆 齋藤
Kiyotaka Saito
清隆 齋藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SAITO KOGYO KK
Nippon Steel Corp
Original Assignee
SAITO KOGYO KK
Nippon Steel and Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SAITO KOGYO KK, Nippon Steel and Sumitomo Metal Corp filed Critical SAITO KOGYO KK
Priority to JP2014213587A priority Critical patent/JP6515379B2/en
Priority to KR1020167035000A priority patent/KR20170005476A/en
Priority to PCT/JP2015/079460 priority patent/WO2016063839A1/en
Priority to CN201580033421.7A priority patent/CN106661713A/en
Publication of JP2016079480A publication Critical patent/JP2016079480A/en
Application granted granted Critical
Publication of JP6515379B2 publication Critical patent/JP6515379B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/10Oxidising
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D41/00Casting melt-holding vessels, e.g. ladles, tundishes, cups or the like
    • B22D41/02Linings
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C14/00Alloys based on titanium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/16Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
    • C22F1/18High-melting or refractory metals or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/16Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
    • C22F1/18High-melting or refractory metals or alloys based thereon
    • C22F1/183High-melting or refractory metals or alloys based thereon of titanium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C26/00Coating not provided for in groups C23C2/00 - C23C24/00
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working

Landscapes

  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Coating With Molten Metal (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a surface treatment member excellent in erosion resistance (crack resistance and peeling resistance) to low melting point molten metal, such as solder and aluminum.SOLUTION: A member for processing low melting point molten metal comprises: a titanium oxide layer 5 having a thickness of 2-20 μm on the surface of a base material 7 consisting of titanium; and an oxygen enrichment titanium layer 6 consisting of a α phase having an oxygen concentration higher than that of the base material 7 and having a thickness of 20-200 mum under the titanium oxide layer 5 and is excellent in erosion resistance. An inorganic coating, such as TiO, MgO, SiO, AlOand BN can further be coated on the titanium oxide layer 5. The titanium oxide layer 5 having a thickness of 2-20 μm can be included under the coated layer, and further the oxygen enrichment titanium layer having a α phase having an oxygen concentration higher than that of the base material and a thickness of 20-200 μm can be included under the coated layer.SELECTED DRAWING: Figure 2

Description

本発明は、低融点のアルミニウム、鉛、錫、及び、各々の合金の溶融金属に対する耐溶損性に優れる低融点溶融金属処理部材に関する。特に、溶融したアルミニウム及びその合金(以下、単に「アルミニウム」ということがある。)に対する耐溶損性に優れる処理部材に関する。   The present invention relates to a low-melting-point molten metal treated member having excellent melting resistance against low-melting aluminum, lead, tin, and molten metal of each alloy. In particular, the present invention relates to a treatment member that has excellent resistance to melting damage to molten aluminum and its alloys (hereinafter sometimes simply referred to as “aluminum”).

アルミニウムの鋳造など、溶融した低融点金属を汲み上げて金型やダイキャストマシンまで搬送するレードルや、溶融金属池の表面に浮く“のろ”を除去するのろかき等の処理部材は、繰り返し溶融金属中に浸漬される。また、温度測定機器などを保護する処理部材は、溶融金属中に浸漬されたままの状態で使用される。   Processing members such as aluminum casting, a ladle that pumps molten low-melting-point metal and transports it to a mold or die-casting machine, or a scraper that removes “flood” floating on the surface of the molten metal pond is repeatedly melted. Immerse in metal. Moreover, the processing member which protects a temperature measuring apparatus etc. is used in the state immersed in the molten metal.

このような低融点溶融金属を扱う又は処理する処理部材においては、鋳鉄やセラミックからなる基材の表面に種々の耐熱コーティング剤を塗布して、低融点溶融金属に対する耐溶損性を確保している。   In a processing member for handling or processing such a low melting point molten metal, various heat resistant coating agents are applied to the surface of a base material made of cast iron or ceramic to ensure resistance to melting against the low melting point molten metal. .

しかし、基材が鋳鉄製の場合、熱膨張・収縮によって、コーティング剤が剥離し、基材が溶損する場合があるとともに、熱伝導率が比較的高いために、レードル内の溶融金属の温度が低下し易く、加えて、質量が大きく作業効率を損なう場合がある。基材がセラミック製の場合、脆いために衝撃によって容易に折損し、作業効率を損なう場合がある。   However, when the base material is cast iron, the coating agent may be peeled off due to thermal expansion / contraction, and the base material may melt, and the temperature of the molten metal in the ladle is relatively high because the thermal conductivity is relatively high. It tends to decrease, and in addition, the mass is large and the work efficiency may be impaired. When the substrate is made of ceramic, it may be easily broken by impact due to its brittleness, which may impair work efficiency.

このことを踏まえ、鋳鉄に比べて軽量で、熱膨張率と熱伝導率が比較的小さいチタンを基材として用いたチタン製の処理部材が、特許文献1と特許文献2に提案されている。チタンは、非特許文献1に記載されているように、アルミニウムと反応してTiAl3を形成するので、溶融アルミ二ウムに対する耐溶損性を確保するためには、チタン製の処理部材には、何らかの表面処理を施す必要がある。 In view of this, Patent Document 1 and Patent Document 2 propose titanium processing members using titanium as a base material, which is lighter than cast iron and has a relatively small thermal expansion coefficient and thermal conductivity. As described in Non-Patent Document 1, titanium reacts with aluminum to form TiAl 3 , so in order to ensure the erosion resistance against molten aluminum, Some surface treatment needs to be applied.

特許文献1の処理部材は、基材のチタンに、アルミニウムを溶融めっきした後、大気中で酸化処理を施し、アルミニウムの酸化物、つまり、アルミナを主成分とする酸化物層を、基材の表面に保護層として形成した処理部材である。しかし、非特許文献1よれば、特許文献1の処理部材の表層には、少なくとも、チタンとアルミニウムが反応して、金属間化合物TiAl3が形成されているといえる。 The treatment member of Patent Document 1 is obtained by subjecting titanium of a base material to aluminum plating, and then subjecting the substrate to oxidation treatment in the atmosphere to form an oxide of aluminum, that is, an oxide layer mainly composed of alumina. It is the processing member formed as a protective layer on the surface. However, according to Non-Patent Document 1, it can be said that at least the titanium and aluminum react to form the intermetallic compound TiAl 3 on the surface layer of the processing member of Patent Document 1.

特許文献2の処理部材は、チタン又はチタン合金からなる基材を酸洗した後、溶融アルミニウムに浸漬して、基材表面にアルミニウム層を形成し、その後、熱処理により、TiAl、TiAl2、TiAl3のうち、少なくとも、TiAl2又はTiAl3を含む金属間化合物層を保護層として表面に形成した処理部材である。 The processing member of Patent Document 2 picks up a base material made of titanium or a titanium alloy, then immerses it in molten aluminum to form an aluminum layer on the surface of the base material, and then heat-treats TiAl, TiAl 2 , TiAl 3 is a processing member in which an intermetallic compound layer containing at least TiAl 2 or TiAl 3 is formed on the surface as a protective layer.

特許文献1と特許文献2の処理部材の表層に形成されているチタンとアルミニウムの金属間化合物(TiAl、TiAl2、TiAl3)は、非常に脆く、衝撃で破損し易い化合物である。加えて、これらの金属間化合物の熱膨張係数は、基材のチタンに比べ、約1.5倍と大きいので、使用時の熱膨張・収縮の繰り返しで、金属間化合物層にはクラックが発生する。このクラックから溶融金属が浸透して、処理部材が溶損する。 The intermetallic compound of titanium and aluminum (TiAl, TiAl 2 , TiAl 3 ) formed on the surface layer of the processing member of Patent Document 1 and Patent Document 2 is a very brittle compound that is easily damaged by impact. In addition, the thermal expansion coefficient of these intermetallic compounds is about 1.5 times greater than that of titanium, so cracks occur in the intermetallic compound layer due to repeated thermal expansion and contraction during use. To do. The molten metal permeates from the cracks, and the processing member is melted.

図1に、溶融アルミニウムに浸漬した基材チタンの表面に、チタンとアルミニウムが反応して生成した金属間化合物(TiAl3)層を示す。金属間化合物(TiAl3)層2にはクラック4が発生している。なお、金属間化合物(TiAl3)層2の上には、溶融アルミ二ウムの凝固層1が形成されている。 FIG. 1 shows an intermetallic compound (TiAl 3 ) layer formed by the reaction of titanium and aluminum on the surface of a titanium substrate immersed in molten aluminum. Cracks 4 are generated in the intermetallic compound (TiAl 3 ) layer 2. A solidified layer 1 of molten aluminum is formed on the intermetallic compound (TiAl 3 ) layer 2.

特許文献1や特許文献2の処理部材の表面に耐熱性のコーティング剤を塗布しても、金属間化合物層には熱膨張・収縮によってクラックが発生し、金属間化合物層は剥離し易くなる。   Even if a heat-resistant coating agent is applied to the surface of the processing member of Patent Document 1 or Patent Document 2, cracks are generated in the intermetallic compound layer due to thermal expansion and contraction, and the intermetallic compound layer is easily peeled off.

低融点溶融金属用の処理部材の寿命を長期化するためには、処理部材を保護する保護層において、熱膨張・収縮によりクラックが発生するのを抑制したり、また、上記保護層を保護する耐熱コーティング層の剥離を抑制して、上記処理部材の、低融点溶融金属に対する耐溶損性を高める必要がある。   In order to prolong the life of the processing member for the low melting point molten metal, in the protective layer for protecting the processing member, it is possible to suppress the occurrence of cracks due to thermal expansion / contraction or to protect the protective layer. It is necessary to suppress the peeling of the heat-resistant coating layer and to increase the resistance to melting of the processing member with respect to the low melting point molten metal.

特開平08−199322号公報Japanese Patent Application Laid-Open No. 08-199322 特開2013−036070号公報JP2013-0336070A

日本金属学会誌 第64巻第2号、2000年、85〜94ページJournal of the Japan Institute of Metals, Vol. 64, No. 2, 2000, pages 85-94

本発明は、低融点のアルミニウムなどの低融点溶融金属を扱う又は処理する処理部材(以下「低融点溶融金属処理部材」ということがある。)において、該処理部材の表面層におけるクラックの発生を抑制し、また、表面層を保護する耐熱コーティング層の剥離を抑制して、低融点溶融金属に対する耐溶損性を高めることを課題とし、該課題を解決する耐溶損性に優れる低融点溶融金属処理部材を提供することを目的とする。   The present invention relates to the generation of cracks in the surface layer of a processing member for handling or processing a low melting point molten metal such as aluminum having a low melting point (hereinafter sometimes referred to as “low melting point molten metal processing member”). A low melting point molten metal treatment with excellent melting resistance that solves the problem by suppressing the peeling of the heat resistant coating layer that protects the surface layer and increasing the resistance to melting of the low melting point molten metal. An object is to provide a member.

本発明者らは、上記課題を解決する手法について鋭意研究した。その結果、チタンを基材として用い、基材を、大気の酸化雰囲気中で熱処理することで、基材の表面に、酸化チタン層を形成し、該酸化チタン層の下に、基材よりも酸素濃度が高いα相からなる酸素富化層を形成すれば、チタンを基材とする低融点溶融金属処理部材の低融点溶融金属に対する耐溶損性が顕著に向上することを見出した。   The inventors of the present invention have intensively studied a method for solving the above-described problems. As a result, titanium is used as a base material, and the base material is heat-treated in an atmospheric oxidizing atmosphere to form a titanium oxide layer on the surface of the base material. It has been found that if an oxygen-enriched layer composed of an α phase having a high oxygen concentration is formed, the resistance to melting of the low melting point molten metal-treated member based on titanium with respect to the low melting point molten metal is significantly improved.

さらに、基材の最表面に、所要の耐熱コーティング層を形成すれば、チタンを基材とする低融点溶融金属処理部材の低融点溶融金属に対する耐溶損性がさらに向上することを見出した。   Furthermore, it has been found that if a required heat-resistant coating layer is formed on the outermost surface of the base material, the resistance to melting of the low-melting-point molten metal of the low-melting-point molten metal-treated member based on titanium is further improved.

本発明は、上記知見に基づいてなされたもので、その要旨は以下のとおりである。   This invention was made | formed based on the said knowledge, and the summary is as follows.

(1)基材がチタンからなり、基材の表面に、厚みが2〜20μmの酸化チタン層を有し、該酸化チタン層の下に、基材よりも酸素濃度が高いα相からなる、厚みが20〜200μmの酸素富化層を有することを特徴とする耐溶損性に優れる低融点溶融金属処理部材。   (1) The base material is made of titanium, the surface of the base material has a titanium oxide layer having a thickness of 2 to 20 μm, and under the titanium oxide layer is made of an α phase having a higher oxygen concentration than the base material. A low-melting-point molten metal-treated member excellent in melt resistance, characterized by having an oxygen-enriched layer having a thickness of 20 to 200 μm.

(2)基材がチタンからなり、基材の最表面に、TiO2、MgO、SiO2、Al23、RE23、BNの1種又は2種以上からなるコーティング層を有し、該コーティング層の下に、厚みが2〜20μmの酸化チタン層を有し、該酸化チタン層の下に、基材よりも酸素濃度が高いα相からなる、厚みが20〜200μmの酸素富化層を有することを特徴とする耐溶損性に優れる低融点溶融金属用の処理部材。 (2) The substrate is made of titanium, and has a coating layer composed of one or more of TiO 2 , MgO, SiO 2 , Al 2 O 3 , RE 2 O 3 , and BN on the outermost surface of the substrate. Under the coating layer, a titanium oxide layer having a thickness of 2 to 20 μm is formed, and an oxygen-rich layer having a thickness of 20 to 200 μm is formed under the titanium oxide layer. A processing member for a low-melting-point molten metal having excellent melt resistance, characterized by having a chemical layer.

(3)前記酸化チタン層及び酸素富化層が、基材を、酸化雰囲気中で、750℃以上1000℃未満、30分300分以下、加熱して形成したものであることを特徴とする前記(1)又は(2)に記載の耐溶損性に優れる低融点溶融金属処理部材。   (3) The titanium oxide layer and the oxygen-enriched layer are formed by heating the base material in an oxidizing atmosphere at 750 ° C. or higher and lower than 1000 ° C. for 30 minutes or 300 minutes or less. A low-melting-point molten metal treated member having excellent melt resistance as described in (1) or (2).

(4)前記酸素富化層の断面硬さが、基材の表面側から内部に向かって連続的に減少する硬さ分布をなすことを特徴とする前記(1)〜(3)のいずれかに記載の耐溶損性に優れる低融点溶融金属処理部材。   (4) Any one of the above (1) to (3), wherein the cross-sectional hardness of the oxygen-enriched layer forms a hardness distribution that continuously decreases from the surface side to the inside of the substrate. A low-melting-point molten metal-treated member having excellent melt resistance as described in 1.

(5)前記基材として使用するチタンの500℃での0.2%耐力が75MPa以上であることを特徴とする前記(1)〜(4)のいずれかに記載の耐溶損性に優れる低融点溶融金属処理部材。   (5) The low resistance to melt damage according to any one of (1) to (4) above, wherein the 0.2% proof stress at 500 ° C. of titanium used as the substrate is 75 MPa or more. Melting point metal processing member.

(6)前記基材として使用するチタンが、Cu:0.5〜1.5質量%、Sn:1.5質量%以下、Si:0.6質量%以下を含み、かつ、CuとSnの合計量が0.5〜2.7質量%で、残部がTi及び不可避的不純物からなることを特徴とする前記(1)〜(5)のいずれかに記載の耐溶損性に優れる低融点溶融金属処理部材。   (6) Titanium used as the base material includes Cu: 0.5 to 1.5% by mass, Sn: 1.5% by mass or less, Si: 0.6% by mass or less, and Cu and Sn. The low melting point melting point excellent in melt resistance according to any one of the above (1) to (5), wherein the total amount is 0.5 to 2.7% by mass, and the balance is made of Ti and inevitable impurities Metal processing member.

本発明によれば、基材がチタンからなり、低融点のアルミ二ウムなどの低融点溶融金属に対する耐溶損性に優れる低融点溶融金属処理部材を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, a base material consists of titanium, The low melting-point molten metal processing member which is excellent in the erosion resistance with respect to low melting-point molten metals, such as low melting-point aluminum, can be provided.

溶融アルミニウムに浸漬した基材チタンの表面に、チタンとアルミニウムが反応して生成した金属間化合物(TiAl3)層を示す図である。On the surface of the substrate titanium immersed in molten aluminum, which is a diagram showing an intermetallic compound of titanium and aluminum is produced by the reaction (TiAl 3) layer. 本発明の表層断面の層構造(表層構造)を示す図である。It is a figure which shows the layer structure (surface layer structure) of the surface layer cross section of this invention. 本発明の表層断面の組織(表層組織)を示す図である。It is a figure which shows the structure | tissue (surface layer structure | tissue) of the surface layer cross section of this invention. 本発明の表層断面の別の層構造(表層構造)を示す図である。It is a figure which shows another layer structure (surface layer structure) of the surface layer cross section of this invention. 本発明の表層断面の別の組織(表層組織)を示す図である。It is a figure which shows another structure | tissue (surface layer structure | tissue) of the surface layer cross section of this invention. 本発明の表層部の断面における硬さ分布を示す図である。It is a figure which shows the hardness distribution in the cross section of the surface layer part of this invention. 基材チタンの表面に形成されたチタンと“はんだ”の反応層を示す図である。It is a figure which shows the reaction layer of titanium and "solder" formed in the surface of base-material titanium.

低融点溶融金属処理部材(以下、単に「処理部材」ということがある。)は、低融点溶融金属との接触により、温度の上昇と降下の繰り返しで熱膨張・収縮を繰り返すので、処理部材の表面層にクラックが発生し、処理部材の低融点溶融金属に対する耐溶損性が低下する。   The low-melting-point molten metal processing member (hereinafter, simply referred to as “processing member”) repeats thermal expansion / contraction by repeated rise and fall of temperature due to contact with the low-melting-point molten metal. Cracks occur in the surface layer, and the erosion resistance of the processing member to the low melting point molten metal decreases.

本発明者らは、繰り返しの熱膨張・収縮を受けても優れた耐溶損性を維持し得る処理部材について鋭意研究した。   The present inventors diligently researched a treatment member that can maintain excellent melt resistance even when subjected to repeated thermal expansion and contraction.

その結果、本発明者らは、基材としてチタンを用い、基材を大気等の酸化雰囲気中で熱処理し、基材表面に酸化チタン層を形成し、該酸化チタン層の下に、チタンよりも酸素濃度が高いα相からなる酸素富化層を形成すれば、基材が熱膨張・収縮を繰り返しても、低融点溶融金属に対する耐性が高い酸化チタン層において、クラックの発生を抑制することができること、さらに、上記酸化チタン層の上に形成した耐熱コーティング層の密着性、即ち、耐剥離性を高めることができることを見出した。   As a result, the present inventors used titanium as a base material, heat-treated the base material in an oxidizing atmosphere such as air, and formed a titanium oxide layer on the surface of the base material. If an oxygen-enriched layer consisting of an α phase with a high oxygen concentration is formed, cracks can be prevented from occurring in the titanium oxide layer, which has a high resistance to low-melting-point molten metal, even if the base material repeatedly expands and contracts. It was also found that the adhesion of the heat-resistant coating layer formed on the titanium oxide layer, that is, the peel resistance, can be improved.

上記知見に基づく本発明の耐溶損性に優れる低融点溶融金属用の処理部材(以下「本発明処理部材」ということがある。)は、
(i)基材がチタンからなり、基材の表面に、厚みが2〜20μmの酸化チタン層を有し、該酸化チタン層の下に、基材よりも酸素濃度が高いα相からなる、厚みが20〜200μmの酸素富化層を有することを特徴とし、また、
(ii)基材がチタンからなり、基材の最表面に、TiO2、MgO、SiO2、Al23、RE23、及び、BNの1種又は2種以上からなるコーティング層を有し、該コーティングの下に、厚みが2〜20μmの酸化チタン層を有し、該酸化チタン層の下に、基材よりも酸素濃度が高いα相からなる、厚みが20〜200μmの酸素富化層を有することを特徴とする。
The processing member for low melting point molten metal (hereinafter, also referred to as “the processing member of the present invention”) having excellent melt resistance of the present invention based on the above findings is referred to as “the processing member of the present invention”.
(I) The base material is made of titanium, the surface of the base material has a titanium oxide layer having a thickness of 2 to 20 μm, and under the titanium oxide layer, an oxygen phase having a higher oxygen concentration than the base material, It has an oxygen-enriched layer having a thickness of 20 to 200 μm, and
(Ii) The substrate is made of titanium, and a coating layer made of one or more of TiO 2 , MgO, SiO 2 , Al 2 O 3 , RE 2 O 3 , and BN is formed on the outermost surface of the substrate. And having a titanium oxide layer having a thickness of 2 to 20 μm under the coating, and an oxygen phase having an oxygen concentration higher than that of the base material and having a thickness of 20 to 200 μm below the titanium oxide layer. It has an enriched layer.

以下、本発明処理部材について説明する。   Hereinafter, this invention processing member is demonstrated.

図2に、本発明の表層断面の層構造(表層構造)を示す。図2に示すように、アルミニウムなどの低融点溶融金属と接触する側から、酸化チタン層5、基材よりも酸素濃度が高いα相からなる酸素富化層6、及び、基材チタン7からなる表層構造である。   In FIG. 2, the layer structure (surface layer structure) of the surface layer cross section of this invention is shown. As shown in FIG. 2, from the side in contact with a low melting point molten metal such as aluminum, the titanium oxide layer 5, the oxygen-enriched layer 6 composed of an α phase having a higher oxygen concentration than the base material, and the base material titanium 7 It is a surface layer structure.

図3に、本発明の表層断面の組織(表層組織)を示す。図3に示すように、図2に示す表層構造に対応して、酸化チタン層5の組織、基材よりも酸素濃度が高いα相からなる酸素富化層6の組織、及び、基材チタン7の組織を表層断面の組織を識別できる。   In FIG. 3, the structure (surface layer structure) of the surface layer cross section of this invention is shown. As shown in FIG. 3, corresponding to the surface layer structure shown in FIG. 2, the structure of the titanium oxide layer 5, the structure of the oxygen-enriched layer 6 composed of an α phase having a higher oxygen concentration than the substrate, and the substrate titanium The structure of the surface layer cross section can be identified from the structure of 7.

図2に示す表層構造、及び、図3に示す表層組織は、基材チタンを、大気などの酸化雰囲気中で、所要温度で、所要時間、加熱(熱処理)することにより形成することができる(この点については後述する。)。   The surface layer structure shown in FIG. 2 and the surface layer structure shown in FIG. 3 can be formed by heating (heat treatment) the base material titanium in an oxidizing atmosphere such as air at a required temperature for a required time ( This point will be described later).

酸化チタン層は、主に、TiO2(二酸化チタン)からなるが、TiO2の他に、TiO、Ti23、Ti25などのチタンの価数が異なる酸化チタンを含んでいてもよい。 The titanium oxide layer mainly consists TiO 2 (titanium dioxide), in addition to TiO 2, TiO, even Ti 2 O 3, the valence of titanium such as Ti 2 O 5 is include different titanium oxide Good.

酸化チタン層の厚みは、耐溶損性を確保するため、2〜20μmとする。酸化チタン層の厚みが2μm未満と薄くなると、低融点溶融金属を扱う又は処理する装置の周辺器具(例えば、ジグ、工具)と擦れた際、酸化チタン層に欠損や欠陥が生じる場合があるので、酸化チタン層の厚みは2μm以上とする。好ましくは5μm以上である。   The thickness of the titanium oxide layer is set to 2 to 20 μm in order to ensure resistance to melting. If the thickness of the titanium oxide layer is less than 2 μm, the titanium oxide layer may be damaged or damaged when it is rubbed with peripheral equipment (for example, a jig or tool) of an apparatus for handling or processing a low melting point molten metal. The thickness of the titanium oxide layer is 2 μm or more. Preferably it is 5 micrometers or more.

一方、酸化チタン層の厚みが20μmよりも厚くなると、低融点溶融金属の扱い又は処理時に、酸化チタン層が剥離する場合があるので、酸化チタン層の厚みは20μm以下とする。好ましくは15μm以下である。   On the other hand, if the thickness of the titanium oxide layer is greater than 20 μm, the titanium oxide layer may be peeled off during handling or processing of the low melting point molten metal, so the thickness of the titanium oxide layer is set to 20 μm or less. Preferably it is 15 micrometers or less.

処理部材が熱膨張・収縮を繰り返しても、基材チタンの表層構造及び表層組織によって、表層部におけるクラックの発生が著しく抑制される。これは、(a)酸化チタン層が、アルミニウムなどの低融点溶融金属と反応し難いとともに、(b)酸化チタン層、基材よりも酸素濃度が高いα相からなる酸素富化層、及び、基材チタンの熱膨張係数が、鋳鉄やTiAl3に比べて小さく、かつ、相互に近い値であることによる。 Even if the treatment member repeats thermal expansion and contraction, the occurrence of cracks in the surface layer portion is significantly suppressed by the surface layer structure and surface layer structure of the base titanium. This is because (a) the titanium oxide layer hardly reacts with a low melting point molten metal such as aluminum, and (b) the titanium oxide layer, an oxygen-enriched layer composed of an α phase having a higher oxygen concentration than the substrate, and This is because the thermal expansion coefficient of the base titanium is smaller than that of cast iron or TiAl 3 and is close to each other.

酸素富化層は、酸素を固溶したチタン又はチタン合金であり、酸化チタン層と基材チタンとの間に存在し、熱膨張・収縮に対する緩衝層として機能して、基材チタンの表層部におけるクラックの発生を抑制する。   The oxygen-enriched layer is titanium or a titanium alloy in which oxygen is dissolved, and exists between the titanium oxide layer and the base titanium, and functions as a buffer layer against thermal expansion / contraction. Suppresses the occurrence of cracks.

基材チタンを、大気などの酸化雰囲気中で熱処理して、基材チタンの表層部に酸化チタン層と、基材よりも酸素濃度が高いα相からなる酸化富化層を形成するが、その場合、酸化富化層の厚みを20〜200μmとする。   The base titanium is heat-treated in an oxidizing atmosphere such as air to form a titanium oxide layer on the surface layer of the base titanium and an oxide-enriched layer composed of an α phase having a higher oxygen concentration than the base. In this case, the thickness of the oxidation-enriched layer is 20 to 200 μm.

酸化富化層の厚みを20μm未満にすると、その上に形成される酸化チタン層の厚みが2μmに達しない場合があるので、酸化富化層の厚みは20μm以上とする。好ましくは30μm以上である。   If the thickness of the oxide-enriched layer is less than 20 μm, the thickness of the titanium oxide layer formed thereon may not reach 2 μm. Therefore, the thickness of the oxide-enriched layer is set to 20 μm or more. Preferably it is 30 micrometers or more.

一方、酸化富化層の厚みが200μmを超えると、酸化チタン層の厚みが20μmを超える場合があるので、酸素富化層の厚みは200μm以下とする。好ましくは150μm以下である。   On the other hand, if the thickness of the oxide-enriched layer exceeds 200 μm, the thickness of the titanium oxide layer may exceed 20 μm. Therefore, the thickness of the oxygen-enriched layer is set to 200 μm or less. Preferably it is 150 micrometers or less.

酸化チタン層の厚みが5〜15μmで、その下の、基材よりも酸素濃度が高いα相からなる酸素富化層の厚みが30〜150μmであれば、酸化チタン層が、安定して酸素富化層に密着して剥離し難いので、クラックの発生がより顕著に抑制される。   If the thickness of the titanium oxide layer is 5 to 15 μm and the thickness of the oxygen-enriched layer composed of an α phase having a higher oxygen concentration than that of the base material is 30 to 150 μm, the titanium oxide layer is stably oxygenated. Since it adheres to the enriched layer and hardly peels off, the occurrence of cracks is more significantly suppressed.

基材チタンを、大気などの酸化雰囲気中で熱処理する際の条件は、加熱温度:750℃以上1000℃未満、加熱時間:30分以上300分以下が好ましい。加熱温度が750℃未満であると、酸化チタン層と、その下の酸素富化層を効率的に形成することが難しいので、加熱温度は750℃以上が好ましい。より好ましくは800℃以上である。   The conditions for heat-treating the base titanium in an oxidizing atmosphere such as air are preferably heating temperature: 750 ° C. or higher and lower than 1000 ° C., heating time: 30 minutes or longer and 300 minutes or shorter. When the heating temperature is less than 750 ° C., it is difficult to efficiently form the titanium oxide layer and the oxygen-enriched layer therebelow, so the heating temperature is preferably 750 ° C. or higher. More preferably, it is 800 degreeC or more.

加熱温度が1000℃以上であると、加熱時に、基材チタンが変形するので、変形抑制のため、加熱温度は1000℃未満が好ましい。より好ましくは900℃以下である。   When the heating temperature is 1000 ° C. or higher, the base material titanium is deformed during heating. Therefore, the heating temperature is preferably less than 1000 ° C. in order to suppress deformation. More preferably, it is 900 degrees C or less.

加熱時間は、所要の厚みの酸化チタン層と酸素富化層を形成するため、加熱温度を考慮して設定する。熱処理効率の観点から、30〜300分が好ましく、より好ましくは50〜180分である。   The heating time is set in consideration of the heating temperature in order to form a titanium oxide layer and an oxygen-enriched layer having a required thickness. From the viewpoint of heat treatment efficiency, it is preferably 30 to 300 minutes, more preferably 50 to 180 minutes.

図4に、本発明の表層断面の別の層構造(表層構造)を示す。図4に示す表層構造は、図2に示す表層構造の酸化チタン層5の表面に所定のコーティング層8を形成し、低融点溶融金属に対する耐溶損性をさらに高めたものである。   In FIG. 4, another layer structure (surface layer structure) of the surface layer cross section of this invention is shown. In the surface layer structure shown in FIG. 4, a predetermined coating layer 8 is formed on the surface of the titanium oxide layer 5 having the surface structure shown in FIG.

アルミニウムなどの低融点溶融金属と接触する表面側から、TiO2、MgO、SiO2,Al23,RE23,BNの1種又は2種以上からなるコーティング層8、酸化チタン層5、基材よりも酸素濃度が高いα相からなる酸素富化層6、及び、基材チタンからなる表層構造である。 From the surface side in contact with a low-melting-point molten metal such as aluminum, a coating layer 8 composed of one or more of TiO 2 , MgO, SiO 2 , Al 2 O 3 , RE 2 O 3 , BN, titanium oxide layer 5 The oxygen-enriched layer 6 made of an α phase having a higher oxygen concentration than the base material and the surface layer structure made of the base material titanium.

図4に示す層構造は、基材チタンを、大気などの酸化雰囲気中で熱処理して、図2に示す表層構造を形成した後、TiO2、MgO、SiO2、Al23、RE23、BNの1種又は2種以上からなるコーティング剤を塗布・乾燥して形成することができる。なお、RE23は、希土類元素のY、La、Lu等の酸化物であり、希土類元素の混合物(ミッシュメタル)の酸化物でもよい。 In the layer structure shown in FIG. 4, the base titanium is heat-treated in an oxidizing atmosphere such as air to form the surface layer structure shown in FIG. 2, and then TiO 2 , MgO, SiO 2 , Al 2 O 3 , RE 2 is formed. It can be formed by applying and drying a coating agent comprising one or more of O 3 and BN. Note that RE 2 O 3 is an oxide of rare earth elements such as Y, La, and Lu, and may be an oxide of a mixture of rare earth elements (Misch metal).

図5に、本発明の表層断面の別の組織(表層組織)を示す。図5に示す組織においては、図4に示す層構造に対応して、各層の組織を識別できる。   FIG. 5 shows another structure (surface layer structure) of the surface layer cross section of the present invention. In the structure shown in FIG. 5, the structure of each layer can be identified corresponding to the layer structure shown in FIG.

図5に示す表層組織において、コーティング層8と、先に基材チタンの表面に形成した酸化チタン層5との間に空隙は見られず、両層の密着性が高いことが解る。即ち、本発明処理部材において、コーティング層と酸化チタン層は、密着性が高く、剥離し難いとともに、アルミニウムなどの低融点溶融金属に対して安定であるので、低融点溶融金属に対する耐溶損性がさらに向上する。   In the surface layer structure shown in FIG. 5, it can be seen that no gap is observed between the coating layer 8 and the titanium oxide layer 5 previously formed on the surface of the titanium substrate, and the adhesion between both layers is high. That is, in the treated member of the present invention, the coating layer and the titanium oxide layer have high adhesion, are difficult to peel off, and are stable against a low melting point molten metal such as aluminum. Further improve.

本発明処理部材において、基材よりも酸素濃度が高いα相からなる、厚みが20〜200μmの酸素富化層の断面硬さが、基材の表面側から内部の基材チタンに向かって連続的に減少する硬さ分布をなすことが好ましい。   In the processing member of the present invention, the cross-sectional hardness of the oxygen-enriched layer having a thickness of 20 to 200 μm composed of an α phase having a higher oxygen concentration than the base material is continuous from the surface side of the base material toward the internal base material titanium. It is preferable to have a hardness distribution that decreases with time.

酸化チタン層の下の酸素富化層の断面硬さが上記硬さ分布をなすことは、成分組成や機械特性が、基材の表面側から内部の基材チタンに向かって連続的に変化していて、各層間における界面強度が優れていることを裏付けている。したがって、酸化チタン層の下の酸素富化層の断面硬さが上記硬さ分布をなすことにより、酸化チタン層とコーティング層におけるクラック発生に対する耐性や耐剥離性を高めることができる。   The fact that the cross-sectional hardness of the oxygen-enriched layer under the titanium oxide layer has the above hardness distribution means that the component composition and mechanical properties change continuously from the surface side of the base material toward the internal base material titanium. This confirms that the interfacial strength between the layers is excellent. Therefore, when the cross-sectional hardness of the oxygen-enriched layer under the titanium oxide layer has the above-mentioned hardness distribution, it is possible to improve the resistance against cracking and the peel resistance in the titanium oxide layer and the coating layer.

図6に、本発明の表層部の断面における硬さ分布を示す。本発明処理部材の表層部の断面にて荷重25gfで測定したビッカース硬さの表面から深さ方向への硬さ分布である。図6から、厚みが約70μmの酸素濃度が高いα相からなる酸素富化層が形成されていて、表面側ほど硬さが高く、表面からの深さが深くなるのに伴い、硬さが連続的に低下することが解る。   In FIG. 6, the hardness distribution in the cross section of the surface layer part of this invention is shown. It is the hardness distribution from the surface of the Vickers hardness measured by load 25gf in the cross section of the surface layer part of this invention processing member to the depth direction. From FIG. 6, an oxygen-enriched layer composed of an α phase having a thickness of about 70 μm and a high oxygen concentration is formed, and the hardness increases as the surface side increases and the depth from the surface increases. It turns out that it falls continuously.

なお、酸素富化層は、基材チタンを、大気などの酸化雰囲気中で熱処理して形成するので、図6は、断面硬さが高い側が酸素濃度も高いことを示唆している。   Since the oxygen-enriched layer is formed by heat-treating the base material titanium in an oxidizing atmosphere such as air, FIG. 6 suggests that the side with higher cross-sectional hardness has a higher oxygen concentration.

溶融アルミニウムの温度は650〜700℃あり、低融点溶融金属処理部材は、高温環境に繰り返し曝される。それ故、上記処理部材の軽量化や変形抑制のために、基材には、500℃での0.2%耐力が75MPa以上のチタン又はチタン合金を用いることが好ましい。   The temperature of molten aluminum is 650 to 700 ° C., and the low melting point molten metal processing member is repeatedly exposed to a high temperature environment. Therefore, in order to reduce the weight of the processing member and suppress deformation, it is preferable to use titanium or a titanium alloy having a 0.2% proof stress at 500 ° C. of 75 MPa or more as the base material.

例えば、溶融アルミ二ウムへの浸漬、大気への引上げが繰り返されレードルの内部の温度は、常時、650〜700℃に達しないので、このことを踏まえ、基材の耐力を規定するための基準温度を500℃とした。   For example, immersion in molten aluminum and pulling up to the atmosphere are repeated, and the temperature inside the ladle does not always reach 650 to 700 ° C. Therefore, based on this, a standard for defining the strength of the base material The temperature was 500 ° C.

基材の耐力は、最も汎用的な工業用純チタン2種(JIS H4600)の500℃での0.2%耐力より20%以上高い75MPa以上とした。これによって、工業用純チタン2種を使用するよりも、約20%の軽量化が可能になる。より好ましくは、約100%以上高い120MPa以上である。   The yield strength of the base material was set to 75 MPa or more, which is 20% or more higher than the 0.2% yield strength at 500 ° C. of two types of industrially pure titanium (JIS H4600). This makes it possible to reduce the weight by about 20% compared to using two types of industrial pure titanium. More preferably, it is 120 MPa or more, which is about 100% or more higher.

基材として使用するチタンは、Cu:0.5〜1.5質量%、Sn:1.5質量%以下、Si:0.6質量%以下を含み、かつ、CuとSnの合計量が0.5〜2.7質量%で、残部がTi及び不可避的不純物からなるチタンが好ましい。Cu:0.5質量%以上で、500℃での0.2%耐力:75MPa以上を確保することができる。   Titanium used as a substrate contains Cu: 0.5 to 1.5 mass%, Sn: 1.5 mass% or less, Si: 0.6 mass% or less, and the total amount of Cu and Sn is 0. It is preferable that titanium is 0.5 to 2.7% by mass with the balance being Ti and inevitable impurities. Cu: 0.5% by mass or more, 0.2% proof stress at 500 ° C .: 75 MPa or more can be secured.

処理部材は、冷間プレスや曲げ加工で製造されるが、最も汎用的な工業用純チタン2種(JIS H4600)の室温引張試験における伸びは23%以上であり、基材チタンも、この程度の伸びを有していれば、成形性が良好となり、加工メーカーでの加工が容易になると考えられる。   The treated member is manufactured by cold pressing or bending, but the most general industrial pure titanium (JIS H4600) has an elongation of 23% or more in the room temperature tensile test, and the base titanium is also of this level. Therefore, it is considered that the moldability is good and the processing at the processing manufacturer becomes easy.

それ故、基材チタンにおいて23%以上の室温引張試験の伸びを確保するため、基材チタンは、Cu:1.5質量%以下、Sn:1.5質量%以下、Si:0.6質量%以下で、CuとSnの合計量:2.7質量%以下が好ましい。   Therefore, in order to ensure the elongation of the room temperature tensile test of 23% or more in the base titanium, the base titanium is Cu: 1.5% by mass or less, Sn: 1.5% by mass or less, Si: 0.6% by mass %, And the total amount of Cu and Sn: 2.7% by mass or less is preferable.

さらに、500℃での0.2%耐力を安定的に120MPa以上確保するため、基材チタンは、Cu:0.5〜1.5質量%、Sn:0.5〜1.5質量%、Si:0.1超〜0.6質量%で、かつ、CuとSnの合計量:1.0〜2.7%が好ましい。   Furthermore, in order to stably secure a 0.2% proof stress at 500 ° C. of 120 MPa or more, the base material titanium is Cu: 0.5 to 1.5% by mass, Sn: 0.5 to 1.5% by mass, Si: more than 0.1 to 0.6% by mass, and the total amount of Cu and Sn: 1.0 to 2.7% is preferable.

次に、本発明の実施例について説明するが、実施例での条件は、本発明の実施可能性及び効果を確認するために採用した一条件例であり、本発明は、この一条件例に限定されるものではない。本発明は、本発明の要旨を逸脱せず、本発明の目的を達成する限りにおいて、種々の条件を採用し得るものである。   Next, examples of the present invention will be described. The conditions in the examples are one example of conditions used for confirming the feasibility and effects of the present invention, and the present invention is based on these one example conditions. It is not limited. The present invention can adopt various conditions as long as the object of the present invention is achieved without departing from the gist of the present invention.

(実施例1)
表1に、基材チタンの成分組成(質量%)、500℃での0.2%耐力(MPa)、及び、室温での引張試験時の伸び(%)を示す。これらの基材チタンは、真空アーク溶解で製造した所定の成分組成のインゴットに、熱間鍛造と熱間圧延を施し、次いで、750℃で30分の焼鈍を施し、その後、40mm×40mmの板に加工し、表面を#600研磨で仕上げたものである。
Example 1
Table 1 shows the component composition (mass%) of the base titanium, the 0.2% yield strength (MPa) at 500 ° C., and the elongation (%) during a tensile test at room temperature. These titanium substrates are subjected to hot forging and hot rolling on an ingot of a predetermined component composition manufactured by vacuum arc melting, and then annealed at 750 ° C. for 30 minutes, and then a 40 mm × 40 mm plate The surface is finished by # 600 polishing.

表1に示す基材チタンから採取し、表2に示す熱処理を施した試験片、さらに、表3に示すコーティング剤を被覆した試験片を、後述する曝露試験Aに供して耐溶損性を評価した。   Samples taken from the base titanium shown in Table 1 and subjected to the heat treatment shown in Table 2, and further, test pieces coated with the coating agent shown in Table 3 are subjected to the exposure test A described later to evaluate the resistance to melting. did.

[曝露試験A]
試験片を溶融アルミニウムに8時間浸漬し、浸漬後、大気中に引き上げる工程を1サイクルとして、3サイクルを実施した。溶融アルミニウムは、約700℃とした。なお、溶融アルミニウムには、最も汎用なダイキャスト用アルミニウム合金であるJIS H5302のADC12(Al−Si−Cu系)を用いた。
[Exposure test A]
The test piece was immersed in molten aluminum for 8 hours, and after the immersion, the process of pulling up into the atmosphere was set as one cycle, and three cycles were performed. The molten aluminum was set to about 700 ° C. In addition, ADC12 (Al-Si-Cu type | system | group) of JISH5302 which is the most general-purpose die casting aluminum alloy was used for molten aluminum.

曝露試験Aが完了した試験片の表層断面を樹脂に埋め込み、研磨し、エッチングして観察試料を作製した。光学顕微鏡で、観察試料の約10mm長さを観察し、耐溶損性の程度を把握するため、溶融アルミニウムとの反応層の厚み(最大)とクラックの有無を評価した。コーティング剤でコーティング層を形成した試験片については、コーティング層の剥離の有無を評価した。   The surface layer cross section of the test piece for which the exposure test A was completed was embedded in a resin, polished, and etched to prepare an observation sample. The thickness of the reaction layer with molten aluminum (maximum) and the presence / absence of cracks were evaluated in order to observe the length of about 10 mm of the observation sample with an optical microscope and to grasp the degree of resistance to erosion. About the test piece which formed the coating layer with the coating agent, the presence or absence of peeling of a coating layer was evaluated.

表2に、反応層の厚み(最大)とクラックの有無を示す。基材ままの比較例No.1、3、14、及び、20や、大気中で熱処理しても酸化チタン層が光学顕微鏡の観察限界の1μm未満の比較例No.4、15、及び、21では、溶融アルミニウムとの反応層が500μm以上と非常に厚く、その層内には、多数のクラックが観察された。   Table 2 shows the thickness (maximum) of the reaction layer and the presence or absence of cracks. Comparative example no. 1, 3, 14, and 20, and Comparative Example No. 1 with a titanium oxide layer of less than 1 μm, which is the observation limit of an optical microscope, even when heat-treated in the air. In 4, 15, and 21, the reaction layer with molten aluminum was as thick as 500 μm or more, and many cracks were observed in the layer.

大気中、1000℃で加熱し、30μmの酸化チタン層を形成した比較例No.13では、局所的な酸化チタン層の剥離が観察され、また、最大厚み500μm程度の凸状の反応層が観察された。   Comparative Example No. 1 was heated at 1000 ° C. in the atmosphere to form a 30 μm titanium oxide layer. In No. 13, local peeling of the titanium oxide layer was observed, and a convex reaction layer having a maximum thickness of about 500 μm was observed.

これに対して、大気中の熱処理で、基材の表面側から、酸化チタン層、基材よりも酸素濃度が高いα相からなる酸素富化層、及び、基材チタンの表層構造を形成した発明例No.2、5〜12、16〜19、及び、22〜39では、酸化チタン層と酸素富化層の厚みが、それぞれ、2〜20μmと20〜200μmで、かつ、溶融アルミニウムとの反応層の厚みが20μm以下(上記最大厚み500μmの25分の1、以下)に抑制されていて、高い耐溶損性が得られている。   In contrast, a heat treatment in the atmosphere formed a titanium oxide layer, an oxygen-enriched layer composed of an α phase having a higher oxygen concentration than the substrate, and a surface layer structure of the substrate titanium from the surface side of the substrate. Invention Example No. In 2, 5 to 12, 16 to 19, and 22 to 39, the thickness of the titanium oxide layer and the oxygen-enriched layer is 2 to 20 μm and 20 to 200 μm, respectively, and the thickness of the reaction layer with molten aluminum Is suppressed to 20 μm or less (1/25 or less of the above-mentioned maximum thickness of 500 μm), and high melt resistance is obtained.

ただし、発明例No.12では、酸化チタン層の厚みが17μm、その下の酸素富化層の厚みが126μmと若干厚いために、酸化チタン層の一部にクラックが発生し、また、反応層にもクラックが1本発生した。それ故、酸化チタン層の好ましい厚みと酸素富化層の好ましい厚みは、それぞれ、2〜10μmと20〜100μmであることが解る。なお、大気中で熱処理を施した発明例について、基材チタンの表面をX線回折で分析すると、TiO2(二酸化チタン)の回折ピークを検出した。 However, Invention Example No. In No. 12, the thickness of the titanium oxide layer is 17 μm, and the thickness of the oxygen-enriched layer therebelow is slightly thick, 126 μm. Therefore, a crack is generated in a part of the titanium oxide layer, and there is one crack in the reaction layer. Occurred. Therefore, it is understood that the preferable thickness of the titanium oxide layer and the preferable thickness of the oxygen-enriched layer are 2 to 10 μm and 20 to 100 μm, respectively. Note that the invention examples was heat-treated in the atmosphere, the analysis of the surface of the substrate titanium X-ray diffraction to detect the diffraction peak of TiO 2 (titanium dioxide).

次に、試験片に種々のコーティング層を形成した実施例について説明する。   Next, examples in which various coating layers are formed on a test piece will be described.

表3に、コーティング剤に混合した、TiO2、MgO、SiO2、Al23、RE23、BNの粉末の質量比(%)を示す。TiO2、MgO、SiO2、Al23、RE23、BNの1種又は2種以上の粉末、水溶性アクリル酸系分散剤、及び、水を混合したコーティング剤を試験片に塗布し、約300℃で乾燥した。なお、これらの粉末原料には、不可避的に混入する成分も含まれている。 Table 3 shows the mass ratio (%) of the TiO 2 , MgO, SiO 2 , Al 2 O 3 , RE 2 O 3 , and BN powders mixed in the coating agent. One or two or more powders of TiO 2 , MgO, SiO 2 , Al 2 O 3 , RE 2 O 3 , BN, a water-soluble acrylic acid dispersant, and a coating agent mixed with water are applied to the test piece. And dried at about 300 ° C. These powder materials also contain components that are inevitably mixed.

ここでは、水溶性アクリル酸系分散剤を用いたが、分散剤は、水溶性アクリル酸系に限定されない。粉末原料は、粒径がサブミクロンオーダーの微粉末を用いた。   Here, a water-soluble acrylic dispersant is used, but the dispersant is not limited to the water-soluble acrylic. The powder raw material used was a fine powder having a particle size of submicron order.

表2に示す試験片に、表3に示すコーティング剤を塗布し、乾燥して、曝露試験Aに供した。曝露試験Aが完了した試験片について、溶融アルミニウムとの反応層の厚み(最大)とコーティング層の剥離の有無を観察した。   The coating agent shown in Table 3 was applied to the test piece shown in Table 2, dried, and subjected to the exposure test A. About the test piece for which the exposure test A was completed, the thickness (maximum) of the reaction layer with molten aluminum and the presence or absence of peeling of the coating layer were observed.

表4に、試験片の水準(表2のNoとコーティング層)、及び、溶融アルミニウムとの反応層の厚み(最大)とコーティング層の剥離の有無を示す。   Table 4 shows the level of the test piece (No in Table 2 and coating layer), the thickness (maximum) of the reaction layer with molten aluminum, and the presence or absence of peeling of the coating layer.

大気中の熱処理で、表面側から、酸化チタン層、基材よりも酸素濃度が高いα相からなる酸素富化層、基材チタンの表層構造を形成し、さらに、酸化チタン層の上に所要のコーティング層を形成た発明例No.51、53〜65、及び、67〜92では、反応層の厚みが、光学顕微鏡の観察限界の1μm未満と薄く(反応層が殆ど形成されていない。)、コーティング層の剥離もなく、耐溶損性が極めて優れている。   By heat treatment in the atmosphere, a titanium oxide layer, an oxygen-enriched layer consisting of an α phase with a higher oxygen concentration than the substrate, and a surface layer structure of the substrate titanium are formed from the surface side, and further required on the titanium oxide layer Invention Example No. having a coating layer of In 51, 53 to 65, and 67 to 92, the thickness of the reaction layer is as thin as less than 1 μm, which is the observation limit of the optical microscope (the reaction layer is hardly formed), there is no peeling of the coating layer, and the resistance to melting The property is extremely excellent.

一方、基材ままのチタンにコーティング層を形成した比較例No.52、及び、66では、基材チタンとコーティング層との熱膨張・収縮量の差が大きいため、コーティング層に剥離が生じて、基材と溶融アルミニウムの反応層が形成されている。   On the other hand, Comparative Example No. 1 in which a coating layer was formed on titanium as a base material. In 52 and 66, since the difference in thermal expansion / contraction between the base titanium and the coating layer is large, peeling occurs in the coating layer, and a reaction layer of the base and molten aluminum is formed.

表2と表4に示す曝露試験Aの結果から解るように、表1に示す、500℃での0.2%耐力が75MPa以上の基材の記号A03とB01〜17、さらに、室温での伸びが23%以上の記号B01〜03、B05、B06、B08、B09、及び、B11〜15でも、本発明処理部材の表層構造による効果と同様の効果が得られている。   As can be seen from the results of the exposure test A shown in Table 2 and Table 4, the symbols A03 and B01-17 of the base material having a 0.2% proof stress of 75 MPa or more at 500 ° C. shown in Table 1, and at room temperature Even with the symbols B01 to 03, B05, B06, B08, B09, and B11 to 15 having an elongation of 23% or more, the same effect as the effect of the surface layer structure of the processing member of the present invention is obtained.

(実施例2)
次に、以下の曝露試験Bの結果である“はんだ”との反応層とクラックの有無を、表5に示す。
(Example 2)
Next, Table 5 shows the reaction layer with “solder” and the presence or absence of cracks as a result of the following exposure test B.

[曝露試験B]
試験片を、溶融したSn−Pd系はんだ(60%Sn−40%Pd)に8時間浸漬し、浸漬後、大気中に引き上げる工程を1サイクルとして、6サイクルを実施した。溶融はんだの温度は、約200℃とした。
[Exposure test B]
The test piece was immersed in molten Sn—Pd-based solder (60% Sn-40% Pd) for 8 hours, and after the immersion, the process of pulling it up to the atmosphere was performed as 6 cycles. The temperature of the molten solder was about 200 ° C.

曝露試験Bが完了した試験片の表層断面を樹脂製の観察台に埋め込み、研磨し、エッチングして観察試料を作製した。光学顕微鏡で、観察試料の約10mm長さを観察し、耐溶損性の程度を把握するため、“はんだ”と反応して生成した反応層の厚み(最大)と、クラックの有無を評価した。   The surface layer cross section of the test piece for which the exposure test B was completed was embedded in a resin observation table, polished, and etched to prepare an observation sample. About 10 mm length of the observation sample was observed with an optical microscope, and the thickness (maximum) of the reaction layer produced by reacting with “solder” and the presence / absence of cracks were evaluated in order to grasp the degree of resistance to melting.

大気中の熱処理で、表面側から、酸化チタン層、基材よりも酸素濃度が高いα相からなる酸素富化層、基材チタンの表層構造を形成した発明例No.102、105、及び、119では、反応層の厚みが2μm以下と、基材ままの比較例101、103、及び、117における反応層の厚み(28μmと27μm)の10分の1未満と非常に小さく、“はんだ”に対しても優れた耐溶損性を示している。   Invention Example No. 1 in which a surface structure of titanium oxide layer, oxygen-enriched layer composed of α phase having higher oxygen concentration than the base material, and surface layer structure of base material titanium was formed from the surface side by heat treatment in the atmosphere. In 102, 105, and 119, the thickness of the reaction layer is 2 μm or less, which is very less than one tenth of the thickness of the reaction layer (28 μm and 27 μm) in Comparative Examples 101, 103, and 117 as they are as the base material. It is small and has excellent resistance to melting against "solder".

なお、基材ままでは、図7に示すように、はんだ(Sn−Pb系)9と基材チタン11との間に、厚みのある反応層10が形成されている。   As shown in FIG. 7, a thick reaction layer 10 is formed between the solder (Sn—Pb system) 9 and the base material titanium 11 as it is.

コーティング層を形成した発明例No.106〜116、及び、120〜126では、反応層の厚みが、光学顕微鏡の観察限界の1μm未満と薄く(反応層が殆ど形成されていない。)、“はんだ”に対しても優れた耐溶損性を示している。なお、曝露試験Bでは、“はんだ”の温度が約200℃と低いため、反応層内でクラックは観察されなかった。   Invention Example No. with a coating layer formed In 106 to 116 and 120 to 126, the thickness of the reaction layer is as thin as less than 1 μm, which is the observation limit of the optical microscope (the reaction layer is hardly formed), and it has excellent resistance to melting against “solder”. Showing sex. In the exposure test B, since the temperature of the “solder” was as low as about 200 ° C., no crack was observed in the reaction layer.

前述したように、本発明によれば、基材がチタンからなり、低融点のアルミ二ウムなどの低融点溶融金属に対する耐溶損性に優れる低融点溶融金属処理部材を提供することができる。本発明の低融点溶融金属処理部材は、軽量で、かつ、耐久性に優れていて、アルミニウムの鋳造など、低融点の溶融金属を汲み上げて金型やダイキャストマシンに搬送するレードルや、溶融金属池の表面に浮く“のろ”を除去するのろかき等の処理部材に使用可能ものである。   As described above, according to the present invention, it is possible to provide a low-melting point molten metal-treated member that is made of titanium and has excellent resistance to melting against low-melting point molten metals such as low-melting aluminum. The low-melting-point molten metal processing member of the present invention is lightweight and excellent in durability, such as an aluminum casting, a ladle for pumping a low-melting-point molten metal and conveying it to a mold or a die-cast machine, or a molten metal It can be used as a processing member such as oysters to remove the “flour” floating on the surface of the pond.

そして、本発明の低融点溶融金属処理部材を用いれば、溶融金属保温性が高まり、作業効率が向上する。よって、本発明は、産業上の貢献が極めて顕著なものである。   And if the low melting-point molten metal processing member of this invention is used, molten metal heat retention property will increase and work efficiency will improve. Therefore, the industrial contribution of the present invention is extremely remarkable.

1 溶融アルミニウム合金の凝固層
2 チタンとアルミニウムの金属間化合物(TiAl3)層
3 基材チタン
4 クラック
5 酸化チタン層
6 基材よりも酸素濃度が高いα相からなる酸素富化層
7 基材チタン
8 コーティング層
9 はんだ(Sn−Pb系)
10 基材チタンと“はんだ”の反応層
11 基材チタン
1 molten aluminum solidified layer 2 of titanium and aluminum intermetallic alloy (TiAl 3) layer 3 substrate titanium 4 crack 5 oxygen concentration than the titanium oxide layer 6 The substrate is made of a high α-phase oxygen enriched layer 7 Substrate Titanium 8 Coating layer 9 Solder (Sn-Pb series)
10 Reaction layer of base material titanium and “solder” 11 Base material titanium

Claims (6)

基材がチタンからなり、基材の表面に、厚みが2〜20μmの酸化チタン層を有し、該酸化チタン層の下に、基材よりも酸素濃度が高いα相からなる、厚みが20〜200μmの酸素富化層を有することを特徴とする耐溶損性に優れる低融点溶融金属処理部材。   The substrate is made of titanium, has a titanium oxide layer with a thickness of 2 to 20 μm on the surface of the substrate, and has an α phase having an oxygen concentration higher than that of the substrate under the titanium oxide layer. A low-melting-point molten metal-treated member having excellent melting resistance, characterized by having an oxygen-enriched layer of ~ 200 µm. 基材がチタンからなり、基材の最表面に、TiO2、MgO、SiO2、Al23、RE23、及び、BNの1種又は2種以上からなるコーティング層を有し、該コーティング層の下に、厚みが2〜20μmの酸化チタン層を有し、該酸化チタン層の下に、基材よりも酸素濃度が高いα相からなる、厚みが20〜200μmの酸素富化層を有することを特徴とする耐溶損性に優れる低融点溶融金属処理部材。 The substrate is made of titanium, and has a coating layer made of one or more of TiO 2 , MgO, SiO 2 , Al 2 O 3 , RE 2 O 3 , and BN on the outermost surface of the substrate, A titanium oxide layer having a thickness of 2 to 20 μm is formed under the coating layer, and an oxygen enrichment having a thickness of 20 to 200 μm is formed under the titanium oxide layer and consisting of an α phase having a higher oxygen concentration than the base material. A low-melting-point molten metal-treated member having excellent melt resistance, comprising a layer. 前記酸化チタン層及び酸素富化層が、基材を、酸化雰囲気中で、750℃以上1000℃未満、30分以上300分以下、加熱して形成したものであることを特徴とする請求項1又は2に記載の耐溶損性に優れる低融点溶融金属処理部材。   2. The titanium oxide layer and the oxygen-enriched layer are formed by heating a base material in an oxidizing atmosphere at 750 ° C. or higher and lower than 1000 ° C. for 30 minutes or longer and 300 minutes or shorter. Or the low melting-point molten metal processing member which is excellent in the melt resistance as described in 2. 前記酸素富化層の断面硬さが、基材の表面側から内部に向かって連続的に減少する硬さ分布をなすことを特徴とする請求項1〜3のいずれか1項に記載の耐溶損性に優れる低融点溶融金属用処理部材。   4. The melt resistance according to claim 1, wherein the cross-sectional hardness of the oxygen-enriched layer forms a hardness distribution that continuously decreases from the surface side to the inside of the substrate. A processing member for low melting point molten metal with excellent damage properties. 前記基材として使用するチタンの500℃での0.2%耐力が75MPa以上であることを特徴とする請求項1〜4のいずれか1項に記載の耐溶損性に優れる低融点溶融金属用処理部材。   The low melting point metal excellent in melting resistance according to any one of claims 1 to 4, wherein 0.2% proof stress at 500 ° C of titanium used as the base material is 75 MPa or more. Processing member. 前記基材として使用するチタンが、Cu:0.5〜1.5質量%、Sn:1.5質量%以下、Si:0.6質量%以下を含み、かつ、CuとSnの合計量が0.5〜2.7質量%で、残部がTi及び不可避的不純物からなることを特徴とする請求項1〜5のいずれか1項に記載の耐溶損性に優れる低融点溶融金属用処理部材。   Titanium used as the base material contains Cu: 0.5 to 1.5 mass%, Sn: 1.5 mass% or less, Si: 0.6 mass% or less, and the total amount of Cu and Sn is The processing member for low melting point metal having excellent melt resistance according to any one of claims 1 to 5, wherein 0.5 to 2.7% by mass, and the balance is made of Ti and inevitable impurities. .
JP2014213587A 2014-10-20 2014-10-20 Low melting point molten metal processing member excellent in corrosion resistance and method for manufacturing the same Active JP6515379B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2014213587A JP6515379B2 (en) 2014-10-20 2014-10-20 Low melting point molten metal processing member excellent in corrosion resistance and method for manufacturing the same
KR1020167035000A KR20170005476A (en) 2014-10-20 2015-10-19 Low-melting-point molten metal processing member
PCT/JP2015/079460 WO2016063839A1 (en) 2014-10-20 2015-10-19 Low-melting-point molten metal processing member
CN201580033421.7A CN106661713A (en) 2014-10-20 2015-10-19 Low-melting-point molten metal processing member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014213587A JP6515379B2 (en) 2014-10-20 2014-10-20 Low melting point molten metal processing member excellent in corrosion resistance and method for manufacturing the same

Publications (2)

Publication Number Publication Date
JP2016079480A true JP2016079480A (en) 2016-05-16
JP6515379B2 JP6515379B2 (en) 2019-05-22

Family

ID=55760874

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014213587A Active JP6515379B2 (en) 2014-10-20 2014-10-20 Low melting point molten metal processing member excellent in corrosion resistance and method for manufacturing the same

Country Status (4)

Country Link
JP (1) JP6515379B2 (en)
KR (1) KR20170005476A (en)
CN (1) CN106661713A (en)
WO (1) WO2016063839A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018003037A (en) * 2016-06-27 2018-01-11 株式会社増田酸素工業所 Method for forming surface layer of molten metal processing member
JP2021028408A (en) * 2019-08-09 2021-02-25 日本製鉄株式会社 Titanium alloy sheet, and exhaust system components for automobile

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA3086164A1 (en) 2017-12-19 2019-06-27 Ihi Corporation Tial alloy member, method of manufacturing the same, and method of forging tial alloy member
WO2019155553A1 (en) * 2018-02-07 2019-08-15 日本製鉄株式会社 Titanium alloy material

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6444256A (en) * 1987-08-12 1989-02-16 Kaoru Yanagida Corrosion resistant molding used for handling molten aluminum and production thereof
JPH02179862A (en) * 1989-01-05 1990-07-12 Nippon Light Metal Co Ltd Titanium member excellent in erosion resistance to molten aluminum
JPH05140725A (en) * 1991-11-20 1993-06-08 Toyota Central Res & Dev Lab Inc Treatment for surface of titanium material
JPH0650429A (en) * 1992-07-27 1994-02-22 Hitachi Metals Ltd Piston ring of titanium alloy and its manufacture
JPH0941120A (en) * 1995-07-26 1997-02-10 Taiho Kogyo Kk Base material for equipment, its production and equipment using the same
JP2000514507A (en) * 1996-07-17 2000-10-31 ザ ユニバーシティ オブ バーミンガム Surface oxidation of titanium or titanium alloy products
JP2001510241A (en) * 1997-07-19 2001-07-31 ザ ユニバーシティ オブ バーミンガム How to burn skin
JP2003073796A (en) * 2001-09-03 2003-03-12 Fuji Oozx Inc Surface treatment method for titanium-based material
JP2005066631A (en) * 2003-08-22 2005-03-17 Asia Engineering Kk Diecasting mold and various components using titanium alloy having high aluminum dissolved loss resistance
JP2006207490A (en) * 2005-01-28 2006-08-10 Aisan Ind Co Ltd Engine valve and surface treatment method for engine valve
JP2010265531A (en) * 2009-05-18 2010-11-25 Nippon Steel Corp Titanium or titanium alloy superior in color fastness for use in acid-rain atmospheric environment
WO2011081077A1 (en) * 2009-12-28 2011-07-07 新日本製鐵株式会社 Heat-resistant titanium alloy with excellent oxidation resistance for exhaust system components, manufacturing method of heat-resistant titanium plate with excellent oxidation resistance for exhaust system components, and exhaust system
JP2013036070A (en) * 2011-08-05 2013-02-21 Masuda Sanso Kogyosho:Kk Method for forming intermetallic compound layer and molten metal processing member

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08199322A (en) 1995-01-24 1996-08-06 Wakamatsu Netsuren Kk Molten metal member

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6444256A (en) * 1987-08-12 1989-02-16 Kaoru Yanagida Corrosion resistant molding used for handling molten aluminum and production thereof
JPH02179862A (en) * 1989-01-05 1990-07-12 Nippon Light Metal Co Ltd Titanium member excellent in erosion resistance to molten aluminum
JPH05140725A (en) * 1991-11-20 1993-06-08 Toyota Central Res & Dev Lab Inc Treatment for surface of titanium material
JPH0650429A (en) * 1992-07-27 1994-02-22 Hitachi Metals Ltd Piston ring of titanium alloy and its manufacture
JPH0941120A (en) * 1995-07-26 1997-02-10 Taiho Kogyo Kk Base material for equipment, its production and equipment using the same
JP2000514507A (en) * 1996-07-17 2000-10-31 ザ ユニバーシティ オブ バーミンガム Surface oxidation of titanium or titanium alloy products
JP2001510241A (en) * 1997-07-19 2001-07-31 ザ ユニバーシティ オブ バーミンガム How to burn skin
JP2003073796A (en) * 2001-09-03 2003-03-12 Fuji Oozx Inc Surface treatment method for titanium-based material
JP2005066631A (en) * 2003-08-22 2005-03-17 Asia Engineering Kk Diecasting mold and various components using titanium alloy having high aluminum dissolved loss resistance
JP2006207490A (en) * 2005-01-28 2006-08-10 Aisan Ind Co Ltd Engine valve and surface treatment method for engine valve
JP2010265531A (en) * 2009-05-18 2010-11-25 Nippon Steel Corp Titanium or titanium alloy superior in color fastness for use in acid-rain atmospheric environment
WO2011081077A1 (en) * 2009-12-28 2011-07-07 新日本製鐵株式会社 Heat-resistant titanium alloy with excellent oxidation resistance for exhaust system components, manufacturing method of heat-resistant titanium plate with excellent oxidation resistance for exhaust system components, and exhaust system
JP2013036070A (en) * 2011-08-05 2013-02-21 Masuda Sanso Kogyosho:Kk Method for forming intermetallic compound layer and molten metal processing member

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018003037A (en) * 2016-06-27 2018-01-11 株式会社増田酸素工業所 Method for forming surface layer of molten metal processing member
JP2021028408A (en) * 2019-08-09 2021-02-25 日本製鉄株式会社 Titanium alloy sheet, and exhaust system components for automobile
JP7303434B2 (en) 2019-08-09 2023-07-05 日本製鉄株式会社 Titanium alloy plates and automotive exhaust system parts

Also Published As

Publication number Publication date
KR20170005476A (en) 2017-01-13
WO2016063839A1 (en) 2016-04-28
JP6515379B2 (en) 2019-05-22
CN106661713A (en) 2017-05-10

Similar Documents

Publication Publication Date Title
WO2016063839A1 (en) Low-melting-point molten metal processing member
JP4157891B2 (en) Titanium alloy with excellent high-temperature oxidation resistance and engine exhaust pipe
TWI628407B (en) Copper alloy plate and coil for heat dissipation parts
TWI605139B (en) A copper alloy sheet for a heat radiating component and a heat radiating component
JP6108260B1 (en) Mold for hot forging, method for producing forged product using the same, and method for producing hot forging die
JP6001469B2 (en) Fused Al-Zn plated steel sheet and method for producing the same
WO2016152648A1 (en) Copper alloy sheet for heat dissipating component and heat dissipating component
JP2009102696A (en) SURFACE TREATMENT METHOD OF Ti-Al-BASED ALLOY, AND Ti-Al-BASED ALLOY OBTAINED THEREBY
JP4193958B2 (en) Molten metal member having excellent corrosion resistance against molten metal and method for producing the same
JP6566255B2 (en) Hot forging die
JP2008231551A (en) Stainless steel product excellent in temper coloring resistance and method for manufacturing the same
JPWO2016027832A1 (en) Manufacturing method of die casting coating mold
TW201443284A (en) Cermet thermal spray powder, roller for molten metal plating bath, article in molten metal plating bath
JP3608546B2 (en) Mold for casting and manufacturing method thereof
JP5976577B2 (en) Heat sink for power device and manufacturing method thereof
JP6391618B2 (en) Titanium copper foil and manufacturing method thereof
JP4568092B2 (en) Cu-Ni-Ti copper alloy and heat sink
JP7174949B2 (en) Method for manufacturing titanium instruments
Suh et al. Effect of heat treatment on microstructure and mechanical properties of electromagnetic duo-cast Al hybrid material
JP2000064060A (en) Member for nonferrous molten metal
JP5531178B2 (en) Protective film for casting mold surface
JP6784954B2 (en) Hot forging dies and methods for manufacturing forged products using them
JP5132962B2 (en) Aluminum alloy-silicon carbide composite
JP5334648B2 (en) Copper alloy sheet with excellent heat resistance for tin plating
JP2011207730A (en) Molten-metal contact material and coating film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171013

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20171013

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180828

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181029

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20190108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20190108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190312

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190325

R151 Written notification of patent or utility model registration

Ref document number: 6515379

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151