JP5531178B2 - Protective film for casting mold surface - Google Patents

Protective film for casting mold surface Download PDF

Info

Publication number
JP5531178B2
JP5531178B2 JP2010018642A JP2010018642A JP5531178B2 JP 5531178 B2 JP5531178 B2 JP 5531178B2 JP 2010018642 A JP2010018642 A JP 2010018642A JP 2010018642 A JP2010018642 A JP 2010018642A JP 5531178 B2 JP5531178 B2 JP 5531178B2
Authority
JP
Japan
Prior art keywords
film
protective film
vol
resistance
casting mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010018642A
Other languages
Japanese (ja)
Other versions
JP2011156546A (en
Inventor
正照 野瀬
進 池野
亮 菊池
雅文 西田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyama University
Toyota Motor Corp
Original Assignee
Toyama University
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyama University, Toyota Motor Corp filed Critical Toyama University
Priority to JP2010018642A priority Critical patent/JP5531178B2/en
Publication of JP2011156546A publication Critical patent/JP2011156546A/en
Application granted granted Critical
Publication of JP5531178B2 publication Critical patent/JP5531178B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は鋳造金型の表面に形成される保護膜に関する。特にダイカスト金型の表面に形成される保護膜に適している。   The present invention relates to a protective film formed on the surface of a casting mold. It is particularly suitable for a protective film formed on the surface of a die casting mold.

一般的な金型鋳造法では、予め金型に離型剤を塗布し、その後、注湯・凝固・脱型の過程で製品を製造する。また、金型鋳造法は、溶湯温度が高温(例えばアルミニウムの溶湯温度:約700℃)であり、しかも例えばダイカスト鋳造法の場合には鋳造圧力が高圧である。このように金型鋳造法において、鋳造金型は過酷な環境に晒される。従って、鋳造金型の表面には保護膜が通常設けられており、その保護膜には種々の特性が要求されている。   In a general mold casting method, a mold release agent is applied to a mold in advance, and then a product is manufactured in the process of pouring, solidifying, and demolding. Further, in the mold casting method, the molten metal temperature is high (for example, the molten metal temperature of aluminum: about 700 ° C.), and for example, in the case of the die casting method, the casting pressure is high. Thus, in the mold casting method, the casting mold is exposed to a harsh environment. Therefore, a protective film is usually provided on the surface of the casting mold, and various characteristics are required for the protective film.

なお、鋳造金型表面用保護膜として、耐高温性(耐酸化性)に優れたものもある(特許文献1)。しかし、鋳造前に、この鋳造金型表面用保護膜の表面には、溶湯の焼き付き防止用離型剤を塗布または吹き付けすることが行われている。つまり、この鋳造金型表面用保護膜は、溶湯に対する低濡れ性(耐溶着性)が乏しいものである。   Some casting mold surface protective films have excellent high-temperature resistance (oxidation resistance) (Patent Document 1). However, before casting, a mold release agent for preventing seizure of molten metal is applied or sprayed onto the surface of the protective film for casting mold surface. That is, this casting mold surface protective film has poor low wettability (welding resistance) to the molten metal.

特許第3697221号公報Japanese Patent No. 3697221

上述したように離型剤を用いる場合、溶湯と離型剤とが接触するとガスが発生する。そのガスが製品内に取り込まれて、製品に内部欠陥(巣等)ができることが知られている。そのため、離型剤の塗布をなくす方向への改善(離型剤の塗布量を減少、又は離型剤の塗布自体をなくすこと)が望まれている。   As described above, when a release agent is used, gas is generated when the molten metal and the release agent come into contact with each other. It is known that the gas is taken into the product and an internal defect (such as a nest) is formed in the product. Therefore, improvement in the direction of eliminating the application of the release agent (reducing the application amount of the release agent or eliminating the application of the release agent itself) is desired.

その一方、離型剤の塗布をなくす方向に改善するには、既存のものよりも優れた特性が鋳造金型表面用保護膜には要求される。高硬度性、密着性(金型に対するもの)、耐ヒートクラック性、耐圧性などについては既存のものと同等以上のレベルであり、これら以外の耐熱性(耐酸化性)、耐食性(耐溶損性)、低濡れ性(耐溶着性)、等の特性については、既存のものよりも優れていることが求められる。   On the other hand, in order to improve the direction in which the application of the release agent is eliminated, the casting mold surface protective film is required to have characteristics superior to those of existing ones. High hardness, adhesion (to mold), heat crack resistance, pressure resistance, etc. are equivalent to or better than existing ones. Other heat resistance (oxidation resistance), corrosion resistance (melting resistance) ), Low wettability (welding resistance) and the like are required to be superior to existing ones.

本発明は上記実情を考慮して創作されたもので、その解決課題は、離型剤の塗布をなくす方向への改善を可能とするために、前述した特性を満足する鋳造金型表面用保護膜を提供することである。   The present invention has been created in consideration of the above circumstances, and its solution is to protect the casting mold surface that satisfies the above-mentioned characteristics in order to improve the direction in which the application of the release agent is eliminated. It is to provide a membrane.

発明は、金属基材表面に形成される鋳造金型表面用保護膜であって、その最表面には保護膜本体を備え、その保護膜本体はCrAlN相とBN相とが三次元的に混じり合う複合膜である The present invention is a protective film for a casting mold surface formed on the surface of a metal substrate, and has a protective film body on the outermost surface, and the protective film body has a three-dimensional structure of CrAlN phase and BN phase. It is a composite film that mixes together .

また、保護膜本体はCrAlN相とBN相とが三次元的に混じり合う複合膜であるが、酸素やその他の不純物元素の金属が入っていることも含むものである。さらに、保護膜本体は主としてCrAlNとBNとで構成される膜であるが、CrおよびAl以外に、Mo,W, Ti,Zrなどの遷移金属元素やSiなどが不純物として含まれていても本発明の効果を低下させるものではない。また、酸素はターゲットにもともと1原子%以下含まれており、成膜プロセス上も不可避な不純物として相当量膜中に含有されている。これら不純物は本発明の効果を変更するものではない。   The protective film body is a composite film in which the CrAlN phase and the BN phase are three-dimensionally mixed, but also includes the inclusion of oxygen or other impurity element metals. Furthermore, the protective film body is a film mainly composed of CrAlN and BN. However, in addition to Cr and Al, this film may contain transition metal elements such as Mo, W, Ti, Zr, and Si as impurities. The effect of the invention is not reduced. In addition, oxygen is originally contained in the target in an amount of 1 atomic% or less, and a considerable amount of oxygen is contained in the film as an inevitable impurity in the film formation process. These impurities do not change the effect of the present invention.

保護膜本体のCrとAlの組成比については問わず、耐酸化性を上げるにはAlが多い方が良いが、あまりAlを多くしすぎると硬度が下がるので、最適な範囲はCrとAlの組成比が原子%で7:3〜3:7である。   Regardless of the composition ratio of Cr and Al in the protective film body, it is better to have more Al to improve oxidation resistance, but if too much Al is added, the hardness will decrease, so the optimal range is between Cr and Al. The composition ratio is 7: 3 to 3: 7 in atomic percent.

また、保護膜本体のBN含有量率(vol%)については問わない。また、保護膜本体はその厚み方向についてBN含有量率(vol%)が例えば均一であっても良いが、より密着性を向上するには、次のようにすることが望ましい。即ち、保護膜本体は、その表面に向かうほどBN含有量率(vol%)が連続的に多くなる傾斜膜もしくは段階的に多くなる多層膜、又はこれらを組み合わせた膜であることである。 Further, the BN content rate (vol%) of the protective film body is not questioned. In addition, the protective film body may have a uniform BN content rate (vol%) in the thickness direction, for example, but in order to further improve the adhesion, the following is desirable. Immediate Chi, coercive Mamorumaku body is that it is a film BN content ratio (vol%) was combined continuously many become inclined film or stepwise number becomes multilayer film, or these increases toward the surface thereof .

金属基材表面に直に保護膜本体を形成しても良いが、保護膜本体の全体がBNを含有すると、保護膜本体と金属基材との密着性が悪くなり、保護膜本体の剥離を起こし易くなる。そこで、より密着性を向上させるには次のようにすることが望ましい。即ち、保護膜本体はその最下面のBN含有量率(vol%)を0としてあることである。 The protective film body may be formed directly on the surface of the metal substrate, but if the entire protective film body contains BN, the adhesion between the protective film body and the metal substrate will deteriorate, and the protective film body will be peeled off. It is easy to wake up. Therefore, in order to further improve the adhesion, it is desirable to do as follows. Immediate Chi, coercive Mamorumaku body BN content rate of the lowermost surface (vol%) is that you have to zero.

さらには、保護膜本体の最下面と基板との間に、Cr、MoもしくはWの膜、又はこれらを含む合金膜、例えばCrAl合金膜を下地膜として成膜することも密着性を向上させるために有効である。   Furthermore, in order to improve adhesion, it is also possible to form a Cr, Mo or W film, or an alloy film containing these, for example, a CrAl alloy film as a base film between the lowermost surface of the protective film body and the substrate. It is effective for.

本発明は実験結果より高硬度性、密着性(金型に対するもの)、耐ヒートクラック性、耐圧性、耐熱性(耐酸化性)、耐食性(耐溶損性)、低濡れ性(耐溶着性)に優れているので、離型剤の塗布量の減少は勿論、離型剤の塗布自体をなくすことも可能である。それにより、離型剤を起因とするガスによる製品欠陥が改善され、製品薄肉化が可能となる。また、離型剤の塗布工程をなくすことによって、製造工程時間の短縮化及び低コスト化を達成することができる。   From the experimental results, the present invention has higher hardness, adhesion (to mold), heat crack resistance, pressure resistance, heat resistance (oxidation resistance), corrosion resistance (melting resistance), and low wettability (welding resistance). Therefore, it is possible to eliminate the application of the release agent as well as to reduce the application amount of the release agent. Thereby, the product defect due to the gas caused by the release agent is improved, and the product can be thinned. In addition, the manufacturing process time can be shortened and the cost can be reduced by eliminating the step of applying the release agent.

また、保護膜本体は、その表面に向かうほどBN含有量率(vol%)が連続的に多くなる傾斜膜もしくは段階的に多くなる多層膜、又はこれらを組み合わせた膜であれば、密着性がより向上する。   Moreover, if the protective film body is a gradient film in which the BN content rate (vol%) continuously increases toward the surface, a multilayer film in which the BN content rate increases stepwise, or a film that combines these, the adhesion is improved. More improved.

その上、保護膜本体はその最下面のBN含有量率(vol%)を0とすると、密着性がより向上する。さらに、保護膜本体のBN含有量率を設定することによって、より高硬度になる。   In addition, when the BN content rate (vol%) of the lowermost surface of the protective film body is 0, the adhesion is further improved. Furthermore, the hardness becomes higher by setting the BN content rate of the protective film body.

試験片及び保護膜を示す組成図である。It is a composition figure which shows a test piece and a protective film. 保護膜の平均塑性硬さ及び平均粒子径と、BN含有量率(vol%)との関係を示すグラフである。It is a graph which shows the relationship between the average plastic hardness and average particle diameter of a protective film, and BN content rate (vol%). BN含有量率0(vol%)の保護膜に対するアニール試験において塑性硬さの変化を示すグラフである。It is a graph which shows the change of plastic hardness in the annealing test with respect to the protective film of BN content rate 0 (vol%). BN含有量率7(vol%)の保護膜に対するアニール試験において塑性硬さの変化を示すグラフである。It is a graph which shows the change of plastic hardness in the annealing test with respect to the protective film of BN content rate 7 (vol%). BN含有量率28(vol%)の保護膜に対するアニール試験において塑性硬さの変化を示すグラフである。It is a graph which shows the change of plastic hardness in the annealing test with respect to the protective film of BN content rate 28 (vol%). BN含有量率35(vol%)の保護膜に対するアニール試験において塑性硬さの変化を示すグラフである。It is a graph which shows the change of plastic hardness in the annealing test with respect to the protective film of BN content rate 35 (vol%). アルミニウムの凝着量が、保護膜のBN含有量率(vol%)によってどのように変化するのかを示したグラフである。It is the graph which showed how the adhesion amount of aluminum changes with BN content rate (vol%) of a protective film. 溶湯浸漬後の各複合膜の外観を示す接写像である。It is a close-up image which shows the external appearance of each composite film after molten metal immersion. 溶湯浸漬後のTiAlN/15vol%BN複合膜のEDS分析結果を示すマップである。It is a map which shows the EDS analysis result of the TiAlN / 15vol% BN composite film after molten metal immersion. 溶湯浸漬後のCrAlN/20vol%BN複合膜のEDS分析結果を示すマップである。It is a map which shows the EDS analysis result of the CrAlN / 20vol% BN composite film after molten metal immersion. 溶湯浸漬後のCrAlN/27vol%BN複合膜のEDS分析結果を示すマップである。It is a map which shows the EDS analysis result of the CrAlN / 27vol% BN composite film after molten metal immersion. 製品内ガス分析結果を示すグラフである。It is a graph which shows the gas analysis result in a product.

<試料作成条件>
膜作製に使用した装置は対向ターゲット式マグネトロンスパッタ装置(大阪真空機器製作所製FTS-R2)である。本実験では、スパッタ電源に高周波(R.F)電源を用いた。R.F電源には共振周波数13.56 MHz、最大出力1kWのものを使用した。蒸着源には焼結CrAl合金ターゲット(100mm×160mm×10mmt、Al:34.5%,
Fe:0.05%, O:0.11%,C:0.03%, N:0.007%, Cr:Bal(質量%)以下同じ)、及び純度99.0%のh-BN焼結体ターゲット(100mm×160mm×10mmt)を用いる。スパッタガスにはAr(99.9999%)、反応ガスにはN2(99.9999%)、基板には高速度鋼又はダイス鋼を用いた。ターゲット―基板間距離は115mm一定とし、成膜時の基板温度は室温である。基板側に印加するバイアス電圧は0〜−100V(実効値)の範囲で制御した。スパッタ電力は980W一定とし、膜厚が3.5μmとなるように成膜時間を制御した。まず、CrAlを下地膜としてスパッタリングする。続いて、N2ガスを導入してCrAlN膜を形成し、さらに二元同時スパッタにより、CrAlN/BNの保護膜本体を成膜した。成膜過程においては、徐々にBN相の含有量率(体積%)を増加させ、保護膜本体を傾斜膜と多層膜とを組み合わせた膜となるようにした。図1には、成膜過程におけるBNの濃度の傾斜具合がイメージとして示されている。なお、保護膜本体の最表面はBNを15vol%以上含む膜になっている。
<Sample preparation conditions>
The apparatus used for the film preparation was an opposed target type magnetron sputtering apparatus (FTS-R2 manufactured by Osaka Vacuum Equipment Co., Ltd.). In this experiment, a high frequency (RF) power source was used as a sputtering power source. An RF power supply with a resonance frequency of 13.56 MHz and a maximum output of 1 kW was used. The deposition source is a sintered CrAl alloy target (100mm x 160mm x 10mmt, Al: 34.5%,
Fe: 0.05%, O: 0.11%, C: 0.03%, N: 0.007%, Cr: Bal (mass%) the same) and 99.0% purity h-BN sintered compact target (100mm × 160mm × 10mmt) Is used. Ar (99.9999%) was used as the sputtering gas, N 2 (99.9999%) was used as the reaction gas, and high-speed steel or die steel was used as the substrate. The target-substrate distance is fixed at 115 mm, and the substrate temperature during film formation is room temperature. The bias voltage applied to the substrate side was controlled in the range of 0 to −100 V (effective value). The deposition time was controlled so that the sputtering power was kept constant at 980 W and the film thickness was 3.5 μm. First, sputtering is performed using CrAl as a base film. Subsequently, a CrAlN film was formed by introducing N 2 gas, and a CrAlN / BN protective film body was formed by binary simultaneous sputtering. In the film formation process, the content ratio (volume%) of the BN phase was gradually increased so that the main body of the protective film was a film in which a gradient film and a multilayer film were combined. FIG. 1 shows an image of the gradient of BN concentration during the film formation process. The outermost surface of the protective film body is a film containing 15 vol% or more of BN.

<各種測定と評価>
膜厚は表面形状測定器(ミツトヨ製)によって測定した。波長分散型EPMA(日本電子製-JAX-8600)を使用し、組成分析を行った。測定の際には加速電圧10kV、試料電流50nA、照射ビーム径5μmとした。膜の微小硬度測定には超マイクロインデンター(フィッシャー製HC-100XYp)を用い、膜中への圧子の侵入深さが膜厚の概ね10分の1以下となるように最高荷重を選んだ。除荷曲線の接線から圧子の侵入深さを求め、接触面積に換算することによって塑性変形硬さ(Hpl)を計算する公知のOliverの方法を用いた。試料の構造解析には、X線回折装置(Philips製X'part system)を使用し、薄膜法(入射角1°)を用いた。X線源にはCuKα線(40kV、40mA)を用い、結晶粒サイズの測定には、Scherrerの式を用いた。また、膜の微細組織観察にはFE-SEM(JEOL,JSM-6700F)及びTEM(Topcon、EM002B)を用いた。
<Various measurements and evaluation>
The film thickness was measured with a surface shape measuring instrument (Mitutoyo). Composition analysis was performed using wavelength dispersion type EPMA (JEOL Ltd.-JAX-8600). In the measurement, the acceleration voltage was 10 kV, the sample current was 50 nA, and the irradiation beam diameter was 5 μm. An ultra-micro indenter (Fischer HC-100XYp) was used to measure the micro hardness of the film, and the maximum load was selected so that the indentation depth into the film would be approximately 1/10 or less of the film thickness. A known Oliver method for calculating the plastic deformation hardness (H pl ) by obtaining the indentation depth of the indenter from the tangent line of the unloading curve and converting it to the contact area was used. For the structural analysis of the sample, an X-ray diffractometer (X'part system made by Philips) was used, and a thin film method (incident angle 1 °) was used. CuKα rays (40 kV, 40 mA) were used as the X-ray source, and Scherrer's equation was used to measure the crystal grain size. In addition, FE-SEM (JEOL, JSM-6700F) and TEM (Topcon, EM002B) were used to observe the microstructure of the film.

図2は、上記条件で製造した保護膜の平均塑性硬さ及び平均粒子径がBN含有量率(体積%)によってどのように変化するのかを示したグラフである。これにより塑性硬さは、BN含有量率を0vol%よりも増やすと含有量率0vol%と同等若しくはそれよりも向上し、BN含有量率が20vol%を超えると硬度が急激に低下し、25vol%で22GPa、35vol%で17GPaとなることが分かる。ダイカスト鋳造法に用いられる表面窒化処理鋼の硬度が概ね10〜14GPa程度である事から、硬度は15GPa以上あればよい。他方、溶湯に対する耐溶着性、耐溶損性の観点から保護膜最表面のBN含有量率は15vol%以上が望ましく、20vol%以上含まれることがさらに望ましい。したがって、BN含有量率の上限は膜の硬度が15GPa未満となる組成で規定される。   FIG. 2 is a graph showing how the average plastic hardness and average particle diameter of the protective film manufactured under the above conditions change depending on the BN content rate (volume%). As a result, the plastic hardness increases to a level equal to or better than 0 vol% when the BN content rate is increased from 0 vol%, and when the BN content rate exceeds 20 vol%, the hardness rapidly decreases to 25 vol%. It can be seen that 22% GPa at 17% and 17GPa at 35vol%. Since the hardness of the surface nitriding steel used in the die casting method is about 10 to 14 GPa, the hardness may be 15 GPa or more. On the other hand, the BN content rate on the outermost surface of the protective film is preferably 15 vol% or more, and more preferably 20 vol% or more, from the viewpoints of resistance to welding and melt resistance to molten metal. Therefore, the upper limit of the BN content rate is defined by a composition in which the film hardness is less than 15 GPa.

図3〜図6は、上記条件で製造した保護膜の耐熱性(耐酸化性)を評価するためのもので、塑性硬さが大気中でのアニール試験によってどのように変化するのかを、BN含有量率ごとに示したグラフである。本発明の比較対象となるCrAlN単相膜は、TiNやTiAlNなどに比較して耐酸化性に優れるといわれているが、図3に示すように、700℃以上の大気中アニール試験において硬度が低下し、700℃のアニール試験結果では17%以上、800℃では実に50%も硬度が低下していることが分かる。これにより、鋳造の連続操業による大気中加熱で膜が酸化され徐々に劣化することが容易に予想される。
一方、BNを含む本発明の保護膜では、図4に示すようにBNを高々7vol%含有するだけで、大気中加熱による硬度の低下は見られず、800℃の加熱でも僅かな低下が見られる程度であった。図5および図6に示すように、28vol%、35vol%含有する保護膜でも800℃まで硬度の上昇もしくは、維持が見られた。これらのことから、本発明の保護膜はCrAlN単相膜に比べて優れた耐熱性(耐酸化性)を有することが分かり、600℃以上の高温に晒される鋳造金型表面用保護膜として優れた特性を有することがわかる。
FIGS. 3 to 6 are for evaluating the heat resistance (oxidation resistance) of the protective film manufactured under the above conditions. BN shows how plastic hardness changes due to an annealing test in the atmosphere. It is the graph shown for every content rate. The CrAlN single phase film to be compared with the present invention is said to be superior in oxidation resistance compared to TiN, TiAlN, etc., but as shown in FIG. From the results of the annealing test at 700 ° C., it is found that the hardness is reduced by 17% or more, and at 800 ° C., the hardness is actually reduced by 50%. Thereby, it is easily predicted that the film is oxidized and gradually deteriorated by heating in the atmosphere by continuous casting operation.
On the other hand, in the protective film of the present invention containing BN, as shown in FIG. 4, only 7 vol% of BN is contained, and no decrease in hardness due to heating in the atmosphere is observed. It was to the extent possible. As shown in FIGS. 5 and 6, even in the protective film containing 28 vol% and 35 vol%, the hardness was increased or maintained up to 800 ° C. From these facts, it can be seen that the protective film of the present invention has superior heat resistance (oxidation resistance) compared to the CrAlN single phase film, and is excellent as a protective film for the casting mold surface exposed to a high temperature of 600 ° C. or higher. It can be seen that it has the above characteristics.

図7は上記条件で製造した保護膜の耐溶着性を評価するためのもので、アルミニウムの凝着体積がBN含有量率(vol%)によってどのように変化するのかを示したグラフである。この評価のために、ダイス鋼基板に成膜したCrAlN単相膜と本発明のCrAlN/BN複合膜について、室温において往復摩擦試験を行った。基板上に成膜した各保護膜の上を、アルミニウム製ボールによって荷重300gfで印加し、摩擦速度300mm/minでアルミニウム製ボールを各5回往復させた。この条件を1セットとする。そして、この条件で各10セットの往復摩擦試験を行った後、表面粗度測定器を用いて各線5点、計50点の凝着痕断面積を測定し、その平均値から凝着体積を算出して比較した。図7から明らかなように、BNの含有量率が増えるにしたがって、アルミニウムの凝着量は低下し、BNを27vol%含む本発明の保護膜では、CrAlN単相膜に比べ、5分の1以下の凝着量を示した。この試験は室温における結果であるが、金型の保護膜と鋳造材との耐凝着性を示す指標であり、室温での凝着量が少ないほど、高温でも金型表面が溶湯に濡れにくく、溶着も少なくなることが容易に分かる。   FIG. 7 is a graph showing how the adhesion volume of aluminum varies depending on the BN content rate (vol%) for evaluating the welding resistance of the protective film manufactured under the above conditions. For this evaluation, a reciprocal friction test was performed at room temperature on the CrAlN single-phase film formed on the die steel substrate and the CrAlN / BN composite film of the present invention. On each protective film formed on the substrate, an aluminum ball was applied with a load of 300 gf, and the aluminum ball was reciprocated five times each at a friction speed of 300 mm / min. This condition is one set. And after performing 10 sets of reciprocating friction tests under these conditions, the surface roughness measuring instrument was used to measure the adhesion area of 5 points on each line, a total of 50 points, and the adhesion volume was calculated from the average value. Calculated and compared. As is clear from FIG. 7, as the BN content rate increases, the amount of aluminum adhesion decreases, and the protective film of the present invention containing 27 vol% of BN is 1/5 of the CrAlN single-phase film. The following adhesion amounts were shown. Although this test is a result at room temperature, it is an index indicating the adhesion resistance between the protective film of the mold and the cast material. The smaller the amount of adhesion at room temperature, the harder the mold surface gets wet with the molten metal. It can be easily seen that welding is also reduced.

さらに耐溶着性と耐溶損性に関する特性の比較を行った。ダイス鋼基板に成膜した(a)TiAlN/15vol%BN、(b)CrAlN/20vol%BN、(c)CrAlN/27vol%BNの各複合膜を600℃のダイカスト用アルミニウム合金(ADC12)の溶湯に20秒間間浸した。その試料を溶湯から引き揚げ、冷却したのち各複合膜と溶湯との反応性(耐溶損性)や耐凝着性(耐溶着性)を外観およびEDS分析により評価した。その結果を図8〜11に示す。図8の外観写真ではいずれの複合膜もアルミニウム合金が一部凝着しているように見えるが、TiAlN/BN複合膜の場合にアルミニウム合金が最も厚く溶着していることがわかる。さらに図9〜11のEDS分析結果から、TiAlN/BN複合膜の場合にはアルミニウムの溶着量も多く、EDS分析によりFeが検出されたことから、膜の一部が剥離していることが明らかになった。他方、本発明のCrAlN/BN複合膜では、溶着痕が薄らと見られるが、EDS分析の結果、Alの溶着は軽微であり、膜の剥離もほとんど見られなかった。TiAlN/BN複合膜もBNを含有するので、アルミニウムに対する耐溶損性・耐溶着性についてはBNを含有しないTiAlN単相膜に比べれば優れているが、アルミニウム合金溶湯に20秒間浸漬するという過酷な実験条件下では、CrAlN/BN複合膜はTiAlN/BN複合膜よりもさらにアルミニウム合金に対する耐溶損性・耐溶着性に優れていることが分かる。   Furthermore, the characteristics relating to the welding resistance and the corrosion resistance were compared. (A) TiAlN / 15vol% BN, (b) CrAlN / 20vol% BN, and (c) CrAlN / 27vol% BN composite films deposited on a die steel substrate at a 600 ° C die casting aluminum alloy (ADC12) melt Soaked for 20 seconds. The sample was lifted from the molten metal, cooled, and then the reactivity (melting resistance) and adhesion resistance (welding resistance) between each composite membrane and the molten metal were evaluated by appearance and EDS analysis. The results are shown in FIGS. In the appearance photograph of FIG. 8, it can be seen that in all the composite films, a part of the aluminum alloy is adhered, but in the case of the TiAlN / BN composite film, the aluminum alloy is most thickly deposited. Further, from the EDS analysis results of FIGS. 9 to 11, in the case of the TiAlN / BN composite film, a large amount of aluminum was deposited, and Fe was detected by EDS analysis, so it was clear that a part of the film was peeled off. Became. On the other hand, in the CrAlN / BN composite film of the present invention, the welding traces appear to be thin, but as a result of the EDS analysis, the Al deposition was slight and almost no peeling of the film was observed. TiAlN / BN composite film also contains BN, so it has better resistance to aluminum erosion and adhesion compared to TiAlN single phase film that does not contain BN, but it is so harsh that it is immersed in molten aluminum alloy for 20 seconds. Under the experimental conditions, it can be seen that the CrAlN / BN composite film is superior to the TiAlN / BN composite film in terms of resistance to erosion and adhesion to the aluminum alloy.

上記条件で製造した保護膜について耐ヒートクラック性、高密着性、耐圧性を確認するために、その保護膜を付着させた試験片(金型)を用いて、アルミダイカスト鋳造によって連続して数百回、鋳造した。鋳造条件は、一般的な高鋳造圧(約50MPa)、射出速度(高速時約2m/s)の条件である。20ショット後、100ショット後の保護膜の断面状態を調べたところ、保護膜には全く亀裂が入っておらず、膜の剥離も発生していないことが分かった。このことから本発明の保護膜は耐ヒートクラック性、高密着性、耐圧性があるといえる。   In order to confirm the heat crack resistance, high adhesion, and pressure resistance of the protective film manufactured under the above conditions, a number of samples were continuously formed by aluminum die casting using a test piece (mold) to which the protective film was attached. Cast 100 times. The casting conditions are general high casting pressure (about 50 MPa) and injection speed (about 2 m / s at high speed). When the cross-sectional state of the protective film after 20 shots and after 100 shots was examined, it was found that the protective film had no cracks and no film peeling occurred. From this, it can be said that the protective film of the present invention has heat crack resistance, high adhesion, and pressure resistance.

また、図12は上記条件で製造した保護膜の付いた試験片内をガス分析した結果を示すグラフである。この結果より、離型剤に起因するC系ガス(離型剤や潤滑材などに起因するガス)の減少が確認できた。   Moreover, FIG. 12 is a graph which shows the result of having analyzed the inside of the test piece with the protective film manufactured on the said conditions. From this result, it was confirmed that the C-based gas (gas resulting from the mold release agent and the lubricant) due to the mold release agent was reduced.

上記実施例では、BN含有量率が連続的に多くなる傾斜膜と段階的に多くなる多層膜とを組み合わせた膜であったが、BN含有量率が段階的に数%ごとに多くなる多層膜であっても良いし、連続的に多くなる傾斜膜であっても良い。   In the above example, the film was a combination of a gradient film in which the BN content rate increases continuously and a multilayer film in which the BN content rate increases stepwise. However, the BN content rate increases in steps of several percent. A film may be sufficient and the gradient film which increases continuously may be sufficient.

また上記実験例は、対向ターゲット式スパッタ装置を使用した例であるが、非平衡マグネトロンスパッタ装置を用いた場合でも同様の効果が得られると思われる。   Moreover, although the said experiment example is an example which uses a counter target type | mold sputtering device, it seems that the same effect is acquired also when a non-equilibrium magnetron sputtering device is used.

Claims (3)

金属基材表面に形成される鋳造金型表面用保護膜であって、その最表面には保護膜本体を備え、その保護膜本体はCrAlN相とBN相とが三次元的に混じり合う複合膜であると共に、その表面に向かうほどBN含有量率(vol%)が連続的に多くなる傾斜膜もしくは段階的に多くなる多層膜、又はこれらを組み合わせた膜であることを特徴とする鋳造金型表面用保護膜。 A protective film for the casting mold surface formed on the surface of a metal substrate , which is provided with a protective film body on the outermost surface, and the protective film body is a composite film in which the CrAlN phase and the BN phase are mixed three-dimensionally der Rutotomoni casting alloy which is a film as BN content ratio (vol%) was combined continuously many become inclined film or stepwise number becomes multilayer film, or these towards the surface Protective film for mold surface. 保護膜本体はその最下面のBN含有量率(vol%)を0としてあることを特徴とする請求項記載の鋳造金型表面用保護膜。 Protective film body casting mold surface protective film according to claim 1, wherein the BN content rate of the lowermost surface (vol%) are set to 0. 保護膜本体の最下面と金属基材表面との間に形成される下地膜を備え、その下地膜はCr、MoもしくはWの膜、又はこれらを含む合金膜であることを特徴とする請求項1又は2記載の鋳造金型表面用保護膜。A base film formed between the lowermost surface of the main body of the protective film and the surface of the metal substrate, wherein the base film is a Cr, Mo or W film, or an alloy film containing these. The protective film for the casting mold surface according to 1 or 2.
JP2010018642A 2010-01-29 2010-01-29 Protective film for casting mold surface Expired - Fee Related JP5531178B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010018642A JP5531178B2 (en) 2010-01-29 2010-01-29 Protective film for casting mold surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010018642A JP5531178B2 (en) 2010-01-29 2010-01-29 Protective film for casting mold surface

Publications (2)

Publication Number Publication Date
JP2011156546A JP2011156546A (en) 2011-08-18
JP5531178B2 true JP5531178B2 (en) 2014-06-25

Family

ID=44588994

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010018642A Expired - Fee Related JP5531178B2 (en) 2010-01-29 2010-01-29 Protective film for casting mold surface

Country Status (1)

Country Link
JP (1) JP5531178B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011190487A (en) * 2010-03-12 2011-09-29 Toyama Univ Hard protective film for working tool

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004059030A2 (en) * 2003-04-28 2004-07-15 Unaxis Balzers Ag Workpiece comprising an alcr-containing hard material layer and production method
JP2006075867A (en) * 2004-09-09 2006-03-23 Hitachi Metals Ltd Member for casting

Also Published As

Publication number Publication date
JP2011156546A (en) 2011-08-18

Similar Documents

Publication Publication Date Title
Rübner et al. Aluminium–aluminium compound fabrication by high pressure die casting
Liu et al. Modification of tribology and high-temperature behavior of Ti–48Al–2Cr–2Nb intermetallic alloy by laser cladding
JP5435326B2 (en) Die-casting coating mold and manufacturing method thereof
JP2020514551A (en) Aluminum-scandium alloys having high homogeneity and elemental content and articles thereof
Zhang et al. MoB–CoCr as alternatives to WC–12Co for stainless steel protective coating and its corrosion behavior in molten zinc
Salman et al. The performance of thermally sprayed titanium based composite coatings in molten aluminium
Xiang et al. Effects of nitrogen flux on microstructure and tribological properties of in-situ TiN coatings deposited on TC11 titanium alloy by electrospark deposition
JP7294527B2 (en) alloys and components
US9254519B2 (en) Composite material, part for continuous casting, continuous casting nozzle, continuous casting method, cast material, and magnesium alloy cast coil material
Gecu et al. Casting temperature dependent wear and corrosion behavior of 304 stainless steel reinforced A356 aluminium matrix bimetal composites fabricated by vacuum-assisted melt infiltration casting
Ramos-Masana et al. Evaluation of DC-MS and HiPIMS TiB2 and TaN coatings as diffusion barriers against molten aluminum: An insight into the wetting mechanism
Günen et al. The investigation of corrosion behavior of borided AISI 304 austenitic stainless steel with nanoboron powder
JP5867332B2 (en) Aluminum alloy wear-resistant member and method for producing the same
JP6274317B2 (en) Manufacturing method of die casting coating mold
Ma et al. Enhanced high-temperature corrosion resistance of (Al2O3–Y2O3)/Pt micro-laminated coatings on 316L stainless steel alloy
Khan et al. Evaluation of die-soldering and erosion resistance of high velocity oxy-fuel sprayed MoB-based cermet coatings
TWI711713B (en) Sputtering target
JP5531178B2 (en) Protective film for casting mold surface
Mehrizi et al. Laser cladding of CoWSi/WSi2 on Ni substrate and evaluation of its high temperature oxidation behavior
KR20170005476A (en) Low-melting-point molten metal processing member
JP4751260B2 (en) Continuous casting mold and manufacturing method thereof
CA2891886C (en) Hard coating having excellent adhesion resistance to soft metal
Song et al. Isothermal oxidation behavior and microstructure of plasma surface Ta coating on γ-TiAl
Fukumoto et al. Improvement of corrosion resistance and adhesion of coating layer for magnesium alloy coated with high purity magnesium
Mizuno et al. MoB/CoCr spray coating with higher durability in molten Al and Al-Zn alloys

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131224

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140217

R150 Certificate of patent or registration of utility model

Ref document number: 5531178

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees